常微分方程教程-丁同仁

合集下载

常微分方程教程_丁同仁(第二版)_习题解答

常微分方程教程_丁同仁(第二版)_习题解答

y (0) = 1 ;
解:原方程即为:
dy x = dx , 3 y 1+ x2
ቤተ መጻሕፍቲ ባይዱ
-6-
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
1 −2 y = 1+ x2 + c , 2 3 因为 y (0) = 1 , 所以 c = − , 2
两边积分得: − 所以原方程满足初值问题的解为: 2 1 + x +
3而当2bc时原方程不是恰当方程s?s22s?1ds2dt0tts?s22s?1qts2tt所以解pts则?p1?2s?q1?2s22?t?stt?p?q即原方程为恰当方程?y?x两边积分得s?s2ct10xfx2y2dxyfx2y2dy0其中f?是连续的可微函数解pxyxfx2y2qxyyfx2y2则?q?p2xyf?2xyf??x?y所以?p?q即原方程为恰当方程?y?x两边积分得fx2y2dxc即原方程的解为fx2y2c其中f为f的原积分3常微分方程教程第二版丁同仁等编高等教育出版社参考答案习题221
积分得:
1 ln y = x + c , a

y = ce ax
② y = 0 也是方程的解. 积分曲线的简图如下:
y
-7-
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
(3).
dy = 1− y2 ; dx
解:①当 y ≠ ±1 时,
原方程即为:
dy = dx (1 − y 2 )
(5)
dy = (cos x cos 2 y ) 2 dx
解:①当 cos 2 y ≠ 0 时 原方程即为:
dy = (cos x) 2 dx 2 (cos 2 y )

数分书籍推荐

数分书籍推荐
又一本美国的经典数学分析书。有人认为观点已经不流行了,但是数学分析是一门基 础课目的是打下一个好的基础。 19《流形上的微积分》斯皮瓦克
分析的进一步。中国的数学分析一般不讲流形上的微积分,不过流形上的微积分是一 种潮流,还是看一看的好。 20《在南开大学的演讲》陈省身
从中会有一些领悟,不过可惜好像网络上流传的版本少了一些内容。 21 华罗庚《高等数学引论》科学出版社 数学分析习题集
中科大的书一向比较难。
4《线性空间引论》叶明训,武汉大学出版社 5《高等代数学》张贤科,清华大学出版社 6《线性代数与矩阵论》许以超,高等教育出版社
以上三本是一份书单上写的,拿了过来,不过我知道 5 还是不错的 7《代数学引论》柯斯特利金
一本和菲赫金戈尔茨的《微积分学教程》齐名的伟大数学著作。一本传世经典,没有 什么可多说的。最近刚刚有新译本出版,共分了三册,但都不是很厚,也不贵。 8《线性代数习题集》普罗斯库列柯夫 9《高等代数习题集பைடு நூலகம்法捷耶夫,索明斯基 8,9 是前苏联的经典代数习题集分别有两千道和一千道题,做完会打下非常好的基本功。 10《高等代数》丘维声著
向 n 维扩展。适合初学者。国家精品课程的课本。 7《数学分析新讲》张筑生
公认是一本新观点的书,课后没有习题。材料的处理相当新颖。作者已经去世。 8《数学分析教程》常庚哲,史济怀著
中国科学技术大学教材,课后习题极难。 9《数学分析》徐森林著
与上面一本同出一门,清华大学教材。程度好的同学可以试着看一看。书很厚,看起 来很慢。 10《数学分析简明教程》邓东翱著
记住以下几点: 1. 对于数学分析的学习,勤奋永远比天分重要。 2. 学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。 3. 别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。 4. 看得懂的仔细看,看不懂的硬着头皮看。 5. 课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。 6. 开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。 7. 经常回头看看自己走过的路

常微分方程的解

常微分方程的解

常微分方程的解是千儿的首篇笔记啦(^_−)☆这一系列笔记大概是来梳理一下各种常微分方程的解法。

证明部分暂时不会作为重点。

这篇笔记将梳理常微分方程的基本解法。

笔记主要采用的教材是丁同仁老师的《常微分方程教程》。

〇、一些名词1、常微分方程凡是联系自变量 x ,这个自变量的未知函数 y = y(x)及其直到 n 阶导数在内的函数方程f(x,y,y',y'',...,y^{(n)}) = 0 叫做常微分方程,并称 n为常微分方程的阶。

如果在上式中, f 对 y,y',...,y^{(n)} 而言都是一次的,那么我们称该方程为线性常微分方程,否则称其为非线性的。

如果未知函数是多元的,那么称之为偏微分方程。

在学习常微分方程的过程中,需要辩证地看待常微分方程和偏微分方程的关系,并及时进行转换。

这样就可以灵活地求解常微分方程。

2、解和通解若函数 y = \varphi (x) 在区间 j 内连续,且存在直到n 阶的导数。

若把 \varphi (x) 及其对应的各阶导数代入原方程,得到关于 x 的恒等式,那么我们称 y = \varphi(x)是原方程在区间 j 上的一个解。

如果解 y = \varphi(x, c_1,c_2,...,c_n) 中包含 n 个独立的任意常数c_1,c_2,...,c_n ,那么我们称其为通解。

若解中不包含任意常数,那么我们称其为特解。

3、初等积分法初等积分法是用一些初等函数或它们的积分来表示微分方程的解的方法。

这也是我们在本节中讨论的方法。

一、恰当方程对于形如 p(x,y)\text dx + q(x,y)\text dy = 0 的方程,如果存在一个可微函数 \phi (x,y) 使得 \text d \phi (x,y) = p(x,y)\text dx = q(x,y) \text dy,那么我们称其为一个恰当方程,或全微分方程。

恰当方程有解的充要条件是 \frac {\partial p(x,y)} {\partial y} = \frac{ \partial q(x,y)}{\partial x} 。

丁同仁常微分方程教程第二章小结

丁同仁常微分方程教程第二章小结

−( Q
∂M ∂N − ) ∂y ∂x = −1 M
仅与 y 有关,故方程有积分因子 µ ( y ) = e ∫
− dy
= e− y
从而方程 −e − y + e− y ( x + 2 y )dy = 0 为全微分方程 其通解为: − ∫x e − y dx + ∫y ( x0 + 2 y )dy = c1
z =y−y1
Riccati方程不恒为零。观察其一 特解为y = ϕ ( x)
1
dy = p ( x) y 2 + q ( x ) y + r ( x), dx p( x)
习题课 目的:①对 1-5 节内容即初等积分法求解方法的归纳,并通过几个 典型例题的讲解,使大家认识到一阶方程解法的灵活性,多样性。 ②关于一阶方程的通解公式和通解结构定理, 也是一重要的
变量分离方程
∆=0
dy = f ( x)ϕ ( y ) dx
y = c(x)e ∫
− p( x)dx
线性方程
dy = p ( x) y + q ( x) dx
1 µ= ϕ1(y)
dy a x + b1 y + c1 = f( 1 ) dx a2 x + b2 y + c2
a1 b1 a2 b2
µ=
u= y x
从而 δ lim ce x →+∞
∫x0 a (τ ) dτ
≤ lim c e− k ( x − x0 ) = 0
δ x →+∞
再讨论前一项,首先,由积分性质

e
∫x0 a (τ ) dτ
x

x
x0

《常微分方程》课程大纲

《常微分方程》课程大纲

《常微分方程》课程大纲一、课程简介课程名称:常微分方程学时/学分:3/54先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。

面向对象:本科二年级或以上学生教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。

二、教学内容和要求常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。

(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数)第一章基本概念(2,0)(一)本章教学目的与要求:要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方向场),定解问题等基本概念。

本章教学重点解释常微分方程解的几何意义。

(二)教学内容:1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。

2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。

3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。

4.常微分方程所讨论的基本问题。

第二章初等积分法(4,2)(一)本章教学目的与要求:要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。

本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。

并通过习题课进行初步解题训练,提高解题技巧。

(二)教学内容:1. 恰当方程(积分因子法); 2. 分离变量法3. 一阶线性微分方程(常数变易法)4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)5.应用举例第三章常微分方程基本定理(10,2)(一)本章教学目的与要求:要求学生正确掌握存在和唯一性定理及解的延伸的含义,熟记初值问题的解存在唯一性条件,正确理解解对初值和参数的连续依赖性和可微性的几何含意。

数学教材推荐

数学教材推荐

数学教材推荐2008-12-4 19:58:43 | 转载| 固定链接| 评论(4) | 浏览(948) 学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理:从数学分析开始讲起:数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。

也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。

当大四考研复习再看时会感觉轻松许多。

数学系的数学分析讲三个学期共计15学分270学时。

将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。

记住以下几点:1,对于数学分析的学习,勤奋永远比天分重要。

2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。

3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。

4,看得懂的仔细看,看不懂的硬着头皮看。

5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。

6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。

7,经常回头看看自己走过的路以上几点请在学其他课程时参考。

数学分析书:初学从中选一本教材,一本参考书就基本够了。

我强烈推荐11,推荐1,2,7,8。

另外建议看一下当不了教材的16,20。

中国人自己写的:1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。

我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。

网络上可以找到课后习题的参考答案,不过建议自己做。

不少经济类工科类学校也用这一本书。

里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。

常微分方程教程丁同仁李承治第二版第四章 奇解

常微分方程教程丁同仁李承治第二版第四章 奇解
, 令q 2
0 q3
2
3
y
2.用参数法求解下列微分方程:
y
y
y)
y
dq dy
3 2
x
ln x 2x
p
1)
0.
2xp
)]2
y
dy dx
2 cos y( sin y) 2q2
cos y sin y q2
cos2 q3
sin
cos2 q3
y
dq
( dy
y)
q tan
2
3
cos3 y sin y
y
x C
22t2 t 2t 1
C
dt
25
5
2
cos t,
2 cos[ 2 (x C)] 5
2t1
C
2
2
dv v
p
2 sin tdt
2 5 sin t
5
2t 1 22t2 t
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

常微分方程教程_丁同仁(第二版)_习题解答_1

常微分方程教程_丁同仁(第二版)_习题解答_1

∂y
∂x
∂y ∂x
2. (x + 2 y)dx + (2x + y)dy = 0
解: P(x, y) = x + 2 y, Q(x, y) = 2x − y,
∂P

=
2,
∂Q
=
2,
所以 ∂P = ∂Q ,即
原方程为恰当方程
∂y ∂x
∂y ∂x
则 xdx + (2 ydx + 2xdy) − ydy = 0,
解: P(x, y = ye x + 2e x + y 2 , Q(x, y) = e x + 2xy ,
则 ∂P = e x + 2 y, ∂Q = e x + 2 y, 所以 ∂P = ∂Q ,即 原方程为恰当方程
∂y
∂x
∂y ∂x
则 2e x dx + [( ye x + y 2 )dx + (e x + 2xy)dy] = 0,
两边积分得: (2 + y)e x + xy 2 = C.
7. ( y + x2 )dx + (ln x − 2 y)dy = 0 x
解: P(x, y) = y + x2 Q(x, y) = ln x − 2 y, x
则 ∂P = 1 , ∂Q = 1 , 所以 ∂P = ∂Q ,即 原方程为恰当方程
(1) dy = x 2 dx y 解:原方程即为: ydy = x 2dx 两边积分得: 3y 2 − 2x3 = C, y ≠ 0 .
dy
(2)
dx
=
x2 y(1 + x3 )

常微分方程第一章课件(1)讲义

常微分方程第一章课件(1)讲义

参 考 书
西华师范大学
《常微分方程》
《常微分方程教程》
由东北师大数学系编
由丁同仁、李承编
高等教育出版社
高等教育出版社
第一章
绪论
西华师范大学
本章分为两节,主要讲两个内容:常微分方程的应用背景及基本概念。 微分方程是一门应用背景很强的学科。诸如物理、化学、生物、医学,社 会学以及其他一些人文科学都有非常广泛的应用(例如:传染病模型,战 争模型等都体现微分方程很好的应用) 限于时间和篇幅,本书仅就《常微分方程》在物理学得几个不同分支 上得一些简单应用作初步的展示,至于它的更深入和广泛的应用,将会在 它的后继课程《数学建模》和《数学物理方程》中作进一步的介绍。

引例2:物体冷却过程的数学模型
西华师范大学
为解决上述问题,即建立物体冷却过程的数学模型,需要热力学的 牛顿冷却定理——物体温度变化速度与温差(物体温度与介质温度的差 )成比例。 将牛顿冷却定律翻译成数学语言,即为:
du k (u u k ) dt
上式即为物体冷却过程的数学模型。
引例2:物体冷却过程的数学模型
牛顿的生平简介
牛顿(Newton) 1642.12.15—1727.3.20 英国数学家
西华师范大学
牛顿是一个农民的儿子,他的父亲在他出生之前就去世了,牛顿是不 足月的遗腹子,他是那样的瘦小,仅三磅重,他母亲说一夸克(约一升)的 杯子就能装下他,他的生命似乎已经绝望了饿,以至于两个到附近为他取药 的妇女担心等不到她们回来牛顿就会死了。结果谁也没有想到他竟然活到 85 岁高龄。而且成为世界上出类拔萃的伟大科学家(这是上帝创造的奇迹)。 牛顿三岁的时候,母亲再嫁,他由外祖母抚养,小时候他对功课不感 兴趣,成绩低劣。被同学瞧不起。某日,一个蛮横不讲理的同学欺辱他,一 脚踢在他的肚子上(此同学的成绩在牛顿之上 ), 使牛顿在精神和肉体上受到 了极大痛苦。自那以后牛顿发奋读书,不久成绩便超过该生,而冠于全部。

数学教材推荐

数学教材推荐
11《数值分析》李庆扬,王能超,易大义
似乎是不错的选择,应用数学专业好像都是用这本。
12《数值分析基础》李庆扬,王能超,易大义
13《数值逼近》蒋尔雄,赵风光
14《微分方程数值解法》余德浩,汤华中
15《微分方程数值解法》李立康,於崇华,朱政华
看一个学校的计算数学是真的计算数学还是所谓的信息与计算,只要看一下上不上微分方程数值解就行了。
1《近世代数引论》冯克勤
2《近世代数》熊全淹
3《代数学》莫宗坚
4《代数学引论》聂灵沼
5《近世代数》盛德成
常微分方程
1《常微分方程教程》丁同仁、李承治,高等教育出版社
公认的国内写的最好的教材。
2《常微分方程》王高雄等
使用相当广泛的教材。初学建议从1,2中选
3《常微分方程》V.I.Arnold
解析几何
解析几何有被代数吃掉的趋势,不过就数学系的学生而言,还是应该好好学一下,我大一没有好好学,后来学别的课时总感觉哪里有些不太对劲,后来才发现是自己的数学功底尤其是几何得功底没有打好。
1吴光磊《解析几何简明教程》高等教育出版社
写的简单明了,我基础没有打好,快速翻了一下这本书收获还是不少的。不过打基础的时候还是从下面三本选一本看,把这本当参考书。
11《高等代数习题集》杨子胥著
相对8,9很容易买到,很多人用来做考研的参考书,而且符合所谓的教学或考研大纲。
12《线性代数》蒋尔雄,高锟敏,吴景琨著
名为线性代数,实际上是一本高等代数教材。是一本非常老的为当时计算数学专业编写的书。市面上根本找不到,但各大学的藏书中肯定会有。
近世代数
不光是数学系最重要的几门课,而且在计算机方面有很多应用,通常的离散数学第二部分就是近世代数内容,也叫抽象代数。

[理学]常微分方程教程_丁同仁第二版_习题解答

[理学]常微分方程教程_丁同仁第二版_习题解答

∂y x ∂x x
∂y ∂x
则 ( y dx + ln xdy) + x2dx − 2 ydy = 0 x
两边积分得: x3 + y ln x − y 2 = C. 3
8. (ax2 + by 2 )dx + cxydy = 0 (a,b和c为常数)
解: P(x, y) = ax2 + by 2 , Q(x, y) = cxy,
两边积分得: (2 + y)e x + xy 2 = C.
7. ( y + x2 )dx + (ln x − 2 y)dy = 0 x
解: P(x, y) = y + x2 Q(x, y) = ln x − 2 y, x
则 ∂P = 1 , ∂Q = 1 , 所以 ∂P = ∂Q ,即 原方程为恰当方程
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-对恰当方程求解:
1. (3x2 −1)dx + (2x + 1)dy = 0
解: P(x, y) = 3x2 −1, Q(x, y) = 2x + 1 ,
则 ∂P = 0 , ∂Q = 2 ,所以 ∂P ≠ ∂Q 即,原方程不是恰当方程.
则 ∂P = 2by, ∂Q = cy, 所以 当 ∂P = ∂Q ,即 2b = c 时, 原方程为恰当方程
∂y
∂x
∂y ∂x
-2-
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
则 ax2dx + (by 2dx + cxydy) = 0
两边积分得: ax3 + bxy 2 = C. 3
∂y
∂x

常微分方程教程丁同仁第二版解答完整版

常微分方程教程丁同仁第二版解答完整版

习题2-1判断下列方程是否为恰当方程,并且对恰当方程求解:1.(3x 2 −1)dx +(2x +1)dy =0 解:P (x , y ) =3x 2 −1,Q (x , y ) =2x +1 ,则∂∂P y =0 ,∂∂Q x =2 ,所以∂∂P y ≠∂∂Q x即,原方程不是恰当方程.2.(x +2y )dx +(2x +y )dy =0 解:P (x , y ) =x +2y , Q (x , y ) =2x −y , 则∂∂P y =2, ∂∂Q x =2, 所以∂∂P y =∂∂Q x,即原方程为恰当方程则xdx +(2ydx +2xdy ) −ydy =0,2 2两边积分得:x +2xy −y =C . 2 23.(ax +by )dx +(bx +cy )dy =0 (a,b 和c 为常数).解:P (x , y ) =ax +by , Q (x , y ) =bx +cy , 则∂∂P y =b , ∂∂Q x =b , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则axdx +bydx +bxdy cydy =0,()+两边积分得:ax 2 +bxy +cy 2=C . 2 24.(ax −by )dx +(bx −cy )dy =0(b ≠0) 解:P (x , y ) =ax −by , Q (x , y ) =bx −cy ,则∂∂P y=−b , ∂∂Q x =b , 因为 b ≠0, 所以∂∂P y ≠∂∂Q x ,即,原方程不为恰当方程5.(t 2 +1)cos udu +2 t sin udt =0 解:P (t ,u ) =(t 2 +1)cos u , Q (t ,u ) =2t sin u 则∂∂P t =2t cos u , ∂∂Q x =2t cos u , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则(t 2 cos udu +2t sin udt ) +cos udu =0,两边积分得:(t 2 +1)sin u =C .6.( ye x +2e x +y 2)dx +(e x +2xy )dy =0 解:P (x , y =ye x +2e x +y 2, Q (x , y ) =e x +2xy ,则∂∂P y =e x +2y , ∂∂Q x =e x +2y , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则2e x dx +[(ye x +y 2)dx +(e x +2xy )dy ] =0,两边积分得:(2 +y )e x +xy 2 =C .7.( y +x 2)dx +(ln x −2y )dy =0 x 解:P (x , y ) =y +x 2 Q (x , y ) =ln x −2y ,x则∂∂P y =1 x , ∂∂Q x =1 x , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则( ydx +ln xdy ) +x 2 dx −2ydy =0 x 3两边积分得:x 3+y ln x −y 2 =C .8.(ax 2+by 2)dx +cxydy =0(a ,b 和c 为常数) 解:P (x , y ) =ax 2 +by 2, Q (x , y ) =cxy ,则∂∂P y =2by , ∂∂Q x =cy , 所以当∂∂P y =∂∂Q x,即2b =c 时,原方程为恰当方程则ax 2 dx +(by 2 dx +cxydy ) =0 3两边积分得:ax +bxy 2 =C .3而当2b ≠c 时原方程不是恰当方程.9.2s −1 ds +s −2 s 2 dt =0 t t解:P (t , s ) =2s −1, Q (t , s ) =s −2 s 2,t t则∂∂P t =1−t 22s , ∂∂Q s =1−t22s , 所以∂∂P y =∂∂Q x ,即原方程为恰当方程,两边积分得:s −s 2=C .t10.xf (x 2 +y 2)dx +yf (x 2 +y 2)dy =0, 其中f (⋅)是连续的可微函数.解:P (x , y ) =xf (x 2 +y 2 ), Q (x , y ) =yf (x 2 +y 2 ), 则∂∂P y =2xyf ′, ∂∂Q x =2xyf ′, 所以∂∂P y =∂∂Q x,即原方程为恰当方程,两边积分得:∫f (x 2 +y 2)dx =C ,即原方程的解为F (x 2 +y 2) =C (其中F 为f 的原积分).习题2-2 1. 求解下列微分方程,并指出这些方程在平面上的有意义的区域::dy x 2(1) dx =y解:原方程即为:ydy =x 2 dx 两边积分得:3y 2 −2x 3 =C , y ≠0 .dy x 2(2) dx =y (1+x )3 2解:原方程即为:ydy =1+x x 3dx 两边积分得:3y 2 −2ln1+x 3=C , y ≠0,x ≠−1 .(3) dy +y 2 sin x =0dx解:当y ≠0时原方程为:dy +sin xdx =0y2 两边积分得:1+(c +cos x ) y =0 .又y=0也是方程的解,包含在通解中,则方程的通解为1+(c +cos x ) y =0 .dy 22(4) dx=1+x +y +xy ;解:原方程即为:1+dy y 2=)(1+x dx 2两边积分得:arctgy =x +x 2+c ,即y =tg (x +x 22+c ) .(5) dy =(cos x cos 2y )2 dx解:①当cos 2y ≠0 时原方程即为:(cos dy 2y )2 =(cos x )2 dx 两边积分得:2tg 2y −2x −2sin 2 x =c .②cos 2y =0,即y =k π+π也是方程的解.( k ∈N )2 4 (6) x dy =1−y 2 dx解:①当y ≠±1时dydx 原方程即为:1−y 2 =x两边积分得:arcsin y −ln x =c .②y =±1也是方程的解. dy x −e −x(7).dx =y +e y解.原方程即为:( y +e y )dy =(x −e −x )dx 2 2两边积分得:y +e y =x +e −x +c ,22原方程的解为:y 2 −x 2 +2(e y −e −x ) =c .2. 解下列微分方程的初值问题.(1) sin 2xdx +cos3ydy =0, y (π) =π;2 3解:两边积分得:−cos 22x +sin 33y =c ,即2sin 3y −3cos 2x =c 因为y (π2) =π3,所以 c =3.所以原方程满足初值问题的解为:2sin 3y −3cos 2x =3.x (2).xdx +ye −dy =0 ,y (0) =1;解:原方程即为:xe x dx +ydy =0 ,两边积分得:(x −1)e xdx +y 22dy =c ,因为y (0) =1,所以c =−12,所以原方程满足初值问题的解为:2(x −1)e x dx +y 2 dy +1 =0 .(3).dr =r ,r (0) =2 ;d θ解:原方程即为:dr =d θ,两边积分得:ln r −θ=c ,r因为r (0) =2 ,所以c =ln 2 ,所以原方程满足初值问题的解为:ln r −θ=ln 2 即r =2e θ.dy ln x (4).dx =1+y2, y (1) =0;解:原方程即为:(1+y 2)dy =ln x dx , 两边积分得:y 3x x ln y ++−x =c ,3因为y (1) =0 ,所以c =1, 3 所以原方程满足初值为:y x x ln y ++−x =1 3 2 dy 3(5).1+x dx=xy ,y (0) =1;dy x 解:原方程即为:y 3 =1+x 2 dx ,2两边积分得:−12y −2 =1+x +c ,因为y (0) =1,所以c =−3 ,2 所以原方程满足初值问题的解为:21+x 2 +y1 =3 .2 3. 解下列微分方程,并作出相应积分曲线的简图.(1).dy =cos x dx解:两边积分得:y =sin x +c .积分曲线的简图如下:(2).dxdy =ay ,(常数a ≠0 );解:①当y ≠0时,原方程即为:aydy =dx 积分得:a 1ln y =x c +,即y =ce ax (c >0) ②y =0也是方程的解.积分曲线的简图如下:y(3).dy =1−y 2 ;dx解:①当y ≠±1时,1+y 原方程即为:(1−dy y 2)=dx 积分得:ln =2x +c ,1−y 即y =ce 2 x −1 .ce 2 x +1②y =±1也是方程的解.积分曲线的简图如下:dy n 1(4).dx=y ,(n =3,1, 2) ;解:①当y ≠0时,1 dy ⅰ) n =3, 2 时,原方程即为yn =dx ,积分得:x +1y 1−n =c .n −1ⅱ) n =1时,原方程即为dy y=dx 积分得:ln y =x +c ,即y =ce x(c >0) .②y =0也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某B 从点开始跟踪A ,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为y =y (x ),由题意及导数的几何意义,则有dy y dx b 2 −y2 ,所以求B 的运动轨迹即是求此微分方程满足y (0) =b 的解.=−解之得:x =12 b ln b b +−b b 22 +−y y 22 −b 2 −y 2 .5. 设微分方程dy =f ( y ) (2.27),其中f(y) 在y =a 的某邻域(例如,区间y −a <ε)dx 内连续,而且f ( y )=0 ⇔y =a ,则在直线y =a 上的每一点,方程(2.27)的解局部唯一,±εdy 当且仅当瑕积分=∞(发散).∫a a f ( y )证明:( ⇒)首先经过域R 1:−∞<x <+∞, a −ε≤y <a 和域R 2:−∞<x <+∞,a <y ≤a +ε内任一点( x 0, y 0)恰有方程(2.13)的一条积分曲线,它由下式确定dy =x −x 0 . (*)∫y y 0 f ( y )这些积分曲线彼此不相交. 其次,域R 1( R 2)内的所有积分曲线∫f dy ( y )=x +c 都可由其中一条,比如∫f dy ( y ) =x +c 0 沿着x 轴的方向平移而得到。

常微分方程丁同仁李承志第二版第一章答案_0

常微分方程丁同仁李承志第二版第一章答案_0

常微分方程丁同仁李承志第二版第一章答案篇一:常微分方程丁同仁李承志第二版第一章答案习题 1-11.验证下列函数是右侧相应微分方程的解或通解: (1)y?c2x1e?c2e?2x, y???4y?0.证明:?y?cx1e2?c?2x2e,则y?=2c2x1e2x?2c2e?,y4cx1e2?4cx2e?2,y???4y?0.∴ y?sinxx, xy??y?cosx.证明:∵y?sinx, y??xcosx?sinxx则x2xy??y?xcosx?sinxx?sinxx?cosx(3)y?x(?exxdx?c), xy??y?xex.证明:∵y?x(?exxdx?c), 则 yexex x?c?xx, exex∴xy??y?x?x?c?xxx(?ex?x?c)?xex ??(x?2)(4) ??4,x?c1,y???0,cy’?1?x??c2,??(x?2)?4,c2?x,证明:(1)当x?c1时2y=?(x?)14,y’=?x?2其他情况类似.2.求下列初值问题的解:(1)yx, y(0)?a0, y?(0)?a1, y??(0)?a2.解:∵yx, ∴y12x2?c1, ∵y??(0)?a2,∴c1?a2,∴y??x3?a2x?c2, ∵y?(0)?a1, ∴c2?a1,(2),∴y?124x4?12a2x2?a1x?c,∵y(0)?a0, 满足初值问题的解为:y?14124x?2a22x?a1x?a0. dydx?f(x), y(0)?0, (这里f(x)是一个已知的连续函数)解:∵dydx?f(x), 即 dy?f(x)dx, ∴xx?dy??f(t)dt?c,x∴y(x)?y(0)??f(t)dt?c, ∵y(0)?0, ∴c?0 0x∴满足初值问题的解为:y(x)?f(t)dt.(3)dRdt??aR, R(0)?1,解:①若R?0, 则∵dRR??adt,两边积分得:lnR??at?c ∵R(0)?1 ∴c?1 ∴满足初值问题的解为:R?e?at(4)dydx?1?y2, y(x0)?y0,解:∵dydx?1?y2,∴dy1?y2?dx,两边积分得:arctgy?x?c.∵y(x0)?y0,∴c?arctgy0?x0.∴满足初值问题的解为:y?tg(x?arctgy0?x0). (1)函数y??(x,c1,c2,,cn)是微分方程F(x,y,y?,,y(n))?0的通解,其中c1,c2,cn是独立的任意常数,(2)存在一组常数(1,2,,cn)?Rn和空间中的点0(0,0,0,,y(n?1)0)(3)满足3.假设??0??(0,1,,cn)0?(0,1,,cn)???x??(n?1)?(n?1)??xn?1(0,1,,cn)试证明:存在点0的某一邻域 U,使得对任意一点M0(x?,(n?1)0,y0,y0,y0),可确定一组数ci?ci(M0),i?1,2,,n,使得y??(x,c1(M0),c2(M0),,cn(M0))是初值问题y(x,y?(x,y(n?1)(x1)0)?y00)?y0,0)?y(n?0??F(x,y,y?,,y(n?1))?0 的解.证明:因为y??(x,c1,c2,,cn)是微分方程F(x,y,y?, ,y(n))?0的通解,所以初值问题y(x(n?1)0)?y0,y?(x0)?y0,,y(x(n?1)0)?y0 ??F(x,y,y?,,y(n?1))?0的解应具有形式y??(x,c??1,c2,,c?,其中(c??n)1,c2,,c?n)应满足:??y0??(x0,c?1,,c?n)?y(x,c?1,,c??0??x0n),(*) ??(n?1)?(n?1)??y0xn?1(x0,c?1,,c?n)如何确定(c?1,c?2,,c?n)呢?由条件(2)及隐函数定理知,存在点 0的某一邻域U,使得对任意一点M?1)0(x0,y0,y?0,,y(n0)可确定一组数c??i?ci(M0),i?1,2,,n,使得(*)成立.得证.4. 求出:(1)曲线族y?cx?x2所满足的微分方程;解:y?cx?x2, y??c?2x, xy??cx?2x2则有:xy??x2?y.(2)曲线族y?c1ex?cx2xe所满足的微分方程;xx解:由y?c??y??c1e?cx2e?c1xe1ex?c2xexy???cxxx, 1e?2c2e?c1xe联立消去c1,c2得:y2y??y?0.(3)平面上以原点为中心的一切圆所满足的微分方程;解:平面上以原点为中心的圆的方程为x2?y2?r2(r?0)将视y为x的函数,对x求导得:2x?2yy??0平面上以原点为中心的一切圆所满足的微分方程为x?yy??0.(4)平面上一切圆所满足的微分方程.解:平面上圆的方程为:(x?a)2?(y?b)2?r2(r?0),将y视为x 的函数,对x求导得:??2(x?a)?2(y?b)y??0?2?2?2(y?b)y2?y’??0联立消去a,b得,2(y?b)y?4y0[1?(y?)2]y3y?(y??)2?0.习题 1-2作出如下方程的线素场:(1)y??xyxy(2)y??(y?1)2(3)y??x2?y22. 利用线素场研究下列微分方程的积分曲线族:(1)y??1?xy篇二:常微分方程教程+第二版+丁同仁+李承志+答案和练习第2章习题第二章答案习题2-1判断下列方程是否为恰当方程,并且对恰当方程求解:1.(3x2?1)dx?(2x?1)dy?0解:P(x,y)?3x2?1, Q(x,y)?2x?1,则?P?y?0,?Q?x?2,所以 ?P?Q?y??x即原方程不是恰当方程.2.(x?2y)dx?(2x?y)dy?0解:P(x,y)?x?2y,Q(x,y)?2x?y,则?P?y?2,?Q?x?2, 所以?P?Q?y??x,即原方程为恰当方程则xdx?(2ydx?2xdy)?ydy?0,两边积分得:x222xy?y2?2?C. 3.(ax?by)dx?(bx?cy)dy?0 (a,b和c为常数).解:P(x,y)?ax?by,Q(x,y)?bx?cy,则?P?y?b,?Q?x?b, 所以?P?Q?y??x,即原方程为恰当方程则axdx?bydx?bxdy?cydy?0,ax2cy2两边积分得:2?bxy?2?C. 4.(ax?by)dx?(bx?cy)dy?0(b?0)解:P(x,y)?ax?by,Q(x,y)?bx?cy,则?P?Q?y??b,?x?b, 因为 b?0, 所以?P?Q?y??x,即原方程不为恰当方程5.(t2?1)cosudu?2tsinudt?0解:P(t,u)?(t2?1)cosu,Q(t,u)?2tsinu则?P?t?2tcosu,?Q?x?2tcosu, 所以?P?y??Q?x,即原方程为恰当方程则(t2cosudu?2tsinudt)?cosudu?0,两边积分得:(t2?1)sinu?C. 6.(yex?2ex?y2)dx?(ex?2xy)dy?0解: P(x,y?yex?2ex?y2,Q(x,y)?ex?2xy,则?P?y?ex?2y,?Q?x?ex?2y, 所以?P?y??Q?x,即原方程为恰当方程则2exdx?[(yex?y2)dx?(ex?2xy)dy]?0, 两边积分得:(2?y)ex?xy2?C.7.(yx?x2)dx?(lnx?2y)dy?0 解:P(x,y)?yx?x2Q(x,y)?lnx?2y,则?P1?Q?y?x,?x?1x, 所以?P?Q?y??x,即原方程为恰当方程则(yxdx?lnxdy)?x2dx?2ydy?0两边积分得:x33?ylnx?y2?C. 8.(ax2?by2)dx?cxydy?0(a,b和c为常数) 解:P(x,y)?ax2?by2,Q(x,y)?cxy,则?P?Q?y?2by,?x?cy, 所以当?P?Q?y??x,即方程为恰当方程则ax2dx?(by2dx?cxydy)?0两边积分得:ax3?bxy23?C. 而当2b?c时原方程不是恰当方程.9.2s?1s?t?s2dst2dt?0 解:P(t,s)?2s?1t)?s?s2,Q(t,st2, 则?P?t?1?2s?Q1?2s?P?Qt2,?s?t2, 所以?y??x,方程,s?s2两边积分得:t?C. 2b?c时,原即原方程为恰当10.xf(x2?y2)dx?yf(x2?y2)dy?0, 其中f(?)是连续的可微函数.解:P(x,y)?xf(x2?y2),Q(x,y)?yf(x2?y2),则?P?Q?y?2xyf?,?x?2xyf?, 所以?P?y??Q?x,即原方程为恰当方程,两边积分得:?f(x2?y2)dx?C,即原方程的解为F(x2?y2)?C (其中F为f的原积分).习题2-2.1. 求解下列微分方程,并指出这些方程在平面上的有意义的区域::dyx2(1)dx?y解:原方程即为:ydy?x2dx 两边积分得:3y2 ?2x3?C,y?0.dyx2(2)dx?y(1?x3)解:原方程即为:ydy?x21?x3dx两边积分得:3y2?2ln?x3?C,y?0,x??1.(3)dydx?y2sinx?0解:当y?0时原方程为:dyy2?sinxdx?0 两边积分得:1?(c?cosx)y?0.又y=0也是方程的解,包含在通解中,则方程的通解为1?(c?cosx)y?0.(4)dydx?1?x?y2?xy2;解:原方程即为:dy1?y2?(1?x)dx 两边积分得:arctgy?x?x22?c,即 y?tg(x?x22?c).(5)dydx?(cosxcos2y)2 解:①当cos2y?0时原方程即为:dy(cos2y)2?(cosx)2dx 两边积分得:2tg2y?2x?2sin2x?c.②cos2y=0,即y? k?2??4也是方程的解. (6)xdx??y2解:①当y??1时原方程即为:dydx?y2?x两边积分得:arcsiny?lnx?c.② y??1也是方程的解. dyx?e?x(7).dx?y?ey解.原方程即为:(y?ey)dy?(x?e?x)dxk?N)(22两边积分得:y2?ey?x2?e?x?c,原方程的解为:y2?x2?2(ey?e?x)?c.2. 解下列微分方程的初值问题.(1)sin2xdx?cos3ydy?0, y(?)??23解:两边积分得:?cos2x2?sin3y3?c,即 2sin3y?3cos2x?c因为 y(?2)??3, 所以 c?3.所以原方程满足初值问题的解为:2sin3y?3cos2x?3.(2).xdx?ye?xdy?0, y(0)?1;解:原方程即为:xexdx?ydy?0,两边积分得:(x?1)exdx?y22dy?c,因为y(0)?1,所以c??12,所以原方程满足初值问题的解为:2(x?1)exdx?y2dy?1?0.(3).d??r, r(0)?2;解:原方程即为:drr?d?,两边积分得:lc,因为r(0)?2,所以c?ln2,所以原方程满足初值问题的解为:lln2 即r?2e?.(4).dydx?lnx1?y2,y(1)?0;解:原方程即为:(1?y2)dy?lnxdx,两边积分得:y?y33?x?xlnx?c, 因为y(1)?0,所以c?1,所以原方程满足初值为:y?y33?x?xlnx?1篇三:第2章习题 2第二章答案常微分方程教程+第二版+丁同仁+李承志+答案和练习(1)y?1)3. v?1?2, 2v?1ln1?u?1?u ?x?c,?8y??c. ?3 ,(2), x2z?ce. ?x2?1(v?u)?2.(1)y??cos(x?y)2x?v,y2?u,①当cosu?11 两边积分得:ctg2 解:令u?x?y ②当cosu?1(2)(3uv?v)du?(u 解:方程两边同时乘以22?u??1 得?,令v??2?m?z,则m?zn,令n n,?2x2?y2?3)3.(3u2v?uv2)du?即 (3uvdu?u2322, u?y,v?xdy(3)(x?y?3)?dx22?m?n?,?udx+p(x)ue?udx?q(x)e?udx.即有:u2?u??p(x)u5.c?2x).45?.解:设此曲线为y?y(x)dyy?dxx?tg45??1dyy1?dxx6. 探照灯的反光镜(旋转面)反射成平行线束?维坐标系.设所求曲面由曲线??0;?3e3xy2)dy?0,?ey?c. 3x3?y??z?结为求 xy 平面上的曲线1?(2xe2y?)dy?0 y即(edx?2y1?)dy?0, y26(3).(3x?)dxy?2dy)?0,y (3x2y即 (3x2x?c. (4).ydx?(x2? 2)?dy?0, ylny?c(5).2xydx?(x3 2?0 ,。

常微分方程教程_丁同仁(第二版)_习题解答_5

常微分方程教程_丁同仁(第二版)_习题解答_5

习 题 6—31.证明函数组 ,⎩⎨⎧<≥=000)(21x x x x 当当ϕ220 0()0x x x x ϕ≥⎧=⎨<⎩当 当,在区间上线性无关,但它们的朗斯基行列式恒等于零。

这与本节的定理 6.2*是否矛盾?如果并不矛盾,那么它说明了什么?),(+∞−∞证 设有 1122()0c x c ϕϕ+≡ +∞<<∞−x ,则当时,有,从而推得 。

而当 时,有0≥x 21200c x c +≡01=c 0<x 120c c x 0⋅+≡,从而推得 。

因此在02=c +∞<<∞−x 上,只有时,才有 021==c c 1122()()0c x c x ϕϕ+≡,故12(), ()x x ϕϕ在上线性无关。

又当时, ),(+∞−∞0≥x 0002)(2≡=x x x w ,当0<x 时,0200)(2≡=x x x w 故当+∞<<∞−x 时,有。

这与本节定理6.2不矛盾,因为定理6.2*成立对函数有要求,即0)(≡x w )(1x ϕ,)(2x ϕ是某个二阶齐次线性方程的解组。

这说明不存在一个二阶齐次线性方程,它以)(1x ϕ,)(2x ϕ为解组。

3.考虑微分方程''()0y q x y +=(1)设)(x y ϕ=与)(x y ψ=是它的任意两个解,试证)(x y ϕ=与)(x y ψ=的朗斯基行列式恒等于一个常数。

(2)设已知方程有一个特解为,试求这方程的通解,并确定 x e y =()?q x =证: (1)在解)(x y ϕ=,)(x y ψ=的公共存在区间内任取一点x 。

由刘维尔公式,有 (常数)[])()()(),(000x w ex w x x w odxx x=∫=−ψϕ(2)由于是方程的一个非零特解,故可借助刘维尔公式,求与之线性无关的特解 x e y =x odx xx e dx e ee y −∫−−=⋅=∫21122,故方程的通解为 xx e c e c y −+=21又由于是方程的解,故有x e y =()0x x e q x e +≡, 所以 ()1q x =−。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常微分方程2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:3解:原式可化为:,0)1(.22=++dy x dx y 。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,1112yxy dx dyxy 321++=x x y x x y x yx y y x y c c c c x dx x dy y y x y dx dy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+∙+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy yydx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dxdy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dx xx du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y ee e ee e ee x y uu xy x u u xyxy y x xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

代回原变量得:则有:令解:方程可变为:解:变量分离,得两边积分得:解:变量分离,得::也是方程的解。

另外,代回原来变量,得两边积分得:分离变量得:则原方程化为:解:令:。

两边积分得:变量分离,得:则令解:12. 解cx y x arctg cx arctgt dx dt dx dt dx dt dx dy t y x dxdy cdx dy dxdy tt y x e e e e e x yxyyx +=++==++=+==+=+===+-)(,11111,.11222)(代回变量得:两边积分变量分离得:原方程可变为:则解:令两边积分得:解:变量分离,2)(1y x dx dy +=cx y x arctg y x c x arctgt t dx dt t t tdx dt dx dt dx dy t y x +=+-++=-=++=-==+)(1111222,代回变量,两边积分变量分离,原方程可变为,则令变量分离,则方程可化为:令则有令的解为解:方程组U U dX dU X U X Y Y X YX dX dY Y y X x y x y x y x y x y x dx dy U 21222'22,31,3131,31;012,0121212.132-+-==--=+=-==-==+-=--+---=15.16. 解: ,这是齐次方程,令17. .7)5(72177217)7(,71,1,525,14)5(22c x y x cx t dx dt t t tdx dt dx dt dx dy t y x y x y x dx dy y x t +-=+--+-=----=--===---+-=+-代回变量两边积分变量分离原方程化为:则解:令18)14()1(22+++++=xy y x dx dy原方程的解。

,是,两边积分得分离变量,,所以求导得,则关于令解:方程化为c x y x arctg dx du u u dx du dx du dx dy x u y x y x xy y y x x dxdy+=++=++==+=+++++=+++++++=6)383232(941494141412)14(18181612222222252622y x xy x y dx dy +-=,则原方程化为,,令u y xxy x y dx dy x xy y x y dx dy =+-==+-=32322332322232]2)[(32(2)(126326322222+-=+-=xu x u xxu x u dx du c x x y x y c x y x y c x x y x y c x z z dx x dz dz z z z z x y x y z z z z z z z dx dz x dx dz x z z z dx dz x z dx du z x u 15337333533735372233222)2()3(023)2()3,)2()3112062312306)1.(..........1261263=+-=-===+-=+-=--+≠---==-===--+--=+=+-+==的解为时。

故原方程包含在通解中当或,又因为即(,两边积分的(时,变量分离当是方程的解。

或)方程的解。

即是(或,得当,,,,所以,则yy y x x xy x dx dy -+++=3232332解:原方程化为 令 方程组则有 令当当另外123132;;;;;)123()132(2222222222-+++=-+++=y x y x dx dy y x y y x x dx dy )1.......(123132;;;;;;;;;;;;,22-+++===u v u v dv du v x u y 则,,,);令,的解为(111101230132+=-=-⎩⎨⎧=-+=++u Y v Z u v u v ⎪⎪⎩⎪⎪⎨⎧++==+=+z y z y dz dy y z y z 23321023032)化为,,,,从而方程()2.(..........232223322,,,,,所以,,则有tt dz dt z t t dz dt z t dz dt z t dz dy z y t +-=++=++==是原方程的解或的解。

得,是方程时,,即222222)2(1022x y x y t t -=-=±==-c x y x y dz z dt tt t 5222222)2(12223022+-=+=-+≠-两边积分的时,,分离变量得c x y x y x y x y 522222222)2(2+-=+-=-=原方程的解为,包含在其通解中,故,或19. 已知f(x).解:设f(x)=y, 则原方程化为 两边求导得,这也就是方程的解。

,两边积分得分离变量得,则原方程化为令解)(并由此求解下列方程可化为变量分离方程,经变换证明方程c y x x y dx x du u u u ux u u u u x y x y x dx dy y x xdy dx y x y u xy xy f dxdy y x +==--=+-+====+==+=+=++==+=≠==+=+=+==--==+=-+==+===4ln 142241)22(1dx du u xy (2) 0.x ,c 2故原方程的解为原也包含在此通解中。

0y ,c2即,c 2两边同时积分得:dx x 12u du 变量分离得:),(2u x 1dx du 则方程化为u,xy 令1dxdy y x 时,方程化为0s xy 是原方程的解,当0y 或0x 当:(1)解程。

故此方程为此方程为变u)(uf(u)x 11)(f(u)x u 1)y(f(u)dx du f(u),1dx du y 1得:y dxdu dx dy x 所以,dx dy dx dy x y 求导导得x 关于u,xy 证明:因为22).2()1(.1)(18.222222222222224223322222222xy x y x y x y x u u uu yx ⎰≠=xx f x dt x f 0)(,0,1)(的一般表达式试求函数⎰=xy dt x f 01)('12y y y -=cx y y c x dy y dx dx dy y +±==+-==-21;;;;;121;;;;;;;;;;;;1;;;;;;;;;;233所以两边积分得代入把cx y +±=21⎰=xydt x f 01)(xy c c x c c x c x dt ct x21,02)2(;;;;;;;;;;2210±==+±=-+±+±=+±⎰所以得20.求具有性质 x(t+s)=的函数x(t),已知x’(0)存在。

解:令t=s=0 x(0)== 若x(0)0 得x =-1矛盾。

所以x(0)=0. x’(t)=)两边积分得arctgx(t)=x’(0)t+c 所以x(t)=tg[x’(0)t+c] 当t=0时 x(0)=0 故c=0 所以 x(t)=tg[x’(0)t]习题2.2求下列方程的解1.=解: y=e (e )=e [-e ()+c]=c e - ()是原方程的解。

2.+3x=e 解:原方程可化为:=-3x+e 所以:x=e (e e )=e (e +c)=c e +e 是原方程的解。

3.=-s +解:s=e (e )=e ())()(1)()(s x t x s x t x -+)0(1)0()0(x x x -+)0()0(1)0(2x x x -≠2)(1)(0(')()(1[))(1)((lim )()(lim 22t x x t x t x t t x t x t t x t t x +=∆-∆+∆=∆-∆+))(1)(0(')(2t x x dt t dx +=dt x t x t dx )0(')(1)(2=+dxdy x y sin +⎰dx⎰x sin ⎰-dx c dx +x 21x -x x cos sin +x 21x x cos sin +dtdxt 2dtdxt 2⎰-dt3⎰t 2-⎰-dt3c dt +t 3-51t 5t 3-51t 2dt ds t cos 21t 2sin ⎰-tdt cos t 2sin 21⎰dt dt ⎰3c +t sin -⎰+c dt te t t sin cos sin= e () = 是原方程的解。

相关文档
最新文档