九年级数学下册全册教案
人教版九年级数学教案(全一册)
人教版九年级数学教案(全一册)第一单元有理数的认识与运算课时一:有理数的概述与绝对值- 教学目标:通过本节课的研究,学生能够了解有理数的概念及其特点,并掌握有理数的绝对值的计算方法。
- 主要内容:有理数的概述,有理数的绝对值的计算方法。
- 教学步骤:- 导入新课:通过引入实际生活中的例子,激发学生对有理数的兴趣。
- 知识点讲解:介绍有理数的定义、性质和表示方法,并具体介绍绝对值的概念和计算方法。
- 例题演示:通过一些例题的演示,引导学生掌握有理数绝对值的计算方法。
- 练巩固:设计一些练题目,让学生独立进行练,加深对所学知识的理解和掌握。
- 小结与展望:对本节课的重点知识进行小结,并展望下节课的内容。
- 教学重点:有理数的绝对值的计算方法。
- 教学难点:对有理数的绝对值进行理解和应用。
- 教学资源:教科书、黑板、多媒体设备等。
课时二:有理数的加减运算- 教学目标:通过本节课的研究,学生能够掌握有理数的加减运算方法,并能运用到实际问题中去。
- 主要内容:有理数的加法与减法运算方法,实例应用。
- 教学步骤:- 导入新课:复上节课的内容,引入有理数的加法与减法问题。
- 知识点讲解:介绍有理数的加法与减法运算规则和方法,并结合实际问题进行讲解。
- 例题演示:通过一些例题的演示,引导学生掌握有理数的加减运算方法。
- 练巩固:设计一些练题目,让学生独立进行练,加深对所学知识的理解和掌握。
- 小结与展望:对本节课的重点知识进行小结,并展望下节课的内容。
- 教学重点:有理数的加法与减法运算方法。
- 教学难点:对实际问题进行有理数的加减运算。
- 教学资源:教科书、黑板、多媒体设备等。
(以下课时内容省略,可以根据需要自行完善)。
人教版九年级下册数学教案大全(5篇)
人教版九年级下册数学教案大全(5篇)人教版九年级下册数学教案大全篇1一、教材研读。
1、教材编排。
(1)逻辑分析:方程是等式里的一类特殊对象,传统教材都用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义,考虑到方程是在刻画生活中的等量关系时产生的,而且在北师大教材体系中一年级到四年级上册,学生对等式和不等式有所了解,只是没有把“等式”这样一个概念交给学生。
并且已经采取逐步渗透的方法来培养代数思维。
例如:()+8=14,90-()〉65,因此,在北师大教科书里没有从方程和等式的内涵上作太多比较,直接以等式为立足点,立足点较高。
(2)语言信息及价值分析:本课教材中的三幅情境图,由浅入深,由具体到抽象,循序渐进。
第一个场景让学生借助天平理解方程;第二个场景完成从数量关系到平等关系的转变;第三个场景引起学生的思考,让他们从不同的角度找到多种等价关系,列出方程。
2、教学目标。
(1)结合具体情境,建立方程的概念。
(2)寻找简单情况下的等价关系,会用方程表示。
(3)体验从生活场景到方程模型的过程,进一步感受数学与生活的密切关系。
3、教学重难点:(1)重点:在简单具体情境中寻找等量关系,并会用方程表示。
抓住“含有未知数”和“等式”两个核心关键词建立方程的概念。
(2)难点:数量关系向等量关系的转化。
二、学情分析:学生原有的认知经验是用算术方法来解决问题,算术思维是更接近日常生活的思维。
由于从算术思维到代数思维的认识发展是非连续的,所以列算式求答案的习惯性思维转向借助等量关系列方程的新思维方式比较困难。
列算式时以分析数量关系为主,知与未知,泾渭分明;在代数法中,辩证地处理知与未知、求与不求,使这一矛盾双方和谐地处于同一方程中。
三、流程设计:为了更好地引发学生的思考,提高学生解决问题的能力,我做了如下的设计:(一)引“典”激趣,诱发思考。
引用“曹冲称象”的故事,提出解决问题的策略,寻找相等关系,同时激发学生学习的兴趣。
青岛版九年级数学下册全册教案
青岛版九年级数学下册全册教案本教案旨在介绍教案编写的目的和重要性,以及涉及的教学理念和方法。
教案编写的目的是为了提供全面、系统的教学指导,帮助教师有效地组织课堂教学,提升学生的数学研究成果。
通过合理安排教学内容和教学活动,教案能够帮助教师将数学知识和技能有条理地传授给学生,培养学生的数学思维能力和解决问题的能力。
在教学理念上,本教案坚持以学生为中心的教学方式。
教案将注重培养学生的主动研究意识和自主研究能力,引导学生通过探究和实践来理解和掌握数学知识,培养学生的创新思维和合作能力。
在教学方法上,本教案将应用多样化的教学方法。
教案将融合讲授、示范、讨论、实践等多种教学手段,让学生在不同的研究场景中积极参与,提高研究效果。
同时,教案还将注重巩固和拓展学生的数学基础,通过针对性的练和反思,提高学生对数学知识的掌握和灵活运用能力。
通过本教案的使用,教师能够更好地组织和引导数学课堂,学生能够更好地理解和应用数学知识,提高数学研究效果。
本教案旨在培养学生在九年级数学下册中的知识和技能,并对他们的态度和价值观进行培养。
知识和技能培养目标通过教学,使学生掌握九年级数学下册的全部知识点,包括但不限于:几何:认识和运用平面图形和直线的性质,解决与平行、垂直相关的几何问题。
代数:理解和运用一次函数和二次函数的概念及其相关性质,能够解决与函数相关的代数问题。
数据与概率:收集、整理和分析数据,掌握统计描述和统计分析的基本方法。
培养学生的数学推理和问题解决能力,培养他们在实际生活中运用数学知识解决实际问题的能力。
态度和价值观培养目标培养学生对数学的兴趣和热爱,提高他们的数学研究主动性和积极性。
培养学生合作研究的意识和能力,通过小组合作和交流让每个学生都能参与到数学研究中来。
培养学生的思维能力和创新意识,鼓励他们在数学研究中探究和发现。
培养学生的数学道德观念和价值观,注重培养他们的研究态度、研究方法和研究惯。
主题:整式的加减法教材内容:整式的定义、整式的加法和减法、整式的化简教学重点:掌握整式的加法和减法的基本操作方法教学难点:能够灵活运用整式的加法和减法解决实际问题主题:方程与不等式教材内容:方程的定义和性质、一元一次方程的解法、不等式的定义和性质、一元一次不等式的解法教学重点:熟练掌握一元一次方程和一元一次不等式的解法教学难点:能够应用方程和不等式解决实际问题主题:二次根式的运算教材内容:二次根式的概念、二次根式的化简、二次根式的加减法和乘除法教学重点:掌握二次根式的基本运算方法教学难点:能够灵活运用二次根式解决实际问题继续列出每一课的教学内容、教学重点和难点)以上是《青岛版九年级数学下册全册教案》的详细教学内容,按照每一课的主题、教材内容、教学重点和难点进行了列举。
九年级下册数学教案5篇
九年级下册数学教案5篇九年级下册数学教案1教学目标1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
教学重难点教学重点:探索并掌握比例的基本性质。
教学难点:根据乘法等式写出正确的比例。
教学工具ppt课件教学过程一、复习导入1、我们已经认识了比例,谁能说一下什么叫比例2、应用比例的意义判断下面的比能否组成比例。
2.4:1.6和60:403、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例) 板书:比例的基本性质二、探究新知1、教学比例各部分的名称. 同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么请同学们翻开教材第43页看看什么叫比例的项、外项和内项。
(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。
学生回答的同时,板书:组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2. 4 : 1.6 = 60 : 40 外项内项学生认一认,说一说比例中的外项和内项。
2、教学比例的基本性质。
出示例1、 (1)教师:比例有什么性质呢现在我们就来研究。
(板书:比例的基本性质) 学生分别计算出这个比例中两个内项的积和两个外项的积。
教师板书:两个外项的积是2.4×40=96 两个内项的积是1.6×60=96 (2)教师:你发现了什么,两个外项的积等于两个内项的积是不是所有的比例都存在这样的特点呢学生分组计算前面判断过的比例。
(3)通过计算,我们发现所有的比例都有这个样的特点,谁能用一句话把这个特点说出来(可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整.) (4)最后师生共同归纳并板书:在比例里,两个外项的积等于两个内项的积。
人教版九年级数学下册全册教案
26.1.1反比例函数的意义教学目标:1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.教学重点:反比例函数的概念教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。
教学方法:类比启发教学辅助:多媒体投影片教学过程:一、创设情景探究问题随着速度的变化,全程所用时间发生怎样的变化?情境1:当路程一定时,速度与时间成什么关系?(s=vt)当一个长方形面积一定时,长与宽成什么关系?[备注]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。
这一情境为后面学习反比例函数概念作铺垫。
情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:2(3)速度v是时间t的函数吗?为什么?[备注](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s=vt,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.3)结合函数的概念,特别强调唯一性,引导讨论问题(3).情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)实数m与n的积为-200,m随n的变化而变化.问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,形如y=kx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.反比例函数的自变量x的取值范围是不等于0的一切实数.全册每单元每课时 3[备注]这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x位于分母,且其次数是1.(2)常量k≠0.(3)自变量x的取值范围是x≠0的一切实数.(4)函数值y的取值范围是非零实数.并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为y=kx-1(k为常数,k≠0)的形式,并结合旧知验证其正确性.二、例题教学练习:1:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1)y=x15;(2)y=2x-1;(3)y=-3x;通过这个例题使学生进一步认识反比例函数概念的本质,提高辨别的能力.练习:2:在函数y=2x-1,y=2x+1,y=x-1,y=12x中,y是x的反比例函数的有个.全册每单元每课时 4[备注]这个练习也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y=kx-1的形式. 还有y=2x-1通分为y=2-xx,y、x都是变量,分子不是常量,故不是反比例函数,但变为y+1=2x可说成(y+1)与x成反比例.练习3:若y与x成反比例,且x=-3时,y=7,则y与x的函数关系式为.[说明]这个练习引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.例题:第5页例1三、拓展练习1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k的值.(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化;(3)一个物体重120N,物体对地面的压强p(N/m2)随该物体与地面的接触面积S(m2)的变化而变化.全册每单元每课时 52、已知函数y=(m+1)x22 m是反比例函数,则m的值为.[备注]引导学生分析、讨论,列出函数关系式,并检验是否是反比例函数,指出比例系数.四、课堂小结这节课你学到了什么?还有那些困惑?五、布置作业:作业本(1)板书设计:概念:例1解:练习练习全册每单元每课时 6教学反思:本节课学生对有关概念都很好的落实,亮点在于练习设计有梯度,学生认识清楚。
人教版九年级数学下册教案全册(精华版)
例2.(补充)如图,过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定分析:从反比例函数xky =(k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积k xy S ==,由此可得S 1=S 2 =21,故选B随堂练习1.已知反比例函数xk y -=3,分别根据下列条件求出字母k 的取值范围(1)函数图象位于第一、三象限 (2)在第二象限内,y 随x 的增大而增大 2.函数y =-ax +a 与xa y -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为年级九年级课题26.2.1实际问题与反比例函数课型新授教学媒体多媒体教学目标1.知识与技能学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题.2.过程与方法感受实际问题的探索方法,培养化归的数学思想和分析问题的能力3.情感、态度与价值观体验函数思想在解决实际问题中的应用,养成用数学的良好习惯重点难点用反比例函数解决实际问题.构建反比例函数的数学模型.教学准备教师准备是否需要课件学生准备教学过程设计(一)创设情境,导入新课一位司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用6•小时到达目的地.(1)当他按原路匀速反回时,汽车的速度v与时间t有怎样的函数关系?(2)若该司机必须在4个小时内回到甲地,则返程的速度不能低于多少?(二)合作交流,解读探究探究(1)原路返回,说明路程不变,则80×6=480千米,因而速度v和时间t满足:vt=480或v=480t的反比例函数关系式.(2)若要在4小时内回到甲地(原路),则速度显然不能低于4804=120(千米/时).归纳常见的与实际相关的反比例(1)面积一定时,矩形的长与宽成反比例;(2)面积一定时,三角形的一边长与这边上的高成反比例;(3)体积一定时,柱(锥)体的底面积与高成反比例;(4)工作总量一定时,工作效率与工作时间成反比例;(5)总价一定时,单价与商品的件数成反比例;(6)溶质一定时,溶液的浓度与质量成反比例.(三)应用迁移,巩固提高例1近视眼镜的度数y(度)与焦距x(m)成反比例,已知400•度近视眼镜镜片的焦距为0.25m.(1)试求眼镜度数y与镜片焦距x之间的函数关系式;(2)求1 000度近视眼镜镜片的焦距.【分析】把实际问题转化为求反比例函数的解析式的问题.解:(1)设y=kx,把x=0.25,y=400代入,得400=0.25k,所以,k=400×0.25=100,即所求的函数关系式为y=100 x.(2)当y=1 000时,1000=100x,解得=0.1m.例2如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之留白:(供教师个性化设计)间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?【分析】当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例,•所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3).(2)因为此函数为反比例函数,所以解析式为:V=48000t;(3)若要6h排完水池中的水,那么每小时的排水量为:V=480006=8000(m3);(4)如果每小时排水量是5 000m3,那么要排完水池中的水所需时间为:t=480006=8000(m3)备选例题(中考·四川)制作一种产品,需先将材料加热到达60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x完成一次函数关系;停止加热进行操作时,温度y与时间x•成反比例关系(如图所示).已知该材料在操作加工前的温度为15℃,加热5•分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【答案】(1)将材料加热时的关系式为:y=9x+15(0≤x≤5),•停止加热进行操作时的关系式为y=300x(x>5);(2)20分钟.总结反思,拓展升华1.学会把实际问题转化为数学问题,•充分体现数学知识来源于实际生活又服务于实际生活这一原理.2.能用函数的观点分析、解决实际问题,•让实际问题中的量的关系在数学模型中相互联系,并得到解决.附:板书设计教后反思:年级九年级课题26.2.2实际问题与反比例函数课型新授教学媒体多媒体教学目标1.知识与技能学会把实际问题转化为数学问题,进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题.2.过程与方法感受实际问题的探索方法,培养化归的数学思想和分析问题的能力.3.情感、态度与价值观体验函数思想在解决实际问题中的应用,养成用数学的良好习惯重点难点重点:用反比例函数解决实际问题.难点:构建反比例函数的数学模型教学准备教师准备是否需要课件学生准备教学过程设计(一)创设情境,导入新课公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡.也可这样描述:阻力×阻力臂=动力×动力臂.为此,他留下一句名言:给我一个支点,我可以撬动地球!(二)合作交流,解读探究问题:小伟想用撬棍撬动一块大石头,已知阻力和阻力臂不变,•分别是1200N和0.5m.(1)动力F和动力臂L有怎样的函数关系?当动力臂为1. 5m时,•撬动石头至少要多大的力?(2)若想使动力F不超过第(1)题中所用力的一半,则动力臂至少要加长多少?【分析】(1)由杠杆定律有FL=1200×0.5,即F=600l,当L=1.5时,F=6001.5=400.(2)由(1)及题意,当F=12×400=200时,L=600200=3(m),∴要加长3-1.5=1.5(m).思考你能由此题,利用反比例函数知识解释:为什么使用撬棍时,•动力臂越长越省力?联想物理课本上的电学知识告诉我们:用电器的输出功率P(瓦)两端的电压U(伏)、用电器的电阻R(欧姆)有这样的关系PR= u2,也可写为P=2uR.(三)应用迁移,巩固提高例1在某一电路中,电源电压U保持不变,电流I (A)与电阻R(Ω)之间的函数关系如图所示.(1)写出I与R之间的函数解析式;(2)结合图象回答:当电路中的电流不超过12A 时,电路中电阻R•的取值范围是什么?【分析】由物理学知识我们知道:当电压一定时,电流强度与电阻成反比例关系.留白:(供教师个性化设计)解:(1)设,根据题目条件知,当I=6时,R=6,所以,所以K=36,所以I与R的关系式为:I=36 R.(2)电流不超过3A,即I=36R≥12,所以R≥3(Ω).注意因为R>0,所以由36R≤12,可得R≥3612.例2某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气球体积V(m3)的反比例函数,其图象如图所示(•千帕是一种压强单位).(1)写出这个函数的解析式;(2)当气球体积为0.8m3时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了完全起见,•气球的体积应不小于多少?【分析】在此题中,求出函数解析式是关键.解:设函数的解析式为P=kV,把点A(1.5,64)的坐标代入,得k=96,•所以所求的解析式为P=96 V;(2)V=0.8m3时,P=960.8=120(千帕);(3)由题意P≤144(千帕),所以96V≤144,所以V≥96144=23(m3)即气体的体积应不小于23m3.备选例题1.(中考变式·荆州)在某一电路中,电流I、电压U、电阻R三者之间满足关系I=UR.(1)当哪个量一定时,另两个量成反比例函数关系?(2)若I和R之间的函数关系图象如图,试猜想这一电路的电压是______伏.2.(中考·扬州)已知力F对一个物体作的功是15焦,则力F•与此物体在力在方向上移动的距离S之间的函数关系式的图象大致是()【答案】1.(1)当电压U一定时,电流I与电阻R成反比例函数关系,(2)10;2.B(四)总结反思,拓展升华1.把实际问题中的数量关系,通过分析、转化为数学问题中的数量关系.2.利用构建好的数学模型、函数的思想解决这类问题.3.注意学科之间知识的渗透.附:板书设计教后反思:年级九年级课题27.1 图形的相似课型新授教学媒体多媒体教学目标知识技能1.使学生理解并掌握两个图形相似的概念,理解相似形的特征,掌握相似形的识别方法;2.掌握相似多边形的特征,会根据相似多边形的特征识别两个多变形是否相似,并能运用相似多边形的性质进行相关计算.过程方法观察生活中的形状形同的图形,学生初步认识理解相似形的概念,在此基础上理解相似形的特征,进一步掌握相似形的识别方法,发展学生的归纳,类比、反思、交流、的能力,提高数学思维水平.情感态度培养学生的观察能力,激发学生的探究的兴趣和欲望,并进行美育渗透.教学重点理解并掌握两个图形相似的概念及特征.教学难点理解相似形的特征,掌握识别相似图形的方法,能运用相似多边形的特征进行相关的计算.教学过程设计教学程序及教学内容师生行为设计意图情境引入欣赏下面4组图片,说说你的想法引出本章,及本节课题二、自主探究(一)相似图形1.类比上面几幅图片,再举一些其它例子.2.这些图片有什么共同特征?3.从平面镜和哈哈镜里看到的不同镜像,它们相似吗?4.已学习过的几何图形中有没有相似的?自己设计一些相似图形,在与同学交流一下.5.完成课本25页练习.(二)相似多边形1.观察正△ABC和正△'''CBA中,它们的对应角有什么关系?对应边呢?2.能否说任意两个正三角形都相似?3.阅读课本26页中的方框旁注,比例线段的特点是什么?教师展示图片并提出问题,学生观察,思考.教师引导点拨:它们的形状相同,大小不等,学生总结归纳,初步感知相似图形的基本特征.学生根据生活经验举例,进一步理解相似,教师组织学生以小组形式进行讨论,探究这些图片的共同特征学生完成练习,之后订正,师生达成共识教师设计问题,学生思考分析,理解相似多边形概念激起学生的好奇心,探索欲望,初步感受相似,引入本节课.让学生亲自进行观察,分析,探究,得到结论,举出生活中的实例,培养学生的观察能力,体验数学与生活的密切关系.学生通过思考回答教师提出的问题,初步感知相似多边形及其的特征,为后续学习做铺垫21年级 九年级 课题 28.1 锐角三角函数(1)课型 新授教学媒体 多媒体教 学 目 标知识 技能 1.初步了解锐角三角函数的意义,理解在直角三角形中一个锐角的对边与斜边的比值就是这个锐角的正弦,当锐角固定时,它的正弦值是定值;2.能根据已知直角三角形的边长求一个锐角的正弦值.过程 方法 经历探究锐角三角函数的定义的过程,逐步发现一个锐角的对边与斜边的比值不变的规律,从中思考这种规律所揭示的数学内涵.情感 态度使学生体验数学活动中的探索与发现,培养学生由特殊到一般的演绎推理能力,学会用数学的思维方式思考,发现,总结,验证.教学重点 正确理解正弦(sinA )概念,会根据直角三角形的边长求一个锐角的正弦值 教学难点理解在直角三角形中,对于任意一个锐角,它的对边与斜边的比值是固定值.教 学 过 程 设 计教学程序及教学内容师生行为设计意图 一、复习引入 1.回忆直角三角形有哪些特殊性质? 2.在Rt △ABC 中,∠C=90°,∠A=30°,若BC=10m ,•求AB ; 3.在Rt △ABC 中,∠C=90°,∠A=30°,若BC=20m ,•求 AB. 二、自主探究 问题: 为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,•在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管? 思考:1.如果使出水口的高度为50m ,那么需要准备多长的水管? 2.如果使出水口的高度为a m ,那么需要准备多长的水管? 结论:直角三角形中,30°角的对边与斜边的比值等于12思考:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 对边与斜边的比值是一个定值吗?•如果是,是多少?结论:直角三角形中,45°角的对边与斜边的比值是 22.探究:从上面两个问题的结论中可知,•在Rt △ABC 中,∠C=90°,当∠A=30°时,∠A 的对边与斜边的比都等于12,是一个固定值;•当∠A=45°时,∠A 的对边与斜边的比都等于22,也是一个固定值. 这就引发我们产生这样一个疑问:当∠A 取其他一定度数的锐角时,•它的对边与斜边的比是否也是一个固定值? 任意画Rt △ABC 和Rt △A ′B ′C ′,使得∠C=∠C ′=90°,∠A=∠A ′=a ,那么''''BC B C AB A B 与有什么关系.你能解释一下吗?得到:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,教师引导学生回顾直角三角形性质,学生完成两个铺垫练习. 教师提出问题,引导学生思考,逐步从特殊到一般的理解锐角的正弦概念.在特殊角的基础上提出一般性问题,教师再次引导学生利用相似三角形知识,得到:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,•∠A的对边与斜边的比都是一个固定值.复习直角三角形的性质,在此基础上探究新问题.让学生初步体验一个锐角确定以后,它的对边与斜边的比值也随之不变的事实,为锐角的正弦的引出提供背景.培养学生从特殊到一般的演绎推理能力.39斜边c 对边a bC B A•∠A 的对边与斜边的比都是一个固定值. 正弦函数概念:在Rt △BC 中,∠C=90,∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c .在Rt △BC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A的正弦,记作sinA , 即sinA =A a A c∠=∠的对边的斜边例如,当∠A=30°时,我们有sinA=sin30°=;当∠A=45°时,我们有sinA=sin45°= .例1 如图,在Rt △ABC 中,∠C=90°,求sinA 和sinB 的值.三、课堂训练课本第64页练习.补充:1.如图,在直角△ABC 中,∠C =90o,若AB =5,AC =4,则sinA =( )A .35B .45C .34D .432. 在△ABC 中,∠C=90°,BC=2,sinA=23,则边AC 的长是( )A .13B .3C .43D . 53.如图,已知点P 的坐标是(a ,b ),则sin α等于( )A .a bB .b aC .2222.a b D a b a b ++ 四、课堂小结 1.锐角的正弦概念; 2.会求一个锐角的正弦值。
2024年华师大版九年级数学下册全册教案
2024年华师大版九年级数学下册全册教案一、教学内容本教案依据2024年华师大版九年级数学下册全册教材,具体章节包括:第一章《函数与方程》,第二章《不等式与不等式组》,第三章《数据处理与概率》,第四章《几何证明》。
教学内容涉及函数概念、一次函数、二次函数、反比例函数及其应用;方程的解法、不等式的解法及其应用;数据处理、概率的计算及应用;几何证明的方法及运用。
二、教学目标1. 理解并掌握函数、方程、不等式、数据处理、概率及几何证明的基本概念和方法。
2. 能够运用所学知识解决实际问题,提高数学思维能力。
3. 培养学生的合作交流能力和创新意识。
三、教学难点与重点1. 教学难点:函数的性质与图像、不等式的解法、数据的处理与概率计算、几何证明的方法。
2. 教学重点:函数与方程的应用、不等式组的解法、概率的计算、几何证明的思路。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、函数图像模具、几何模型。
2. 学具:教材、练习本、草稿纸、计算器。
五、教学过程1. 实践情景引入:通过生活中的实例,引导学生感受数学在现实中的应用,激发学生的学习兴趣。
3. 随堂练习:设置与例题难度相当的练习题,让学生独立完成,巩固所学知识。
4. 小组讨论:针对难点问题,组织学生进行小组讨论,培养学生的合作交流能力。
六、板书设计1. 黑板左侧:列出本节课的教学目标和重难点。
2. 黑板右侧:展示例题及解题过程,标注关键步骤。
3. 黑板中间:书写随堂练习题,方便学生查看。
七、作业设计1. 作业题目:(1)函数的性质与图像:绘制一次函数、二次函数、反比例函数的图像,分析性质。
(3)数据处理与概率:某班级成绩分布如下,计算平均分、中位数、众数及方差。
(4)几何证明:证明平行四边形的对角线互相平分。
2. 答案:课后统一发放。
八、课后反思及拓展延伸1. 课后反思:对本节课的教学过程进行反思,分析优点和不足,为下一节课做好准备。
2. 拓展延伸:布置一些拓展性的问题,让学生在课后进行思考和探究,提高学生的数学素养。
数学九年级下册教案(通用7篇)
数学九年级下册教案(通用7篇)数学九年级下册教案篇1教学目标:1、理解的概念;2、掌握定理及推论,并会运用它们解决有关问题;3、进一步理解化归和分类讨论的数学思想方法以及完全归纳的证明方法.教学重点:定理及其应用是重点.教学难点:定理的证明是难点.教学活动设计:一创设情境,以旧探新1、复习:什么样的角是圆周角?2、概念:电脑显示:圆周角∠CAB,让射线AC绕点A旋转,产生无数个圆周角,当AC绕点A 旋转至与圆相切时,得∠BAE.引导学生共同观察、分析∠BAE的特点:1顶点在圆周上; 2一边与圆相交; 3一边与圆相切.的定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做。
3、用反例图形剖析定义,揭示概念本质属性:判断下列各图形中的角是不是,并说明理由:以下各图中的角都不是.图1中,缺少“顶点在圆上”的条件;图2中,缺少“一边和圆相交”的条件;图3中,缺少“一边和圆相切”的条件;图4中,缺少“顶点在圆上”和“一边和圆相切”两个条件.通过以上分析,使全体学生明确:定义中的三个条件缺一不可。
二观察、猜想1、观察:电脑动画,使C点变动观察∠P与∠BAC的关系.2、猜想:∠P=∠BAC三类比联想、论证1、首先让学生回忆联想:1圆周角定理的证明采用了什么方法?2既然可由圆周角演变而来,那么上述猜想是否可用类似的方法来证明呢?2、分类:教师引导学生观察图形,当固定切线,让过切点的弦运动,可发现一个圆的有无数个.如图.由此发现,可分为三类:1圆心在角的外部;2圆心在角的一边上;3圆心在角的内部.3、迁移圆周角定理的证明方法先证明了特殊情况,在考虑圆心在的外部和内部两种情况.组织学生讨论:怎样将一般情况的证明转化为特殊情况.如图 1,圆心O在∠CAB外,作⊙O的直径AQ,连结PQ,则∠BAC=∠BAQ-∠l=∠APQ-∠2=∠APC.如图 2,圆心O在∠CAB内,作⊙O的直径AQ.连结PQ,则∠BAC=∠QAB十∠1=∠QPA十∠2=∠APC,在此基础上,给出证明,写出完整的证明过程回顾证明方法:将情形图都化归至情形图1,利用角的合成、对三种情况进行完全归纳、从而证明了上述猜想是正确的,得:定理:等于它所夹的弧对的圆周角.4.深化结论.练习1 直线AB和圆相切于点P,PC,PD为弦,指出图中所有的以及它们所夹的弧.练习2 如图,DE切⊙O于A,AB,AC是⊙O 的弦,若=,那么∠DAB和∠EAC 是否相等?为什么?分析:由于和分别是两个∠OAB和∠EAC所夹的弧.而 = .连结B,C,易证∠B=∠C.于是得到∠DAB=∠EAC.由此得出:推论:若两所夹的弧相等,则这两个也相等.四应用例1如图,已知AB是⊙O的直径,AC是弦,直线CE和⊙O 切于点C,AD⊥CE,垂足为D求证:AC平分∠BAD.思路一:要证∠BAC=∠CAD,可证这两角所在的直角三角形相似,于是连结BC,得Rt△ACB,只需证∠ACD=∠B.证明:学生板书组织学生积极思考.可否用前边学过的知识证明此题?由学生回答,教师小结.思路二,连结OC,由切线性质,可得OC∥AD,于是有∠l=∠3,又由于∠1=∠2,可证得结论。
华东师大版九年级数学下册教案全册
华东师大版九年级数学下册教案全册教案:华东师大版九年级数学下册一、教学内容1. 第二章:相似形;2. 第三章:锐角三角函数;3. 第四章:解三角形;4. 第五章:概率初步;5. 第六章:统计初步。
具体内容包括相似形的性质、锐角三角函数的定义和应用、解三角形的 methods、概率的计算和统计方法等。
二、教学目标1. 理解相似形的性质,掌握相似三角形的判定和性质;2. 掌握锐角三角函数的定义和应用,能够解决实际问题;3. 学会解三角形的方法,能够运用正弦定理和余弦定理解决三角形的问题;4. 了解概率的基本概念,学会计算简单事件的概率;5. 掌握统计方法,能够进行数据的收集、整理和分析。
三、教学难点与重点1. 相似形的性质和判定;2. 锐角三角函数的定义和应用;3. 解三角形的方法和应用;4. 概率的计算方法;5. 统计方法的运用。
四、教具与学具准备1. 教具:黑板、粉笔、直尺、圆规、三角板;2. 学具:笔记本、尺子、圆规、三角板、计算器。
五、教学过程1. 实践情景引入:通过展示一些实际问题,引导学生思考相似形的性质和判定方法;2. 讲解相似形的性质和判定:通过讲解和示例,让学生掌握相似形的性质和判定方法;3. 例题讲解:通过讲解一些典型的例题,让学生学会运用相似形的性质和判定方法解决实际问题;4. 随堂练习:让学生自主完成一些相关的练习题,巩固所学的知识;5. 讲解锐角三角函数的定义和应用:通过讲解和示例,让学生掌握锐角三角函数的定义和应用方法;6. 例题讲解:通过讲解一些典型的例题,让学生学会运用锐角三角函数解决实际问题;7. 随堂练习:让学生自主完成一些相关的练习题,巩固所学的知识;8. 讲解解三角形的方法和应用:通过讲解和示例,让学生掌握解三角形的方法和应用方法;9. 例题讲解:通过讲解一些典型的例题,让学生学会运用解三角形的方法解决实际问题;10. 随堂练习:让学生自主完成一些相关的练习题,巩固所学的知识;11. 讲解概率的计算方法:通过讲解和示例,让学生掌握概率的计算方法;12. 例题讲解:通过讲解一些典型的例题,让学生学会运用概率的计算方法解决实际问题;13. 随堂练习:让学生自主完成一些相关的练习题,巩固所学的知识;14. 讲解统计方法的运用:通过讲解和示例,让学生掌握统计方法的运用;15. 例题讲解:通过讲解一些典型的例题,让学生学会运用统计方法解决实际问题;16. 随堂练习:让学生自主完成一些相关的练习题,巩固所学的知识;六、板书设计板书设计要清晰、简洁,能够突出本节课的重点和难点。
人教版九年级数学下册全册教案及教学反思教学计划及进度表
章末复习【知识与技能】1.进一步理解投影、三视图等概念.2.能画出几何体的三视图,能根据三视图想象物体的形状.【过程与方法】通过对具体实例的评析加深对本章知识的理解,感受到三视图、平面展开图与各立体图形之间的相互转化关系.【情感态度】关注有关生活中的投影,生产中的三视图问题,提高数学应用意识,增强学生的空间想象能力. 【教学重点】进一步加深对本章知识的理解,提高解题技能【教学难点】利用三视图想象实物形状,并根据相关数据进行计算.一、知识框图,整体把握【教学说明】构建本章知识结构图可由师生共同完成,教师指示,学生回顾思考,可让学生获得本章完整的知识体系.同时教师在黑板知构.二、释疑解惑,加深理解本章通过问题的形式来释疑解惑,以加深学生对知识的理解.问题1平行投影和中心投影的区别是什么?如何判别物体的投影是平行投影还是中心?问题2正投影和平行投影有什么关系?正投影与三视图的关系如何?画三视图时有哪些需要注意的问题?问题3怎样根据三视图想象立体图形的形状?【教学说明】教师出示问题,让学生独立思考,然后相互交流.教师在巡视中听取学生的观点,看学生有哪些地方存在误区,对此教师要予以纠正,然后作出系统的说明.三、典例精析,复习新知例1如图,晚上小明在路灯下散步,在小明由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短例2主视图、左视图、俯视图分别是下列三个图形的物体是()例3下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )【教学说明】上述三道例题都可让学生自主完成,然后相互交流,探讨出正确结论.出现失误的学生在自查中反思,加深对知识的理解. 其中例3中小正方形内数字所表示的意义是解题关键.例4由一些大小相同的小立方体组成的简单几何体的主视图和俯视图如图所示.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n,求n 的值.【分析】从俯视图可看出这个几何体有前后两排,前排并排有三个正方形,后排有两个正方形,从主视图可看出这个几何体分为左、中、右三列,左列最多只有一个立方块,中列最多有两个立方块,右列最多有三个立方块.由于这个几何体的左视图没有画出,故无法确定这个几何体的形状,但可知道这个几何体最少需要8个立方块,最多有11个立方块,而n=8,9,10,11四个值.它的左视图有或或或四种可能.【教学说明】本例的目的是让学生明确确定一个几何体必须从三个角度得到它的视图才行,仅有其中一个或两个都是不可能的.同时,通过本例可进一步加深学生的空间观念和分类讨论问题的能力.教学时仍可让学生先尝试着解决,最后教师予以评讲.例5 如图是某种物体的三视图及相关数据(单位:cm),求该物体的体积(732.13 ,π=3.14,精确到 0.01cm3).【分析】由三视图可想象出这个物体应该是一个正六棱柱中央挖出了一个圆柱,其体积为V≈1.16cm3.例6 如图所示,点P表示广场上的一盏照明灯. (1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);(2)若小丽到灯柱MO的距离为4.5米,照明灯P 到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯到地面的距离(结果精确到0.1米).(参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)【分析】在(1)中,只需连接小敏的头的顶部(记为D)与点P连线,交地面(AB所在直线)于点C,则线段AC的长即为小敏在灯P下的影子(即图中粗线AC);在(2)中,过P作PH垂直于过Q点的水平线于H,即PH丄QH,再求PH的长即可.【教学说明】本例是一道投影和解直角三角形的综合问题,难度不大,学生能独立完成.教师在给出问题后,巡视全场,帮助学生完成解答.四、师生互动,课堂小结1.通过这节课的学习你有哪些问题?2.回顾本章知识,你还有哪些问题?【教学说明】学生相互交流,进一步加深对本章知识的理解,针对学生存在的疑问,可当堂解决,也可课后个别辅导,帮助他(她)完善对本章知识的认知.1.布置作业:从教材P109〜111复习题29中选取.2.完成创优作业中本课时的练习.本课时通过知识框图和例题的讲解,力求让学生对本章知识了然于胸,教师在教学时应注意让学生在全面掌握知识点的基础上抓住重点、举一反三.第二十六章反比例函数26.1 反比例函数26.1.1 反比例函数【知识与技能】1.理解反比例函数的意义.2.能够根据已知条件确定反比例函数的解析式.【过程与方法】经历从实际问题中抽象出反比例函数模型的过程中,体会反比例函数来源于生活实际,并确定其解析式.【情感态度】经历反比例函数的形成过程,体验函数是描述变量关系的重要数学模型,培养学生合作交流意识和探索能力.【教学重点】理解反比例函数的意义,确定反比例函数的解析式【教学难点】反比例函数解析式的确定.一、情境导入,初步认识问题京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该次列车平均速度v(单位:km/h)的变化而变化,速度v和时间t的对应关系可用怎样的函数式表示?【教学说明】教师提出问题,学生思考、交流,予以回答.教师应关注学生能否正确理解路程一定时,运行时间与运行速度两个变量之间的对应关系,能否正确列出函数关系式,对有困难的同学教师应及时予以指导.二、思考探究,获取新知问题1某住宅小区要种植一个面积为1000 m2的长方形草坪,草坪的长为y (单位:m)随宽x(单位:m)的变化而变化,你能确定y 与x 之间的函数关系式吗?问题2 已知北京市的总面积为1. 68 ×104平方千米,人均占有的土地面积S(单位平方千米/人)随全市人口 n(单位:人)的变化而变化,则S 与n 的关系式如何?说说你的理由.思考 观察你列出的三个函数关系式,它们有何特征,不妨说说看看.【教学说明】学生相互交流,探寻三个问题中的三个函数关系式,教师再引导学生分析三个函数的特征,找出其共性,引入新知.反比例函数:形如y =k x(k ≠0)的函数称为反比例函数,其中x 是自变量, y 是x 的函数,自变量x 的取值范围是不等于0的一切实数.试一试下列问题中,变量间的对应关系,可用怎样的函数解析式表示?(1)一个游泳池的容积为2000m 3,注满游泳池所用的时间t(单位:h)随注水速度v(单位: m 3/h)的变化而变化;(2)某长方体的体积为1000cm 3,长方体的高h(单位:cm)随底面积S (单位:cm 2 )的变化而变化.(3)—个物体重100牛,物体对地面的压强 P 随物体与地面的接触面积S 的变化而变化.【教学说明】学生独立完成(1)、(2)、(3)题,教师巡视,关注学生完成情况,肯定他们的成绩,提出个别同学问题,帮助学生加深对构建反比例函数模型的理解.三、典例精析,掌握新知例1 已知y 是x 的反比例函数,当x =2 时,y = 6.(1) 写出y 与x 之间的函数解析式;(2) 当x =4时,求y 的值.【分析】由于y 是x 的反比例函数,故可说其表达式为y =k x ,只须把x =2,y=6代入,求出k 值,即可得y =12x ,再把x =4代入可求出 y=3.【教学说明】本例展示了确定反比例函数表达式的方程,教师在评讲时应予以强调.在评讲前,仍应让学生自主探究,完成解答,锻炼学生分析问题,解决问题的能力.例2 如果y 是z 的反比例函数,z 是x 的 正比例函数,且x ≠0,那么y 与x 是怎样的函数关系?【分析】 因为y 是z 的反比例函数,故可设y =1k z(K 1≠0),又z 是x 的正比例函数,则可设 z = 2k x (2k ≠0) Qx ≠0, y =12k k x.11220,k 0,0,k k k ≠≠∴≠Q 故y=12k k x是y 关于x 的反比例函数. 【教学说明】本例仍可让学生先独立思考,然后相互交流探索结论.最后教师予以评讲,针对学生可能出现的问题(如设:y =k x,z=kx 时没有区分比例系数)予以强调,并对题中x ≠0的条件的重要性加以解释,帮助学生加深对反比例函数意义的理解.四、运用新知,深化理解1.下列哪个等式中y 是x 的反比例函数?y = 4x, y x= 3, y=6x+1,xy=123. 2.已知y 与x 2成反比例,并且当x= 3时,y=4.(1)写出y 和x 之间的函数关系式,y 是x 的反比例函数吗?(2)求出当x =1.5时y 的值.【教学说明】让学生通过对上述两道题的探究,加深对反比例函数意义的理解,增强确定反比例函数表达式的解题技能,教师巡视,再给出答案并解决易错点.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.只有等式xy=123中,y 是x 的反比例函数.2.解:(1)由题知可设y =2,3k y x x==Q 时y=4,∴ k= 4×9 = 36,即 y = 236x,y 不是 x 的反比例函数. (2)y=236x,x=1.5 时,y=361.5 1.5⨯ =16. 五、师生互动,课堂小结1.知识回顾.2.谈谈这节课你有哪些收获?【教学说明】教师应与学生一起进行交流,共同回顾本节知识,理清解题思路与方法,对普遍存在的疑虑,可共同探讨解决,对少数同学还面临的问题,可让学生与同伴交流获得结果,也可课后个别辅导,帮助他分析,找出问题原因,及时查漏补缺.1.布置作业:从教材“习题26. 1”中选取.2.完成创优作业中本课时的“课时作业”部分.反比例函数是初中学习阶段的第二种函数类型.因此本课时教学仍然是从实际问题入手,充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相互关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理性认识一旦建立,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,可以利用它通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.此外,教师在例题的处理上,应要求学生将解题步骤写完整.26.1.2 反比例函数的图象和性质第1课时反比例函数的图象和性质(1)【知识与技能】1. 会用描点法画反比例函数的图象;2. 理解反比例函数的性质.【过程与方法】经历实验操作、探索思考、观察分析的过程中,培养学生探究、归纳及概括的能力.【情感态度】在通过画图探究反比例函数图象及其性质过程中,发展学生的合作交流意识,增强求知欲望.【教学重点】画反比例函数图象,理解反比例函数的简单性质【教学难点】理解反比例函数性质,能用性质解决简单的问题.一、情境导入,初步认识问题我们知道,一次函数y = 6x的图象是一条直线,那么反比例函数y =6x的图象是什么形状呢?你能用“描点”的方法画出函数的图象?【教学说明】教师提出问题,学生思考、交流,尝试着解决问题,教师巡视,关注学生的画图,及时纠正个别同学在画图中的不足和失误之处,帮助学生尽可能得到其合适的图象.二、思考探究,获取新知问题1 在同一坐标系中画出反比例函数y =6x和y =12x的图象;【教学说明】将全班同学分成两大组,分别完成问题y=6x、y =12x的画图,在学生探索画反比例函数的图象过程中,教师应给予恰当点拨:如学生列表时,由于自变量x≠0,故在x <0和x>0时,应各取三个以上的数据,以便使描点画图更精确些;在连线上,x<0和x>0 的两个分支应根据变化趋势用平滑曲线连接,但它们是不能相交的;列表中数据,描点时点的位置等不能出错,以保证图象更能反映出反比例函数的性质.问题2 反比例函数y =-6x和y =-12x的图象有什么共同特点?它们之间有什么关系?反比例函数y = 6x和y =-6x的图象呢?同学间相互交流.【教学说明】让两组同学分别交流,找出图象的特征,教师可分别参与讨论,帮助学生获取正确认知.【归纳结论】由图象可发现:(1)它们都是由两条曲线组成,并且随|x|的不断增大(或减小),曲线越来越接近x轴(或y轴),但这两条曲线永不相交;(2) y = 6x和y =-6x及y =12x和y =-12x的图象分别关于x轴对称,也关于y轴对称.思考观察函数y = 6x和y =-6x以及y =12x和y =-12x的图象.(1)你能发现它们的共同特征以及不同点吗?(2)每个函数的图象分别位于哪几个象限?(3)在每个象限内y随x的变化如何变化?【归纳结论】反比例函数y =kx的图象及其性质:(1)反比例函数y=kx(k为常数,且k 0)的图象是双曲线;(2)当k>0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y随x值的增大而减小;(3)当k<0时,双曲线的两个分支分别位于第二、四象限,在每个象限内y随x值的增大而增大.三、典例精析,掌握新知例如图,一次函数y = kx十b的图象与反比例函数y=mx的图象相交于A、B两点.(1)根据图象,分别写出A、B的坐标;(2)求出两函数的解析式;(3)根据图象回答:当x为何值时,一次函数的函数值大于反比例函数的函数值.【分析】(1)观察图象,可直接写出A、B两点的坐标;(2)利用A、B两点的坐标,用待定系数法建立方程组求解,可确定两函数的解析式;(3 )通过两函数的交点A、B的坐标得出答案.解:(1)观察图象可知A( -6,-2),B(4,3)(2)由点B在反比例函数y =mx的图象上,所以把B(4,3)代入y =mx得3 =4m,故m =12,所以y=12x.由点A、B在一次函数y =kx十b的图象上,所以把A、B两点坐标代入y =kx十b得1 432 6+2,1k b kk bb⎧+==⎧⎪⎨⎨-=-⎩⎪=⎩解得 .所以一次函数解析式为y = 12x+1.(3)由图象可知,当一6<x<0或x>4时,一次函数的函数值大于反比例函数的函数值.【教学说明】本例有一定难度,教师可将题目展开,分步讲解,辅导学生克服对大题的恐惧.本题考查了从图象获取信息,应用待定系数法确定反比例函数与一次函数的关系式,以及利用图象比较函数值的大小等知识点.四、运用新知,深化理解1 .若反比例函数 y =21mx-的图象的一个分支在第三象限,则m的取值范围是.2.如图是某一函数的一部分,则这个函数的表达式可能是()A.y=5xB.y=-x+3C.y=-6 xD.y=4 x【教学说明】学生独立完成,然后相互交流,谈谈自己的看法,教师应参与学生的讨论,加深学生对反比例函数的图象及其性质的认识和理解,从而更好地掌握本节知识.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.m>122. C五、师生互动,课堂小结本节课学习了哪些知识?在知识应用过程中需要注意什么?你有哪些收获?1.布置作业:从教材“习题26. 1”中选取.2.完成创优作业中本课时的“课时作业”部分.“反比例函数的图象和性质”是反比例函数的教学重点,学生需要在理解的基础上熟练运用.在学习反比例函数图象和性质时k>0时,双曲线的两个分支在一、三象限;k<0时,双曲线的两个分支在二、四象限),学生可由画法观察图象得知.而增减性由解析式y=kx(k≠0)可得到,学生也容易理解.但从图象观察增减性较难,借助计算机的动态演示就容易多了,所以本课教学最好用多媒体,因为运用多媒体比较函数图象,可以使学生更直观、更清楚地看清函数的变化,从而使学生加深对函数性质的理解.通过本课的教学,教师可深刻地体会到运用信息技术可加强数学课堂教学中的灵活性、直观性. 虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高.第2课时反比例函数的图象和性质(2)【知识与技能】理解并掌握反比例函数的图象和性质,能灵活运用性质解决具体问题.【过程与方法】在运用反比例函数的图象及其性质解决具体问题过程中,进一步增强学生分析问题,解决问题的能力.【情感态度】在运用所学新知识解决具体问题过程中,体验成功的快乐,激发学习兴趣.【教学重点】灵活运用反比例函数性质解决问题.【教学难点】反比例函数的增减性的描述及其与kyx=中k的对应关系.一、情境导入,初步认识问题(1)反比例函数kyx=(0k≠)的图象及其性质如何,不妨说说看.(2)反比例函数在各自象限内的增减性与kyx=(0k≠)中k的对应关系如何?与同伴交流,谈谈你的看法.【教学说明】学生相互交流,温习回顾上节知识,为本节的应用作铺垫,教师可予以总结,加深学生认知.二、思考探究,获取新知反比例函数的性质主要研究它的图象的位置和函数值的反比例函数 k y x=(0k ≠) k 的符号 k >0 k <0 图象性质 (1)自变量x 的取值范围为:x ≠0; (2)函数图象的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小 (1)变量x 的取值范围为:x ≠0; (2)函数图象的两个分支分别在第二、第四象限,在每个象限内,y 随x 的增大而增大理一遍反比例函数的图象与性质,列表归纳,鼓励学生自主总结.【归纳结论】(1)反比例函数k y x=(0k ≠),因为x ≠0,y ≠0,故图象不经过原点.双曲线是由两个分支组成的,一般不说两个分支经过第一、第三象限(或第二、第四象限),而说图象的两个分支分别在第一、第三象限(或第二、第四象限).(2)反比例函数的增减性不是连续的,因此在谈到反比例函数的增减性时,一般都是在各自的象限内的增减情况.(3)反比例函数的图象无限接近坐标轴,但永远不能和坐标轴相交,也不能“翘尾巴”(4)反比例函数图象的位置和函数的增减性都是反比例系数k 的符号决定的;反过来,由双曲线所在位置和函数的增减性,也可以推断出k 的符号.如:已知双曲线k y x= 在第二、第四象限,则可知k <0.三、典例精析,掌握新知例1 已知反比例函数k y x=(0k ≠)的图象经过点A(2,6).(1)这个函数的图象位于哪些象限?y 随x 值的增大如何变化?(2)点 B(3,4),C(122- ,445- ),D (2,5)是否在这个函数的图象上?【分析】由反比例函数的表达式k y x=(0k ≠)经过点A ,把A点坐标(2,6)代入相应的x,y后,可得k=12,故12yx =;由于k=12>0,知函数的图象位于第一、三象限,在各个象限内y随x值的增大而减小(增减性可先想象出图象,再依据图象特征可作出说明,注意“各个象限”或“各个分支”是描述反比例函数增减性的前提条件,不能漏掉),再把B、C、D三点坐标代入12yx=中可判断B、C、D三点是否在该函数的图象上.【教学说明】本例应先让学生独立思考,锻炼分析问题、解决问题的能力,教师再根据学生的完全情况确定评讲方法.例2 如图是反比例函数5myx-=的图象的一个分支,根据图象回答下列问题:(1)图象的另一个分支位于哪个象限?常数m的取值范围是什么?(2)在这个函数图象的某一支上任取点A(x1,y1)和点B(x2,y2),如果 x1>x2,那么y1与y2的大小关系如何?说说你的理由.【分析】反比例函数的图象只有两种可能,位于第一、第三象限或者位于第二、第四象限.观察图象知,此反比例函数的图象的一支位于第一象限,那么另一支必位于第三象限,而位于第一、三象限的反比例函数的表达式中k>0,即m-5>0,∴ m>5 .而当m>5时,在图象的各个分支上y随x值的增大而减小,故当x1>x2时 y1<y2.【教学说明】本例仍应先让学生自主探索,形成初步认识后,教师再与全班同学一道分析并给出解答过程,让学生通过反思加深对反比例函数的图象及其性质的理解.四、运用新知,深化理解1.如图是反比例函数7nyx+=的图象的一支,根据图象回答下列问题:(1)图象的另一支位于哪个象限,常数n的取值范围是什么?(2 ) 在这个函数图象的某一支上任取点 A (a,b)和B (a' ,b' )如果a<a',那么b与b'的大小关系如何?为什么?2.如图,正比例函数y = kx与反比函数3 yx =的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC.求△ABC的面积.【教学说明】第1题学生能轻松获得结论,而第2题则需教师给予点拨引导,教师可让学生先分别求出S△AOB 和S△BOC,再求出S. 在完成上述题目后,教师引导学生完成创优作△ABC业中本课时的“名师导学”部分.五、师生互动,课堂小结通过这节课的学习,你有哪些收获?你感觉到本节知识有哪些地方是较难理解的?与同伴交流.1. 布置作业:从教材“习题26.1”中选取.2. 完成创优作业中本课时的“课时作业”部分.反比例函数的图象和性质是以前函数内容的延续,也是以后学习二次函数的基础.本课时的学习是学生对反比例函数图象和性质的一个再认知的过程,由于八年级学生是刚刚接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识.另外在教学时,教师要与学生进行互动交流,并积极让学生自主探究反比例函数中k值的几何意义.26.2 实际问题与反比例函数第1课时实际问题与反比例函数(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.。
人教版九年级数学下册教案全册(精华版)
人教版九年级数学下册教案全册(精华版)教学目标:使学生理解并掌握反比例函数的概念,能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式,能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。
教学重点:理解反比例函数的概念,能根据已知条件写出函数解析式。
教学难点:能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。
教师准备:多媒体课件。
学生准备:无特殊要求。
一、创设情境、导入新课1.回忆一下正比例函数和一次函数的概念及一般形式。
2.老师测试了百米赛跑,让学生思考时间与平均速度的关系。
问题提出:电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时。
1)你能用含有R的代数式表示I吗?2)利用写出的关系式完成下表:R/ΩI/A20406080100留白:(供教师个性化设计)是否需要课件?2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。
3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。
二、联系生活、丰富联想做一做1.一个矩形的面积为20cm,相邻的两条边长分别为xcm和ycm。
那么变量y是变量x的函数吗?为什么?学生先独立思考,再进行全班交流。
2.某村有耕地346.2公顷,人数数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?为什么?学生先独立思考,再同桌交流,而后大组发言。
3.已知y是x的反比例函数,下表给出了x与y的一些值:xy2122231212113…1)写出这个反比例函数的表达式;2)根据函数表达式完成上表。
学生先独立练,而后再同桌交流,上讲台演示。
三、举例应用创新提高:例1.(补充)下列等式中,哪些是反比例函数:1)y=2x2)y=-x33)xy=214)y=-53/(x+2)1.$y=\frac{y}{2x}$,将其改写为反比例函数的形式,即$y=k\frac{1}{x}$,其中$k=\frac{1}{2}$。
9年级下册数学教案全章全册
22.已知抛物线 y=ax2 经过点 A(2,1). (1)求这个函数的解析式; (2)写出抛物线上点 A 关于 y 轴的对称点 B 的坐标; (3)求△OAB 的面积; (4)抛物线上是否存在点 C,使△ABC 的面积等于△OAB 面积的一半,若存在,求出 C 点的 坐标;若不存在,请说明理由.
第二十六章 二次函数 (三课时)
二次函数 y=ax2 及其图象
学习要求
1.熟练掌握二次函数的有关概念.
2.熟练掌握二次函数 y=ax2 的性质和图象.
课堂学习检测
一、填空题
1.形如__________________的函数叫做二次函数,其中______是目变量,a,b,c 是______
且______≠0.
3
三、解答题
D. y 1 (x 5)2
3
10.在同一坐标系中画出函数
y1
1 2
x2
3,
y2
1 2
x2
3和
y3
1 2
x2 的图象,并说明
y1,y2
的
图象与函数 y 1 x2 的图象的关系.
2
二次函数 y=a(x-h)2 的图象与性质(3 课时) 一、阅读课本:P10—11 二、学习目标: 1.会画二次函数 y=a(x-h)2 的图象; 2.掌握二次函数 y=a(x-h)2 的性质,并要会灵活应用;
三、探索新知:
1
湘教版九年级下册数学教案5篇
湘教版九年级下册数学教案5篇湘教版九年级下册数学教案篇1配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤.难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x2-4x+7=0 (2)2x2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联二、探索新知讨论:配方法解一元二次方程的一般步骤:(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±;如果q 0,方程无实根.例1 解下列方程:(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2) 求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数. 湘教版九年级下册数学教案篇2圆经历圆的概念的形成过程,理解圆、弧、弦等与圆有关的概念,了解等圆、等弧的概念.重点经历形成圆的概念的过程,理解圆及其有关概念.难点理解圆的概念的形成过程和圆的集合性定义.活动1 创设情境,引出课题1.多媒体展示生活中常见的给我们以圆的形象的物体.2.提出问题:我们看到的物体给我们什么样的形象活动2 动手操作,形成概念在没有圆规的情况下,让学生用铅笔和细线画一个圆.教师巡视,展示学生的作品,提出问题:我们画的圆的位置和大小一样吗画的圆的位置和大小分别由什么决定教师强调指出:位置由固定的一个端点决定,大小由固定端点到铅笔尖的细线的长度决定.1.从以上圆的形成过程,总结概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.2.小组讨论下面的两个问题:问题1:圆上各点到定点(圆心O)的距离有什么规律问题2:到定点的距离等于定长的点又有什么特点3.小组代表发言,教师点评总结,形成新概念.(1)圆上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.因此,我们可以得到圆的新概念:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.(一个图形看成是满足条件的点的集合,必须符合两点:在图形上的每个点,都满足这个条件;满足这个条件的每个点,都在这个图形上.)活动3 学以致用,巩固概念1.教材第81页练习第1题.2.教材第80页例1.多媒体展示例1,引导学生分析要证明四个点在同一圆上,实际是要证明到定点的距离等于定长,即四个点到O的距离相等.活动4 自学教材,辨析概念1.自学教材第80页例1后面的内容,判断下列问题正确与否:(1)直径是弦,弦是直径;半圆是弧,弧是半圆.(2)圆上任意两点间的线段叫做弧.(3)在同圆中,半径相等,直径是半径的2倍.(4)长度相等的两条弧是等弧.(教师强调:长度相等的弧不一定是等弧,等弧必须是在同圆或等圆中的弧.)(5)大于半圆的弧是劣弧,小于半圆的弧是优弧.2.指出图中所有的弦和弧.活动5 达标检测,反馈新知教材第81页练习第2,3题.活动6 课堂小结,作业布置课堂小结1.圆、弦、弧、等圆、等弧的概念.要特别注意“直径和弦”“弧和半圆”以及“同圆、等圆”这些概念的区别和联系.等圆和等弧的概念是建立在“能够完全重合”这一前提条件下的,它将作为今后判断两圆或两弧相等的依据.2.证明几点在同一圆上的方法.3.集合思想.作业布置1.以定点O为圆心,作半径等于2厘米的圆.2.如图,在Rt△ABC和Rt△ABD中,∠C=90°,∠D=90°,点O是AB的中点.求证:A,B,C,D四个点在以点O为圆心的同一圆上.答案:1.略;2.证明OA=OB=OC=OD即可.湘教版九年级下册数学教案篇3二次根式的乘除法教学目标1、使学生掌握二次根式的除法运算法则,会用它进行简单的二次根式的除法运算。
鲁教版五四制九年级数学下册教案及教学反思表格式全册
目录第五章圆1圆2圆的对称性*3垂径定理4圆周角和圆心角的关系5确定圆的条件6直线和圆的位置关系第1课时直线和圆的位置关系第2课时圆的切线的判定“7切线长定理8正多边形和圆9弧长及扇形的面积10圆锥的侧面积第六章对概率的进一步认识1用树状图或表格求概率第1课时用树状图或表格求简单事件的概率第2课时用树状图或表格求复杂事件的概率2 生活中的概率(略)“3用频率估计概率第五章圆主题第五章圆课型新授课上课时间教学内容1 圆;2 圆的对称性;*3 垂径定理;4 圆周角和圆心角的关系;5 确定圆的条件;6 直线和圆的位置关系:7切线长定理;8 正多边形和圆;9弧长及扇形的面积;10 圆锥的侧面积教材分析在初中阶段各个单元的相关知识的学习过程中,圆的知识具有非常重要的地位和作用,通过对圆的内容的学习,学生能初步掌握圆的相关知识,对与圆有关的基本概念及定理有了清楚的认识.但本单元知识点较多,学生在知识体系建构以及应用定理解决实际问题方面均需要一个循序渐进的过程.对于圆的学习,一方面从知识点的角度需要重点把握“圆的基本概念与定理”“与圆有关的位置关系”“与圆有关的计算”三大板块内容;另一方面结合本章典型例题归纳数学思想方法,通过创设开放性的问题情境,引导学生综合应用知识从不同角度展开提问并尝试解答,从另一个角度让学生把本章的知识点重新整合.教学目标1.知识与技能了解圆的定义和对称性;掌握垂径定理;理解圆心角、弧、弦的关系;掌握圆周角定理;知道与圆有关的位置关系;掌握圆的切线的性质;掌握圆的切线的判定;熟练应用切线长定理;理解圆的内接多边形对角互补;会计算弧长与扇形的面积及圆锥的侧面积.2.过程与方法通过对圆的知识的学习逐渐形成“圆的基本概念与定理”“与圆有关的位置关系”“与圆有关的计算”的知识网络体系.通过对经典例题的学习,构建圆的知识体系,内化数学思想方法,特别是辅助线添加和转化思想等难点问题.通过对经典例题的学习,逐步培养提出问题、分析问题的能力3.情感、态度与价值观通过师生合作探究,师生互动探究等启发性、探索性的学习模式,激发对数学问题的浓厚兴趣,提高学生积极性,树立对知识的探索精神,掌握圆的基本概念与定理、弧长与扇形面积的计算,体会探究成功的喜悦.教学重难点重点:1.圆的基本概念与性质2.与圆有关的定理与判定.难点:1.垂径定理的应用2.切线长定理的应用3.弧长与扇形面积的计算.知识结构圆圆的有关性质点、直线和圆的位置关系正多边形和圆弧长和扇形面积圆的对称性弧、弦、圆心角之间的关系同弧上的圆周角和圆心角的关系点和圆的位置关系三角形的外接圆直线和圆的位置关系切线三角形的内切圆等分圆周弧长圆锥的侧面积和全面积扇形面积A B3课题1 圆课时1课时上课时间教学目标1.理解圆的概念及点与圆的位置关系2.经历形成圆的概念的过程,经历探索点与圆的位置关系的过程3.在学习中体会圆的实际应用,感受数学与现实生活的密切联系,增强学生的数学应用意识,初步 培养学生以定义为依据分析问题、解决问题的良好习惯教学重难点 重点:点与圆的位置关系以及如何确定点与圆的三种位置关系难点:会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系.教学活动设计二次设计课堂导入提出问题,引入新课看如图的投圈游戏,投圈目标都是图中的花瓶.他们呈“一”字排开,你若是其中一员,想站在哪里?为什么?对其他同伴公平吗?你认为排成什么样的队形才公平?探索新知合作探究 自学指导自读教材2~4页的内容思考如下问题: (1)圆的定义是什么?(2)点与圆的三种位置关系分别是什么?(3)点与圆的三种位置关系中点到圆心的距离和半径有什么数量关系?合作探究1.小组讨论自学指导中出现疑问的地方.2.在自己的练习本上用圆规画一个圆,回答下列问题: (1)此圆把纸张分成了几部分?(2)请你在每一部分中各找一点作为代表,写出点与圆的位置关系(3)设此圆的半径为r,请写出与位置关系相对应的数量关系点与圆的位置关系若点A 在OO 内,OA<r;反过来,当OA<r,则点A 在OO 内若点A 在OO 上,OA=r;反过来,当OA=r,则点A 在OO 上 若点A 在⊙O外,OA>r;反过来,当OA>r,则点A 在OO 外 3.设A=3 cm,作图说明满足下列要求的图形(1)到点A 和点的距离都等于2 cm 的所有点组成的图形(2)到点A 和点的距离都小于2 cm 的所有点组成的图形CAD(1) (2)B续表探索新知合作探究(3)到点A的距离都小于2 cm,且到点的距离都大于2 cm的所有点组成的图形A B(3)教师指导1.易错点:半径相等的两个圆叫做等圆,两个等圆能够重合.2.归纳小结:(1)圆的定义:平面上到定点的距离等于定长的所有点组成的图形(2)点与圆的位置关系:圆O的半径为r,点到圆心的距离为d时,d与r的关系点在圆外⇔d>r;点在圆上⇔d=r;点在圆内⇔d<r当堂训练1.与圆心的距离不大于半径的点的集合是( )(A)圆的外部 ()圆的内部(C)圆 (D)圆的内部和圆2.以点O为圆心作圆,可以作个 .3.已知A,两点的距离是3 cm(1)画半径为3 cm的圆,使它经过A,两点并回答,这样的圆能画几个?(2)过A,两点的所有圆中,是否存在最小圆和最大圆?若存在,请指出它们圆心的位置和半径大小,若不存在,请简要说明理由板书设计圆1.圆的定义2.圆心定位置,半径定大小3.点与圆的位置关系教学反思本节课的主要教学亮点如下:1.重视学生的操作实践活动.整节课通过让学生动手折一折、量一量、画一画来达到对直径、半径概念的理解.并从中深刻地体会到同圆中直径与直径、半径与半径、直径与半径的关系.2.充分发挥现代信息技术的作用.本节课充分利用多媒体课件的演示,使教学的内容更加生动有趣.3.重视让学生感受数学知识在日常生活中的应用.让学生体验到数学与人类社会的密切关系,如开始向学生提问“车轮为什么制成圆形”到最后问题的解决,使学生对生活中的事物的了解不但知其然还能知其所以然课题2圆的对称性课时1课时上课时间教学目标1.掌握圆的旋转不变性及圆心角、弧、弦之间相等关系定理2.通过动手操作、观察、归纳,经历探索新知的过程,培养学生实验、观察、发现新问题、探究和解决问题的能力.3.通过引导学生动手操作,对图形的观察发现,激发学生的学习兴趣.在师生之间、生生之间的合作交流中进一步树立合作意识,培养合作能力,体验学习的快乐.在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心教学重难点重点:探索圆心角、弧、弦之间关系定理,并利用其解决相关问题难点:圆心角、弧、弦之间关系定理中的“在同圆或等圆中”条件的理解及定理的证明.教学活动设计二次设计课堂导入提出问题,引入新课:1.圆的两要素是它们分别决定圆的2.下列三种图形:①等边三角形;②平行四边形;③矩形,既是轴对称图形,又是中心对称图形的是(填序号):探索新知合作探究自学指导自读教材7~8页的内容.认识弧、弦、直径这些与圆有关的概念.(1)圆弧:圆上任意两点间的部分叫做圆弧,简称弧(2)弦:连接圆上任意两点的线段叫做弦.(3)直径:经过圆心的弦叫做直径.注意:(1)弧包括优弧和劣弧,大于半圆的弧称为优弧,小于半圆的弧B称为劣弧.如图中,以A,D为端点的弧有两条:优弧ACD(记作AACD),劣弧AD(记作AD).半圆,圆的任意一条直径的两个端点分圆C 0D 成两条弧,每一条弧叫半圆弧,简称半圆.半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧(2)直径是弦,但弦不一定是直径.动手做一做(1)请同学们拿出准备好的圆形纸片,你知道圆有哪些基本性质吗?2)圆是轴对称图形吗?如果是.它的对称轴是什么?你是怎么得到的"(3)圆是中心对称图形吗?如果是,它的对称中心是什么?你是怎么得到的?轴对称性:圆是轴对称图形,其对称轴是任意一条过圆心的直线.旋转不变性:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.中心对称性:圆是中心对称图形,对称中心为圆心合作探究1.小组讨论自学指导中出现疑问的地方2.精读第8页“做一做”,合作探究:根据圆的旋转不变性能够得到什么?第一步:在等圆OO和OO'中,分别作相等的圆心角∠AO和∠A'O"(图1).第二步:将两圆重叠,并固定圆心(图2),然后把其中一个圆旋转一个角度,使得OA与O'A'重合(图3)B B B(B')0* A(0’0(0')A 0(0') A(A')B' B'A' A'图 1 图2 图3(1)通过操作,对比图1和图3,你能发现哪些等量关系?(2)你得到这些等量关系的理由是什么?(3)由此你能得到什么结论?续表探索新知 合作探究定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们 所对应的其余各组量都分别相等[例题]如图,在OO 中,A,CD 是两条弦,OE ⊥A,OF ⊥CD,垂足分别为E,F. (1)如果∠AO=∠COD,那么 OE 与OF 的大小有什么关系?为什么?(2)如果OE=OF,那么A 与CD 的大小有什么关系?为什么?∠AO与∠COD呢?弧的度数:把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.1°的圆心角所对的弧叫做1°的弧.圆心角的度数和它所对的弧的度数相等.一般地,n°的圆心角对着n°的弧. 教师指导 1.归纳小结:(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线 (2)圆是中心对称图形,对称中心是圆心(3)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等(4)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所 对应的其余各组量都分别相等 2.方法规律:(1)本节课使用的方法有叠合法、轴对称、旋转、推理证明等 (2)圆具有旋转不变性(3)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所 对应的其余各组量都分别相等当堂训练 1.下列叙述:①圆既是轴对称图形,又是中心对称图形;②圆有无数条对称轴,任何一条 直径都是它的对称轴;③相等的弦所对的弧相等;④等弧所对的弦相等.不正确的是 .(填序号)2.如图,在OO 中,AB=AC,∠AC=60°,求证:∠AO=∠OC=∠AOCCAOB板书设计圆的对称性1 圆的对称性2 圆心角、弦、弧之间的关系3 弧的度数教学反思《圆的对称性》是一节操作性很强的概念课.采用渗透和开发相结合的方式.从本节课的教学设计来看,教案能充分体现新的课程理念,精心设计好每一步教学流程.不仅考虑了教学内容,教学环节,更注重了学生的学习 行为方式的改变,课程资源的开发利用.从新课的导入可以看到,充满生活色彩的开始,深深吸引学生,课堂教学 中,调动学生参与学习的积极性,通过小组学习、交流探究、比赛等形式,激励学生积极参与合作学习,拓展了 “ 圆的认识”的知识内容,并注意评价的多元性、多向性.最后,通过提供有层次的达标检测题让学生应用所学 知识解决实际问题.孩子们在解决问题的同时享受到了成功的喜悦,个性得到了彰显,解决问题的能力也得到 了充分的提升,更感受到数学的价值,从而更加热爱数学学习ACEF 0 DB'课题3 垂 径 定 理课时1课时上课时间教学目标1.学会利用圆的轴对称性研究垂径定理及其逆定理.运用垂径定理及其逆定理解决问题.2.经历运用圆的轴对称性探索圆的相关性质的过程,进一步体会和理解研究几何图形的各种方法3.培养学生类比分析、猜想探索的能力.通过学习垂径定理及其逆定理的证明,使学生领会数学的 严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神.教学 重难点重点:利用圆的轴对称性研究垂径定理及其逆定理难点:垂径定理及其逆定理的证明,以及应用时如何添加辅助线教学活动设计二次设计课堂导入 提出问题,引入新课: 1.等腰三角形是轴对称图形吗?2.如果将一等腰三角形沿底边上的高对折,可以发现什么结论?3.如果以这个等腰三角形的顶角顶点为圆心,腰长为半径画圆,得到的图形是否是轴对称图形呢?探索新知 合作探究自学指导如 图 , A 是 ⊙ O 的 一 条 弦 , 作 直 径 C D , 使 C D ⊥ A , 垂 足 为 M .CMAD( 1 ) 该 图 是 轴 对 称 图 形 吗 ? 如 果 是 , 其 对 称 轴 是 什 么 ? ( 2 ) 你 能 发 现 图 中 有 哪 些 等 量 关 系 ?( 3 ) 你 能 给 出 几 何 证 明 吗 ? ( 写 出 已 知 、 求 证 并 证 明垂径定理 : 垂直于弦的直径平分这条弦 , 并且平分弦所对的两条弧合作探究1 . 小 组 讨 论 自 学 指 导 中 出 现 疑 问 的 地 方2 . 如 图 , A 是 ⊙ O 的 弦 ( 不 是 直 径 ) , 作 一 条 平 分 A 的 直 径 C D , 交 A 于 点 MCMAD( 1 ) 如 图 是 轴 对 称 图 形 吗 ? 如 果 是 , 其 对 称 轴 是 什 么 ? ( 2 ) 图 中 有 哪 些 等 量 关 系 ? 说 一 说 你 的 理 由( 3 ) 你 能 模 仿 垂 径 定 理 的 证 明 过 程 , 自 行 证 明 逆 定 理 吗 ?( 4 ) 你 能 正 确 表 述 逆 定 理 的 内 容 吗 ?(5)“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 . ”如果该定理少了 “不是直径”,是否也能成立?条件:①CD 是直径;②AM=M . 结论(等量关系):①CD ⊥A ;② AC=BC;③AD=BD.垂 径 定 理 的 逆 定 理 : 平 分 弦 ( 不 是 直 径 ) 的 直 径 垂 直 于 弦 , 并 且 平 分 弦 所 对 的 两 条 弧 .BB续表探索新知 合作探究3.精读第15页例题,思考如下问题: (1)如何利用所学定理添加辅助线? (2)这样添加辅助线的目的是什么?(3)你想利用直角三角形的什么知识来解决问题? (4)大家能合作完成求解过程吗? 教师指导1.易错点:(1)垂径定理中的两个条件缺一不可——直径(半径),垂直于弦 (2)垂径定理的逆定理中“不是直径”不可或缺,否则错误2.归纳小结:(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧(2)垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧 3.方法规律:解决有关弦的问题,经常是过圆心作弦的垂线,或作垂直于弦的直径,连接半径等辅 助线,为应用垂径定理创造条件当堂训练1.如图,CD 为OO 的直径,弦A ₁CD 于点E,CE=2,AE=3,则△AC 的面积为( ) (A)3 ()5 (C)6 (D)8AE OC| DB2.在OO 中,弦A 等于OO 的半径,OC⊥A交OO 于点C,则∠AOC的度数 为3.如图,点A,D,,C 在OO 上,A⊥C,DE ⊥A于点E.若C=3,AE=DE=1,求OO 半径的长.板书设计 垂径定理 1.垂径定理 2.垂径定理的逆定理教学反思1.培养学生会用数学知识解决实际问题.数学来源于生活,又服务于生活.本节课专门设计了一个较为熟悉的 实际问题, 一是体现问题具有现实的用途——数学的有用性,二是与本节课的知识内容及数学思想方法有直 接关系.选择小组合作的教学模式,发挥小组合作学习的优势.2.需要更加关注学生,把尊重学生、关注学生的发展动态始终放在第一位.注重学生间的合作交流,给学生多 次展示自己的机会,培养学生语言表达能力及逻辑推理能力,给予适当的鼓励和表扬,增强学生学好数学的信 心.在知识的应用过程中,注重数学思想方法的渗透(如本节课渗透从特殊到一般的数学思想),教给学生解决 问题的办法DBEC课题 4 圆周角和圆心角的关系课时1课时上课时间教学目标1.了解圆周角的概念;掌握圆周角定理及其推论;2.在探索过程中,体会观察、猜想的思维方法,在定理的证明过程中,体会化归和分类讨论的数学思想和归纳的方法.3.在解决问题过程中使学生体会数学知识在生活中的普遍性教学重难点重点:圆周角定理、圆周角定理的推导难点:运用数学分类思想证明圆周角定理教学活动设计二次设计课堂导入如图,当球员在,D,E处射门时,他所处的位置与球门AC分别形成三个张角∠AC,∠ADC,∠AEC,这三个角的大小有什么关系?探索新知合作探究自学指导思考什么样的角是圆周角,阅读教材P18~20内容合作探究一、圆周鱼的概令1.如图,∠AC,∠ADC,∠AEC是圆周角吗?什么是圆周角?2.它们与圆心角有什么区别?与同伴交流3.你能给圆周角下个定义吗?引导学生说出∠AC,∠ADC,∠AEC的共同特征,把握两点特征(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦圆周角:角的顶点在圆上,两边是圆的两条弦,像这样的角,叫做圆周角.二、圆周角定理及推论1.做一做:如图,∠AO=80°.(1)请你画几个AB所对的圆周角.这几个圆周角有什么关系?与同伴进行交流(2)这些圆周角和圆心角∠AO的大小有什么关系?你是怎么发现的?与同伴进行交流学生所画圆周角展示:AC引导学生通过度量验证这些圆周角和圆心角∠AO的大小有什么关系,并启发学生思考:为什么不同位置的圆周角度数相同?从而初步得出结论:圆周角的度数等于它所对弧上的圆心角的一半.2.议一议在T1中,改变∠AO的度数,你得到的结论还成立吗?说说你的想法,并与同伴交流.3.证明续表ACBBoCA BEBVDBA C探索新知 合作探究[ 例 题 ] 如 图 , ∠ C 是 A B 所 对 的 圆 周 角 , ∠ A O 是 A B 所 对 的 圆 心 角 . 求 证 :B B B0 0/ 0C(1) C(2) (3)根据圆周角和圆心角的位置关系 , 分三种情况讨论 : ( 1 ) 圆 心 O 在 圆 周 角 ∠ C 的 一 边 上 , 如 图 ( 1 ) ; ( 2 ) 圆 心 O 在 圆 周 角 ∠ C 的 内 部 , 如 图 ( 2 ) ( 3 ) 圆 心 O 在 圆 周 角 ∠ C 的 外 部 , 如 图 ( 3 )先 引 导 学 生 明 确 题 意 , 再 根 据 圆 周 角 和 圆 心 角 的 位 置 关 系 , 进 行 分 析 — — 讨 论 — — 证 明 . 证 明 时 先 让 学 生 证 明 圆 心 O 在 圆 周 角 ∠ C 的 一 边 上 的 情 况 , 对 于 另 外 两 种 情 况 教 师 应 适 时 进 行 引 导 , 分 析 如 何 添 加 辅 助 线 , 将 其 转 化 为 ( 1 ) 的 情 况 进 行 证 明 . 4 . 总 结 归 纳通 过 以 上 证 明 过 程 你 能 得 出 什 么 结 论 ?圆 周 角 定 理 : 圆 周 角 的 度 数 等 于 它 所 对 弧 上 的 圆 心 角 度 数 的 一 半 . 5 . 得 出 推 论(1)由足球射门中,∠AC =∠ADC =∠AEC ,推理得出结论:同弧所对的圆周角相等 (2)若把同弧换成等弧,结论还成立吗?结 论 仍 然 成 立 . 由 此 得 出 圆 周 角 定 理 的 一 个 推 论 : 同 弧 或 等 弧 所 对 的 圆 周 角 相 等 . 教师指导 归纳总结1 . 圆周角的概念:角的顶点在圆上,两边是圆的两条弦,像这样的角,叫做圆周角 .2 . 圆 周 角 定 理 : 圆 周 角 的 度 数 等 于 它 所 对 弧 上 的 圆 心 角 度 数 的 一 半 .3 . 推 论 : 圆 周 角 的 度 数 等 于 它 所 对 弧 的 度 数 的 一 半 . 同 弧 或 等 弧 所 对 的 圆 周 角 相 等 .当堂训练1.如图,已知CD 是OO 的直径,过点D 的弦D 平行于半径OA,若∠D的度数是50° 则∠C的度数是( )(A)25°()30° (C)40°(D)50°2.如图,A,,C 为OO 上三点,若∠OA=46°,则∠AC的度数为板书设计1.圆周角圆周角和圆心角的关系2.定理及推论教学反思本节课,以学生探究为主,配合多媒体辅助教学.在教学过程中,将问题式教学法、启发式教学法、探究式教学 法、情景式教学法、互动式教学法等多种教学法融为一体,创设富有挑战性的问题情境,引导学生用数学的眼光看问题,发现规律,验证猜想.在教学中,注重学生的个体差异,让不同层次的学生充分参与到数学思维活动 中来,充分发挥学生的主体作用.运用适度的激励,帮助学生认识自我,建立自信,不仅“学会”,而且“会学”“乐学”. 引导学生采用动手实践、自主探究、合作交流的方式进行学习,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发现新知,发展能力.与此同时,通过适时的点拨、精讲,使观察、猜想、转化、归纳、 实践、推理、验证、分类讨论贯穿在整个教学观察之中.课题5确定圆的条件 课时 1课时 上课时间G0 BCA D 第1题图,0A B 第2题图0)教学目标1.了解不在同一直线上的三个点确定一个圆,以及过不在同一直线上的三个点作圆的方法以及三 角形的外接圆、三角形的外心等概念2.经历不在同一直线上的三个点确定一个圆的探索过程,培养学生的探索能力.通过探索不在同 一直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.3.形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神. 教学 重难点重点:经历不在同一条直线上的三个点确定一个圆的探索过程,会作三角形的外接圆 难点:“不在同一条直线上的三个点确定一个圆”的探索过程教学活动设计 二次设计课堂导入 提出问题,引入新课(1)经过一点你能画出几条直线?(2)经过两点你能画出几条直线?(3)已知线段A,你会作线段A 的中垂线吗? (4)经过几点能确定一个圆?探索新知 合作探究自学指导1.作圆,使它经过已知点A.你能作出几个这样的圆?同学们按照先找到圆心,再确定半径,最后画圆的方法,并尝试能作出多少个圆? 2.作圆,使它经过已知点A,.(1)你作出的圆的圆心的分布有什么特点?与线段A 有什么位置关系?为什么? (2)线段A 的垂直平分线上有多少个点?这些点都可以作为圆心吗?3.作圆,使它经过已知点A,,C(A,,C 三点不在同一条直线上).(1)以前我们学过:“到三角形三个顶点距离相等的点”是它们三边什么线的交点? (2)这个交点就是圆心的理由是什么? (3)究竟应该怎样找圆心呢?定理:不在同一条直线上的三个点确定一个圆经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆.这个三角形叫这 个圆的内接三角形.外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外 心 .4.如果A,,C 三点在同一条直线上,你还能作出过A,,C 三点的圆吗?为什么?合作探究1.小组讨论自学指导中出现疑问的地方.2.已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆.它们外心的 位置有怎样的特点?(1)锐角三角形的外心在三角形的什么位置? (2)直角三角形的外心在三角形的什么位置?(3)钝角三角形的外心在三角形的什么位置?锐角三角形直角三角形钝角三角形续表探索新知合作探究教师指导1.易错点:(1)确定圆的条件一定注意“不在同一条直线上”(2)三角形的外心是三角形三边垂直平分线的交点(3)三角形的三个顶点确定的圆是三角形的外接圆2.归纳小结:(1)不在同一条直线上的三个点确定一个圆.(2)三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心3.方法规律(1)锐角三角形的外心在三角形的内部(2)直角三角形的外心在斜边的中点.(3)钝角三角形的外心在三角形的外部(4)“经过三点能否确定一个圆”培养学生分类讨论的数学思想当堂训练1.一个三角形的内心、外心都在三角形内,则这个三角形一定是( )(A)直角三角形 ()锐角三角形(C)钝角三鱼形 (D)等腰三鱼形2.下列命题不正确的是( )(A)过一点能作无数个圆 ()过两点能作无数个圆(C)直径是圆中最长的弦 (D)过已知三点一定能作圆3.在Rt△AC中,A=6,C=8,则这个三角形的外接圆直径是.4.△AC外接圆的面积是100πcm2,且外心到C的距离是6cm,求C的长A0.B C板书设计确定圆的条件1.过已知点A作圆2.过已知点A,作圆3.过不在同一直线上的点A,,C作圆教学反思回答“经过三点能否画直线”问题上可能出现分歧,部分回答“不能画出直线”或“可以画一条直线”“以上两种情况都有可能"等.教师不宜过早作结论,而是通过让学生对问题的讨论、回答,达到预期目标优点:学生具备了用尺规作“线段垂直平分线”的操作技能,掌握了“线段垂直平分线的性质”,在经过点画直线等知识的学习过程中,发展学生的合作精神和探究能力,让学生了解分类讨论的数学思想方法和类比方法.缺点:找三角形的外心的方法,要引导学生分类,不能死记硬背,应该借用多媒体来快速找.课题6直线和圆的位置关系课时第1课时上课时间教学目标 1.经历探索直线和圆的位置关系的过程,理解直线与圆有相交、相切、相离三种位置关系.了解。
北师大版九年级数学下全册详细教案(含答案)
第一章 直角三角形的边角关系1.1 锐角三角函数 第1课时 正切1.理解正切的定义,运用正切值的大小比较生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.(重点)2.经历探索直角三角形中边角关系的过程,理解正切的意义和与现实生活的联系.阅读教材P2~4,完成预习内容. (一)知识探究1.在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作tanA ,即tanA =∠A 的对边∠A 的邻边.2.tanA 的值越大,梯子越陡.3.坡面的竖直高度与水平距离的比称为坡度(或坡比). (二)自学反馈1.在Rt △ABC 中,∠C =90°,AC =12,BC =5,那么tanA 等于(C) A.513 B.1213 C.512 D.1252.如图,有一个山坡在水平方向上前进100 m ,在竖直方向上就升高60 m ,那么山坡的坡度i =tan α=35.活动1 小组讨论例 如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?解:甲梯中,tan α=5132-52=512.乙梯中,tan β=68=34. 因为tan β>tan α,所以乙梯更陡.求正切值一定要在直角三角形中进行,并且一定要分清锐角的对边与邻边.活动2 跟踪训练1.如图,下面四个梯子最陡的是(B)2.如图,在边长为1的小正方形组成的网格中,点A 、B 、O 为格点,则tan ∠AOB =(A) A.12 B.23 C.105 D.533.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,且a =24,c =25,则tanA =247、tanB =724.4.如图,某人从山脚下的点A 走了300 m 后到达山顶的点B ,已知点B 到山脚的垂直距离为70 m ,求山的坡度0.24.(结果精确到0.01)活动3 课堂小结 1.正切的定义.2.梯子的倾斜程度与tanA 的关系(∠A 和tanA 之间的关系).3.数形结合的方法,构造直角三角形的意识.第2课时 锐角三角函数1.理解正弦函数和余弦函数的意义,能根据边长求出锐角的正弦值和余弦值,准确分清三种函数值的求法.(重点)2.经历探索直角三角形中边角关系的过程,进一步理解当锐角度数一定,则其对边、邻边、斜边三边比值也一定.能根据直角三角形中的边角关系,进行简单的计算.阅读教材P5~6,完成预习内容. (一)知识探究1.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ;∠A 的对边与斜边的比叫做∠A 的正弦,即sinA =a c .∠A 的邻边与斜边的比叫做∠A 的余弦,即cosA =bc.2.锐角A 的正弦、余弦、正切叫做∠A 的三角函数.3.sinA 的值越大,梯子越陡;cosA 的值越小,梯子越陡.锐角三角函数是在直角三角形的前提下.(二)自学反馈1.如图,在△ABC 中,∠C =90°,AB =13,BC =5,则sinA 的值是(A) A.513 B.1213 C.512 D.1352.如图,在Rt △ABC 中,∠C =90°,AB =6,cosB =23,则BC 的长为(A)A.4B.2 5C.181313D.1213133.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3、b =4,则sinB =45,cosB =35,tanB =43.活动1 小组讨论例1 如图,在Rt △ABC 中,∠B =90°,AC =200,sinA =0.6,求BC 的长.解:在Rt △ABC 中, ∵sinA =BC AC ,即BC200=0.6,∴BC =200×0.6=120.例2 如图,在Rt △ABC 中,∠C =90°,AC =10,cosA =1213,求AB 的长及sinB.解:在Rt △ABC 中, ∵cosA =ACAB ,即10AB =1213,∴AB =656. ∴sinB =AC AB =cosA =1213.这里需要注意cosA =sinB.活动2 跟踪训练1.如图,某厂房屋顶呈人字架形(等腰三角形),已知AC =8,DB =43,CD ⊥AB 于点D ,求sinB 的值.解:∵△ABC 是等腰三角形,∴BC =AC =8. ∵CD ⊥AB ,∴∠CDB =90°,∴CD =BC 2-BD 2=82-(43)2=4, ∴sinB =CD BC =48=12.2.如图,在△ABC 中,CD ⊥AB ,垂足为D.若AB =12,CD =6,tanA =32,求sinB +cosB的值.解:在Rt △ACD 中,∵CD =6,tanA =32,∴AD =4,∴BD =AB -AD =8.在Rt △BCD 中,BC =82+62=10,∴sinB =CD BC =35,cosB =BD BC =45,∴sinB +cosB =75.活动3 课堂小结学生试述:这节课你学到了些什么?1.2 30°,45°,60°角的三角函数值1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算,能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.(重点)阅读教材P8~9,完成预习内容. 自学反馈完成下面的表格:sin α cos α tan α 30°12323345° 22 22 1 60°32123活动1 小组讨论 例1 计算:(1)sin30°+cos45°;(2)sin 260°+cos 260°-tan45°. 解:(1)原式=12+22=1+22.(2)原式=34+14-1=0.sin 230°表示(sin30°)2,即sin30°·sin30°,这类计算只需将三角函数值代入即可.例2 一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)解:根据题意可知,∠AOD =12∠AOB =30°,AO =2.5 m.∴OD =OAcos30°=2.5×32=2.165(m). ∴CD =2.5-2.165≈0.34(m).∴最高位置与最低位置的高度差约为0.34 m. 活动2 跟踪训练 1.计算:(1)2sin30°+3tan30°+tan45°;(2)cos 245°+tan60°cos30°.解:(1)原式=2+ 3. (2)原式=2. 2.如图,某同学用一个有60°的直角三角板估测学校旗杆AB 的高度,他将60°角的直角边水平放在1.5 m 高的支架CD 上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D ,B 的距离为5 m ,则旗杆AB 的高度大约是多少米?(精确到1 m ,3取1.73)解:由已知可得四边形CDBE 是矩形,∴CE =DB =5 m ,BE =CD =1.5 m. 在Rt △ACE 中,∵tan ∠ACE =AECE,∴AE =CE ·tan ∠ACE =5·tan60°=53,∴AB =53+1.5=8.65+1.5=10.15≈10 (m), 即旗杆AB 的高度大约是10 m. 活动3 课堂小结学生试述:这节课你学到了些什么?1.3 三角函数的计算1.能利用计算器求锐角三角函数值.2.已知锐角三角函数值,能用计算器求相应的锐角.阅读教材P12~14,完成预习内容. 自学反馈1.已知tan α=0.324 9,则α约为(B)A.17°B.18°C.19°D.20°2.已知tan β=22.3,则β=87°25′56″.(精确到1″)活动1 小组讨论例1 如图,当登山缆车的吊箱经过点A 到达点B 时,它走过了200 m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?(结果精确到0.01 m)解:在Rt △ABC 中,∠ACB =90°,∴BC =ABsin α=200×sin16°≈55.13(m).例2 为了方便行人推自行车过某天桥,市政府在10 m 高的天桥两端修建了40 m 长的斜到.这条斜道的倾斜角是多少?解:在Rt △ABC 中,sinA =BC AC =1040=14.∴∠A ≈14°28′.答:这条斜道的坡角α是14°28′.在直角三角形ABC 中,直接用正弦函数描述∠CBA 的关系式,再用计算器求出它的度数.活动2 跟踪训练1.用计算器计算:(结果精确到0.000 1) (1)sin36°; (2)cos30.7°;(3)tan20°30′; (4)sin25°+2cos61°-tan71°. 解:(1)0.587 8;(2)0.859 9;(3)0.373 9;(4)-1.512 0.2.在Rt △ABC 中,若∠C =90°,BC =20,AC =12.5,求两个锐角的度数(精确到1°). 解:∵∠C =90°,BC =20,AC =12.5, ∴tanB =AC BC =12.520=0.625,用计算器计算,得∠B ≈32°,∴∠A =90°-32°=58°. 活动3 课堂小结1.本节学习的数学知识:利用计算器求锐角的三角函数值或锐角的度数.2.本节学习的数学方法:培养学生一般化意识,认识特殊和一般都是事物属性的一个方面.3.求锐角的三角函数时,不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,故数字键;或先输入数字后,再按三角函数键,因此使用计算器时一定先要弄清输入顺序.1.4 解直角三角形1.了解什么叫解直角三角形.2.掌握解直角三角形的根据,能由已知条件解直角三角形.(重点)阅读教材P16~17,完成预习内容. (一)知识探究1.在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.2.直角三角形中的边角关系:三边之间的关系a 2+b 2=c 2;两锐角之间的关系∠A +∠B =90°;边与角之间的关系:sinA =a c ,cosA =b c ,tanA =a b ,sinB =b c ,cosB =a c ,tanB =ba .3.在Rt △ABC 中,∠C =90°,已知∠A 与斜边c ,用关系式∠B =90°-∠A ,求出∠B ,用关系式sinA =ac求出a.(二)自学反馈1.在Rt △ABC 中,∠C =90°,sinA =35,则BC ∶AC =(A)A.3∶4B.4∶3C.3∶5D.4∶52.如图所示,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为(B)A.5cos αB.5cos αC.5sin αD.5sin α活动1 小组讨论例1 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且a =15,b =5,求这个三角形的其他元素.解:在Rt △ABC 中,a 2+b 2=c 2,a =15,b =5,∴c =a 2+b 2=(15)2+(5)2=2 5.在Rt △ABC 中,sinB =b c =525=12.∴∠B =30°.∴∠A =60°.例2 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且b =30,∠B =25°,求这个三角形的其他元素(边长精确到1).解:在Rt △ABC 中,∠C =90°,∠B =25°,∴∠A =65°.∵sinB =b c ,b =30,∴c =bsinB≈71.∵tanB =b a ,b =30,∴a =b tanB =30tan25°≈64.活动2 跟踪训练1.根据下列条件解直角三角形.(1)在Rt △ABC 中,∠C =90°,c =43,∠A =60°. 解:∵∠A =60°,∴∠B =90°-∠A =30°.∵sinA =a c ,∴a =c ·sinA =43·sin60°=43×32=6,∴b =c 2-a 2=(43)2-62=2 3. (2)在Rt △ABC 中,∠C =90°,a =6,b =2 3.解:∵∠C =90°,a =6,b =23, ∴c =a 2+b 2=62+(23)2=4 3. ∵tanA =a b =623=3,∴∠A =60°,∴∠B =90°-∠A =90°-60°=30°.2.如图,在△ABC 中,AD ⊥BC 于点D ,AB =8,∠ABD =30°,∠CAD =45°,求BC 的长.解:∵AD ⊥BC 于点D , ∴∠ADB =∠ADC =90°.在Rt △ABD 中,∵AB =8,∠ABD =30°, ∴AD =12AB =4,BD =3AD =4 3.在Rt △ADC 中,∵∠CAD =45°,∠ADC =90°, ∴DC =AD =4,∴BC =BD +DC =43+4. 活动3 课堂小结学生试述:这节课你学到了些什么?1.5 三角函数的应用 第1课时 方位角问题能运用解直角三角形解决航行问题.阅读教材P19有关方位角问题,完成预习内容. 自学反馈1.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.2.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是250米.活动1 小组讨论例 如图,海中一小岛A ,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A 岛南偏西55°的B 处,往东行驶20海里后到达该岛的南偏西25°的C 处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?解:如图,过点A 作AD ⊥BC 交BC 的延长线于点D. 在Rt △ABD 中,∵tan ∠BAD =BDAD,∴BD =AD ·tan55°.在Rt △ACD 中,∵tan ∠CAD =CDAD ,∴CD =AD ·tan25°. ∵BD =BC +CD ,∴AD ·tan55°=20+AD ·tan25°. ∴AD =20tan55°-tan25°≈20.79>10.∴轮船继续向东行驶,不会遇到触礁危险.应先求出点A 距BC 的最近距离,若大于10则无危险,若小于或等于10则有危险.活动2 跟踪训练1.如图,一艘海轮位于灯塔P 的北偏东30°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处与灯塔P 的距离为(A)A.402海里B.403海里C.80海里D.406海里2.如图所示,A 、B 两城市相距100 km.现计划在这两座城市间修筑一条高速公路(即线段AB).经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50 km 为半径的圆形区域内,请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:3≈1.732,2≈1.414)解:计划修筑的这条高速公路不会穿越保护区.理由如下:过点P 作PC ⊥AB ,C 是垂足. 则∠APC =30°,∠BPC =45°,AC =PC ·tan30°,BC =PC ·tan45°. ∵AC +BC =AB ,∴PC ·tan30°+PC ·tan45°=100, 即33PC +PC =100,(33+1)PC =100, ∴PC =33+3×100=50×(3-1.732)≈63.40>50.∴计划修筑的这条高速公路不会穿越保护区.解这类题目时,首先弄清楚方位角的含义;其次是通过作垂线构造直角三角形,将问题转化为解直角三角形.活动3 课堂小结学生试述:这节课你学到了些什么?第2课时仰角、俯角问题1.理解仰角、俯角等概念,并会把类似于测量建筑物高度的实际问题抽象成几何图形.2.能利用解直角三角形来解其他非直角三角形的问题.阅读教材P19想一想,完成预习内容.(一)知识探究1.仰角、俯角:当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.2.解决实际应用问题时,常作的辅助线:构造直角三角形,解直角三角形.(二)自学反馈1.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞机飞行高度AC =1 200 m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为(D)A.1 200 mB.1 200 2 mC.1 200 3 mD.2 400 m2.如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是(D)A.200米B.2003米C.2203米D.100(3+1)米活动1 小组讨论例如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50 m至B处.测得仰角为60°.那么该塔有多高?(小明的身高忽略不计,结果精确到1 m)解:∵∠DAB =30°,∠DBC =60°, ∴BD =AB =50 m.∴DC =BD ·sin60°=50×32=253≈43(m). 答:该塔高约为43 m. 活动2 跟踪训练1.我市某建筑工地,欲拆除该工地的一危房AB(如图),准备对该危房实施定向爆破.已知距危房AB 水平距离60米(BD =60米)处有一居民住宅楼,该居民住宅楼CD 高15米,在该住宅楼顶C 处测得此危房屋顶A 的仰角为30°,请你通过计算说明在实施定向爆破危房AB 时,该居民住宅楼有无危险?(在地面上以点B 为圆心,以AB 长为半径的圆形区域为危险区域,参考数据:2≈1.414,3≈1.732)解:没有危险,理由如下: 在△AEC 中,∵∠AEC =90°, ∴tan ∠ACE =AECE.∵∠ACE =30°,CE =BD =60, ∴AE =203≈34.64(米).又∵AB =AE +BE ,BE =CD =15, ∴AB ≈49.64(米).∵60>49.64,即BD>AB ,∴在实施定向爆破危房AB 时,该居民住宅楼没有危险.2.如图,CD 是一高为4米的平台,AB 是与CD 底部相平的一棵树,在平台顶C 点测得树顶A 点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E ,在点E 处测得树顶A 点的仰角β=60°,求树高AB.(结果保留根号)解:作CF ⊥AB 于点F ,设AF =x 米, 在Rt △ACF 中,tan ∠ACF =AFCF,则CF =AF tan ∠ACF =x tan α=xtan30°=3x ,在直角△ABE 中,AB =x +BF =4+x(米),在直角△ABE 中,tan ∠AEB =AB BE ,则BE =AB tan ∠AEB =x +4tan60°=33(x +4)米.∵CF -BE =DE ,即3x -33(x +4)=3. 解得x =33+42.则AB =33+42+4=33+122(米).答:树高AB 是33+122米.活动3 课堂小结1.本节学习的数学知识:利用解直角三角形解决实际问题.2.本节学习的数学方法:数形结合、数学建模的思想.第3课时 坡度问题1.能运用解直角三角形解决斜坡问题.2.理解坡度i =坡面的铅直高度坡面的水平宽度=tan 坡角.阅读教材P19做一做,完成预习内容. 自学反馈1.如图所示,斜坡AB 和水平面的夹角为α.下列命题中,不正确的是(B) A.斜坡AB 的坡角为α B.斜坡AB 的坡度为BCABC.斜坡AB 的坡度为tan αD.斜坡AB 的坡度为BCAC2.如图,一人乘雪橇沿30°的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系为s =10t +2t 2,若滑到坡底的时间为4秒,则此人下降的高度为(C)A.72 mB.36 3 mC.36 mD.18 3 m活动1 小组讨论例 某商场准备改善原来楼梯的安全性能,把倾角由40°减至35°,已知原楼梯长为4 m ,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.01 m)解:根据题意可得图形,如图所示: 在Rt △ABD 中,sin40°=AD AB =AD4,∴AD =4sin40°=4×0.64=2.56, 在Rt △ACD 中,tan35°=AD CD =2.56CD ,CD = 2.56tan35°=3.66,tan40°=AD BD =2.56BD ,BD = 2.56tan40°≈3.055 m.∴CB =CD -BD =3.66-3.055≈0.61(m). ∴楼梯多占了0.61 m 长一段地面. AC =ADsin35°≈4.46 m.∴AC -AB =4.46-4=0.46(m). ∴调整后的楼梯会加长0.46 m. 活动2 跟踪训练1.如图,某公园入口处原有三级台阶,每级台阶高为18 cm ,深为30 cm ,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度i =1∶5,则AC 的长度是210cm.2.如图,水库大坝的横断面是梯形,坝顶宽6 m ,坝高23 m ,斜坡AB 的坡度i =1∶3,斜坡CD 的坡度i ′=1∶2.5,求斜坡AB 的坡角α,坝底宽AD 和斜坡AB 的长.(精确到0.1 m)解:如图,过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F , 在Rt △ABE 和Rt △CDF 中,BE AE =13,CF FD =12.5,∴AE =3BE =3×23=69(m),FD =2.5CF =2.5×23=57.5(m). ∴AD =AE +EF +FD =69+6+57.5=132.5(m).∵斜坡的坡度i=13≈0.333 3,∴BEAE =0.333 3,即tan α=0.333 3.∴α≈18°26′. ∵BE AB =sin α,∴AB =BE sin α≈230.316 2≈72.7(m). 答:斜坡AB 的坡角α约为18°26′,坝底宽AD 为132.5 m ,斜坡AB 的长约为72.7 m.这类问题,首先要弄清楚坡度、坡角等名词的含义;其次,要将梯形予以分割,分割成特殊的四边形和直角三角形.活动3 课堂小结学生试述:这节课你学到了些什么?1.6 利用三角函数测高会利用直角三角形的边角关系测物体的高度.(重点)阅读教材P22~23,完成预习内容. 自学反馈1.测量倾斜角可用测倾器.简单的测倾器由度盘、铅锤和支杆组成.活动1 小组讨论例1 测量底部可以到达的物体的高度下面是活动报告的一部分,请填写“测得数据”和“计算”两栏中未完成的部分.课题测量旗杆高测量示 意图测得 数据 测量项目 第一次 第二次 平均值 BD 的长 24.19 m 23.97 m 24.08 m 测倾器的高 CD =1.23 m CD =1.19 m 1.21 m 倾斜角α=31°15′α=30°45′α=31°计算,旗杆高AB(精确到0.1 m)AB =AE +BE =CEtan31°+CD=24.08×tan31°+1.21=15.7(m) 例2 测量底部不可以到达的物体的高度.如图,小山上有一座铁塔AB ,在D 处测得点A 的仰角为∠ADC =60°,点B 的仰角为∠BDC =45°;在E 处测得A 的仰角为∠E =30°,并测得DE =90米,求小山高BC 和铁塔高AB(精确到0.1米).解:在△ADE 中,∠E =30°,∠ADC =60°, ∴∠E =∠DAE =30°. ∴AD =DE =90米.在Rt △ACD 中,∠DAC =30°,则CD =12AD =45米,AC =AD ·sin ∠ADC =AD ·sin60°=453米.在Rt △BCD 中,∠BDC =45°,则△BCD 是等腰直角三角形. BC =CD =45米,∴AB =AC -BC =453-45≈32.9米.答:小山高BC 为45米,铁塔高AB 约为32.9米. 活动2 跟踪训练为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索: 实践一:根据《自然科学》中光的反射定律,利用一面镜子和一根皮尺,设计如图(1)的测量方案:把镜子放在离树(AB)8.7(米)的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7米,观察者目高CD =1.6米,请你计算树A B 的高度(精确到0.1米)实践二:提供选用的测量工具有:①皮尺一根;②教学用三角板一副;③长为2.5米的标杆一根;④高度为1.5米的测角仪一架,请根据你所设计的测量方案,回答下列问题:(1)在你设计的方案中,选用的测量工具是①④. (2)在图(2)中画出你的测量方案示意图;(3)你需要测得示意图中哪些数据,并分别用a ,b ,c ,α,β等表示测得的数据a ·tan α+1.5.(4)写出求树高的算式:AB =AB =a ·tan α+1.5.解:实践一:∵∠CED =∠AEB ,CD ⊥DB ,AB ⊥BD , ∴△CED ∽△AEB , ∴CD AB =DE BE. ∵CD =1.6米,DE =2.7米,BE =8.7米, ∴AB =1.6×8.72.7≈5.2(m).实践二:(1)在距离树AB 的a 米的C 处,用测角仪测得仰角α,测角仪为CD.再根据仰角的定义,构造直角三角形ADE ,求得树高出测角仪的高度AE ,则树高为AE +BE.(2)如图.活动3 课堂小结学生试述:这节课你学到了些什么?第三章圆3.1 圆1.回顾圆的基本概念.2.理解并掌握与圆有关的概念:弦、直径、半圆、等圆、等弧等.(重点)3.结合实例,理解平面内点与圆的三种位置关系.(难点)阅读教材P65~66,完成预习内容.(一)知识探究1.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径;圆上任意两点间的部分叫做圆弧;圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.2.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.(二)自学反馈1.下列命题中正确的有(A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个2.如图所示,图中共有2条弦.3.在平面内,⊙O的半径为5 cm,点P到圆心的距离为3 cm,则点P与⊙O的位置关系是点P在圆内.活动1 小组讨论例1 ⊙O的半径为2 cm,则它的弦长d的取值范围是0<d≤4_cm.直径是圆中最长的弦.例2⊙O中若弦AB等于⊙O的半径,则△AOB的形状是等边三角形.与半径相等的弦和两半径构造等边三角形是常用数学模型.例3 已知AB=4 cm,画图说明满足下列条件的图形.(1)到点A和B的距离都等于3 cm的所有点组成的图形;(2)到点A和B的距离都小于3 cm的所有点组成的图形;(3)到点A的距离大于3 cm,且到点B的距离小于2 cm的所有点组成的图形.解:(1)如图1,分别以点A和B为圆心,3 cm为半径画⊙A与⊙B,两圆的交点C、D 为所求;图1 图2(2)如图1,分别以点A和点B为圆心,3 cm为半径画⊙A与⊙B,两圆的重叠部分为所求;(3)如图2,以点A为圆心,3 cm为半径画⊙A,以点B为圆心,2 cm为半径画⊙B,则⊙B中除去两圆的重叠部分为所求.活动2 跟踪训练1.已知⊙O的半径为4,OP=3.4,则P在⊙O的内部.2.已知点P在⊙O的外部,OP=5,那么⊙O的半径r满足0<r<5.3.如图,图中有1条直径,2条非直径的弦,圆中以A为一个端点的优弧有4条,劣弧有4条.这类数弧问题,为防多数或少数,通常按一定的顺序和方向来数.4.如图,已知矩形ABCD的边AB=3 cm、AD=4 cm.(1)以点A为圆心,4 cm为半径作⊙A,则点B、C、D与⊙A的位置关系怎样?(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则⊙A的半径r的取值范围是什么?解:(1)点B在⊙A内,点C在⊙A外,点D在⊙A上;(2)3<r<5.(2)问中B、C、D三点中至少有一点在圆内,是指哪个点在圆内?至少有一点在圆外是指哪个点在圆外?活动3 课堂小结1.这节课你学了哪些知识?2.学会了哪些解圆的有关问题的技巧?3.2 圆的对称性1.理解圆的轴对称性及其中心对称性.2.通过学习圆的旋转性,理解圆的弧、弦、圆心角之间的关系.(重难点)阅读教材P70~71,完成预习内容.(一)知识探究1.圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.在同圆或等圆中,如果两个圆心角,两条弦,两条弧中有一组量相等,那么它们所对应的其余各组量也相等.(二)自学反馈1.圆是轴对称图形,它有无数条对称轴,其对称轴是任意一条过圆心的直线.2.在⊙O 中,AB 、CD 是两条弦.(1)如果AB =CD ,那么AB ︵=CD ︵,∠AOB =∠COD ; (2)如果AB ︵=CD ︵,那么AB =CD ,∠AOB =∠COD ; (3)如果∠AOB =∠COD ,那么AB =CD ,AB ︵=CD ︵.活动1 小组讨论例 如图,AB 、DE 是⊙O 的直径,C 是⊙O 上的一点,且AD ︵=CE ︵.BE 与CE 的大小有什么关系?为什么?解:BE =CE.理由是:∵∠AOD =∠BOE ,∴AD ︵=BE ︵. 又∵AD ︵=CE ︵, ∴BE ︵=CE ︵. ∴BE =CE.活动2 跟踪训练1.如图,在⊙O 中,AB ︵=AC ︵,∠ACB =75°,则∠BAC =30°.2.如图,在⊙O 中,AB ︵=AC ︵,∠ACB =60°,求证:∠AOB =∠BOC =∠AOC.证明:∵AB ︵=AC ︵,∴AB =AC.又∵∠ACB =60°,∴△ABC 为等边三角形. ∴AB =AC =BC.∴∠AOB =∠BOC =∠AOC.3.如图,已知在⊙O 中,BC 是直径,AB ︵=DC ︵,∠AOD =80°,求∠AOB 的度数.解:∵AB ︵=DC ︵, ∴∠AOB =∠DOC. ∵∠AOD =80°,∴∠AOB =∠DOC =12(180°-80°)=50°.活动3 课堂小结圆心角、弧、弦是圆中证弧等、弦等、弦心距等、圆心角等的常用方法.*3.3 垂径定理1.通过圆的轴对称性质的学习,理解垂径定理及其推论.(重点).2.能运用垂径定理及其推论计算和证明实际问题.(难点)阅读教材P74~75,完成预习内容. (一)知识探究1.垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,即一条直线如果满足:①AB 经过圆心O 且与圆交于A 、B 两点;②AB ⊥CD 交CD 于E ;那么可以推出:③CE =DE ;④CB ︵=DB ︵;⑤CA ︵=DA ︵.2.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (二)自学反馈1.如图,弦AB ⊥直径CD 于E ,相等的线段有:AE =EB ,CO =DO ;相等的弧有:AD ︵=DB ︵,AC ︵=BC ︵,CAD ︵=CBD ︵.2.在⊙O 中,直径为10 cm ,圆心O 到AB 的距离OC 为3 cm ,则弦AB 的长为8_cm.活动1 小组讨论例 如图,一条公路的转弯处是一段圆弧(即图中CD ︵,点O 是CD ︵所在圆的圆心),其中CD =600 m ,E 为CD ︵上一点,且OE ⊥CD ,垂足为F ,EF =90 m ,求这段弯路的半径.解:连接OC.设弯路的半径为R m ,则OF =(R -90)m. ∵OE ⊥CD ,∴CF =12CD =12×600=300(m).在Rt △OCF 中,根据勾股定理,得OC 2=CF 2+OF 2,即 R 2=3002+(R -90)2. 解得R =545.所以,这段弯路的半径为545 m.常用辅助线:连接半径,由半径、半弦、弦心距构造直角三角形.活动2 跟踪训练1.如图,在⊙O 中,弦AB =4 cm ,点O 到AB 的距离OC 的长是2 3 cm ,则⊙O 的半径是4_cm.2.CD 是⊙O 的直径,AB 是弦,且AB ⊥CD ,垂足是E ,如果CE =2、AB =8,那么ED =8,⊙O 的半径r =5.3.已知:如图,线段AB 与⊙O 交于C 、D 两点,且OA =OB.求证:AC =BD.证明:作OE ⊥AB 于E.则CE =DE. ∵OA =OB ,OE ⊥AB , ∴AE =BE.∴AE -CE =BE -DE , 即AC =BD.过圆心作垂径是圆中常用辅助线.活动3 课堂小结用垂径定理及其推论进行有关的计算.3.4 圆周角和圆心角的关系第1课时 圆周角定理及其推论11.理解圆周角的定义,会区分圆周角和圆心角.(重点)2.理解同弧或等弧所对的圆心角和圆周角的关系,理解记忆推论1,能在证明或计算中熟练地应用它们处理相关问题.(难点)阅读教材P78~80,完成预习内容. (一)知识探究1.顶点在圆上,它的两边与圆还有另一个交点的角叫做圆周角.2.圆周角的度数等于它所对弧上的圆心角度数的一半.3.同弧或等弧所对的圆周角相等. (二)自学反馈1.如图所示,已知圆心角∠BOC =100°,点A 为优弧BC ︵上一点,则∠BAC =50°.2.如图所示,点A 、B 、C 在圆周上,∠A =65°,则∠D =65°.活动1 小组讨论例1 如图所示,点A 、B 、C 在⊙O 上,连接OA 、OB ,若∠ABO =25°,则∠C =65°.例2 如图所示,AB 是⊙O 的直径,AC 是弦,若∠ACO =32°,则∠COB =64°.(1)求圆周角通常先求同弧所对的圆心角.(2)求圆心角可先求对应的圆周角.(3)连接OC ,构造圆心角的同时构造等腰三角形.活动2 跟踪训练1.如图,锐角△ABC 的顶点A ,B ,C 均在⊙O 上,∠OAC =20°,则∠B =70°.2.OA 、OB 、OC 都是⊙O 的半径,∠AOB =2∠BOC.求证:∠ACB =2∠BAC.证明:∵∠AOB 是劣弧AB ︵所对的圆心角,∠ACB 是劣弧AB ︵所对的圆周角, ∴∠AOB =2∠ACB. 同理∠BOC =2∠BAC. ∵∠AOB =2∠BOC. ∴∠ACB =2∠BAC.求圆周角一定先看它是哪条弧所对的圆周角,再看所对的圆心角.活动3 课堂小结圆周角的定义、定理及推论.第2课时 圆周角定理的推论2、31.进一步探索直径所对的圆周角的特征,并能应用其进行简单的计算与证明.(重点)2.掌握圆内接四边形的有关概念及性质.(难点)阅读教材P81(问题解决)~83(议一议),完成预习内容. (一)知识探究1.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.2.四个顶点都在圆上的四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆;圆内接四边形的对角互补.(二)自学反馈1.如图,在⊙O 的内接四边形ABCD 中,若∠BAD =110°,则∠BCD 等于(C) A.110° B.90° C.70° D.20°2.如图,AB 是⊙O 的直径,∠A =35°,则∠B 的度数是55°.活动1 小组讨论例1 如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为(C) A.30° B.45° C.60° D.75°例2 如图,四边形ABCD 是⊙O 的内接四边形,∠CBE 是它的外角,若∠D =120°,则∠CBE 的度数是120°.例3 如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD.证明:连接BE ,∵AE 是⊙O 的直径, ∴∠ABE =90°, ∴∠BAE +∠E =90°. ∵AD 是△ABC 的高, ∴∠ADC =90°, ∴∠CAD +∠C =90°. ∵AB ︵=AB ︵,∴∠E =∠C.∵∠BAE +∠E =90°,∠CAD +∠C =90°, ∴∠BAE =∠CAD.涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题.活动2 跟踪训练1.如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是(D)A.1B. 2C. 3D.22.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为4.3.如图,在⊙O的内接四边形ABCD中,∠BCD=110°,则∠BOD=140度.4.如图,AB是⊙O的直径,点D在⊙O上,∠AOD=130°,BC∥OD交⊙O于C,求∠A 的度数.解:∵∠AOD=130°,∴∠BOD=50°.∵BC∥OD,∴∠B=∠BOD=50°.∵AB是⊙O的直径,∴∠ACB=90°.∴∠A=90°-∠B=40°.活动3 课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上,教师强调:①直径所对的圆周角是直角,90°的圆周角所对的弦是直径;②圆内接四边形定义及性质;③在圆周角定理运用中,遇到直径,常构造直角三角形.。