第1章 液态金属成形过程及控制
液态金属成形过程及控制
冒口。
冒口补缩原理
二、选择冒口位置的原则
1.冒口应就近设在铸件热节(hot spot)的上方或侧 旁; 2.冒口应尽量设在铸件最高、最厚的部位; 3.冒口不应设在铸件重要的、受力大的部位; 4.冒口不应选在应力集中处; 5.应尽量用一个冒口补缩几个热节或铸件; 6.冒口不应在加工面上。
金属液过滤器安放位置
泡沫陶瓷过滤器过滤机理
• • 1.“滤饼”机制 复杂的泡沫陶瓷结构,可以高效率 地机械挡渣,当金属液通过结构复 杂的泡沫陶瓷过滤器时,通过过滤 介质的机械分离作用,把大于过滤 器表面孔眼的夹杂物滤除,并使之 沉积在过滤器液态金属流入端,成 为过滤器的一个组成部分。随着夹 杂物在过滤器表面上堆积数量的增 多,逐渐形成了一层“滤饼”,使 金属液流道进一步变细,因而新增 的过滤介质表面可以滤除更为细小 的夹杂物。与此同时,介质内部也 有过滤作用,在贯穿于陶瓷体的众 多小孔中,有的呈现微小狭缝,有 的存在死角,这些变化不同的区域 都是截获夹杂物的可能位置。
第一章
液态金属成形过程及控制
1.1 液态金属的充型及流动 1.2 浇注系统 1.3 凝固过程的工艺分析 1.4 冒口和冷铁
1.1液态金属的充型及流动
• 概述:充型+凝固→铸造成形→质量 一、液态金属充型的水力学特征及在浇注系统中的流动 水力学特征: ①粘性流动←粘度→合金成分,温度,结晶 ②流动的不稳定性 ③散体材料的“多孔管流动”
铸件
1.位置(4)-阶梯式
a)多直浇道式 b)用塞球法控制式 c)控制各 组元比例式 d)带缓冲直浇道 e)带反直浇道式
2.按各单元断面积的比例
• 收缩式:A直﹥ A横﹥ A内 • 扩张式: A直﹤ A横﹤ A内 • 半扩张式: A直﹤ A横﹥ A内
第一章 金属液态成形理论基础
第一节 液态金属充型能力与流动性
0、什么是液态金属的充型能力
1)定义:
液体金属充满铸型型腔,获得尺寸精确、轮廓清晰的 成型件的能力,称为充型能力。
2)充型能力对成型的影响
充型能力不足时,会产生浇不足、冷隔、夹渣、气孔 等缺陷。
3)影响充型能力的因素
充型能力首先取决于金属本身的流动性(流动能力),同 时又受铸型性质、浇注条件和铸件结构等因素影响。
一、铸件的凝固方式
在铸件凝固过程中,其断面上一般存在三个区 域:固相区、凝固区和液相区。
1、分类
依据对铸件质量影响较大的凝固区的宽窄划分 铸件的凝固方式为如下三类:
(1)逐层凝固
纯金属和共晶成分的合金在凝固过程中不存在液、固并 存的凝固区,随着温度下降,固体层不断加厚,液体不 断减少,直达铸件中心,这种凝固方式称为逐层凝固。
机械应力
二、铸件的变形及其防止
1、变形的原因:
铸件内部残余内应力。 只有原来受拉伸部分产生压缩 变形、受压缩部分产生拉伸变 形,才能使铸件中的残余内应 力减小或消除。
平板铸件的变形
杆件的变形
床身铸件的变形
粱形铸件的弯曲变形
2、防止措施:
减小应力; 将铸件设计成对称结构,使其内应力互相平衡; 采用反变形法; 设置拉肋; 时效处理。
2、冷裂纹的特征
裂纹细小,呈连续直线状,裂缝内有金属光泽或轻 微氧化色。
3、防止措施
凡是能减少铸件内应力和降低合金脆性的因素 均能防止冷裂。 设置防裂肋亦可有效地防止铸件裂纹。
防裂肋
三、合金的吸气性
液态合金中吸入的气体,若在冷凝过程中不能溢 出,滞留在金属中,将在铸件内形成气孔。
一)气孔的危害
气孔破坏了金属的连续性,减少了其承载的有效 截面积,并在气孔附近引起应力集中,从而降低 了铸件的力学性能。 弥散性气孔还可促使显微缩松的形成,降低铸件 的气密性。
第一篇金属的液态成形
1. 金属的液态成形(铸造)1.0概述将金属材料加热到高温熔化状态,然后采取一定的成形方法,待其冷却、凝固后获得所需金属制品,这种制造金属毛坯的过程称为金属的液态成形。
金属的液态成形除了铸造之外,还有液态模锻。
1.0.1铸造的定义铸造是指将液态合金浇注到与零件的形状、尺寸相适应的铸型型腔中,待其冷却凝固后,获得所需形状、尺寸和性能的毛坯或零件的金属液态成形方法。
它是生产机器零件毛坯的主要方法之一。
1.0.2铸造的基本过程铸造生产的基本过程包括以下三个步骤:①根据零件的要求,准备一定的铸型;②把金属液体浇满铸型的型腔;③金属液体在铸型型腔中冷凝成形,获得一定形状和尺寸的铸件。
1.0.3铸造生产的特点铸造的实质就是液态金属(合金)逐步冷凝成形,具有以下特点:优点:①适应性广几乎所有金属及其合金,只要能够熔化成液态便能铸造,尤其是适合生产塑性差的材料。
②工艺灵活性大各种形状、尺寸(壁厚从0.5~1000mm、轮廓从几毫米至几十米)、重量(从几克~几百吨)和生产批量的铸件都能生产,能够制成如机床床身、箱体、机架、支座等具有复杂内腔的毛坯。
某些形状极其复杂的零件只能用铸造方法制造毛坯。
③省工省料铸件毛坯与零件形状相似,尺寸相近,加工余量小,金属利用率高,可以省工省料,精密铸件甚至不需切削加工,就可直接装配。
④生产成本低铸造用的原材料来源广泛,可直接利用报废的机件和切屑。
造型设备投资少,易操作。
缺点:①铸件内部晶粒比较粗大,组织疏松,容易产生气孔、夹渣等铸造缺陷,机械性能和可靠性不如锻件,尤其是冲击韧性较差,不宜制造受冲击或交变载荷作用的零件。
②生产过程比较复杂,工序多且一些工艺过程难以精确控制,铸件质量不稳定,废品率较高。
③工人劳动强度大,劳动条件差。
1.0.4铸造生产的发展历史我国是世界上最早掌握铸造生产的文明古国之一。
早在三千多年前,青铜铸器已有应用,二千五百多年前,铸铁工具也已相当普遍。
我国劳动人民对世界铸造业的三大贡献(三大铸造技术):泥型铸造(砂型铸造)、铁型铸造(金属型铸造)、失蜡铸造(熔模铸造)。
一、液态金属成形过程及控制(2)
缩孔
5、影响收缩的因素 、
化学成分(c含量 化学成分 含量) 含量
铸型条件 合金收缩 铸件结构
浇注温度
1.3 铸造缺陷和控制措施
1、缩孔与缩松的形成
(1)缩孔的形成:
纯金属、共晶成分和凝固温度范围窄的合金, 纯金属、共晶成分和凝固温度范围窄的合金 浇注后在型腔内是由表及里的逐层凝固。 浇注后在型腔内是由表及里的逐层凝固。在凝固 过程中,如得不到合金液的补充, 过程中,如得不到合金液的补充,在铸件最后凝 固的地方就会产生缩孔. 固的地方就会产生缩孔
小结:合金的收缩是多数铸造缺陷产生的根源,其中液态 小结:合金的收缩是多数铸造缺陷产生的根源,
收缩和凝固收缩是铸件产生缩孔和缩松的基本原因,固态收 收缩和凝固收缩是铸件产生缩孔和缩松的基本原因 缩是铸件中产生铸造应力、变形、裂纹的基本原因。 是铸件中产生铸造应力、变形、
液态收缩 液态合金冷却 凝固收缩 合金收缩 固态合金冷却 固态收缩
将合金液浇入铸型 中,冷凝后测出充 满型腔的式样长度。 浇出的试样越长, 合金的流动性越好, 合金充型能力越好 充型能力越好. 合金充型能力越好 实验如下图所示: 实验如下图所示:
不同合金流动性的比较
*铸钢的流动性 铸钢的流动性 *铸铁的流动性 铸铁的流动性
实验证明铸铁的流动性好,铸钢的流动性差。 实验证明铸铁的流动性好,铸钢的流动性差。
3、影响凝固方式的主要因素 、
合金的结晶温度范围: 合金的结晶温度范围: 合金的结晶温度范围越小, 合金的结晶温度范围越小,凝固区域越 越趋向于逐层凝固。 窄,越趋向于逐层凝固。在铁碳合金中普通 灰铸铁为逐层凝固,高碳钢为糊状凝固。 灰铸铁为逐层凝固,高碳钢为糊状凝固。 铸件的温度梯度: 铸件的温度梯度: 在合金结晶温度范围已定的前提下, 在合金结晶温度范围已定的前提下,凝 固区的宽窄取决于铸件内外层之间的温度差。 固区的宽窄取决于铸件内外层之间的温度差。 若铸件内外层之间的温度差由小变大,则其 若铸件内外层之间的温度差由小变大, 凝固区相应由宽变窄。 凝固区相应由宽变窄。
金属材料液态成型原理(1-液态金属的结构和性质)
1.3.3 遗传性的影响因素
1.4 半固态金属的流变性
在液态成型过程中,熔体有较大的过热度时,在浇注前或 浇注时可近似为牛顿流体。但当合金处于凝固过程,开始 析出一定体积分数的固相后,合金即开始具有固相特征, 无流动性。但随着半固态铸造工艺的出现,通过压铸或挤 压装置对半固态浆料施加较大的作用力,使其具有良好的 充型能力,此时流动的半固态金属已不再遵循牛顿流体的 运动规律,而呈现相应的流变特性。
1.1.2 液态金属结构
例-[铸铁]
铸铁是含铁、碳、硅、锰、硫等元素的复杂多元合金;
1.2 液态金属的性质
黏度 表面张力
1.2.1 黏度
定义
1.2.1 黏度
1.2.1 黏度
测定方法-毛细管法
1.2.1 黏度
1.2.1 黏度
测定方法-振荡容器法(扭摆法)
1.2.1 黏度
1.4.1 半固态铸造
1.4.1 半固态铸造
1.4.2 半固态金属的流变性
对于非牛顿流体,根据其切应力与速度梯度之间的关 系,有宾汉体(Bingham Body)、开尔文体(Kelvin Body)、麦克斯韦体(Maxwell Body)、施韦道夫体 (Schwedoff Body)等类型。
贾志宏 江苏大学材料学院
2011.6
[导入案例]
众所周知,世界上所有 的元素或化合物均以固 体、液体或气体的形式 存在,其存在方式取决 于温度和压力条件;
1.1 液态金属的结构
熔化过程
固相→液相的相变; 两种观点
(1)认为金属固→液转变是通过单个原子间的分离途径来实现 的,即有规则排列的固相晶体直接分裂成单独的原子;
测量方法 (1)座滴法
液态金属成型工艺基础-1
热作用
浇注过程中: 热辐射—铸型升温 铸型内腔表层物质汽化、挥发—气体压力升高 铸型表层产生应力
浇注结束后:
铸型内腔表层低温蒸发、挥发物质强烈汽化—铸型-金属界 面气体压力升高---迁移 预先涂敷在铸型内腔表面涂料层中的合金元素熔化-扩散到 铸件表层金属内—实现铸件的表面合金化
物理方面的作用:
2、砂粒的颗粒组成 3、砂粒的形状
二、砂型的工作条件
砂型的工作条件,除了在常温下承受在搬运、合箱等环节中可能发生的震动、 撞击、摩擦、压力等方面的作用外,主要指从浇注金属液开始铸型所面临的各 种热的、力学、物理和化学方面的作用。
力学方面的作用:
浇注时的冲击、冲刷----冲坏型芯—影响铸件的形状、产生夹砂缺陷; 型腔充满后:浮力、静压力---变形、影响尺寸精度; 铸件凝固后冷却:收缩-受阻—铸件产生应力、变形
机械粘砂、铸渗等
化学方面的作用:
粘结剂组分---燃烧、分解 金属-铸型界面处—产生气体之间的化学反 应 界面处气体与金属液中的合金元素反应 金属氧化物与铸型材料反应
液态金属成形生产过程
液态金属成形方法确定 材料设计 造型设备 合金成分 型砂配制 造型 制芯设备 制芯 芯砂配制
熔 化
下芯、合箱 浇 注 充 型 凝固、冷却 落砂、清理 铸 件
液态金属成形工艺
工艺---手段、措施----避免铸造缺陷,得到合格零件毛坯 普通砂型铸造---铸型的制作----铸型制作用材料、铸型制 作方法 铸型型腔的结构尺寸---模样的形状尺寸(下学期材料成形 工艺课程的内容) 砂芯的制造----原材料、制作方法、结构、形状、尺寸 避免缺陷、提高铸件质量
ห้องสมุดไป่ตู้
液态金属成形方法的特点
优点: 可以制作形状复杂,特别是具有内腔的零件毛坯。如:箱体、汽缸体等 铸造生产成本低:铸造所用原材料大多来源广泛,价格低廉,并可以直接 利用报废的零件。 减少零件的加工费用:铸件的形状和尺寸可以作得与实际零件非常接近。 缺点: 成形过程比较复杂,一些工艺过程难以控制,容易出现缺陷,产品质量不稳 定。由于铸件内部晶粒粗大,组织不均匀,且常伴有缩孔、缩松、气孔、砂 眼等缺陷,零件的力学性能比同类材料的锻件低。
液态成形概述
注意2个过程: (1)充填型腔; (2)凝固冷却
金属液态成型
定义:所谓金属液态成型,即铸造,casting, 是将金属加热到液态,使其具有流动性,然后 浇入到具有一定形状的型腔的铸型中,液态金 属在重力场或外力场的作用下充满型腔,冷却 并凝固成具有型腔形状的铸件。
实质:液态金属(或合金)充填铸型型腔并在其中
复合材料制备)
现代铸造
我国已成功地生产出了世界上最大的轧
钢机机架铸钢件(重410t)和长江三峡 电站巨型水轮机的特大型铸件
感受铸造
砂型sand mould铸造工艺流程图
型砂molding sand配制造型砂型干燥 工装准备炉料准备合金冶炼 芯砂core sand配制造芯core making型芯干燥
青铜文化
司母辛觥
豕尊
春秋晚期越国青铜兵器 出土于湖北江陵楚墓
长55.7厘米
剑锷锋芒犀利
锋能割断头发
湖北江陵楚墓出土越王勾践宝剑
三星堆
立人像铸于商代晚期,人像
高172厘米,底座高90厘米, 通高262厘米,是世界上最 大的青铜立人像,被尊称为 “世界铜像之王”。
突目面具铸于商代晚期,原
件高64.5厘米,宽138厘米, 眼球柱状外突长达13.5厘米, 其造型在世界上亦属首见。
第一篇 液态成形原理
第一章 概述
第二章 液态金属的结构与性质 第三章 液态成形过程的传热
第章 液态金属的结晶
第五章 铸件凝固组织的形成及控制
第六章 铸件中缺陷及其控制
第一章
液态材料 浇注 铸型模腔
概述
凝固 固态毛坯
金属的铸造工艺
陶瓷的注浆成形
塑料的注射成形
第一篇 液态金属成型原理
1.切应力与固相体积分数的关系 固体体积分数大于临界值,切应力随固相体积分数的增大而迅速增大。
2.切应力与剪切变形量的关系 随变形量的增大,切应力增大,达到最大值后逐渐减小。最大值随固相 分数的增大而升高。 3.连续搅拌对半固态金属凝固的影响
3.影响合金流动性的因素 (1)合金的成分 合金中: 磷量增加,液相线和固相线温度降低,粘度下降,流动性提高,但过 高使铸铁变脆。一般不用其提高流动性。 硅增加,液相线下降,流动性提高。 锰小于0.25%影响不大,但与S反应,使流动性降低。 铜和镍稍微提高流动性;铬降低流动性,但<1%无影响。 铸钢中: 硅<0.6%,流动性随含量的增加而提高。 锰<2%无明显影响;2%~14含量增加而提高 磷>0.05%,流动性提高,但会使钢变脆。 硫与锰形成化合物使粘度增大,降低流动性。 铬>1.5%降低钢液流动性, 铜提高流动性。
PV=RT(范德瓦尔公式) 对液态结构的研究由于原子间的相互作用,必须予以考 虑,但原子相互位置不确定产生了困难。
一、凝聚理论 把液体看作是浓缩的气体,从气体运动论观点出发,通
过修正气体状态方程式,来修正浓缩气体中原子或分子之间 作用力的影响。博尔恩及格林提出了一组适于描述液体运动 论的分子分布函数。但很复杂,实际很难应用。 二、点阵理论
SG LS LG • cos
cos SG LS LG
σSG>σLS时,cosθ 为正值,即θ<90º 为锐角,称为润 湿固体; θ=0º 时,液体在固体表面铺展成薄膜,完全润湿。
σSG<σLS时,cosθ 为负值,即θ>90º 为钝角,称为不能 润湿固体; θ=180º 时,液体完全不润湿固体。
金属的液态成型
·流动性对铸件质量的影响
1)流动性好,容易获得尺寸准确,轮廓清晰的铸件。
2)流动性好的合金 ,有利于液态金属中的非金属夹杂 物和气体的上浮和排除,从而使铸件的内在质量得到 保证 。 3)流动性好的合金,可使铸件的凝固收缩部分及时得 到液态合金的补充,从而可防止铸件中产生缩孔、缩 松等缺陷。
断后伸长率≥6% 。
性能:抗拉强度比灰铸铁高,为碳钢的40~70%,
接近于铸钢;有一定塑性和韧性。但仍不可锻造。
断口 心部 呈黑 色
铁素体基体黑心可锻铸铁
珠光体基体可锻铸铁
3. 球墨铸铁
是石墨呈球状分布的灰口铸铁,简称球铁。
牌号:QT × × ×- × ×
(如QT600-03)
组织 :钢基体+ 球状G
成分
合金铸铁(特殊性能铸铁)
按石墨的形 态(灰口铸 铁分类)
灰 铸 铁:石墨呈粗片状 可锻铸铁:石墨呈团絮状 球墨铸铁:石墨呈球状 蠕墨铸铁:石墨蠕虫状
白口 灰口
● 常用铸铁的特点及应用
常用铸铁的种类:
灰口铸铁 合金铸铁
灰铸铁 可锻铸铁 球墨铸铁 蠕墨铸铁
1. 灰铸铁
指石墨呈片状分布的灰口铸铁。 成分: 2.5~4.0%C; 1.0~3.0% Si;少量Mn 、S、P 等。 组织: F +片状G ;F + P+片状G; P +片状G ; 性能:抗压不抗拉,塑性差,铸造性能和切削加工性能好;
二. 合金的收缩
(一)收缩的概念
金属由液态向固态的冷却过程中,其体积和尺寸减小 的现象称为收缩。
三个收缩阶段: 液态收缩,凝固收缩,固态收缩
应用:在常用的合金中,铸钢的收缩最大,灰铸铁的 最小。
金属的液态成形技术研究.最全PPT
a——共晶成分合金 b——过共晶成分合金
ab
温度
铸件 铸件
液相线 固相线
成分
固
液
液
表层 中心
表层 中心
合金成分对流动性的影响
1.1 金属液态成形的基本原理
结晶区间越大,流动性越差,共晶成分合金的流动性最好。 过共晶成分合金在结晶时因有液固两相存在,流动性较差。
P可提高流动性,S可使流动性下降。
1.1 金属液态成形的基本原理
• 合金充型能力的影响因素:
1. 流动性
2.浇铸条件 (1)浇注温度: 对合金流动性的影响很显著。 灰铸铁1200~1380℃、铸造碳钢1520~1620℃、 铝合金680~780℃。“高温出炉,低温浇注” (2)充型压力
充型压力 充型能力
1.1 金属液态成形的基本原理
▲ 低温阶段(T2~T3之间)杆Ⅱ受压、杆Ⅰ受拉
缩孔(shrinkage cavity)形状不规则,孔壁粗糙,一般位于铸件厚 大部位和热节处 。
1.1 金属液态成形的基本原理
当合金结晶温度较宽时,铸件表面结壳后,内部有较宽的液、固 两相共存的凝固区域。凝固后期,树枝晶相互接触,将合金液分割成 多个小的封闭区域,当封闭区域内合金液凝固收缩得不到补充时,就 形成了缩松。
合金:由两种或两种以上的金属元素,或金属
元素和非金属元素组成的具有金属性质的物质。
第1章 金属的液态成形技术
传统砂型铸造流程简图
第1章 金属的液态成形技术
铸造特点:
优点: 1.复杂零件(外形、内腔); 2. 成本低; 2.尺寸和重量不受限制。
缺点: 1.废品率较高,生产过程难以控制; 2.铸件力学性能较差; 3.砂型铸造铸件精度较差。
第一章 液态金属的结构与性质
其第一峰值与固态时的衍射线 (第一条垂线)极为接近,其配位数 与固态时相当。 第二峰值虽仍较明显,但与固态 时的峰值偏离增大,而且随着r的增大, 峰值与固态时的偏离也越来越大。 当它与所选原子相距太远的距离 时,原子排列进入无序状态。 表明,液态金属中的原子在几个原子间距的近程范 围内,与其固态时的有序排列相近,只不过由于原子间 距的增大和空穴的增多,原子配位数稍有变化。
a.结合能U. 粘度随结合能U呈指数关系增加。 b.原子间距δ. 粘度随原子间距增大而减小。 液体的原子之间结合力越大,则内摩擦阻力越大,粘度就越高
粘度的本质:原子间的结合力
c.温度T.
总的趋势:随温度T的升高而下降 •由上式可以得知,函数eU/KT随温度升高而降低。而2τ0KT /δ3项则与 d.合金元素和夹杂物 温度呈直线关系。 因此,当温度不太高时,指数项eU/KT随温度增 高而急剧变化,因而使粘度下降(反比)。但是当温度很高时,指数 表面活性元素使液体粘度降低,非表面活性元素使粘度提高 项eU/KT趋近于1。这时随温度增高,粘度值呈直线增加(正比)。 (显然,这种情况已是接近气态了。)
图1-2 700℃液态铝中原子密 度分布线
对于固态金属而言,原子在某一平衡位置热振 动,因此衍射结果得到的原子密度分布曲线是一 组相距一定距离(点阵常数)的垂线,每一条垂 线都有确定的位置r和峰值。但对于液态金属而言, 原子密度分布曲线是一条呈波浪形的连续曲线。 这是由于液态中的金属原子是处在瞬息万变 的热振动和热运动的状态之中,而且原子跃迁频 率很高,以致没有固定的位置,而其峰值所对应 的位置(r)只是表示衍射过程中相邻原子之间最 大几率的原子间距。
凝固现象的广泛性: 自然界的物质通常存在三种状态,即 气态、液态和固态。在一定的条件下,物 质可以在三种状态之间转变。物质从液态 转变成固态的过程就是凝固。这是从宏观 上的定义。从微观上看,可以定义为物质 原子或分子从较为激烈运动的状态转变为 规则排列的状态的过程。
材料成型原理与工艺(01)-液态金属成形概论
夹杂物的排除: 夹杂物的排除:
金属液静止处理、真空浇注,加熔剂, 金属液静止处理、真空浇注,加熔剂,过滤法
2012-1-8
凝固区域
固相区、凝固区、液相区
凝固方式
逐层凝固方式 体积凝固(糊状凝固方式) 体积凝固(糊状凝固方式) 中间凝固方式
2012-1-8 22
如果合金的结晶温度范围很宽,且铸件的温度分布较 为平坦,则在凝固的某段时间内,铸件表面并不存在 固体层,而液、固并存的凝固区贯穿整个断面。由于 这种凝固方式与水泥类似,即先呈糊状而后固化,故 称为糊状凝固。球墨铸铁、高碳钢、锡青铜和某些黄 铜等都是糊状凝固的合金。 中间凝固方式 大多数合金的凝固介于逐层凝固和糊状 凝固之间,称为中间凝固方式。中碳钢、高锰钢、白口 铸铁等具有中间凝固方式
气压保温浇包
15
采用德国KW公司技术的新二线主机,发动机缸体造型生产线。
罗兰门第制芯中心
2012-1-8 16
二、液态金属在铸型中的流动
1、 液态金属充型能力的基本概念 、
液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力, 叫做液态金属充填铸型的能力,简称液态金属的充型能力。 液态金属充填铸型一般是在纯液态下充满型腔的,也有边充型边结晶的 情况,在充型过程中当液态金属中形成晶粒堵塞充型通道时,流动则停 止,造成铸件“浇不足”缺陷。 液态金属的充型能力(实验-螺旋形试样):
2012-1-8
18
思考题 1 1. 液态金属成形的概念是什么?液态金属 液态金属成形的概念是什么? 成形具有哪些优点? 成形具有哪些优点? 2. 液态金属成形生产过程。 液态金属成形生产过程。
金属材料液态成型原理(1-液态金属的结构和性质)
1.3.1 金属遗传性
广义上说,金属的遗传性理解为在结构上(或在物性 方面),由原始炉料通过熔体阶段向铸造合金的信息 传递。
具体体现在原始炉料通过熔体阶段对合金零件凝固组 织、力学性能以及凝固缺陷的影响。
1.3.1 金属遗传性
1 力学性能的遗传性
金属及合金遗传性在力学性能方面可利用合金“遗传系数” 的概念进行衡量
1.1.1 液态金属结构的研究方法
gr
1
1
2 2n r 00
0
Q
I Nf
2
1sinQrdQ
Q 4 sin
1.1.1 液态金属结构的研究方法
径向分布函数 定义:
物理含义:
1.1.1 液态金属结构的研究方法
偶势
配位数
rm
Z
2
4r
1.3.3 遗传性的影响因素
1.4 半固态金属的流变性
在液态成型过程中,熔体有较大的过热度时,在浇注前或 浇注时可近似为牛顿流体。但当合金处于凝固过程,开始 析出一定体积分数的固相后,合金即开始具有固相特征, 无流动性。但随着半固态铸造工艺的出现,通过压铸或挤 压装置对半固态浆料施加较大的作用力,使其具有良好的 充型能力,此时流动的半固态金属已不再遵循牛顿流体的 运动规律,而呈现相应的流变特性。
对成型过程的影响 -毛细现象
假设液体中有一
半径为r的球形气泡
1.2.2 表面张力
1.3 遗传性
20世纪20年代,法国的学者Levi通过对Fe-C系合金的 研究发现片状石墨组织与炉料中石墨的尺寸有关,首 次提出了金属遗传性的概念。随后的研究工作表明, 在相同的生产条件下,合金的组织和性能取决于微观 组织和质量,其原始状态对合金熔体及最终产品微观 结构的特殊影响,即称之为“遗传性”。
材料成型原理及工艺第一章液态成型工艺基础理论
态 陷产生,导致成型件力学性能,
成 特别是冲击性能较低。
型 2. 涉及的工序很多,难以精确控
的 制,成型件质量不稳定。
缺 3.由于目前仍以砂型铸造为主,
点:
自动化程度还不很高,且属于热 加工行业,因而工作环境较差。
4.大多数成型件只是毛坯件,需 经过切削加工才能成为零件。
液态成型原理及工艺
冲天炉出铁
液态成型原理及工艺
绪论:
金属液态成型又称为铸造,
金 它是将固态金属熔炼成符合
属 液 态 成 型:
一定要求的液态金属,然后 将液态金属在重力或外力作 用下充填到具有一定形状型 腔中,待其凝固冷却后获得 所需形状和尺寸的毛坯或零 件,即铸件的方法。
制造毛坯或机器零件的重要方法。
液态成型原理及工艺
绪论:
的 游离原子
级,在此范围 内仍具有一定
近
液
的规律性。原
程
态
子集团间的空
结
空穴或裂纹 穴或裂纹内分
布着排列无规
有 序
构
则的游离的原
子。
液态成型原理及工艺
这样的结构不是静止的,而是 处于瞬息万变的状态,即原子 集团、空穴或裂纹的大小、形 态及分布及热运动的状态都处 于无时无刻不在变化的状态。 液态中存在着很大的能量起伏。
液 液态成型件在机械产品中占有重 态 要比例:
成 在机床、内燃机、重型机器中铸 型 件约占70%-90%;在风机、压
的 缩机中占60%-80%;在拖拉机
重 中占50%-70%;在农业机械中
要 占40%-70%;汽车中占20%-30
性 %。
液态成型原理及工艺
液 态 成 型 的 优 点:
(1) 适应性广,工艺灵活性大
DLT液态金属成形过程及控制
第一章 液态金属成形过程及控制本章的主要内容为:液态金属充型过程的水力学特性及流动情况;浇注系统及设计;液态金属凝固收缩过程的工艺分析;冒口和冷铁和设计。
即让学生了解和掌握液态金属铸造成形的两个基本过程-充型和凝固对铸件质量的影响规律,并提出其控制方案和措施。
本章的重点:(1)、充型过程及其控制;(2)、凝固过程及其控制。
引言铸造的定义:让金属液流入并凝固在预先制备的铸型中,获得特定形状的毛坯或零件(铸件 )的方法或技术。
铸造成形的基本过程是充型和凝固:充型的主要目的:使金属液充满铸型,从而实现对型腔形状、尺寸以及表面的复制。
充型的有效性:是否能够充满型腔;充型的平稳性:是否卷入气体或杂质;充型的顺序性:调整充填后的温度分布。
凝固的主要目的:使不具备机械性能的液相转变为具备特定机械性能的固相。
凝固的速度:晶粒大小及形态;凝固的顺序:是否有助于补缩;凝固末期的温度场:应力大小及分布、变形、热裂的产生与控制第一节液态金属充型过程的水力学特性及流动情况充型过程对铸件质量的影响很大可能造成的各种缺陷,如冷隔、浇不足、夹杂、气孔、夹砂、粘砂等缺陷,都是在液态金属充型不利的情况下产生的。
正确地设计浇注系统使液态金属平稳而又合理地充满型腔,对保证铸件质量起着很重要的作用。
一、液态金属充型流动过程的水力学特性目前在实际铸造生产中,砂型仍占相当大的分量,而液态金属在砂型中流动时呈现出如下水力学特性:1. 粘性流体流动:液态金属是有粘性的流体。
液态金属的粘性与其成分有关,在流动过程中又随液态金属温度的降低而不断增大,当液态金属中出现晶体时,液体的粘度急剧增加,其流速和流态也会发生急剧变化。
2. 不稳定流动:在充型过程中液态金属温度不断降低而铸型温度不断增高,两者之间的热交换呈不稳定状态。
随着液流温度下降,粘度增加,流动阻力也随之增加;加之充型过程中液流的压头增加或和减少,液态金属的流速和流态也不断变化,导致液态金属在充填铸型过程中的不稳定流动。
01-1金属液态成形
① 化学成分 不同成分的合金其收缩率一般也不相同。在常用铸造 合金中铸刚的收缩最大,灰铸铁最小。
② 浇注温度 合金浇注温度越高,过热度越大,液体收缩越大。 ③ 铸件结构 与铸型条件 铸件冷却收缩时,因其形状、尺寸的不
同,各部分的冷却速度不同,导致收缩不一致,且互相阻碍, 又加之铸型和型芯对铸件收缩的阻力,故铸件的实际收缩率总 是小于其自由收缩率。这种阻力越大,铸件的实际收缩率就越 小。
因消除后,应力随之消失。 • 残余应力——应力长期存在一直保留到室温的应力。
应用科学学院
第21页,共44页。
第一节 金属液态成形工艺基础
(三)铸造内应力
• 铸件凝固冷却过程中,若收缩受阻,则在铸件内会产生铸造应力。它是 铸件产生变形和裂纹的基本原因。
铸造(内)应力:
铸造应力
应用科学学院
铸件收缩受到机械阻碍
➢流动性差:铸件易产生浇不到、冷隔、气孔和夹杂等缺陷。 ➢流动性好:易于充满型腔,有利于气体和非金属夹杂物上浮和对铸件进
行补缩。 ➢不同的合金具有不同的流动性。在进行铸件设计和铸造工艺制定时,必
须考虑合金流动性。那么,我们怎样衡量合金的流动性呢?
应用科学学院
第2页,共44页。
第一节 金属液态成形工艺基础
应用科学学院
第6页,共44页。
温度(℃)
流动性(cm)
300 200 100
0 80 60 40 20 0
Pb 20 40 60 80 Sb
a)在恒温下凝固 b)在一定温度范围内凝固
应用科学学院
第7页,共44页。
Fe-C合金的流动性与含碳量之间的关系 亚共晶铸铁随含碳量增加,结晶温度区间减小,流动性逐渐提高,愈接近共晶成分,合金
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、铸钢件中的缩孔和缩松
缩孔:铸钢件在凝固过程中,由于液态体收缩和凝固体收缩,在铸件最后凝固的部位如得不到外加钢液的补缩,则会出现孔洞。
微观缩孔—显微缩孔
宏观缩孔(缩孔、缩松)
存在于铸件中任何形态的缩孔,都会减少受力的有效面积和在缩孔处产生应力集中,而使铸件的力学性能显著降低。由于缩孔的存在,还会降低铸件的气密性和物理化学性能。因此,缩孔是铸件的主要缺陷之一,应设法防止。
2)充型平稳;
3)型腔内气体排出顺利;
4)充型后上部金属液温度高于下部,有利于顺序凝固和冒口补缩;
5)充型能力强,易避免冷隔和浇不足等铸造缺陷;
6)利用多内浇道,可减轻内浇道附近的局部过热现象。
缺点:造型复杂,有时要求几个分型面;要求正确的计算和结构设计,否则容易出现上下各层内浇道同时进入金属液的“乱浇”现象,或底层进入金属液过多,形成下部温度高的不理想的温度分布。
1缩孔形成机理
圆形铸件为例
假定所浇注的合金的结晶温度范围很窄,铸件时由表及里的逐层凝固
铸件中缩孔形成过程示意图
2缩松形成的机理
轴线缩松或中心缩松。
凝固方向的研究是以铸件纵断面,及铸件长度方向的断面为研究对象,在凝固方向上,根据凝固次序的不同可分为顺序凝固和同时凝固。轴线缩松的形成条件,是在缩松区域内的金属几乎同时凝固。
结构形状—漏斗形、池形(盆型)
问题:水平漩涡。影响因素—杯内液面深度、浇注高度、浇注方向、浇口杯结构等。
液面深度和浇注高度的影响如下图:
如何消除?
浇口塞;堤坝;圆角。
2液态金属在直浇道中的流动情况
直浇道是将来自浇口杯的液流引入横浇道、内浇道或直接进入型腔。
直浇道高度—压头
流动状态:
充满式流动;非充满式流动
(5)计算阻流截面积
(6)确定浇口比并计算各组元截面积
(7)绘出浇注系统图形
2铸钢件浇注系统
3轻合金铸件的浇注系统
4铜合金铸件浇注系统
第三节液态金属凝固收缩过程的工艺分析
液态金属成形过程是高温液态金属在铸型中冷却、凝固至常温固态的过程,在这个过程中,会出现收缩。合金收缩会在铸件中产生缩孔、缩松、热裂、应力、变形和冷裂等缺陷,在液态金属成形过程中,通常通过合理地设置冒口和冷铁等予以控制和预防。
内浇道流量不均匀性U
内浇道流量不均匀现象对铸件质量有显著影响。
(3)挡渣—重力分离;过滤
影响因素:
根据以上对横浇道挡渣作用原理的分析,为强化挡渣作用,在设计横浇道时常常采用以下措施:
4液态金属在内浇道中的流动情况
内浇道:是浇注系统中把液体金属引入型腔的一个单元。
功用:控制充型速度和方向,分配液态金属,调节铸件各部分的温度分布和凝固次序,并对铸件有一定的补缩作用。
上次课程回顾:
第二节浇注系统设计
一、浇注系统的类型及应用
浇注系统类型的选择是正确设计浇注系统的重要问题之一。
1按浇注系统各单元断面积比例分类
2按液态金属导入铸件型腔的位置分类
二、浇注系统尺寸设计
在浇注系统的类型和引入位置确定以后,就可以进一步确定浇注系统各基本单元的尺寸和结构。
按水力学近似公式或经验公式计算浇注系统的最小截面积,再根据铸件的结构特点、几何形状等确定浇道比,最后确定各单元的尺寸和结构。
铸件的凝固方式:逐层凝固:糊状凝固(体积凝固);中间凝固
凝固方式取决于凝固区的宽度,凝固区宽度主要受合金结晶温度间隔和铸件断面上温度梯度两个因素的影响。
合金结晶温度间隔的影响;温度梯度的影响
一、液态金属凝固过程的收缩
以铸钢件为例
铸件收缩:铸钢件在液态、液固态和固态的冷却过程中均产生体积缩小到现象。
液态收缩金属在液态时由于温度降低而发生的体积收缩。
优点:
1)合金液从下部充填型腔,流动平稳;
2)无论浇口比多大,横浇道基本处于充满状态,有利于挡渣,型腔内的气体能顺利排出。
缺点:
底注式浇注系统的这些缺点,通过有关工艺措施可以加以解决,例如采用快浇和分散的多内浇道、底部使用冷铁、用高温金属补浇冒口等措施,常可收到满意的结果。
适用条件:
常见的底注式浇注系统:
文献推荐的浇口比的比例关系值
灰铸铁:1:4:4;1.1:1.3:1;1:0.75:0.5
球墨铸铁:
铸钢:
铜合金:
铝合金:
镁合金:
三、几种合金浇注系统设计的特点
1铸铁件浇注系统
(1)选择浇注系统类型
(2)确定内浇道在铸件上的位置、数目和金属液引入方向
(3)确定直浇道的位置和高度
(4)计算浇注时间并核算金属液上升速度
4什么叫补缩困难区?影响补缩困难区主要因素是什么?
1浇注系统的基本类型有哪几种?
(1)按浇注系统各单元断面积分有收缩式浇注系统、扩张式浇注系统、半扩张式浇注系统;
(2)按液态金属导入铸件型腔的位置分有顶注式(上注式)浇注系统、底注式(下注式)浇注系统、中注式浇注系统、阶梯式浇注系统、缝隙式浇注系统。
1金属熔体过滤器分类
2过滤器在浇注系统中的放置位置
3过滤器对浇注系统中金属液的阻力
上次课程回顾:
第一节液态金属充型过程的水力学特性及流动情况
一、液态金属充型流动过程的水力学特性
二、液态金属在浇注系统中的流动情况
三金属熔体过滤器及浇注系统
问题:
1概念
铸造:
2液态金属充型过程呈现哪些水力学特性?
3浇注系统由哪些组元组成?
按水力学近似公式或经验公式计算浇注系统的最小截面积,再根据铸件的结构特点、几何形状等确定浇道比,最后确定各单元的尺寸和结构。
伯努利方程---奥赞公式
扩张式浇注系统最小截面积为直浇道底部的横断面积;
收缩式浇注系统,其最小截面积为内浇道的断面积。
在计算获得的阻流截面积的基础上,根据浇注系统各组元的截面比的经验数据,可进一步计算出浇注系统各组元的截面积。经验不足时可以先按类比的方法选用,在通过实际浇注验证后确定。
优点:
1)铸件上部温度高于下部温度,有利于铸件自下而上顺序凝固,能够有小地发挥顶部冒口的补缩作用;
2)液流流量大,充型时间短;
3)造型工艺简单,模具制造方便,浇注系统和冒口消耗金属少,浇注系统切割清理容易。
缺点:适用条件:
常见的顶注式浇注系统:
(2)底注式(下注式):内浇道设在铸件底部的称为底注式浇注系统。
(3)中注式浇注系统:这种浇注系统的液态金属引入位置介于顶注式与底注式之间。
优缺点:
适用条件:
机器造型生产铸件时,广泛使用中注式浇注系统。此时,多采用两厢造型,内浇道开在分型面上,工艺简单,操作容易。
(4)阶梯式浇注系统:在铸件不同高度上开设多层内浇道的称为阶梯式浇注系统。
优点:
1)金属液自下而上充型;
适用条件:
(5)缝隙式浇注系统:
总之,选择浇注系统类型时要综合考虑多种因素,包括铸件的浇注位置,分型面,铸件的结构、尺寸,合金的铸造性能,是否应用冒口、冷铁及如何发挥它们的作用,以及是否满足铸件的技术要求等。
二、浇注系统尺寸设计
在浇注系统的类型和引入位置确定以后,就可以进一步确定浇注系统各基本单元的尺寸和结构。
冒口虽然存在补缩通道扩张角,但冒口中的钢液已克服不了中间段已经搭接的晶体间的阻力来对中心处进行补缩。
形成铸件缩松的原因是:在凝固期,铸件纵截面上各点没有或没有足够的温度差,以致在凝固末期补缩通道消失。
补缩困难区 :液相线和固相线与铸件壁轴线相交的区间。
液固两相并存区越宽,扩张角 越小,补缩困难区就越长。
伯努利方程---奥赞公式
三、几种合金浇注系统设计的特点
第三节液态金属凝固收缩过程的工艺分析
一、液态金属凝固过程的收缩
二、铸钢件中的缩孔和缩松
1缩孔形成机理
2缩松形成的机理
问题:
1浇注系统的基本类型有哪几种?
2顶注式(上注式)浇注系统、底注式(下注式)浇注系统、阶梯式浇注系统各有何优缺点?
3说明缩孔和缩松的形成机理
2顶注式(上注式)浇注系统、底注式(下注式)浇注系统、阶梯式浇注系统各有何优缺点?
(1)顶注式(上注式)浇注系统
优点:
1)铸件上部温度高于下部温度,有利于铸件自下而上顺序凝固,能够有小地发挥顶部冒口的补缩作用;
2)液流流量大,充型时间短;
3)造型工艺简单,模具制造方便,浇注系统和冒口消耗金属少,浇注系统切割清理容易。
4说明液态金属在浇注系统各组元中的情况
1铸造-熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得具有一定形状、尺寸和性能金属零件毛坯的成形方法。
铸铁、铸钢、铸造有色合金
2液态金属充型过程呈现哪些水力学特性?
(1)粘性流体流动
(2)不稳定流动
(3)多孔管中流动
(4)湍流流动
3浇注系统由哪些组元组成?
凝固收缩熔融金属在凝固阶段的体积收缩。液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因。
固态收缩金属在固态时由于温度降低而发生的体积收缩。固态收缩对铸件的形状和尺寸精度影响很大,是铸造应力、变形和裂纹等缺陷产生的基本原因。
体收缩:金属从浇注温度到常温的体积收缩。
线收缩:金属在固态时的线尺阶段,即液态收缩和凝固收缩。两者的收缩是直接引起铸件产生缩孔、缩松、气孔、偏析和热裂的根本原因。
优缺点:
(2)扩张式浇注系统:
优点及不足之处:
(3)半扩张式浇注系统:
,而且
优缺点:
在浇注系统设计中,其浇道比对铸件质量有较大的影响,所以正确选择浇道比也是浇注系统设计中的一个重要内容。
参考专著文献、设计手册。
2按液态金属导入铸件型腔的位置分类
(1)顶注式(上注式):以浇注位置为基准,金属液从铸件型腔顶部引入的浇注系统称为顶注式浇注系统。
结构形式:等截面圆柱形、上小下大倒锥形;上大下小锥形