九年级上册数学:配方法(一)

合集下载

1.1一元二次方程的解法(2)配方法(1)课件 苏科版数学九年级上册

1.1一元二次方程的解法(2)配方法(1)课件 苏科版数学九年级上册

.
3、解方程. (1)x2-6x-40=0
(2)x2-10x+25=0
(3)x2-x-1=0
(4)(x-3)2=2x+6
例题讲解
例2:求代数式 x2-4x-8的最值.
过程展示: 解:原式=x2-4x+22-22-8
=(x-2)2-12 ∵(x-2)2≥0 ∴(x-2)2-12≥-12 ∴(x2-4x-8)min= -12
.
4、17.已知a,b,c是△ABC的三边,且a2+b2+c2-6a-8b-10c+50=0.
(1)求a,b,c的值; (2)判断三角形的形状.
课堂练习
谢谢
1.1 一元二次方程的解法(2)
——配方法(1)
九年级数学备课组
知识回顾
用直接开平方法解方程: (1)2x2 - 3 = 5 (2)(x-1)2 - 9=0 (3)(x-4)2 =(2x+5)2
讲授新知
你会不会解这个方程 x2 - 4x + 4 = 9
方程变成这样呢?
x2 - 4x = 5
这样呢?
牛刀小试
1、求代数式 x2+10x-13的最值.
2、求代数式 -x2+10x-13的最值.
课堂小结
通过本节课的学习你有哪些收获?
1、用配方法解一元二次方程 2、用配方法求代数式最值
课堂练习
1、若关于x 的一元二次方程x2-8x+m=0配方后得到方程(x--n)²=6,则关于x 的一元二次方程x2+8x+m=5配方后得到方程 ( )
x2 - 4x - 5 = 0
讲授新知
x2 - 4x - 5 = 0的步骤

人教版九年级数学上册《配方法》第一课时课件

人教版九年级数学上册《配方法》第一课时课件

由此可得
10×6x2=1500 ① x2=25

x1=5,x2=-5
可以验证,5和-5是方程 ① 的两根 ,但是棱长不能是负值,所以正方 体的棱长为5 dm.
用方程解决实际 问题时,要考虑所 得结果是否符合实 际意义.
•1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” •2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、好的教师是让学生发现真理,而不只是传授知识。 •5、数学教学要“淡化形式,注重实质.
21.2.1 配方法 第一课时
知识回顾
完全平方公式:
a2 2abb2 (ab)2; a2 2abb2 (ab)2.
填一填
(1) x2 2x __1_2__ (x_1__)2
(2) x2 8x __4_2__ (x__4_)2
(3)
y2
5
y

5
2

__2___
(
y
__52 _)2
(4)
y2
于是,方程 (x 3)2 5 的两个根为
x1 3 2, x2 3 2
上面的解法中,由方程②和③,实质上是把一元二次方程“降次”,转化为两个一元一 次方程,这样就把方程②转化为我们会解的方2 8 0 ;2 9 x 2 5 3 ; 3 x 6 2 9 0 ; 4 3 x 1 2 6 0 ; 5 x 2 4 x 4 5 ; 6 9 x 2 + 6 x + 1 4 .
6 9 x 2 + 6 x + 1 4
解: 3x 12 4,
3x 1 2,
3x 1 2, 3x 1 2,
方程的两根为
x1

数学人教版九年级上册解一元二次方程——配方法.2.1-人教版九年级数学上册一元二次方程-配方法(第1课时)

数学人教版九年级上册解一元二次方程——配方法.2.1-人教版九年级数学上册一元二次方程-配方法(第1课时)

(a+b) ² =
(a-b) ² = 2.根据平方根的意义,解下列方程
(1)x² =4
(2)( x+1) ² =4
(三) 尝试指导,学习新知。 提问:这样的方程你能解吗? x² +2x=0
【归纳】
配方法:通过配成完全平方式的方法,得到一元二次方程的解,这样的解法叫做配 方法。配方法的依据:完全平方公式。
(一) 创设情境,设疑引新:
在实际生活中,我们常常会遇到 一些问题,需要用一元二次方程 来解决。例如:要使一块长方形 场地的长比宽多6米,并且面积为 16平方米,场地的长和宽应各是 多少米?
【解析】设该场地的宽为x米,依题意得
x(x+6)=16,但是发现所列方程无法解。
(二) 复习旧知练习:
1.平方根的定义
巩固新知、知识升华
六、布置作业 (六)布置作业。课本39页练习题1、2题
【 (五)总结】
1.解二次项系数为1的一元二次方程的基本思 路:方程化为( x+m)2=n(n≥0)的形式,。 2、用配方法解一元二次方程的一般步骤: (1)把二次项系数化为1(方程两边同时除 以二次项系数a);(2)移项(把常数项移 到方程的右边); (3)配方(方程两边都加上一次项系数的一 半的平方); (4)开平方(根据平方根意义,方程两边开 平方); (5)求解(解一元一次方程);
通过配方法的探究活动培养学生勇于探究的学习习惯感受数学的严谨性以及数学结论的确定性
21.2
解一元二次方程 配方法 第1课时
21.2.1
1、知识目标:理解配方法,会利用配 方法对一元二次方程进行配方 2、能力目标:总结出配方的解题步骤, 提高推理能力, 3、情感目标:通过配方法的探究活动, 培养学生勇于探究的学习习惯,感受 数学的严谨性以及数学结论的确定性。

九年级上册数学配方法

九年级上册数学配方法

九年级上册数学配方法【原创版3篇】目录(篇1)1.配方法的概念2.配方法的基本步骤3.配方法在解方程中的应用4.配方法的优点与局限性正文(篇1)一、配方法的概念配方法是中学数学中一种重要的解题方法,主要用于解决一元二次方程以及一些二次函数问题。

它的核心思想是将问题转化为可以配方的形式,从而简化问题,便于求解。

二、配方法的基本步骤1.观察题目,找出需要解决的问题,明确要达到的目标。

2.尝试将问题转化为可以配方的形式,通常需要通过添加、减去一些项来实现。

3.完成配方后,将问题转化为简单的二次方程或二次函数问题,从而求解。

三、配方法在解方程中的应用配方法在解一元二次方程中应用广泛,其基本步骤如下:1.将一元二次方程转化为二次函数的形式,即 ax^2 + bx + c = 0 变为 a(x - h)^2 + k = 0 的形式。

2.通过配方,将二次函数转化为完全平方的形式,即 a(x - h)^2 + k = a(x - h + √(k - a(h^2)))(x - h - √(k - a(h^2))) = 0。

3.根据乘积为零的性质,得到 x - h + √(k - a(h^2)) = 0 或 x -h - √(k - a(h^2)) = 0,从而求解出 x 的值。

四、配方法的优点与局限性1.优点:配方法操作简单,易于理解,可以有效解决一元二次方程以及一些二次函数问题。

2.局限性:配方法并非万能,对于一些复杂问题,可能需要结合其他方法进行求解。

目录(篇2)1.配方法的概念和基本原理2.配方法的应用举例3.配方法的注意事项和技巧正文(篇2)一、配方法的概念和基本原理配方法是九年级上册数学中的一种重要方法,它是一种通过变形,将一些较难解决的数学问题转化为容易解决的问题的技巧。

配方法的基本原理是利用数学中的恒等式,将原式变形为完全平方的形式,从而使问题得到简化。

二、配方法的应用举例1.例如,对于二次方程 ax+bx+c=0,我们可以通过配方法将其转化为完全平方的形式,从而求得方程的解。

北师大版数学九年级上册2.2用配方法求解一元二次方程(第一课时)优秀教学案例

北师大版数学九年级上册2.2用配方法求解一元二次方程(第一课时)优秀教学案例
2.问题导向的教学策略:设计一系列由浅入深的问题,引导学生逐步探索配方法的原理和应用。这种问题导向的教学策略使得学生能够主动思考、独立解决问题,培养学生的质疑精神和探究能力。
3.小组合作的学习方式:组织学生进行小组合作、讨论交流,培养学生合作意识和团队精神,提高自主学习能力。这种学习方式使得学生在互动中思考,共同解决问题,增强学生的团队协作能力。
(二)讲授新知
1.配方法的原理:引导学生发现配方法的基本步骤和规律。例如:“同学们,我们刚才观察到的抛物线,其实可以用配方法来求解。配方法是一种解一元二次方程的有效方法,它包括以下几个步骤:第一步,将方程写成标准形式;第二步,找到方程中的a、b、c值;第三步,进行配方;第四步,求解方程。通过这些步骤,我们可以轻松地求解一元二次方程。”
2.强调配方法在实际生活中的应用,提高学生的应用意识。例如:“同学们,配方法不仅在数学学习中有着重要作用,它在生活中也有很多应用。比如,在租赁房屋、购买商品等方面,我们都可以运用配方法来解决问题。”
(五)作业小结
1.布置相关的作业,让学生巩固所学知识。例如:“同学们,请大家课后运用配方法解几个一元二次方程,并将解题过程写下来。这样可以加深对配方法的理解和记忆。”
2.配方法的应用:通过例题讲解,让学生掌握配方法解题的具体步骤。例如:“同学们,现在我们来解决一个实际问题。假设有一个一元二次方程:x^2 - 5x + 6 = 0。我们来按照配方法的步骤来解这个方程。”
(三)学生小组讨论
1.组织学生进行小组讨论,让学生合作探索配方法的应用。例如:“同学们,现在请大家分成小组,一起讨论如何运用配方法解这个方程。每个小组成员都要发表自己的观点,共同得出解题思路。”
2.鼓励学生提出问题,培养学生的质疑精神和探究能力。例如,在教学过程中,鼓励学生提问:“为什么配方法可以解一元二次方程?”“配方法的步骤有哪些?”等。

用配方法求解一元二次方程(第1课时)北师大版九年级数学上册教学详案

用配方法求解一元二次方程(第1课时)北师大版九年级数学上册教学详案

第二章 一元二次方程2 用配方法求解一元二次方程第1课时 用配方法求解简单的一元二次方程教学目标1.根据平方根的意义解形如x 2=n (n ≥0)的方程.2.理解配方法,会用配方法求解二次项系数为1的一元二次方程.3.把一元二次方程通过配方转化为(x+m )2=n (n ≥0)的形式,体会转化的数学思想.教学重难点重点:利用配方法解一元二次方程.难点:把一元二次方程通过配方转化为(x +m )2=n (n ≥0)的形式.教学过程导入新课试一试:解下列方程,并说明你所用的方法,与同伴交流.(1)x 2=4; (2) x 2=0; (3) x 2+1=0.解:根据平方根的意义,得(1)x 1=2,x 2=-2 ;(2)x 1=x 2=0 ;(3)x 2=-1,因为负数没有平方根,所以原方程无解.探究新知思考:如果我们把x 2=4,x 2=0,x 2+1=0变形为x 2=p ,各方程的解会是什么情形?老师总结:一般地,对于方程x 2=p :(1)当p >0 时,根据平方根的意义,方程x 2=p 有两个不相等的实数根x 1=−√p ,x 2=√p ;(2)当p =0 时,根据平方根的意义,方程x 2=p 有两个相等的实数根x 1=x 2=0; (3)当p <0 时,因为对任何实数x ,都有x 2≥0,所以方程x 2=p 无实数根. 例1:利用直接开平方法解下列方程: (1)x 2=25; (2) x 2-900=0; (3)(x +2)2=7; (4)2(1−3x)2-18=0. 解:(1) x 2=25 直接开平方,得x =±5,即x 1=5,x 2=-5. (2)x 2-900=0,移项,得x 2=900,直接开平方,得x =±30,即x 1=30,x 2=-30.(3)(x +2)2=7,直接开平方,得x +2=±√7,即x 1=-2+√7,x 2=-2-√7. (4)2(1−3x)2-18=0,移项,得2(1−3x)2=18,则(1−3x)2=9,直接开平方,得1-3x =±3, 即1-3x =3或1-3x = -3,解得x 1=−23,x 2=43. 注意:(1)采用直接开平方法解一元二次方程的理论依据是平方根的意义,直接开平方法只适用于能转化为x 2=p 或(mx +n )2= p (p ≥0)的形式的方程,可得方程的根为x =±√p 或mx +n =±√p .(2)利用直接开平方法解一元二次方程时,只有当p 为非负常数时,方程才有解,并且要注意开方的结果有“正”“负”两种情况.做一做:填上适当的数,使下列等式成立.(1)x 2+12x +36=(x +6)2+6)2= x 2+12x +36; (2)x 2―4x +4=(x ―2)2 x ―2)2= x 2―4x +4; (3)x 2+8x +16=(x +4)2 +4)2=x 2+8x +16; (4)a 2+2ab +b 2=( a +b )2 (a +b )2= a 2+2ab +b 2;教学反思(5)a 2-2ab +b 2=( a -b )2-b )2= a 2-2ab +b 2.问题:上面左侧等式的左边的常数项和一次项系数有什么关系?老师总结:二次项系数为1的完全平方式:常数项等于一次项系数一半的平方. 对于形如 x 2+ax+(a 2)2的式子如何配成完全平方式?老师总结:x 2+ax +(a 2)2=(x +a 2)2.将不是平方形式的方程,通过配成完全平方式的方法得到一元二次方程的根,这种解一元二次方程的方法叫配方法. 例2:用配方法解方程:x 2+8x ―9=0. 分析:先把它变成(x +m )2=n 的形式再用直接开平方法求解. 解:移项,得x 2+8x =9.两边同时加上一次项系数8的一半的平方,得x 2+8x +42=9+42,即(x +4)2=25.两边开平方,得x +4=±5,即x +4=5或x +4=-5,所以x 1=1,x 2=−9.用配方法求解二次项系数为1的一元二次方程的步骤: (1)移 —— 移项,使方程左边为二次项和一次项,右边为常数项. (2)配 —— 配方,方程两边都加上一次项系数一半的平方,使原方程变为(x +m )2=n 的形式.(3)开 —— 如果方程的右边是非负数,即n ≥0,就可左右两边开平方得x +m =±√n ;当n <0时,原方程无解.(4)解 —— 方程的解为x =-m ±√n .即用配方法解方程的基本思路:把方程化为(x +n )2=p 的形式,将一元二次方程降次,转化为两个一元一次方程求解. 问题解决: 上节课梯子底部滑动问题:x 2+12x -15=0.(让学生仿照例2,独立解决) 解:x 2+12x -15=0,移项,得x 2+12x =15.两边同时加上一次项系数12的一半的平方,得x 2+12x +62=15+62,即(x +6)2=51.两边开平方,得x +6=±√51.所以x 1=√51―6,x 2=―√51―6(不合实际).注意:在实际问题中,要根据具体问题中的实际意义检验方程解的合理性. 课堂练习1.一元二次方程x 2-16=0的根是( ) A.x =2 B.x =4 C.x 1=2,x 2=2 D.x 1=4,x 2=-42.一元二次方程x 2-6x -6=0配方后为 ( ) A.(x -3)2=15 B.(x -3)2=3 C.(x +3)2=15 D.(x +3)2=33.用配方法解方程x 2-3x -3=0时,配方结果正确的是( ) A.(x −3)2=3 B.(x −32)2=3 C. (x −3)2=34 D.(x −32)2=2144.若一元二次方程x 2+bx +5=0配方后为(x −3)2=k ,则b ,k 的值分别教学反思为()A. 6,13B.6,4C.-6,4D.-6,135.用配方法解方程:(1)x2-2x=4; (2)x2+4x-1=0.参考答案1.D2.A3.D4.C5.解:(1)方程两边都加上1,得x2-2x+1=5,即(x-1)2=5,所以x-1=±√5,所以原方程的解是x1=1+√5,x2=1-√5.(2)移项,得x2+4x=1.配方,得x2+4x+4=1+4,即(x+2)2=5.开方,得x+2=±√5.所以x1=-2+√5,x2=-2-√5.课堂小结1.配方法:x2+ax+(a2)2=(x+a2)2.2.用配方法求解二次项系数为1的一元二次方程的步骤:布置作业课本习题2.3 知识技能 1 问题解决2,3板书设计2用配方法求解一元二次方程第1课时用配方法求解简单的一元二次方程1.配方法:x2+ax+(a2)2=(x+a2)2.2. 用配方法求解二次项系数为1的一元二次方程的步骤:.教学反思。

人教版数学九年级上册21.2.1配方法第一课时 初中九年级数学教案教学设计课后反思 人教版

人教版数学九年级上册21.2.1配方法第一课时 初中九年级数学教案教学设计课后反思 人教版

教师姓名孙洋单位名称霍尔果斯市国门初级中学填写时间2020年8月21日学科数学年级/册九年级上册教材版本人教版课题名称21.2.1配方法(1)难点名称运用直接开平方法,把一个一元二次方程“降次”转化为两个一元一次方程。

难点分析从知识角度分析为什么难解一元二次方程不同于解一元一次方程,计算的难度变大了,需要学生有一定的数学基础和较强的计算能力。

难点教学方法1.通过复习回顾平方根的相关知识引入本节课内容,为后面探索解法作铺垫。

2.通过创设情境,激发学生探究新知的兴趣,通过四个问题,探索总结用直接开平方法解一元二次方程。

教学环节教学过程导入(一)复习回顾,引出课题问题1 试述平方根的意义和性质.平方根的意义:平方根的性质:问题2 写出下各数的平方根: 9,16,8,24,0,-25.回答:前面我们学习了一元二次方程的有关概念,今天我们开始研究一元二次方程的解法.21.2.1 配方法(一)知识讲解(难点突破)(二)创设情境,探索解法问题3 一桶某种油漆可刷的面积为1500 dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?思考1 未知数?等量关系?代数式?思考2 怎样解这个方程?思考3 所求方程的解是实际问题的解吗?解:问题4 根据平方根的意义我们可以求得方程x2=25的解,那么你能求出下列方程的解吗?(1)x2-9=0; (2)2x2=4; (3)3x2-81=0; (4)x2=a(a≥0).问题5 对照上述方程的求解过程,你知道如何解下列方程吗?(1)(x+1)2=2; (2)(x-1)2-4=0.问题6 前面我们依据平方根的意义求得一元二次方程的解,这种解一元二次方程的方法叫做直接开平方法.(1)当方程具有什么形式时,可以用直接开平方法求解?如何求解?回答:(2)用直接开平方法解一元二次方程的实质是什么?用直接开平方法解一元二次方程的实质是:问题7 你能用直接开平方法解方程x2+6x+9=2吗?分析:如果方程能化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,就可以用直接开平方法求解.解:课堂练习(难点巩固)三、应用提高(一)巩固应用例1 解下列方程:(1)2x2-8=0; (2)9x2-5=3; (3)(x+6)2-9=0;(4)3(x-1)2-6=0; (5)x2-4x +4=5; (6)9x2+6x +1=4.解:解题心得:四、落实训练(一)当堂训练1.选择题(4道)2.填空题(2道)3.问答题(2道)小结(二)回顾提升思考:通过这节课的学习你有哪些收获?回顾交流,概括总结:。

新人教版九年级数学上册:《配方法》教案

新人教版九年级数学上册:《配方法》教案

§2.2 配方法课时安排3课时从容说课配方法是继探索一元二次方程近似解的基础上研究的一种求精确解的方法.它是一元二次方程的解法的通法.因为用配方法解一元二次方程比较麻烦,一个一元二次方程需配一次方,所以在实际解一元二次方程时,一般不用配方法.但是,配方法是导出求根公式的关键,且在以后的学习中,会常常用到配方法.因此,要理解配方法,并会用配方法解一元二次方程.本节的重点、难点是配方法.根据课程的特点,以及学生的认知结构特点,本节内容分三课时.在教学时,首先从前面两节课的实例引入求精确解.因为我们已经能解形如(x+a)2=b(b ≥0)的方程,所以想到要求一个一元二次方程的精确解时,是否可把方程转化为已经能解的方程,这时引入了一元二次方程的解法——配方法.配方法的关键是正确配方,而要正确配方就必须熟悉完全平方式的特征.教学方法主要是学生自主探索、发现的方法.第三课时课题§2.2.1 配方法(一)教学目标(一)教学知识点1.会用开平方法解形如(x+m)2=n(n≥0)的方程.2.理解一元二次方程的解法——配方法.(二)能力训练要求1.会用开平方法解形如(x+m)2=n(n≥0)的方程;理解配方法.2.体会转化的数学思想方法.3.能根据具体问题的实际意义检验结果的合理性.(三)情感与价值观要求通过师生的共同活动,学生的进一步操作来增强其数学应用意识和能力.教学重点利用配方法解一元二次方程教学难点把一元二次方程通过配方转化为(x+m)2=n(n≥0)的形式.教学方法讲练结合法教具准备投影片六张:第一张:问题(记作投影片§2.2.1 A)第二张:议一议(记作投影片§ 2.2.1 B)—第三张:议一议(记作投影片§ 2.2.1 C)第四张:想一想(记作投影片§2.2.1 D)第五张:做一做(记作投影片§2.2.1 E)第六张:例题(记作投影片§2.2.1 F)教学过程Ⅰ.创设现实情景,引入新课[师]前面我们曾学习过平方根的意义及其性质,现在来回忆一下:什么叫做平方根?平方根有哪些性质?[生甲]如果一个数的平方等于a,那么这个数就叫做a的平方根。

人教版数学九年级上册22.2.2《配方法》教案1

人教版数学九年级上册22.2.2《配方法》教案1

人教版数学九年级上册22.2.2《配方法》教案1一. 教材分析《配方法》是初中数学九年级上册的教学内容,主要目的是让学生掌握配方法的基本原理和应用。

配方法是一种解决二次方程问题的方法,通过将二次方程转化为完全平方形式,从而简化问题的求解过程。

本节课的内容是在学生已经掌握了二次方程的基本概念和求解方法的基础上进行讲解的,为后续学习更复杂的二次方程问题打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了二次方程的基本概念和求解方法,具备了一定的数学基础。

但是,对于配方法的理解和应用还需要进一步的引导和培养。

学生的学习兴趣和学习积极性较高,对于新的学习内容有一定的好奇心和求知欲。

三. 教学目标1.让学生掌握配方法的基本原理和应用。

2.培养学生解决二次方程问题的能力。

3.培养学生的逻辑思维能力和创新思维能力。

四. 教学重难点1.配方法的基本原理的理解和应用。

2.配方法在解决二次方程问题中的应用。

五. 教学方法采用问题驱动的教学方法,通过引导学生自主探究和合作交流,让学生在解决实际问题的过程中掌握配方法的基本原理和应用。

同时,运用案例教学法,结合具体的例子进行讲解,使学生更好地理解和掌握配方法。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备教学课件和教学素材。

七. 教学过程导入(5分钟)通过一个实际问题引入本节课的主题,例如:已知一个二次方程的解为x1=3和x2=4,求原方程。

让学生尝试解决这个问题,引发学生对配方法的好奇心和兴趣。

呈现(10分钟)讲解配方法的基本原理和步骤。

通过具体的例子进行讲解,让学生理解和掌握配方法的基本原理和应用。

同时,引导学生进行思考和讨论,巩固学生的理解。

操练(10分钟)让学生进行配方法的练习。

提供一些配方法的练习题,让学生独立完成。

在学生完成练习的过程中,进行巡视指导和解答学生的疑问。

巩固(10分钟)通过一些综合性的题目,让学生应用配方法解决实际问题。

引导学生进行合作交流,共同解决问题,巩固学生对配方法的理解和应用。

人教版数学九年级上册教案21.2.1《配方法》

人教版数学九年级上册教案21.2.1《配方法》

人教版数学九年级上册教案21.2.1《配方法》一. 教材分析《配方法》是人教版数学九年级上册第21章第2节的内容,本节课主要让学生掌握配方法的原理和步骤,并能够运用配方法解决一些实际问题。

教材通过引入“完全平方公式”的概念,引导学生探索如何将一个二次多项式转化为完全平方形式,从而引出配方法。

学生在学习过程中,需要理解并掌握配方法的基本步骤,以及如何判断一个多项式是否可以配成完全平方形式。

二. 学情分析学生在学习本节课之前,已经学习了二次方程的解法、完全平方公式等知识,对于二次多项式的基本概念和性质有一定的了解。

但学生在运用配方法解决实际问题时,可能会遇到一些困难,如判断多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。

因此,在教学过程中,教师需要关注学生的学习情况,引导学生积极参与课堂活动,提高学生运用配方法解决问题的能力。

三. 教学目标1.知识与技能目标:使学生掌握配方法的原理和步骤,能够运用配方法将一个二次多项式转化为完全平方形式。

2.过程与方法目标:通过小组合作、讨论交流等学习活动,培养学生探索问题、解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。

四. 教学重难点1.重点:配方法的原理和步骤。

2.难点:如何判断一个多项式是否可以配成完全平方形式,以及如何正确地进行配方操作。

五. 教学方法1.启发式教学:教师通过提出问题,引导学生思考和探索,激发学生的学习兴趣。

2.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。

3.案例教学:教师通过举例子,让学生理解并掌握配方法的运用。

六. 教学准备1.准备相关教案和教学资料。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备一些实际问题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)教师通过提出一个实际问题,引导学生思考如何解决。

例如:已知一个二次多项式 f(x) = x^2 - 6x + 9,请问如何将其转化为完全平方形式?2.呈现(10分钟)教师引导学生回顾二次方程的解法和完全平方公式,然后引导学生探索如何将 f(x) = x^2 - 6x + 9 转化为完全平方形式。

初中数学人教版九年级上册:配方法 教案

初中数学人教版九年级上册:配方法 教案

21.2.1配方法教学目标(一)教学知识点1.会用配方法解简单的数字系数的一元二次方程.2.了解用配方法解一元二次方程的基本步骤.(二)能力训练要求1.理解配方法;知道“配方”是一种常用的数学方法.2.会用配方法解简单的数字系数的一元二次方程.3.能说出用配方法解一元二次方程的基本步骤.(三)情感与价值观要求通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力.教学重点用配方法求解一元二次方程.教学难点理解配方法.教学方法讲练结合法.教学过程我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.平方根的意义:如果x 2=a ,那么x=±a.完全平方式:式子a 2±2ab +b 2叫完全平方式,且a 2±2ab +b 2=(a±b)2用配方法解一元二次方程的步骤:移项:把常数项移到方程的右边;配方:方程两边都加上一次项系数绝对值一半的平方;变形:方程左边分解因式,右边合并同类项;开方:根据平方根的意义,方程两边开平方;求解:解一元一次方程;定解:写出原方程的解.探究:一桶油漆可刷的面积为1500dm 2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设一个盒子的棱长为xdm ,则它的外表面面积为____,10个这种盒子的外表面面积的和为____,由此你可得到方程为____,你能求出它的解吗?解:26x ,2106x ,21061500x ,整理得225x ,根据平方根的意义,得5x ,可以验证,5和-5是原方程的两个根,因为棱长不能为负值,所以盒子的棱长为5dm ,故5x dm .【归纳结论】一般地,对于方程2x p ,(Ⅰ)(1)当p>0时,根据平方根的意义,方程(Ⅰ)有两个不等的实数根1x,2x 师:(2)当p=0时,方程(Ⅰ)有两个相等的实数根120x x ;(3)当p<0时,因为对任意实数x ,都有20x ,所以方程(Ⅰ)无实数根。

数学:《配方法1》课件(人教版九年级上)

数学:《配方法1》课件(人教版九年级上)
左边写成平方形式
x 32 25
降次
x 3 5 x 3 5 ,x 3 5
解一次方程
x1 2 , x2 8
2 以上解法中,为什么在方程 x 6 x 16 两边加9?加其 他数行吗?
通过配成完全平方形式 来解一元二次方程的方 法,叫做配方法。
练一练
xm ,长 x 6m
,列方程得
xx 6 16 2 即 x 6 x 16 0
方程
x 6 x 16 0 和方程 x 6 x 9 2
2
2
有何联系与区别呢?
x 2 6 x 16 0
x 2 6 x 16
6 2 ( 两边加9(即 2 ) ),使左边配成
2
4 2 x 2x 1 1 3
2 2
1 ( x 1) 3 所以原方程无实数根。
2
做一 做
解下列方程 (1) x 2 10x 9
(2)
2
0
3x 6 x 4 0
(3)
x 4 x 9 2 x 11
2
解(1)移项,得 2 x 10x 9 配方 x 2 10x 52 9 52
22.2.1 配方法
x 3 2 , 方程 x 6 x 9 2 可以化成 _________
2
2
x 3 2 ,方程的根 进行降次,得________
2 3 , x x1 ______ 2
_______ .
2 3
要使一块长方形场地的长比宽多6m,并且 面积为16m2,场地的长和宽应各是多少? 设场地的宽为
例1:解下列方程

⑵ ⑶

初中数学《配方法》教案、教学设计1

初中数学《配方法》教案、教学设计1

初中数学九年级上册《配方法》教案、教学设计一、教学目标1.了解配方的概念,掌握运用配方法解一元二次方程的步骤。

2.探索直接开平方法和配方法之间的区别和联系,能够熟练地运用配方法解决有关问题。

二、教学过程1、情境导入李老师让学生解一元二次方程x²-6x-5=0,同学们都束手无策,学习委员蔡亮考虑了一下,在方程两边同时加上14,再把方程左边用完全平方公式分解因式……,你能按照他的想法求出这个方程的解吗?2、合作探究探究点:配方法【类型一】配方用配方法解一元二次方程x²-4x=5时,此方程可变形为()A.(x+2)²=1B.(x-2)²=1C.(x+2)²=9D.(x-2)²=9解析:由于方程左边关于x 的代数式的二次项系数为1,故在方程两边都加上一次项系数一半的平方,然后将方程左边写成完全平方式的形式,右边化简即可.因为x²-4x=5,所以x²-4x+4=5+4,所以(x-2)²=9.故选D.方法总结:用配方法将一元二次方程变形的一般步骤:(1)把常数项移到等号的右边,使方程的左边只留下二次项和一次项;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方。

【类型二】利用配方法解一元二次方程用配方法解方程:x²-4x+1=0。

解析:二次项系数是1时,只要先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把方程配成(x+m)²=n(n≥0)的形式再用直接开平方法求解。

解:移项,得x²-4x=-1.配方,得x²-4x+(-2)²=-1+(-2)².即(x-2)²=3.解这个方程,得x-2=±3.∴x1=2+3,x2=2-3.方法总结:用配方法解一元二次方程,实质上就是对一元二次方程变形,转化成开平方所需的形式.【类型三】用配方解决求值问题已知:x²+4x+y2-6y+13=0,求x-2yx2+y2的值.解:原方程可化为(x+2)²+(y-3)2=0,∴(x+2)²=0且(y-3)²=0,∴x=-2且y=3,∴原式=-2-613=-813.【类型四】用配方解决证明问题(1)用配方法证明2x²-4x+7的值恒大于零;(2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式.证明:(1)2x²-4x+7=2(x2-2x)+7=2(x2-2x+1-1)+7=2(x-1)²-2+7=2(x-1)²+5.∵2(x-1)²≥0,∴2(x-1)²+5≥5,即2x²-4x +7≥5,故2x²-4x+7的值恒大于零.(2)x²-2x+3;2x²-2x+5;3x²+6x+8等.【类型五】配方法与不等式知识的综合应用证明关于x 的方程(m²-8m+17)x²+2mx+1=0不论m 为何值时,都是一元二次方程.解析:要证明“不论m 为何值时,方程都是一元二次方程”,只需证明二次项系数m²-8m+17的值不等于0.证明:∵二次项系数m²-8m+17=m²-8m+16+1=(m-4)²+1,又∵(m-4)²≥0,∴(m-4)²+1>0,即m2-8m+17>0.∴不论m 为何值时,原方程都是一元二次方程。

人教版九年级上册数学课件 21.2.1 配方法(共37张PPT)

人教版九年级上册数学课件  21.2.1  配方法(共37张PPT)

知识回顾 问题探究 课堂小结
知识梳理
1.直接开平方法解一元二次方程:若x2 aa 0, 则x叫做a的平方
根,表示为x a,这种解一元二次方程的方法叫做直接开平 方法。
2.配方法解一元二次方程:在方程的左边加上一次项系数一半的 平方,再减去这个数,使得含未知数的项在一个完全平方式里, 这种方法叫做配方,配方后就可以用因式分解法或直接开平方 法了,这样解一元二次方程的方法叫做配方法。
1
b 2 2
x
b 2
2
4
b2 4
x b 4 b2
2
2
b 4 b2 x
2
【思路点拨】将二次项系数为1的二次三项式配成完全平方式,常数项
为一次项系数一半的平方。将方程化成 x m2 n 的形式。
知识回顾 问ห้องสมุดไป่ตู้探究 课堂小结
探究二:利用配方法解一元二次方程 重点、难点知识★▲
活动2 利用配方法解一元二次方程
知识回顾 问题探究 课堂小结 探究一:配方法解一元二次方程的步骤 难点知识▲
活动2 大胆猜想,探究新知。
1.方程x2+6x+9=2的等号左边是一个_完__全__平__方___式____,可用 _直___接__开__平__方__法_____解。 2.方程x2+6x-16=0的等号左边_不__是____(是或不是)一个完
知识回顾 问题探究 课堂小结 探究一:配方法解一元二次方程的步骤 难点知识▲
活动1 以旧引新
要使一块矩形场地的长比宽多6m,并且面积为16m2, 场地的长和宽应各是多少? 问题(:1)如何设未知数?怎样列方程?
设场地的宽为xm,长为(x+6)m,根据题 意 列 方 程 得 x ( x+6 ) =16 , 整 理 后 为 x2+6x16=0。 (2)所列方程与我们上节课学习的方程x2+6x+9=2 有何联系与区别?

人教版数学-九年级上册- 名优课堂 数学人教版九年级上册21.2.1配方法(1)课件

人教版数学-九年级上册- 名优课堂 数学人教版九年级上册21.2.1配方法(1)课件
规律总结:此类题目主要运用平方根的定义求解.
●跟踪训练 1.方程 x2=16 的解是( A ) A.x=±4 B.x=4 C.x=-4 D.x=16
2.方程 x2-4=0 的根是( C )
A.x=2
B.x=-2
C.x1=2,x2=-2 D.x=4
3.若(x+1)2-1=0,则 x 的值等于( D ) A.±1 B.±2 C.0 或 2 D.0 或-2
●跟踪训练 5.解下列方程: (1)x2-2x+1=5; (2)9x2+12x+4=9.
解:(1)原方程可化为(x-1)2=5,根据平方根的意义, 得 x-1=± 5,∴x1=1+ 5,x2=1- 5. (2)原方程可化为(3x+2)2=9,根据平方根的意义, 得 3x+2=±3,∴x1=13,x2=-53.
二、教材预习
自学课本 P30~31,完成第 6~9 题. 6.如果一个一元二次方程能化成 x2=p 或(mx+n)2 =
p(p≥0) 的 形 式 , 那 么 可 得 x = __±___p_____ 或 mx + n =
_±___p____. 7.方程 x2=9 的解是__x_1=__3_,__x_2__=__-__3_____. 8.方程 x2-16=0 的解是_x_1__=__4_,__x_2_=__-__4_____. 9.方程(x+3)2=25 的解是_x_1__=__2_,__x_2__=__-__8____.
4.若方程(x-4)2=a 有解,则 a 的取值范围是( B ) A.a≤0 B.a≥0 C.a>0 D.无法确定
探究点二 变形后用开平方法解一元二次方程 例 2 解下列方程: (1)x2+2x+1=3; (2)4x2-12x+9=16.
分析:观察方程特点,方程左边是一个完全平方式,能 写成一个含未知数的式子的平方,右边是一个正数,再根据 平方根的意义求解.

2022年人教版九年级数学上册第二十一章一元二次方程教案 配方法(第1课时)

2022年人教版九年级数学上册第二十一章一元二次方程教案  配方法(第1课时)

21.2 解一元二次方程21.2.1 配方法一、教学目标【知识与技能】1.会利用直接开平方法解形如x2=p(p≥0)的方程;2.初步了解形如(x+n)2=p(p≥0)方程的解法.3.能根据具体问题的实际意义检验结果的合理性.【过程与方法】通过对实例的探究过程,体会类比、转化、降次的数学思想方法.【情感态度与价值观】在成功解决实际问题过程中,体验成功的快乐,增强数学学习的信心和乐趣.二、课型新授课三、课时第1课时,共2课时四、教学重难点【教学重点】解形如x2=p(p≥0)的方程.【教学难点】把一个方程化成x2=p(p≥0)的形式.五、课前准备课件六、教学过程(一)导入新课1.什么是平方根?一个数的平方根怎么样表示?(出示课件2)一个数的平方等于a,这个数就叫做a的平方根..a(a≥0)的平方根记作:.x2=a(a≥0),则根据平方根的定义知,x=.2. 求出下列各式中x的值,并说说你的理由.(出示课件3)⑴x2=9;⑵x2=5.解:⑴x=±3 ;⑵x=.思考:如果方程转化为x2=p,该如何解呢?(二)探索新知探究直接开平方法一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?(出示课件5)教师问:设一个盒子的棱长为xdm,则它的外表面面积为6x2dm2,10个这种盒子的外表面面积的和为10×6x2,由此你可得到方程为10×6x2=1500,你能求出它的解吗?学生思考后,共同解答如下:.解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2,可列出方程:10×6x2=1500,由此可得x2=25.开平方得x=±5,即x 1=5,x 2=-5.因棱长不能是负值,所以正方体的棱长为5dm .教师问:解下列方程,并说明你所用的方法,与同伴交流.(出示课件6)(1) x 2=4;(2) x 2=0;(3) x 2+1=0.学生回答:⑴根据平方根的意义,得x 1=2, x 2=-2.⑵根据平方根的意义,得x 1=x 2=0.⑶根据平方根的意义,得x 2=-1,因为负数没有平方根,所以原方程无解.教师归纳:(出示课件7)一般地,对于可化为方程 x 2 = p, (I)(1)当p>0 时,根据平方根的意义,方程(I)有两个不等的实数根1x =,2x =;(2)当p=0时,方程(I)有两个相等的实数根x 1 = x 2 =0;(3)当p<0时,因为任何实数x,都有x 2≥0 ,所以方程(I)无实数根.利用平方根的定义直接开平方求一元二次方程的根的方法叫直接开平方法. 例1 利用直接开平方法解下列方程:(出示课件8)(1) x 2=6;(2) x 2-900=0.师生共同讨论解答如下:解:(1)直接开平方,得x =12,∴==x x(2)移项,得x 2=900.直接开平方,得x=±30,∴x 1=30, x 2=-30.出示课件9:解下列方程: (1) 2280;x -=(2)2953.x -=学生自主思考并解答.解:(1)移项,得228.=x系数化为1,得2 4.=x∴=x即122,2;==-x x(2)移项,得298.=x系数化为1,得28.9=x12,∴==-x x教师问:对照前面方法,你认为怎样解方程(x+3)2=5①?(出示课件10)学生自主讨论后回答:解:把x+3看做一个整体,两边开平方得3x +=33.x x ∴+=+=,或③于是,方程(x+3)2=5的两个根为1233x x ∴=-+=--或教师总结:由方程①得到②,实质是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程①转化为我们会解的方程了.例2 解下列方程:(1)(x+1)2= 2;(出示课件11)教师分析:本题中只要将(x+1)看成是一个整体,就可以运用直接开平方法求解.师生共同解答如下:解:(1)∵x+1是2的平方根,∴x+1=即x12=-1-(2)(x-1)2-4 = 0;(出示课件12)教师分析:本题先将-4移到方程的右边,再同第1小题一样地解.师生共同解答如下:解:(2)移项,得(x-1)2=4.∵x-1是4的平方根,∴x-1=±2.即x1=3,x2=-1.(3) 12(3-2x)2-3 = 0.(出示课件13)教师分析:本题先将-3移到方程的右边,再两边都除以12,再同第1小题一样地去解,然后两边都除以-2即可.师生共同解答如下:解:(3)移项,得12(3-2x)2=3,两边都除以12,得(3-2x)²=0.25.∵3-2x 是0.25的平方根,∴3-2x=±0.5.即3-2x=0.5,3-2x=-0.5,∴ x 1=54 x 2=74.出示课件14,学生自主思考并解答.例3 解下列方程:(出示课件15)(1)2445x x -+=; (2)29614x x ++=. 师生共同解答如下:解:(1)()225,x -=2x ∴-=22x x -=-=方程的两根为12=+x22x =-(2)()2314,x +=312,x ∴+=±312312,x x , +=+=-方程的两根为113,=x 2 1.x =-出示课件16,学生自主思考并解答.(三)课堂练习(出示课件17-21)1. 一元二次方程x 2﹣9=0的解是______________.2.下列解方程的过程中,正确的是( )A. x 2=-2,解方程,得x=B. (x-2)2=4,解方程,得x-2=2,x=4C.4(x-1)2=9,解方程,得4(x-1)= ±3, x 1=14,x 2=74D.(2x+3)2=25,解方程,得2x+3=±5, x 1= 1;x 2=-43. 填空:(1)方程x 2=0.25的根是______________ .(2)方程2x 2=18的根是______________.(3)方程(2x-1)2=9的根是______________ .4.下面是李昆同学解答的一道一元二次方程的具体过程,你认为他解的对吗?如果有错,指出具体位置并帮他改正.解:21150,3⎛⎫+-= ⎪⎝⎭y 2115,3⎛⎫+= ⎪⎝⎭y ① 113+=y ② 113=-+y ③1.y =-④5.解方程22(2)(25)x x -=+参考答案:1.x 1=3,x 2=﹣3解析:∵x 2﹣9=0,∴x 2=9,解得:x 1=3,x 2=﹣3.故答案为:x 1=3,x 2=﹣3.2.D3.⑴x 1=0.5,x 2=-0.5 ⑵x 1=3,x 2=-3 ⑶x 1=2,x 2=-14.解:不对,从②开始错,应改为113y +=123, 3.y y =-=--5.解:()()22225,x x -=+2(25),x x ∴-=±+ 225,22 5.∴-=+-=--x x x x方程的两根为17,=-x 2 1.=-x(四)课堂小结(1)你学会怎样解一元二次方程了吗?有哪些步骤?(2)通过今天的学习你了解了哪些数学思想方法?与同伴交流.(五)课前预习预习下节课(21.2.1)第2课时的相关内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:配方法(一)
教学目标:1、知道直接开平方法适用于解形如(x+h) 2=m的方程,它的依据是数的开方;
2、会用直接开平方法解形如(x-a) 2=b (b≥0)的方程;
3、在把(x-a) 2=b (b≥0)看成x 2=b (b≥0)的过程中,引导学生体会“换元”的数学方法。

教学重点:用开平方法解一元二次方程
教学难点:怎样的一元二次方程适用于开平方法。

教学过程:
一、新课引入:1、平方根的意义。

一个正数有两个平方根,这两个平方根互为相反数;零的平方根是零;负数没有平方根。

求适合等于x 2=4的x 的值。

(x=2或x=-2),
二、新课讲解:
问题1 如果一元二次方程:aX2 + bX + c = 0 (a≠0)的一次项系数b、常数项c中至少有一个为0,那么就能得到那些特殊的一元二次方程?
(1) ax2 = 0 (2) ax2 + c = 0 (3) ax2+ bx = 0
问题2 怎样解方程ax2 = 0?(如:3x2 = 0,有两个相等的实数根x=x=0)
问题3 怎样解方程ax2 + c = 0 (a≠0)?
可以(1) x2-4 = 0,(2) 2x2-50 = 0,(3) 2x2+50= 0等方程为例,
进而引导学生归纳方程ax2+c = 0的解的情况:当a、c异号时,方程ax2+c = 0有两个不相等的实数根;当a、c同号时,方程ax2+c = 0没有实数根。

例题解析:例1 课本例2
在讲解例1时注意:
1、对于形如“(x-a) 2=b (b≥0)”型的方程,教科书给出的例子是解方程(x+3) 2=2 。

这时,只要把x+3看作一个整体,就可以转化为x 2=b (b≥0)型的方法去解决,这里渗透了“换元”的方法。

2、在对方程(x+3) 2=2 两边同时开平方后,原方程就转化为两个一次方程。

指出,这种变形实质上是将原方程“降次”。

“降次”也是一种数学方法例2 不解方程,说出下列方程根的情况:
(1) 1-3x2 = 2x2;(2)-4x2+1 = 0;(3)-0. 5x2-2 = 0. (通过训练,使学生明确一元二次方程的解有三种情况)
例2 解下列方程:
(1) (1-x)2 = 1;(2) (1+x)2-2 = 0;(3)(2x+1) 2+3 = 0;(4)x 2
-2x+1= 4.
三、课堂练习:
教科书第8页练习
四、课堂小结:
1、直接开平方法可解下列类型的一元二次方程:x 2=b (b ≥0);(x -a) 2=b (b ≥0)。

解法的根据是平方根的定义。

要特别注意,由于负数没有平方根,所以上述两式中规定了b ≥0。

当b ﹤0时,方程无解。

2、求解形如x 2=b (b ≥0)的方程,实质上是“求一个数x ,使它的平方是b ”,所以用“直接开平方法”;对于形如(x -a) 2=b (b ≥0)的方程,只要把x+a 看作一个整体X ,就可转化为x 2=b (b ≥0)的形式,这就是“换元”的方法
五、作业:
习题1 A 组第1题
补充题:
一、选择题(每题9分,共18分)
将下列各题中唯一正确答案的序号填在题后的括号内。

1、解是x=的方程是( ) A 、x 2+2=0 B 、x 2-2=0 C 、x-2=0 D 、(4x)2=2
2、若方程(x-4)2=m-6可用直接开平方法解,则m 的取值范围是( )
A 、m>6
B 、m ≥0
C 、m ≥6
D 、m=6
二、填空题(每题9分,共18分)
1、若x=2是方程a 2x 2-x+1=0的一个解,则a 的值是_________.
2、方程(x+2)2=8的根是______________.
三、用直接开平方法解下列方程(每题8分,共64分)
1、3x 2-27=0
2、x 2-0121=
3、(2x+5)(2x-5)=144
4、2(x-2)2=50
5、(3x-1)2=91
6、075)72(2
12=--x 7、3(012)322=-+x 8、(a-x)2=a 2+1。

相关文档
最新文档