2022年湖北省武汉市华中师大一附中自主招生数学试卷
2020年湖北省武汉市华中师大一附中自主招生数学试卷 解析版
![2020年湖北省武汉市华中师大一附中自主招生数学试卷 解析版](https://img.taocdn.com/s3/m/e05528980242a8956bece4dc.png)
2020年湖北省武汉市华中师大一附中自主招生数学试卷一、选择题(本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,有且只有一个是正确的)1.(4分)在数轴上和有理数a,b,c对应的点的位置如图所示,有下列四个结论:①a2﹣a﹣2<0;②|a﹣b|+|b﹣c|=|a﹣c|;③(a+b)(b+c)(c+a)>0;④|a|<1﹣bc.其中正确的结论有()个A.4B.3C.2D.12.(4分)已知a,b,c分别是Rt△ABC的三条边长,c为斜边长,∠C=90°,我们把关于x的形如y=x+的一次函数称为“勾股一次函数”.若点P(﹣1,)在“勾股一次函数”的图象上,且Rt△ABC的面积是4,则c的值是()A.2B.24C.2D.123.(4分)5G时代悄然来临,为了研究中国手机市场现状,中国信通院统计了2019年手机市场每月出货量以及与2018年当月同比增长的情况,得到如图统计图:根据该统计图,下列说法错误的是()A.2019年全年手机市场出货量中,5月份出货量最多B.2019年下半年手机市场各月份出货量相对于上半年各月份波动小C.2019年全年手机市场总出货量低于2018年全年总出货量D.2018年12月的手机出货量低于当年8月手机出货量4.(4分)已知函数y=x2+x﹣1在m≤x≤1上的最大值是1,最小值是﹣,则m的取值范围是()A.m≥﹣2B.0≤m≤C.﹣2≤m≤﹣D.m≤﹣5.(4分)如图,△AOB中,∠AOB=90°,AO=4,BO=8,△AOB绕点O逆时针旋转到△A'OB'处,此时线段A'B'与BO的交点E为BO的中点,则线段B'E的长度为()A.3B.C.D.6.(4分)如图1,在矩形ABCD中,动点M从点A出发,沿A→B→C方向运动,当点M 到达点C时停止运动,过点M作MN⊥AM交CD于点N,设点M的运动路程为x,CN =y,图2表示的是y与x的函数关系的大致图象,则矩形ABCD的面积是()A.20B.18C.10D.9二、填空题(本大题共6小题,每小题4分,共24分)7.(4分)2020年某校将迎来70周年校庆,学校安排3位男老师和2位女老师一起筹办大型文艺晚会,并随机地从中抽取2位老师主持晚会,则最后确定的主持人是一男一女的概率为.8.(4分)在△ABC中,AB=AC,若cos A=,则=.9.(4分)如图1是个轴对称图形,且每个角都是直角,长度如图所示,小王按照如图2所示的方法玩拼图游戏,两两相扣,相互不留空隙,那么小王用2020个这样的图形(图1)拼出来的图形的总长度是.(结果用m,n表示)10.(4分)如图,在平面直角坐标系中,矩形MNPQ的顶点M,N分别在x轴,y轴正半轴上滑动,顶点P、Q在第一象限,若MN=8,PN=4,在滑动过程中,点P与坐标原点O的距离的最大值为.11.(4分)如图,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连接AC.若△ABC 是等腰三角形,则k的值是.12.(4分)如图,在正方形ABCD中,AB=4,点M在CD边上,且DM=1,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为.三、解答题(本大题共4小题,共52分,解答题应写出文字说明、证明过程和演算过程)13.(12分)(1)已知关于x的方程x2﹣(2k﹣1)x+k2=0有两个实根x1,x2,且满足x1x2﹣|x1|﹣|x2|=2,求实数k的值;(2)已知a<b<0,且+=6,求()3的值.14.(12分)习总书记强调,实行垃圾分类,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.为改善城市生态环境,某市决定从6月1日起,在全市实行生活垃圾分类处理,某街道计划建造垃圾初级处理点20个,解决垃圾投放问题.有A、B两种类型垃圾处理点,其占地面积、可供使用居民楼幢数及造价见表:类型占地面积可供使用幢数造价(万元)A1518 1.5B2030 2.1(1)已知该街道可供建造垃圾初级处理点的占地面积不超过370m2,如何分配A、B两种类型垃圾处理点的数量,才能够满足该街道490幢居民楼的垃圾投放需求,且使得建造方案最省钱?(2)当建造方案最省钱时,经测算,该街道垃圾月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:y=,若每个B 型处理点的垃圾月处理量是A型处理点的1.2倍,该街道建造的每个A型处理点每月处理量为多少吨时,才能使该街道每吨垃圾的月处理成本最低?(精确到0.1)15.(14分)已知矩形ABCD中,AB=2,AD=5,点E是AD边上一动点,连接BE、CE,以BE为直径作⊙O,交BC于点F,过点F作FH⊥CE于H.(1)当直线FH与⊙O相切时,求AE的长;(2)当FH∥BE时,求AE的长;(3)若线段FH交⊙O于点G,在点E运动过程中,△OFG能否成为等腰直角三角形?如果能,求出此时AE的长;如果不能,说明理由.16.(14分)如图①,已知抛物线y=ax2+x+c(a≠0)与x轴交于A,B两点(点A 在点B的左侧),与y轴交于点C,点A坐标为(﹣1,0),点C坐标为(0,),点D 是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求a,c的值;(2)求线段DE的长度;(3)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少?2020年湖北省武汉市华中师大一附中自主招生数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,有且只有一个是正确的)1.(4分)在数轴上和有理数a,b,c对应的点的位置如图所示,有下列四个结论:①a2﹣a﹣2<0;②|a﹣b|+|b﹣c|=|a﹣c|;③(a+b)(b+c)(c+a)>0;④|a|<1﹣bc.其中正确的结论有()个A.4B.3C.2D.1【分析】根据数轴上各数的位置得出a<﹣1<0<b<c<1,依此即可得出结论.【解答】解:根据题意得:a<﹣1<0<b<c<1,则①a2﹣a﹣2=(a﹣2)(a+1)>0;②∵|a﹣b|+|b﹣c|=﹣a+b﹣b+c=﹣a+c,|a﹣c|=﹣a+c,∴|a﹣b|+|b﹣c|=|a﹣c|;③∵a+b<0,b+c>0,c+a<0,∴(a+b)(b+c)(c+a)>0;④∵|a|>1,1﹣bc<1,∴|a|>1﹣bc;故正确的结论有②③,一共2个.故选:C.2.(4分)已知a,b,c分别是Rt△ABC的三条边长,c为斜边长,∠C=90°,我们把关于x的形如y=x+的一次函数称为“勾股一次函数”.若点P(﹣1,)在“勾股一次函数”的图象上,且Rt△ABC的面积是4,则c的值是()A.2B.24C.2D.12【分析】依据题意得到三个关系式:a﹣b=﹣c,ab=8,a2+b2=c2,运用完全平方公式即可得到c的值.【解答】解:∵点P(﹣1,)在“勾股一次函数”y=x+的图象上,∴=﹣+的一次函数,即a﹣b=﹣c,又∵a,b,c分别是Rt△ABC的三条变长,∠C=90°,Rt△ABC的面积是4,∴ab=4,即ab=8,又∵a2+b2=c2,∴(a﹣b)2+2ab=c2,即∴(﹣c)2+2×8=c2,解得c=2,故选:A.3.(4分)5G时代悄然来临,为了研究中国手机市场现状,中国信通院统计了2019年手机市场每月出货量以及与2018年当月同比增长的情况,得到如图统计图:根据该统计图,下列说法错误的是()A.2019年全年手机市场出货量中,5月份出货量最多B.2019年下半年手机市场各月份出货量相对于上半年各月份波动小C.2019年全年手机市场总出货量低于2018年全年总出货量D.2018年12月的手机出货量低于当年8月手机出货量【分析】根据图象逐一分析即可.【解答】解:对于A,由柱状图可得5月份出货量最高,故A正确;对于B,根据曲线幅度可得下半年波动比上半年波动小,故B正确;对于C,根据曲线上数据可得仅仅4月5月比同比高,其余各月均低于2018,且明显总出货量低于2018年,故C正确;对于D,可计算得2018年12月出货量为:3044.4÷(1﹣14.7%)=3569.05,8月出货量为:3087.5÷(1﹣5.3%)=3260.3,因为3260.3<3569.05,故12月更高,故D错误.故选:D.4.(4分)已知函数y=x2+x﹣1在m≤x≤1上的最大值是1,最小值是﹣,则m的取值范围是()A.m≥﹣2B.0≤m≤C.﹣2≤m≤﹣D.m≤﹣【分析】先求出二次函数的对称轴,再求得函数在顶点处的函数值,根据已知条件最小值是﹣,得出m≤﹣;再求得当x=1时的函数值,发现该值等于已知条件中的最大值,根据二次函数的对称性可得m的下限.【解答】解:∵函数y=x2+x﹣1的对称轴为直线x=﹣,∴当x=﹣时,y有最小值,此时y=﹣﹣1=﹣,∵函数y=x2+x﹣1在m≤x≤1上的最小值是﹣,∴m≤﹣;∵当x=1时,y=1+1﹣1=1,对称轴为直线x=﹣,∴当x=﹣﹣[1﹣(﹣)]=﹣2时,y=1,∵函数y=x2+x﹣1在m≤x≤1上的最大值是1,且m≤﹣;∴﹣2≤m≤﹣.故选:C.5.(4分)如图,△AOB中,∠AOB=90°,AO=4,BO=8,△AOB绕点O逆时针旋转到△A'OB'处,此时线段A'B'与BO的交点E为BO的中点,则线段B'E的长度为()A.3B.C.D.【分析】由勾股定理求出AB,由旋转的性质可得AO=A′O,A′B′=AB,再求出OE,从而得到OE=A′O,过点O作OF⊥A′B′于F,由三角形的面积求出OF,由勾股定理列式求出EF,再由等腰三角形三线合一的性质可得A′E=2EF,然后由B′E=A′B′﹣A′E代入数据计算即可得解.【解答】解:∵∠AOB=90°,AO=4,BO=8,∴AB===4,∵△AOB绕顶点O逆时针旋转到△A′OB′处,∴AO=A′O=4,A′B′=AB=4,∵点E为BO的中点,∴OE=BO=×8=4,∴OE=A′O=4,过点O作OF⊥A′B′于F,S△A′OB′=×4•OF=×4×8,解得OF=,在Rt△EOF中,EF===,∵OE=A′O,OF⊥A′B′,∴A′E=2EF=2×=,∴B′E=A′B′﹣A′E=4﹣=;故选:B.6.(4分)如图1,在矩形ABCD中,动点M从点A出发,沿A→B→C方向运动,当点M 到达点C时停止运动,过点M作MN⊥AM交CD于点N,设点M的运动路程为x,CN=y,图2表示的是y与x的函数关系的大致图象,则矩形ABCD的面积是()A.20B.18C.10D.9【分析】由图2知:AB+BC=9,设AB=m,则BC=9﹣m,则tan∠MAB=tan∠NMC,即,即,化简得:y=﹣x2+﹣9,当x=﹣=时,y=﹣9+=,即可求解.【解答】解:由图2知:AB+BC=9,设AB=m,则BC=9﹣m,如图所示,当点M在BC上时,则AB=m,BM=x﹣m,MC=9﹣x,NC=y,∵MN⊥AM,则∠MAB=∠NMC,tan∠MAB=tan∠NMC,即,即,化简得:y=﹣x2+x﹣9,当x=﹣=时,y=﹣9+=,解得:m=5,则AM=5,BC=4,故ABCD的面积=20,故选:A.二、填空题(本大题共6小题,每小题4分,共24分)7.(4分)2020年某校将迎来70周年校庆,学校安排3位男老师和2位女老师一起筹办大型文艺晚会,并随机地从中抽取2位老师主持晚会,则最后确定的主持人是一男一女的概率为.【分析】根据题意画出树状图得出所有等可能的情况数,再找出符合条件的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意画图如下:共有20种等可能的情况数,其中最后确定的主持人是一男一女的有12种,则最后确定的主持人是一男一女的概率为=.故答案为:.8.(4分)在△ABC中,AB=AC,若cos A=,则=.【分析】过B点作BD⊥AC于点D,设AD=4x,根据三角函数和勾股定理用x表示AB 与BD,BC,然后求结果便可.【解答】解:过B点作BD⊥AC于点D,∵cos A=,∴,设AD=4x,则AB=5x,∴,∵AB=AC,∴AC=5x,∴CD=5x﹣4x=x,∴BC=,∴,故答案为:.9.(4分)如图1是个轴对称图形,且每个角都是直角,长度如图所示,小王按照如图2所示的方法玩拼图游戏,两两相扣,相互不留空隙,那么小王用2020个这样的图形(图1)拼出来的图形的总长度是m+2019n.(结果用m,n表示)【分析】用2020个这样的图形(图1)的总长减去拼接时的重叠部分2019个(m﹣n),即可得到拼出来的图形的总长度.【解答】解:由图可得,2个这样的图形(图1)拼出来的图形中,重叠部分的长度为m ﹣n,∴用2020个这样的图形(图1)拼出来的图形的总长度=2020m﹣2019(m﹣n)=m+2019n,故答案为:m+2019n.10.(4分)如图,在平面直角坐标系中,矩形MNPQ的顶点M,N分别在x轴,y轴正半轴上滑动,顶点P、Q在第一象限,若MN=8,PN=4,在滑动过程中,点P与坐标原点O的距离的最大值为4+4.【分析】取MN的中点E,连接OE,PE,OP,根据勾股定理和矩形的性质解答即可.【解答】解:如图,取MN的中点E,连接OE,PE,OP,∵∠MON=90°,∴Rt△MON中,OE=MN=4,又∵∠MQP=90°,MN=8,PN=4,NE=4,∴Rt△PNE中,PE=,又∵OP≤PE+OE=4+4,∴OP的最大值为4+4,即点P到原点O距离的最大值是4+4,故答案为:4+4.11.(4分)如图,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连接AC.若△ABC 是等腰三角形,则k的值是或.【分析】根据一次函数和反比例函数的解析式,即可求得点A、B、C的坐标(用k表示),再讨论①AB=BC,②AC=BC,即可解题.【解答】解:∵点B是y=kx和y=的交点,y=kx=,∴点B坐标为(,2),同理可求出点A的坐标为(,),∵BD⊥x轴,∴点C横坐标为,纵坐标为,∴BA=,AC=,BC=,∴BA2﹣AC2=k>0,∴BA≠AC,若△ABC是等腰三角形,①当AB=BC时,则=,解得:k=±(舍去负值);②当AC=BC时,同理可得:k=;故答案为:或.12.(4分)如图,在正方形ABCD中,AB=4,点M在CD边上,且DM=1,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为5.【分析】连接BM.先判定△F AE≌△MAB(SAS),即可得到EF=BM.再根据BC=CD =AB=4,CM=3,利用勾股定理即可得到,Rt△BCM中,BM=5,进而得出EF的长.【解答】解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD.∴∠F AB=∠MAE,∴∠F AB+∠BAE=∠BAE+∠MAE.∴∠F AE=∠MAB.∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=4.∵DM=1,∴CM=3.∴在Rt△BCM中,BM==5,∴EF=5,故答案为:5.三、解答题(本大题共4小题,共52分,解答题应写出文字说明、证明过程和演算过程)13.(12分)(1)已知关于x的方程x2﹣(2k﹣1)x+k2=0有两个实根x1,x2,且满足x1x2﹣|x1|﹣|x2|=2,求实数k的值;(2)已知a<b<0,且+=6,求()3的值.【分析】(1)利用判别式的意义得到△=(2k﹣1)2﹣4k2≥0,然后解不等式可得k的取值范围,再根据根与系数的关系可得出x1+x2=2k﹣1、x1x2=k2,结合x1x2﹣|x1|﹣|x2|=2,即可得出关于k的一元一次方程,解之即可求实数k的值;(2)先通分可得a2+b2=6ab,再根据完全平方公式的变形可得的值,进而可得()3的值.【解答】解:(1)根据题意得△=(2k﹣1)2﹣4k2≥0,解得k≤;(2)x1+x2=2k﹣1,x1x2=k2,∵k≤,∴x1+x2=2k﹣1≤0,而x1x2=k2≥0,∴x1≤0,x2≤0,∵x1x2﹣|x1|﹣|x2|=2,∴x1•x2+x1+x2=2,即k2+(2k﹣1)=2,整理得k2+2k﹣3=0,解得k1=﹣3,k2=1,而k≤,∴k=﹣3;(2)∵+=6,∴a2+b2=6ab,∴(a+b)2=8ab,∴(b﹣a)2=(a+b)2﹣4ab=4ab,∴()2==2,∴=±,∵a<b<0,∴a+b<0,b﹣a>0,∴<0,∴=﹣∴()3=﹣2.答:()3的值为﹣2.14.(12分)习总书记强调,实行垃圾分类,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.为改善城市生态环境,某市决定从6月1日起,在全市实行生活垃圾分类处理,某街道计划建造垃圾初级处理点20个,解决垃圾投放问题.有A、B两种类型垃圾处理点,其占地面积、可供使用居民楼幢数及造价见表:类型占地面积可供使用幢数造价(万元)A1518 1.5B2030 2.1(1)已知该街道可供建造垃圾初级处理点的占地面积不超过370m2,如何分配A、B两种类型垃圾处理点的数量,才能够满足该街道490幢居民楼的垃圾投放需求,且使得建造方案最省钱?(2)当建造方案最省钱时,经测算,该街道垃圾月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:y=,若每个B 型处理点的垃圾月处理量是A型处理点的1.2倍,该街道建造的每个A型处理点每月处理量为多少吨时,才能使该街道每吨垃圾的月处理成本最低?(精确到0.1)【分析】(1)首先依据题意得出不等关系即可供建造垃圾初级处理点占地面积<等于370m2,居民楼的数量大于等于490幢,由此列出不等式组;再根据题意求出总费用为y 与A型处理点的个数x之间的函数关系,进而求解;(2)分0≤x<144、144≤x<300两种情况,分别利用二次函数和反比例函数的性质求出函数的最小值,进而求解.【解答】解:(1)设建造A型处理点x个,则建造B型处理点(20﹣x)个.依题意得:,解得6≤x≤9.17,∵x为整数,∴x=6,7,8,9有四种方案;设建造A型处理点x个时,总费用为y万元.则:y=1.5x+2.1(20﹣x)=﹣0.6x+42,∵﹣0.6<0,∴y随x增大而减小,当x=9时,y的值最小,此时y=36.6(万元),∴当建造A型处理点9个,建造B型处理点11个时最省钱;(2)由题意得:每吨垃圾的处理成本为(元/吨),当0≤x<144时,=(x3﹣80x2+5040x)=x2﹣80x+5040,∵0,故有最小值,当x=﹣=﹣=120(吨)时,的最小值为240(元/吨),当144≤x<300时,=(10x+72000)=10+,当x=300(吨)时,=250,即>250(元/吨),∵240<250,故当x=120吨时,的最小值为240元/吨,∵每个B型处理点的垃圾月处理量是A型处理点的1.2倍且A型处理点9个,建造B型处理点11个,∴每个A型处理点每月处理量=×120×≈5.4(吨),故每个A型处理点每月处理量为5.4吨时,才能使该街道每吨垃圾的月处理成本最低.15.(14分)已知矩形ABCD中,AB=2,AD=5,点E是AD边上一动点,连接BE、CE,以BE为直径作⊙O,交BC于点F,过点F作FH⊥CE于H.(1)当直线FH与⊙O相切时,求AE的长;(2)当FH∥BE时,求AE的长;(3)若线段FH交⊙O于点G,在点E运动过程中,△OFG能否成为等腰直角三角形?如果能,求出此时AE的长;如果不能,说明理由.【分析】(1)连接EF,F A,由CE为圆的切线且又和EB垂直,可知CE∥F A,推出∠CEF=∠AFE,而∠AFE=∠FEB可得∠CEF=∠BEF,所以EF为∠BEC的平分线.又因为∠EFB为直角可知EF⊥BC,所以△BEC为等腰三角形,得到BF为BC的一半,又因为EA∥CF,可知四边形CEAF为平行四边形,即AD=BF=2.5;(2)根据平行线的性质得到BE⊥CE,由余角的性质得到∠ABE=∠DEC,证得△ABE ∽△CDE,根据相似三角形的性质即可得到结论;(3)连接EF,由圆周角定理得出∠BFE=90°,设AE=x,则EF,=AB=2,BF=AE =x,CF=DE=5﹣x,由已知条件得出点G在点F上方,连接BG、EG,设BG、EF交于点K,得出△BFK和△EGK都是等腰直角三角形,得出BF=KF=x,BK=x,EK=2﹣KF=2﹣x,GK=EG=(2﹣x),BG=GK+BK=(2+x),证明△BEG∽△CEF,得出=,得出方程,解方程即可.【解答】解:(1)如图1,连接EF,F A,∵CE为圆的切线且又和EB垂直,∴CE∥AF∴∠CEF=∠AFE;又∵∠AFE=∠FEB,∴∠CEF=∠BEF,∴EF为∠BEC的平分线;∵∠EFB=90°,∴EF⊥BC,∴BE=CE∴△BEC为等腰三角形,∴BF为BC的一半;∵EA∥CF,∴四边形CEAF为平行四边形,即AE=CF=2.5;(2)解:∵FH∥BE,FH⊥CE,∴BE⊥CE,∴∠AEB+∠DEC=90°,∵∠ABE+∠AEB=90°,∴∠ABE=∠DEC,∵∠A=∠D=90°,∴△ABE∽△CDE,∴=,∵AB=2,AD=5,∴CD=AB=2,∴=,∴AE=1或AE=4.(3)连接EF、OF、OG,如图3所示:则∠BFE=90°,设AE=x,则EF,=AB=2,BF=AE=x,CF=DE=5﹣x,若△OFG是等腰直角三角形,则∠FOG=90°,连接BG、EG,设BG、EF交于点K,∴△BFK和△EGK都是等腰直角三角形,∴BF=KF=x,BK=x,EK=2﹣KF=2﹣x,在等腰直角△EGK中,根据勾股定理得:GK=EG=(2﹣x),BG=GK+BK=(2+x),又∵∠EBG=∠EFG=∠FCH,∴△BEG∽△CEF,∴=,即=,解得:x=,或x=,∴AE的长度是或.16.(14分)如图①,已知抛物线y=ax2+x+c(a≠0)与x轴交于A,B两点(点A 在点B的左侧),与y轴交于点C,点A坐标为(﹣1,0),点C坐标为(0,),点D 是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求a,c的值;(2)求线段DE的长度;(3)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少?【分析】(1):(1)将A(﹣1,0),C(0,)代入抛物线y=ax2+x+c(a≠0),求出a、c的值;(2)由(1)得抛物线解析式:y=,点D是点C关于抛物线对称轴的对称点,C(0,),所以D(2,),DH=,再证明△ACO∽△EAH,于是=即=,解得:EH=2,则DE=2;(3)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP =GF+PF+PN最小,根据S△MFP==,m =时,△MPF面积有最大值.【解答】解:(1)将A(﹣1,0),C(0,)代入抛物线y=ax2+x+c(a≠0),,∴a=﹣,c=(2)由(1)得抛物线解析式:y=∵点D是点C关于抛物线对称轴的对称点,C(0,)∴D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=即=,解得:EH=2,则DE=2;(3)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP =GF+PF+PN最小,∴直线GN的解析式:y=x﹣,由(2)得E(2,﹣),A(﹣1,0),∴直线AE的解析式:y=﹣x﹣,联立解得∴F(0,﹣),∵DH⊥x轴,∴将x=2代入直线AE的解析式:y=﹣x﹣,∴P(2,)∴F(0,﹣)与P(2,)的水平距离为2过点M作y轴的平行线交FH于点Q,设点M(m,﹣m2+m+),则Q(m,m﹣)(<m<);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=(﹣m2+m+)﹣(m﹣),S△MFP==∵对称轴为:直线m=,∵开口向下,<m,∴m=时,△MPF面积有最大值为..。
华师一自主招生数学模拟考试试题
![华师一自主招生数学模拟考试试题](https://img.taocdn.com/s3/m/a0df3489dd3383c4bb4cd2e0.png)
F华师一自主招生数学模拟试题一、选择题(共5小题,每题6分,共30分.以下每小题均给出了代号为A,B,C,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号内.不填、多填或错填均不得分)1、如果关于x 的方程2230x ax a -+-=至少有一个正根,则实数a 的取值范围是( ) A 、22<<-a B 、23≤<a C 、23≤<-a D 、23≤≤-a2、如图,已知:点E 、F 分别是正方形ABCD 的边BC AB 、的中点,DF BD 、分别交CE 于点H G 、,若正方形A B C D 的面积是240,则四边形BFHG 的面积等于……………………( ) A 、26 B 、28 C 、24 D 、303 、设z y x 、、是两两不等的实数,且满足下列等式:66633633)()(z x x y x z x x y x ---=-+-,则代数式xyz z y x 3333-++的值是………………… ( )A 、0B 、1C 、3D 、条件不足,无法计算 4、如图,四边形BDCE 内接于以BC 为直径的⊙A ︒=∠=∠=30,53cos ,10BCE BCD BC ,则线段DE 的长是………………… ( )A 、89B 、73C 、4+33D 、3+435、某学校共有3125名学生,一次活动中全体学生被排成 一个n 排的等腰梯形阵,且这n 排学生数按每排都比前一排 多一人的规律排列,则当n 取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是………………… ( )A 、296B 、221C 、225D 、641二、填空题:(共5小题,每题6分,共30分)6、已知:实常数d c b a 、、、同时满足下列两个等式:⑴0cos sin =-+c b a θθ; ⑵0sin cos =+-d b a θθ(其中θ为任意锐角),则d c b a 、、、之间的关系式是:。
2020年湖北省武汉市华中师大一附中自主招生数学试卷-普通用卷
![2020年湖北省武汉市华中师大一附中自主招生数学试卷-普通用卷](https://img.taocdn.com/s3/m/4ce02723be1e650e53ea9940.png)
2020年湖北省武汉市华中师大一附中自主招生数学试卷一、选择题(本大题共6小题,共24.0分)1.在数轴上和有理数a,b,c对应的点的位置如图所示,有下列四个结论:①a2−a−2<0;②|a−b|+|b−c|=|a−c|;③(a+b)(b+c)(c+a)>0;④|a|<1−bc.其中正确的结论有()个A. 4B. 3C. 2D. 12.已知a,b,c分别是Rt△ABC的三条边长,c为斜边长,∠C=90°,我们把关于x的形如y=ac x+bc的一次函数称为“勾股一次函数”.若点P(−1,√33)在“勾股一次函数”的图象上,且Rt△ABC的面积是4,则c的值是()A. 2√6B. 24C. 2√3D. 123.5G时代悄然来临,为了研究中国手机市场现状,中国信通院统计了2019年手机市场每月出货量以及与2018年当月同比增长的情况,得到如图统计图:根据该统计图,下列说法错误的是()A. 2019年全年手机市场出货量中,5月份出货量最多B. 2019年下半年手机市场各月份出货量相对于上半年各月份波动小C. 2019年全年手机市场总出货量低于2018年全年总出货量D. 2018年12月的手机出货量低于当年8月手机出货量4.已知函数y=x2+x−1在m≤x≤1上的最大值是1,最小值是−54,则m的取值范围是()A. m≥−2B. 0≤m≤12C. −2≤m≤−12D. m≤−125.如图,△AOB中,∠AOB=90°,AO=4,BO=8,△AOB绕点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E 的长度为()A. 3√5B. 12√55C. 9√55D. 16√556.如图1,在矩形ABCD中,动点M从点A出发,沿A→B→C方向运动,当点M到达点C时停止运动,过点M作MN⊥AM交CD于点N,设点M的运动路程为x,CN=y,图2表示的是y 与x的函数关系的大致图象,则矩形ABCD的面积是()A. 20B. 18C. 10D. 9二、填空题(本大题共6小题,共24.0分)7.2020年某校将迎来70周年校庆,学校安排3位男老师和2位女老师一起筹办大型文艺晚会,并随机地从中抽取2位老师主持晚会,则最后确定的主持人是一男一女的概率为______.8.在△ABC中,AB=AC,若cosA=45,则BCAB=______.9.如图1是个轴对称图形,且每个角都是直角,长度如图所示,小王按照如图2所示的方法玩拼图游戏,两两相扣,相互不留空隙,那么小王用2020个这样的图形(图1)拼出来的图形的总长度是______.(结果用m,n表示)10.如图,在平面直角坐标系中,矩形MNPQ的顶点M,N分别在x轴,y轴正半轴上滑动,顶点P、Q在第一象限,若MN=8,PN=4,在滑动过程中,点P与坐标原点O的距离的最大值为______.11.如图,已知直线y=kx(k>0)分别交反比例函数y=1x 和y=4x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连接AC.若△ABC是等腰三角形,则k 的值是______.12.如图,在正方形ABCD中,AB=4,点M在CD边上,且DM=1,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为______.三、解答题(本大题共4小题,共52.0分)13.(1)已知关于x的方程x2−(2k−1)x+k2=0有两个实根x1,x2,且满足x1x2−|x1|−|x2|=2,求实数k的值;(2)已知a<b<0,且ab +ba=6,求(a+bb−a)3的值.14.习总书记强调,实行垃圾分类,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.为改善城市生态环境,某市决定从6月1日起,在全市实行生活垃圾分类处理,某街道计划建造垃圾初级处理点20个,解决垃圾投放问题.有A、B两种类型垃圾处理点,其占地面积、可供使用居民楼幢数及造价见表:类型占地面积可供使用幢数造价(万元)A1518 1.5B2030 2.1(1)已知该街道可供建造垃圾初级处理点的占地面积不超过370m2,如何分配A、B两种类型垃圾处理点的数量,才能够满足该街道490幢居民楼的垃圾投放需求,且使得建造方案最省钱?(2)当建造方案最省钱时,经测算,该街道垃圾月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:y={13x3−80x2+5040x,0≤x<14410x+72000,144≤x<300,若每个B型处理点的垃圾月处理量是A型处理点的1.2倍,该街道建造的每个A型处理点每月处理量为多少吨时,才能使该街道每吨垃圾的月处理成本最低?(精确到0.1)15.已知矩形ABCD中,AB=2,AD=5,点E是AD边上一动点,连接BE、CE,以BE为直径作⊙O,交BC于点F,过点F作FH⊥CE于H.(1)当直线FH与⊙O相切时,求AE的长;(2)当FH//BE时,求AE的长;(3)若线段FH交⊙O于点G,在点E运动过程中,△OFG能否成为等腰直角三角形?如果能,求出此时AE的长;如果不能,说明理由.16.如图①,已知抛物线y=ax2+2√3x+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与3y轴交于点C,点A坐标为(−1,0),点C坐标为(0,√3),点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求a,c的值;(2)求线段DE的长度;(3)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少?答案和解析1.【答案】C【解析】解:根据题意得:a <−1<0<b <c <1, 则①a 2−a −2=(a −2)(a +1)>0;②∵|a −b|+|b −c|=−a +b −b +c =−a +c , |a −c|=−a +c ,∴|a −b|+|b −c|=|a −c|;③∵a +b <0,b +c >0,c +a <0, ∴(a +b)(b +c)(c +a)>0; ④∵|a|>1,1−bc <1, ∴|a|>1−bc ;故正确的结论有②③,一共2个. 故选:C .根据数轴上各数的位置得出a <−1<0<b <c <1,依此即可得出结论.本题考查了数轴、绝对值和有理数的大小比较;弄清数轴上各数的大小是解决问题的关键.2.【答案】A【解析】解:∵点P(−1,√33)在“勾股一次函数”y =ac x +bc 的图象上,∴√33=−a c+b c的一次函数,即a −b =−√33c ,又∵a ,b ,c 分别是Rt △ABC 的三条变长,∠C =90°,Rt △ABC 的面积是4, ∴12ab =4,即ab =8, 又∵a 2+b 2=c 2, ∴(a −b)2+2ab =c 2, 即∴(−√33c)2+2×8=c 2,解得c =2√6, 故选:A .依据题意得到三个关系式:a −b =−√33c ,ab =8,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.3.【答案】D【解析】解:对于A ,由柱状图可得5月份出货量最高,故A 正确; 对于B ,根据曲线幅度可得下半年波动比上半年波动小,故B 正确;对于C ,根据曲线上数据可得仅仅4月5月比同比高,其余各月均低于2018,且明显总出货量低于2018年,故C 正确;对于D ,可计算得2018年12月出货量为:3044.4÷(1−14.7%)=3569.05, 8月出货量为:3087.5÷(1−5.3%)=3260.3, 因为3260.3<3569.05, 故12月更高,故D 错误. 故选:D .根据图象逐一分析即可.本题考查了学生合情推理能力,考查数据分析与图表分析能力,属于基础题.4.【答案】C【解析】解:∵函数y =x 2+x −1的对称轴为直线x =−12, ∴当x =−12时,y 有最小值,此时y =14−12−1=−54, ∵函数y =x 2+x −1在m ≤x ≤1上的最小值是−54, ∴m ≤−12;∵当x =1时,y =1+1−1=1,对称轴为直线x =−12, ∴当x =−12−[1−(−12)]=−2时,y =1,∵函数y =x 2+x −1在m ≤x ≤1上的最大值是1,且m ≤−12; ∴−2≤m ≤−12. 故选:C .先求出二次函数的对称轴,再求得函数在顶点处的函数值,根据已知条件最小值是−54,得出m ≤−12;再求得当x =1时的函数值,发现该值等于已知条件中的最大值,根据二次函数的对称性可得m 的下限.本题考查了二次函数在给定范围内的最值问题,熟练掌握二次函数的性质是解题的关键.5.【答案】B【解析】解:∵∠AOB =90°,AO =4,BO =8, ∴AB =√AO 2+BO 2=√42+82=4√5, ∵△AOB 绕顶点O 逆时针旋转到△A′OB′处, ∴AO =A′O =4,A′B′=AB =4√5, ∵点E 为BO 的中点, ∴OE =12BO =12×8=4, ∴OE =A′O =4, 过点O 作OF ⊥A′B′于F ,S △A′OB′=12×4√5⋅OF =12×4×8,解得OF =8√55, 在Rt △EOF 中,EF =√OE 2−OF 2=(8√55)=4√55,∵OE =A′O ,OF ⊥A′B′, ∴A′E =2EF =2×4√55=8√55, ∴B′E =A′B′−A′E =4√5−8√55=12√55; 故选:B .由勾股定理求出AB ,由旋转的性质可得AO =A′O ,A′B′=AB ,再求出OE ,从而得到OE =A′O ,过点O 作OF ⊥A′B′于F ,由三角形的面积求出OF ,由勾股定理列式求出EF ,再由等腰三角形三线合一的性质可得A′E =2EF ,然后由B′E =A′B′−A′E 代入数据计算即可得解.本题考查了旋转的性质,勾股定理的应用,等腰三角形三线合一的性质,以及三角形面积等知识;熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.6.【答案】A【解析】解:由图2知:AB +BC =9,设AB =m ,则BC =9−m , 如图所示,当点M 在BC 上时,则AB =m ,BM =x −a ,MC =9−x ,NC =y ,∵MN ⊥AM ,则∠MAB =∠NMC , tan∠MAB =tan∠NMC ,即BMAB =CNCM , 即x−m m=y 9−x ,化简得:y =−1mx 2+9+a ax −9,当x =−b2a =9+m 2时,y =−9+(9+m m )24m=45,解得:m =5, 则AM =5,BC =4, 故ABCD 的面积=20, 故选:A .由图2知:AB +BC =9,设AB =m ,则BC =9−m ,则tan∠MAB =tan∠NMC ,即BMAB =CNCM ,即x−m m=y9−x,化简得:y =−1m x 2+9+a ax −9,当x =−b 2a=9+m 2时,y =−9+(9+m m )24m=45,即可求解.本题考查的是动点的图象问题,涉及到一次函数、二次函数、解直角三角形等知识,从图2中,确定AB +BC =9是本题解题的关键.7.【答案】35【解析】解:根据题意画图如下:共有20种等可能的情况数,其中最后确定的主持人是一男一女的有12种, 则最后确定的主持人是一男一女的概率为1220=35. 故答案为:35.根据题意画出树状图得出所有等可能的情况数,再找出符合条件的情况数,然后根据概率公式即可得出答案.此题考查的是树状图法求概率.树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.8.【答案】√105【解析】解:过B点作BD⊥AC于点D,∵cosA=45,∴ADAB =45,设AD=4x,则AB=5x,∴BD=√AB2−AD2=3x,∵AB=AC,∴AC=5x,∴CD=5x−4x=x,∴BC=√BD2+CD2=√9x2+x2=√10x,∴BCAB =√10x5x=√105,故答案为:√105.过B点作BD⊥AC于点D,设AD=4x,根据三角函数和勾股定理用x表示AB与BD,BC,然后求结果便可.本题主要考查了解直角三角形和,勾股定理,腰三角形的性质,关键是正确构造直角三角形.9.【答案】m+2019n【解析】解:由图可得,2个这样的图形(图1)拼出来的图形中,重叠部分的长度为m−n,∴用2020个这样的图形(图1)拼出来的图形的总长度=2020m−2019(m−n)=m+2019n,故答案为:m+2019n.用2020个这样的图形(图1)的总长减去拼接时的重叠部分2019个(m−n),即可得到拼出来的图形的总长度.本题主要考查了利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.10.【答案】4+4√2【解析】解:如图,取MN 的中点E ,连接OE ,PE ,OP ,∵∠MON =90°,∴Rt △MON 中,OE =12MN =4,又∵∠MQP =90°,MN =8,PN =4,NE =4, ∴Rt △PNE 中,PE =√PN 2+NE 2=4√2, 又∵OP ≤PE +OE =4+4√2, ∴OP 的最大值为4+4√2,即点P 到原点O 距离的最大值是4+4√2, 故答案为:4+4√2.取MN 的中点E ,连接OE ,PE ,OP ,根据勾股定理和矩形的性质解答即可. 此题考查矩形的性质,关键是根据矩形的性质和勾股定理解答.11.【答案】2√55或√22【解析】解:∵点B 是y =kx 和y =4x 的交点,y =kx =4x , ∴点B 坐标为(√k 2√k),同理可求出点A 的坐标为(k √k), ∵BD ⊥x 轴,∴点C 横坐标为√k ,纵坐标为12√k ,∴BA =√1k +k ,AC =√1k +k4,BC =32√k ,∴BA 2−AC 2=34k >0, ∴BA ≠AC ,若△ABC 是等腰三角形,①当AB =BC 时,则√1k +k =32√k , 解得:k =±2√55(舍去负值);②当AC =BC 时,同理可得:k =√22;故答案为:2√55或√22. 根据一次函数和反比例函数的解析式,即可求得点A 、B 、C 的坐标(用k 表示),再讨论①AB =BC ,②AC =BC ,即可解题.本题考查了点的坐标的计算,考查了一次函数和反比例函数交点的计算,本题中用k 表示点A 、B 、C 坐标是解题的关键.12.【答案】5【解析】解:如图,连接BM .∵△AEM 与△ADM 关于AM 所在的直线对称, ∴AE =AD ,∠MAD =∠MAE .∵△ADM 按照顺时针方向绕点A 旋转90°得到△ABF , ∴AF =AM ,∠FAB =∠MAD . ∴∠FAB =∠MAE ,∴∠FAB +∠BAE =∠BAE +∠MAE . ∴∠FAE =∠MAB . ∴△FAE≌△MAB(SAS). ∴EF =BM .∵四边形ABCD 是正方形, ∴BC =CD =AB =4. ∵DM =1, ∴CM =3.∴在Rt △BCM 中,BM =√32+42=5, ∴EF =5, 故答案为:5.连接BM.先判定△FAE≌△MAB(SAS),即可得到EF =BM.再根据BC =CD =AB =4,CM =3,利用勾股定理即可得到,Rt △BCM 中,BM =5,进而得出EF 的长.本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.13.【答案】解:(1)根据题意得△=(2k −1)2−4k 2≥0,解得k ≤14;(2)x1+x2=2k−1,x1x2=k2,∵k≤14,∴x1+x2=2k−1≤0,而x1x2=k2≥0,∴x1≤0,x2≤0,∵x1x2−|x1|−|x2|=2,∴x1⋅x2+x1+x2=2,即k2+(2k−1)=2,整理得k2+2k−3=0,解得k1=−3,k2=1,而k≤14,∴k=−3;(2)∵ab +ba=6,∴a2+b2=6ab,∴(a+b)2=8ab,∴(b−a)2=(a+b)2−4ab=4ab,∴(a+bb−a )2=(a+b)2(b−a)2=2,∴a+bb−a=±√2,∵a<b<0,∴a+b<0,b−a>0,∴a+bb−a<0,∴a+bb−a=−√2∴(a+bb−a)3=−2√2.答:(a+bb−a)3的值为−2√2.【解析】(1)利用判别式的意义得到△=(2k−1)2−4k2≥0,然后解不等式可得k的取值范围,再根据根与系数的关系可得出x1+x2=2k−1、x1x2=k2,结合x1x2−|x1|−|x2|=2,即可得出关于k的一元一次方程,解之即可求实数k的值;(2)先通分可得a2+b2=6ab,再根据完全平方公式的变形可得a+bb−a 的值,进而可得(a+bb−a)3的值.本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−ba,x 1x 2=ca .也考查了判别式的值.14.【答案】解:(1)设建造A 型处理点x 个,则建造B 型处理点(20−x)个.依题意得:{15x +20(20−x)≤37018x +30(20−x)≥490,解得6≤x ≤9.17, ∵x 为整数,∴x =6,7,8,9有四种方案;设建造A 型处理点x 个时,总费用为y 万元.则:y =1.5x +2.1(20−x)=−0.6x +42, ∵−0.6<0,∴y 随x 增大而减小,当x =9时,y 的值最小,此时y =36.6(万元), ∴当建造A 型处理点9个,建造B 型处理点11个时最省钱;(2)由题意得:每吨垃圾的处理成本为yx (元/吨),当0≤x <144时,y x =1x (13x 3−80x 2+5040x)=13x 2−80x +5040, ∵13>0,故yx 有最小值,当x =−b 2a =−−802×13=120(吨)时,yx 的最小值为240(元/吨),当144≤x <300时,y x =1x (10x +72000)=10+72000x,当x =300(吨)时,yx =250,即yx >250(元/吨), ∵240<250,故当x =120吨时,yx 的最小值为240元/吨,∵每个B 型处理点的垃圾月处理量是A 型处理点的1.2倍且A 型处理点9个,建造B 型处理点11个, ∴每个A 型处理点每月处理量=9×19×1+11×1.2×120×19≈5.4(吨),故每个A 型处理点每月处理量为5.4吨时,才能使该街道每吨垃圾的月处理成本最低.【解析】(1)首先依据题意得出不等关系即可供建造垃圾初级处理点占地面积<等于370m 2,居民楼的数量大于等于490幢,由此列出不等式组;再根据题意求出总费用为y 与A 型处理点的个数x 之间的函数关系,进而求解;(2)分0≤x <144、144≤x <300两种情况,分别利用二次函数和反比例函数的性质求出函数的最小值,进而求解.本题考查了二次函数、反比例函数和一元一次不等式组的应用,题目有效地将现实生活中的事件与数学思想联系起来,弄懂题意、列出函数关系式是解题的关键.15.【答案】解:(1)如图1,连接EF,FA,∵CE为圆的切线且又和EB垂直,∴CE//AF∴∠CEF=∠AFE;又∵∠AFE=∠FEB,∴∠CEF=∠BEF,∴EF为∠BEC的平分线;∵∠EFB=90°,∴EF⊥BC,∴BE=CE∴△BEC为等腰三角形,∴BF为BC的一半;∵EA//CF,∴四边形CEAF为平行四边形,即AE=CF=2.5;(2)解:∵FH//BE,FH⊥CE,∴BE⊥CE,∴∠AEB+∠DEC=90°,∵∠ABE+∠AEB=90°,∴∠ABE=∠DEC,∵∠A=∠D=90°,∴△ABE∽△CDE,∴ABDE =AECD,∵AB=2,AD=5,∴CD=AB=2,∴25−AE =AE2,∴AE=1或AE=4.(3)连接EF、OF、OG,如图3所示:则∠BFE =90°,设AE =x ,则EF ,=AB =2,BF =AE =x ,CF =DE =5−x , 若△OFG 是等腰直角三角形,则∠FOG =90°, 连接BG 、EG ,设BG 、EF 交于点K , ∴△BFK 和△EGK 都是等腰直角三角形,∴BF =KF =x ,BK =√2x ,EK =2−KF =2−x ,在等腰直角△EGK 中,根据勾股定理得:GK =EG =√22(2−x),BG =GK +BK =√22(2+x),又∵∠EBG =∠EFG =∠FCH , ∴△BEG∽△CEF , ∴BG BE=FCEF,即√22(2+x)√22(2−x)=5−x 2,解得:x =9−√572,或x =9+√572,∴AE 的长度是9−√572或9+√572.【解析】(1)连接EF ,FA ,由CE 为圆的切线且又和EB 垂直,可知CE//FA ,推出∠CEF =∠AFE ,而∠AFE =∠FEB 可得∠CEF =∠BEF ,所以EF 为∠BEC 的平分线.又因为∠EFB 为直角可知EF ⊥BC ,所以△BEC 为等腰三角形,得到BF 为BC 的一半,又因为EA//CF ,可知四边形CEAF 为平行四边形,即AD =BF =2.5;(2)根据平行线的性质得到BE ⊥CE ,由余角的性质得到∠ABE =∠DEC ,证得△ABE∽△CDE ,根据相似三角形的性质即可得到结论;(3)连接EF ,由圆周角定理得出∠BFE =90°,设AE =x ,则EF ,=AB =2,BF =AE =x ,CF =DE =5−x ,由已知条件得出点G 在点F 上方,连接BG 、EG ,设BG 、EF 交于点K ,得出△BFK 和△EGK都是等腰直角三角形,得出BF =KF =x ,BK =√2x ,EK =2−KF =2−x ,GK =EG =√22(2−x),BG =GK +BK =√22(2+x),证明△BEG∽△CEF ,得出BG BE =FCEF ,得出方程,解方程即可.本题是圆的综合题目,考查了圆周角定理、勾股定理、相似三角形的判定与性质、矩形的性质、等腰直角三角形的判定与性质、切线的判定等知识;本题难度较大,综合性强,特别是(2)、(3)中,需要证明三角形相似才能得出结果.16.【答案】解:(1)将A(−1,0),C(0,√3)代入抛物线y =ax 2+2√33x +c(a ≠0), {a −2√33+c =0c =√3,∴a =−√33,c =√3(2)由(1)得抛物线解析式:y =−√33x 2+2√33+√3∵点D 是点C 关于抛物线对称轴的对称点,C(0,√3) ∴D(2,√3), ∴DH =√3, 令y =0,即−√33x 2+2√33x +√3=0,得x 1=−1,x 2=3, ∴A(−1,0),B(3,0), ∵AE ⊥AC ,EH ⊥AH , ∴△ACO∽△EAH , ∴OC AH=OA EH=即=√33=1EH,解得:EH =2√3, 则DE =2√3;(3)找点C 关于DE 的对称点N(4,√3),找点C 关于AE 的对称点G(−2,−√3),连接GN ,交AE 于点F ,交DE 于点P ,即G 、F 、P 、N 四点共线时,△CPF 周长=CF +PF +CP =GF +PF +PN 最小,∴直线GN 的解析式:y =√33x −√33,由(2)得E(2,−√3),A(−1,0), ∴直线AE 的解析式:y =−√33x −√33,联立{y = √33x −√33;y =−√33x −√33 ; 解得{x =0y =−√33 ∴F(0,−√33), ∵DH ⊥x 轴,∴将x =2代入直线AE 的解析式:y =−√33x −√33,∴P(2,√32) ∴F(0,−√33)与P(2,√32)的水平距离为2过点M 作y 轴的平行线交FH 于点Q , 设点M(m,−√33m 2+2√33m +√3),则Q(m,√33m −√33)(1−√172<m <1+√172);∴S △MFP =S △MQF +S △MQP =12MQ ×2=MQ =(−√33m 2+2√33m +√3)−(√33m −√33), S △MFP =−√3m 2+√3m +4√3=−√3(m −1)2+17√3 ∵对称轴为:直线m =12, ∵开口向下,1−√172<m1+√172,∴m =12时,△MPF 面积有最大值为1712√3..【解析】(1):(1)将A(−1,0),C(0,√3)代入抛物线y =ax 2+2√33x +c(a ≠0),求出a 、c 的值;(2)由(1)得抛物线解析式:y =−√33x 2+2√33+√3,点D 是点C 关于抛物线对称轴的对称点,C(0,√3),所以D(2,√3),DH =√3,再证明△ACO∽△EAH ,于是 OCAH =OAEH =即=√33=1EH ,解得:EH =2√3,则DE =2√3;(3)找点C 关于DE 的对称点N(4,√3),找点C 关于AE 的对称点G(−2,−√3),连接GN ,交AE 于点F ,交DE 于点P ,即G 、F 、P 、N 四点共线时,△CPF 周长=CF +PF +CP =GF +PF +PN 最小,根据S △MFP =−√33m 2+√33m +4√33=−√33(m −12)2+1712√3,m =12时,△MPF 面积有最大值1712√3. 本题考查了二次函数,熟练运用相似三角形的性质与二次函数图象的性质是解题的关键.。
【初升高】湖北华中师范大学第一附属中学2020中考提前自主招生数学模拟试卷(9套)附解析
![【初升高】湖北华中师范大学第一附属中学2020中考提前自主招生数学模拟试卷(9套)附解析](https://img.taocdn.com/s3/m/d2ff646abe23482fb4da4c52.png)
中学自主招生数学试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.16.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.17.【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为7,A,B之间的水平距离为2,双曲线解析式为y=,依据点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,即可得到mn的值.【解答】解:由图可得,A,C之间的水平距离为6,2018÷6=336…2,由抛物线y=﹣x2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,∴点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,由抛物线解析式可得AO=2,即点C的纵坐标为2,∴C(6,2),∴k=2×6=12,∴双曲线解析式为y=,2025﹣2018=7,故点Q与点P的水平距离为7,∵点P'、Q“之间的水平距离=(2+7)﹣(2+6)=1,∴点Q“的横坐标=2+1=3,∴在y=中,令x=3,则y=4,∴点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,∴mn=6×4=24,故答案为:24.18.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,连接AC,BC,BQ.∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴△ACB是等腰直角三角形,∴AC=4,∴△ACQ中,AQ=4,∴BQ==4,∵BD≥BQ﹣DQ,∴BD的最小值为4﹣4.故答案为:4﹣4.三、解答题(本大题有10小题,共96分.)19.【分析】(1)根据实数的混合计算解答即可;(2)根据整式的混合计算解答即可.【解答】解:(1)原式==﹣1.(2)原式=1﹣a2+a2﹣2a=1﹣2a20.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为:200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.21.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【解答】解:去分母得:1+m=x﹣2,解得:x=m+3,由分式方程的解为正数,得到m+3>0,且m+3≠2,解得:m>﹣3且m≠﹣1.22.【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2可得答案.【解答】解:(1)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2,所以到第二个路口时第一次遇到红灯的概率为;(2)∵在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2,∴到第n个路口都没有遇到红灯的概率为()n,故答案为:()n.23.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2 +1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长约为(4+)米.24.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.25.【分析】(1)利用已知表格中x,y个数变化规律得出第2格的“特征多项式”以及第n 格的“特征多项式”;(2)①利用(1)中所求得出关于x,y的等式组成方程组求出答案;②利用二次函数最值求法得出答案.【解答】解:(1)由表格中数据可得:第4格的“特征多项式”为:16x+25y,第n格的“特征多项式”为:n2x+(n+1)2y(n为正整数);故答案为:16x+25y,n2x+(n+1)2y(n为正整数);(2)①由题意可得:,解得:答:x的值为﹣6,y的值为2.②设W=n2x+(n+1)2y当x=﹣6,y=2时:W=﹣6n2+2(n+1)2=,此函数开口向下,对称轴为,∴当时,W随n的增大而减小,又∵n为正整数∴当n=1时,W有最大值,W最大=﹣4×(1﹣)2+3=2,即:第1格的特征多项式的值有最大值,最大值为2.26.【分析】(1)首先连接OD,由BE=EC,CO=OA,得出OE∥AB,根据平行线与等腰三角形的性质,易证得△COE≌△DOE,即可得∠ODE=∠OCE=90°,则可证得ED 为⊙O的切线;(2)只要证明OE∥AB,推出,由此构建方程即可解决问题;【解答】解:(1)证明:连接OD,∵E为BC的中点,AC为直径,∴BE=EC,CO=OA,∴OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD;由题意EC、ED是⊙O的切线,∴EC=ED,∵OC=OD,∴OE⊥CD,∵AC是直径,∴∠CDA=90°,∴CD⊥AB,∴OE∥AB,∴,在Rt△ECO中,EO==5,∵∠EOC=∠CAD,∴cos∠CAD=cos∠EOC=,∴AD=,设OG=x,则有,∴x=,∴OG=.27.【分析】(1)求出E、F两点坐标,利用待定系数法即可解决问题;(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.只要证明四边形AOMK 是正方形,证明AE+OA=2AH即可解决问题;(3)如图2中,设F(0,2a),则E(﹣a,a).构建一次函数利用方程组求出交点P 坐标,分三种情形讨论求解即可;【解答】解:(1)∵OE=OA=8,α=45°,∴E(﹣4,4),F(0,8),设直线EF的解析式为y=kx+b,则有,解得∴直线EF的解析式为y=x+8.(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.在Rt△AEO中,tan∠AOE==,OA=8,∴AE=4,∵四边形EOGF是正方形,∴∠EMO=90°,∵∠EAO=∠EMO=90°,∴E、A、O、M四点共圆,∴∠EAM=∠EOM=45°,∴∠MAK=∠MAH=45°,∵MK⊥AE,MH⊥OA,∴MK=MH,四边形KAOM是正方形,∵EM=OM,∴△MKE≌△MHO,∴EK=OH,∴AK+AH=2AH=AE+EK+OA﹣OH=12,∴AH=6,∴AM=AH=6.(3)如图2中,设F(0,2a),则E(﹣a,a).∵A(﹣8,0),E(﹣a,a),∴直线AP的解析式为y=x+,直线FG的解析式为y=﹣x+2a,由,解得,∴P(,).①当PO=OE时,∴PO2=2OE2,则有:+=4a2,解得a=4或﹣4(舍弃)或0(舍弃),此时P(0,8).②当PO=PE时,则有:+=2[(+a)2+(﹣a)2],解得:a=4或12,此时P(0,8)或(﹣24,48),③当PE=EO时,[(+a)2+(﹣a)2]=4a2,解得a=8或0(舍弃),∴P(﹣8,24)综上所述,满足条件的点P的坐标为(0,8),(﹣8,24),(﹣24,48).28.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD =P A、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax2﹣2 ax﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=P A时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m =,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,∴AM=2AG=+2=.∴+=+=+===.中学自主招生数学试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.。
2024—2025学年湖北省华中师范大学第一附属中学高一上学期独立作业1数学试卷
![2024—2025学年湖北省华中师范大学第一附属中学高一上学期独立作业1数学试卷](https://img.taocdn.com/s3/m/8c76f17f6ad97f192279168884868762caaebbb5.png)
2024—2025学年湖北省华中师范大学第一附属中学高一上学期独立作业1数学试卷一、单选题(★★) 1. 对于集合,若不成立,则下列理解正确的是()A.集合B的任何一个元素都属于A B.集合B的任何一个元素都不属于AC.集合B中至少有一个元素属于A D.集合B中至少有一个元素不属于A(★★★) 2. 如图,已知矩形表示全集,是的两个子集,若,集合,,则图中阴影部分所表示的集合为()A.B.C.D.(★★★) 3. “一元二次方程有一个正实数根和一个负实数根”的一个充分不必要条件是()A.B.C.D.(★★★) 4. 已知集合,集合,如果命题“,”为假命题,则实数的取值范围为()A.B.C.D.(★★) 5. 甲、乙、丙三位同学被问到是否去过,,三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市.丙说:我们三人去过同一个城市,下面判断错误的是()A.乙去过城市B.乙去过城市C.甲去过城市D.甲去过城市(★★) 6. 若正实数满足,则下列不等式恒成立的是()A.B.C.D.(★★★) 7. 整数集中,被5除所得余数为的所有整数组成一个“类”,记为,即,其中.以下判断中不正确的是()A.B.C.D.若,则整数,属同一类(★★★) 8. 设集合是关于的不等式的解集,且,则实数的取值范围是()A.B.C.D.二、多选题(★★) 9. 下列关于集合运算的结论,正确的是()A.B.C.D.(★★★) 10. 已知,则()A.B.C.D.(★★★★) 11. 已知,,且,则()A.的最小值是16B.的最小值为128C.的最小值为10D.的最小值为三、填空题(★★) 12. 设,,,则,,,的大小顺序是________ .(★★★) 13. 若对任意,不等式恒成立,则实数的取值集合为 _____ .(★★★★) 14. 已知实数a,b满足,若关于x的不等式的解集中有且仅有3个整数,则实数a的取值范围是 _________ ;四、解答题(★★) 15. 已知全集,集合,.(1)若,求实数的取值范围;(2)若,求实数的取值范围.(★★) 16. (1)若不等式的解集为,求的取值范围;(2)解关于的不等式.(★★★) 17. 如图,正方形的边长为1,,分别是和边上的点.将正方形沿折叠,使点与线段上的点重合(不在端点,处),折叠后与交于点.设,(1)将表示成的函数.(2)求的面积的最大值.(★★★★) 18. 已知,且.(1)求证:;(2)求的最大值.(★★★★) 19. 设全集,集合A是U的真子集.设正整数,若集合A满足如下三个性质,则称A为U的子集:①;②,若,则;③,若,则.(1)当时,判断是否为U的子集,说明理由;(2)当时,若A为U的子集,求证:;(3)当时,若A为U的子集,求集合A.。
湖北省武汉市华中师范大学第一附属中学2022-2023学年高一上学期新生入学测试数学试卷及答案
![湖北省武汉市华中师范大学第一附属中学2022-2023学年高一上学期新生入学测试数学试卷及答案](https://img.taocdn.com/s3/m/a319303c2e60ddccda38376baf1ffc4ffe47e236.png)
湖北省武汉市华中师范大学第一附属中学2022-2023学年高一上学期新生入学测试数学试题一、单选题1.满足条件{}{}0,1,20,1,2,3A ⋃=的所有集合A 的个数是( )A .5个B .6个C .7个D .8个2.二次三项式222512x xy y +-因式分解正确的是( )A .()()234x y x y +-B .()()234x y x y -+C .()()324x y x y +-D .()()324x y x y -+3.设x ∈R ,则“20x -≥”是“11x -≤”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.桌子上有6只杯口朝上的茶杯,每次翻转其中的4只,经过n 次翻转可使这6只杯子的杯口全部朝下,则n 的最小值为( )A .2B .3C .4D .55.已知二次函数()20y ax bx c a =++≠的图象与x 轴交于点()1,0x 与()2,0x ,其中12x x <,方程20ax bx c a +++=的两根为(,)m n m n <,则下列判断正确的是( )A .12m n x x <<<B .12x x m n <<<C .12x m n x <<<D .12m x x n <<<6.魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距 7.关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x ,那么a 的取值范围是( )A .2275a -<< B .25a > C .27a <- D .2011a -<< 8.如图所示,已知三角形ABE 为直角三角形,90,ABE BC ∠=︒为圆O 切线,C 为切点,CA CD =,则ABC 和CDE △面积之比为( )A .1:3B .1:2C 2D .)1:1二、多选题9.在即将开启的新高一数学课程中发现,同学们会陆续接触到集合论的创始人格奥尔格·底托尔和解析几何之父勒内·笛卡尔等著名的数学家,正是有些伟大的数学家的研究和发现,才使得我们的人类文明得以推动,请从下列图片中选出康托尔和笛卡尔( )A .B .。
华师一附中高中自主招生数学试卷
![华师一附中高中自主招生数学试卷](https://img.taocdn.com/s3/m/4a771b6f59fb770bf78a6529647d27284b7337d4.png)
华师一附中高中自主招生数学试卷选择题:1. 函数f(x) = x^3 - 3x^2 - 4x + 5的单调增区间是:A. (−∞, −1)B. (−1, 2)C. (2, ∞)D. (-∞, 2)2. 已知等差数列{an}的前三项依次是a1 = 2,a2 = 5,a3 = 8,那么an的通项公式是:A. an = 2n + 1B. an = 3n + 2C. an = 3n - 1D. an = 2n + 43. 一个梯形的上底为4,下底为8,高为6,它的面积是:A. 48B. 24C. 16D. 124. 一个有限等差数列的首项是2,公差是3,最后一项是20,那么这个等差数列一共有:A. 5项B. 7项C. 8项D. 9项5. 在平面直角坐标系中,顶点为A(3, -2),底边所在直线的斜率为2,这个直角三角形的面积是:A. 5B. 8C. 9D. 10填空题:6. 设a是等差数列{an}的首项,公差是d,若a9 = 17,an = 23,那么d = ________。
7. 函数f(x) = 2x^3 - x^2 + k,若f(-1) = 0,那么k = ________。
8. 若a和b都是正实数,并且a:b = 3:4,那么b/a = ________。
9. 设a,b是两个互质的整数,若a + b = 25,那么a和b的可能取值对的个数是________。
10. 若a和b分别是方程x^2 - 4x - 1 = 0的两个根,那么a + b = ________。
应用题:11. 一个球从高度10米处自由落下,每次抛出高度是前一次的一半,问第5次抛出后,球共经过多少米的路程?12. 在一个等边三角形ABC中,边长为a,P是边AC上的一个点,问三角形APB的面积是全等三角形ABC的几分之一?13. 一个矩形的长是a,宽是b,若它的面积是18,周长是16,求a和b的值。
14. 一个梯形的上底长是a,下底长是b,高是h,面积是20,若a+b=9,h=4,求a和b 的值。
湖北省武汉市华中师大一附中2022年高三下学期联合考试数学试题含解析
![湖北省武汉市华中师大一附中2022年高三下学期联合考试数学试题含解析](https://img.taocdn.com/s3/m/4430cdd78ad63186bceb19e8b8f67c1cfbd6ee59.png)
2021-2022高考数学模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若函数32()39f x x ax x =++-在3x =-时取得极值,则a =( )A .2B .3C .4D .52.已知函数()cos(2)(0)f x A x ϕϕ=+>的图像向右平移8π个单位长度后,得到的图像关于y 轴对称,(0)1f =,当ϕ取得最小值时,函数()f x 的解析式为( )A .())4f x x π=+B .()cos(2)4f x x π=+C .())4f x x π=-D .()cos(2)4f x x π=-3.某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用22⨯列联表,由计算得27.218K ≈,参照下表:得到正确结论是( )A .有99%以上的把握认为“学生性别与中学生追星无关”B .有99%以上的把握认为“学生性别与中学生追星有关”C .在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D .在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”4.盒中有6个小球,其中4个白球,2个黑球,从中任取()1,2i i =个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数()1,2i X i =,则( )A .()()1233P X P X =>=,12EX EX >B .()()1233P X P X =<=,12EX EX >C .()()1233P X P X =>=,12EX EX <D .()()1233P X P X =<=,12EX EX < 5.已知菱形ABCD 的边长为2,60ABC ∠=︒,则BD CD ⋅=()A .4B .6C .D .6.在菱形ABCD 中,4AC =,2BD =,E ,F 分别为AB ,BC 的中点,则DE DF ⋅=( ) A .134-B .54C .5D .1547.已知y ax b =+与函数()2ln 5f x x =+和2()4g x x =+都相切,则不等式组3020x ay x by -+≥⎧⎨+-≥⎩所确定的平面区域在2222220x y x y ++--=内的面积为( )A .2πB .3πC .6πD .12π8.已知函数()f x 的导函数为()f x ',记()()1f x f x '=,()()21f x f x '=,…,()()1n n f x f x +'=(n ∈N *). 若()sin f x x x =,则()()20192021f x f x += ( )A .2cos x -B .2sin x -C .2cos xD .2sin x9.要得到函数()sin(3)3f x x π=+的导函数()f x '的图像,只需将()f x 的图像( )A .向右平移3π个单位长度,再把各点的纵坐标伸长到原来的3倍 B .向右平移6π个单位长度,再把各点的纵坐标缩短到原来的13倍 C .向左平移3π个单位长度,再把各点的纵坐标缩短到原来的13倍 D .向左平移6π个单位长度,再把各点的纵坐标伸长到原来的3倍 10.已知集合{}22|A x y x ==-,2{|}10B x x x =-+≤,则A B =( ) A .[12]-, B .[12]-, C .(12]-,D .2,2⎡⎤-⎣⎦11.如图,设P 为ABC ∆内一点,且1134AP AB AC =+,则ABP ∆与ABC ∆的面积之比为A .14 B .13 C .23D .1612.设集合1,2,6,2,2,4,26{}{}{|}A B C x R x ==-=∈-<<,则()A B C = ( )A .{}2B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-≤≤R二、填空题:本题共4小题,每小题5分,共20分。
湖北省武汉市华中师范大学第一附属中学2022-2023学年高一下学期5月月考数学试题(原卷版)
![湖北省武汉市华中师范大学第一附属中学2022-2023学年高一下学期5月月考数学试题(原卷版)](https://img.taocdn.com/s3/m/71e84d3e6d85ec3a87c24028915f804d2a16875c.png)
华中师大一附中2022~2023学年度高一下学期五月月考数学试卷考试时间:120分钟,总分:150分一、选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求,请将答案填涂到答题卡相应区域.)1. 设复数z 满足()1i 2z +=,则z =( )A. B. 1C. D. 22. sin2023 最接近( )A.B.C.D. 3. 下列说法正确的是( )A. 各侧面都是正方形的四棱柱一定是正方体B. 球的直径是连接球面上两点并且经过球心的线段C. 以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥D. 用一个平面截圆锥,得到一个圆锥和圆台4. 已知a β、都锐角,且cos a =cos β=a β+=( ) A. 4π B.34π C. 4π或34π D. 3π或23π 5. 中国古代四大名楼鹳雀楼,位于山西省运城市永济市蒲州镇,因唐代诗人王之涣的诗作《登鹳雀楼》而流芳后世.如图,某同学为测量鹳雀楼的高度MN ,在鹳雀楼的正东方向找到一座建筑物AB ,高约为37m ,在地面上点C 处(B ,C ,N 三点共线)测得建筑物顶部A ,鹳雀楼顶部M 的仰角分别为30°和45°,在A 处测得楼顶部M 的仰角为15°,则鹳雀楼的高度约为( )是A. 64mB. 74mC. 52mD. 91m6. 已知锐角ABC,AB =π3C =,则AB 边上的高的取值范围为( ) A (]0,3 B. ()0,3 C. (]2,3 D. ()2,37. 已知向量a ,b ,c 满足1a = ,2a b += ,||3a c −= ,则b c ⋅ 的取值范围是( )A. []12,6−B. []12,4−C. []10,6−D. []10,4−8. 在ABC 中,有()()2AC AB BC CB CA AB ⋅−=⋅− ,则tan C 的最大值是( )A.B.C.D. 二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.请将答案填涂到答题卡相应区域.)9. 若复数20231i z =+(i 为虚数单位),则下列结论正确是( )A. z =B. z 的虚部为-1C. 2z 为纯虚数D. 1i z =− 10. 在正方体1AC 中,M 为AB 中点,N 为BC 中点,P 为线段1CC 上一动点(不含C )过M ,N ,P 的正方体的截面记为α )A. 当P 为1CC 中点时,截面α为六边形B. 当112CP CC <时,截面α为五边形 C. 当截面α为四边形时,它一定是等腰梯形D. 设1DD 中点为Q ,三棱锥Q PMN −的体积为定值11. 设O 、A 、B 是平面上任意三点,定义向量的运算:()det ,OA OB OA OB ′=⋅ ,其中OA ′ 由向量OA .的以点O 为旋转中心逆时针旋转直角得到(若OA 为零向量,规定OA ′ 也是零向量).对平面向量a 、b 、c ,下列说法正确的是( ) A. ()()det ,det ,a b b a = B. 对任意R λ∈,()()det ,det ,a b b a b λ+=C. 若a 、b 为不共线向量,满足(),yb c x a y x +=∈R ,则()()det ,det ,a c x a b= ,()()det ,det ,b y c b a = D. ()()()det ,det ,det ,0a b c b c a c a b ++= 12. 假设(0,π)α∈,且π2α≠.当xoy α∠=时,定义平面坐标系xoy 为α−仿射坐标系,在α−仿射坐标系中,任意一点P 的斜坐标这样定义:21,e e 分别为x 轴,y 轴正方向上的单位向量,若12OP xe ye =+ ,则记为(,)OP x y = ,那么下列说法中正确的是( )A. 设(,)a m n =,则||a = B. 设(,),(,)am n b s t = ,若a //b ,则0mt ns −= C. 设(,),(,)a m n b s t = ,若a b⊥ ,则()sin 0ms nt mt ns α+++= D. 设(1,2),(2,1)a b =−=− ,若a 与b 的夹角为π3,则π3α= 三、填空题:(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.)13. 已知5π2tan 43θ+=− ,则tan θ=________. 14. 已知a ,b 为非零不共线向量,向量4a kb − 与ka b −+ 共线,则k =______.15. 如图,一个直三棱柱形容器中盛有水,且侧棱116AA =.若侧面11AA B B 水平放置时,液面恰好过1111,,,AC BC A C B C 的中点.当底面ABC 水平放置时,液面高为__________.16. 在ABC 中,角A ,B ,C 的对边分别为a ,b ,c,若2b =,(()cos 24sin 1A B C +++=+,点P 是ABC的重心,且AP =,则=a ___________. 四、解答题:(本大题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.)17. 如图是一个奖杯的三视图,试根据奖杯的三视图计算:(1)求下部四棱台的侧面积;(2)求奖杯的体积.(尺寸如图,单位:cm ,π取3)18. 已知棱长为1正方体1111ABCD A B C D −中.(1)证明:1//D A 平面1C BD ;(2)求三棱锥111B A B C −的体积.19. 已知ABC 的内角,A ,B ,C 的对边为a ,b ,c ,且3()3sin 2sin sin sin a b C B c A B −−=+. (1)求cos A ;(2)若ABC的面积为AD 为内角A 的角平分线,交BC 边于点D ,求线段AD 长的最大值. 20. 设ABC 是边长为4的正三角形,点1P 、2P 、3P四等分线段BC (如图所示).的(1)求112AB AP AP AP ⋅+⋅ 的值;(2)Q 为线段1AP 上一点,若19AQ mAB AC =+ ,求实数m 的值; (3)P 在边BC 的何处时,PA PC ⋅ 取得最小值,并求出此最小值.21. 如图,某小区有一块空地ABC ,其中AB =50,AC =50,∠BAC =90°,小区物业拟在中间挖一个小池塘AEF △,E ,F 在边BC 上(E ,F 不与B ,C 重合,且E 在B ,F 之间),且π4EAF ∠=.(1)若BE =EF 的值;(2)为节省投入资金,小池塘AEF △的面积需要尽可能的小.设EAB θ∠=,试确定θ的值,使得AEF △的面积取得最小值,并求出AEF △面积的最小值. 22. 已知函数()()sin cos 3sin 27f x a x x x +−−,其中a 为参数. (1)证明:()()π3ππ22f x f x f x f x =−=+=− ,x ∈R ; (2)设*N n ∈,求所有数对(),a n ,使得方程()0f x =在区间()0,πn 内恰有2023个根.的。
湖北省武汉市华中师范大学第一附属中学2022-2023学年高一下学期6月月考数学试题
![湖北省武汉市华中师范大学第一附属中学2022-2023学年高一下学期6月月考数学试题](https://img.taocdn.com/s3/m/21f1614f03768e9951e79b89680203d8cf2f6a69.png)
抽取
C.总体编号为 1~75,在 0~99 中产生随机整数 r,r 除以 75 的余数作为抽中的编号.
若余数为 0,则抽中 75
D.总体编号为 6001~6876,在 1~876 范围内产生一个随机整数 r,把 r 6000 作为
抽中的编号
10.根据气象学上的标准,某地连续 5 天的日平均气温低于 10°C 即为入冬,将该地连
S1S2
试卷第 6 页,共 6 页
应的点位于 )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
r
r
rr r
rr rr
2.已知向量 a (3, 4),b (1,0),c a tb ,若 a,c b,c ,则 t ( )
A. 6
B. 5
C.5
D.6
3.如图是庙山中学艺术节期间收到的高一和高二两个年级各类艺术作品的情况统计图:
AM PN
(1)求证:PM∥平面 BDN;
(2)设锐二面角 P BC A大小为 θ,且sin
6 ,求直线 BD 和平面 PAD 所成角的 3
余弦值.
22.在棱长均为 2 的正三棱柱 ABC - A1B1C1 中,E 为 B1C1 的中点.过 AE 的截面与棱 BB1 ,
A1C1 分别交于点 F , G .
质量指标值分组 75,85 85,95 95,105 105,115 115,125
频数
6
26
38
22
8
(1)在下图上作出这些数据的频率分布直方图;
(2)估计这种产品质量指标值的中位数(精确到 0.1 )、平均数(同一组中的数据用该 组区间的中点值代表); (3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于 95 的产品至少要占全部产品80% ”的规定? 19.杭州市为迎接 2022 年亚运会,规划修建公路自行车比赛赛道,该赛道的平面示意
2022年湖北省武汉市江夏区华中师大一附中专县生自主招生数学试卷
![2022年湖北省武汉市江夏区华中师大一附中专县生自主招生数学试卷](https://img.taocdn.com/s3/m/dc2958193868011ca300a6c30c2259010202f312.png)
2022年湖北省武汉市江夏区华中师大一附中专县生自主招生数学试卷一、选择题(共6小题,每小题5分,共30分)1.新冠疫情对某地区的经济发展造成了巨大影响,为了改善该地区经济发展的现状,政府部门对该地区的经济进行了为期一年的宏观调控,使得该地区的经济收入增加了一倍,实现翻番.为更好地了解调控前后该地区的经济收入变化情况,统计了该地区宏观调控前后的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.宏观调控后,服务业收入减少B.宏观调控后,农业收入增加了一倍以上C.宏观调控后,工业收入增加了一倍D.宏观调控后,工业收入与其它收入的总和超过了经济收入的一半2.已知,则a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>a>c D.b>c>a3.已知二次函数y=ax2+1(a>0)的图象与反比例函数y=(k>0)的图象的交点的横坐标为2,则关于x的不等式的解集是()A.x<﹣2B.﹣2<x<0C.0<x<2D.x>24.如图,四边形ABCD中,∠A=∠C=90°,∠A=∠C=90°,∠ABC=30°,AD=2,CD=2,则BD=()A.B.C.D.5.如图1,点G是BC上靠近点C的三等分点,点H在AF上,动点P以每秒1cm的速度沿图1的边线运动,运动路径为:G﹣C﹣D﹣E﹣F﹣H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2,若AB=4cm,则下列四个结论中正确的个数有()①图1中的BC长是9cm;②图2中的M点表示第6秒时y的值为18cm2;③图1中的CD长是3cm;④图2中的N点表示第19秒时y的值为14cm2.A.1个B.2个C.3个D.4个6.如图,△ABC中∠ACB=90°,点D在CA上,CD=1,AD=4,∠BDC=3∠BAC,则BC=()A.B.C.D.二、填空题(共6小题,每小题5分,共30分)7.已知(|1+x|+|2﹣x|)(|y+2|+|y﹣1|)=9,则x﹣2y的最小值为.8.如图,在△ABC中,AB=AC,D,E是△ABC内两点,AD平分∠BAC,∠EBC=∠BED=60°,若BE =3,DE=1,则BC=.9.若实数m,n分别满足m2+6m+4=0,n2+6n+4=0,则mmn+nnm=.10.将6名志愿者分到3个不同的社区,每个社区2名志愿者,则甲、乙两名志愿者分到同一个社区的概率为.11.如图,正六边形ABCDEF的面积为120cm2,点M为正六边形内部一点,△MAB,△MBC,△MCD,△MDE,△MEF,△MF A的重心分别为G₁,G₂,G₃,G₄,G₅,G₆,则六边形G₁G₂G₃G₄G₅G₆的面积为cm2.12.2022年冬奥会在北京胜利召开.开幕式上,“雪花引导牌”以线条造型展现出简洁、空灵、浪漫的冰雪美学.“雪花”图形的作法是:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,反复进行这一过程,就得到一条“雪花”状的曲线.设原正三角形(图1)的边长为1,把图1,图2,图3中图形的周长依次记为C₁,C₂,C₃,将图3继续进行这一过程,得到的曲线的周长记为C₄,则C₄=.三、解答题(共3小题,共40分.下列各题解答应写出文字说明,证明过程或演算过程.)13.如果一个三位数a的各数位上的数字互不相同,且都不为零,那么称这个三位数为“互异好数”.将一个“互异好数”任意两个数位上的数字对调后可以得到三个不同的新“互异好数”,把这三个新“互异好数”的和与111的商记S(a),例如a=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新的“互异好数”之和为213+321+132=666,666+111=6,所以S(123)=6.(1)计算:S(351),S(985);(2)若m,n都是“互异好数”,其中m=200x+15,n=230+y(1≤x≤4,1≤y≤9,x,y都是正整数),规定:,当S(m)+2S(n)=26时,求λ的值.14.如图,点A在直线MN的上方,过点A作AB⊥MN于点B,AB=3,C点是射线BN上一动点,连接AC,在MN的上方作∠ACD=∠ACB,以CD为直径的圆恰好经过点A且与直线MN交于点E,设BC =x(x>0).(1)C点运动过程中,弦DE的长度是否发生变化?若变化,用含x的代数式表示DE的长度;若不变化,求出DE的长度;(2)C点运动过程中,当x取何值时,△ACD和△CDE相似.15.如图,在平面直角坐标系xOy中,直线y=x+6与x轴,y轴的交点分别为P,Q,且经过P,Q两点的抛物线y=x2+mx+n与x轴的另外一个交点为点M.(1)求抛物线的解析式;(2)已知E是直线PQ下方的抛物线上的一动点(不包括P,Q两点).①过点E作与x轴垂直的直线EF交直线PQ于点F,若点N为y轴上的一动点,当线段EF的长度最大时,求的最小值;②当tan∠EPM=75tan∠MQP时,求点E的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2022年湖北省武汉市华中师大一附中自主招生数学试卷
一、选择题(本大题共5小题,共25.0分。
在每小题列出的选项中,选出符合题目的一项
1.已知:x2﹣4y2=﹣3xy,x>0,y>0,则=()
A.B.﹣4C.D.
2.如图,抛物线y=﹣x2+bx+c交y轴于点(0,5),对称轴为直线x=﹣2,若y>0,则x的取值范围是()
A.﹣4<x<1B.﹣5<x<1C.x<﹣5或x>1D.x<﹣4或x>1
3.如图,在△ABC中,∠BAC=120°,∠ACB=20°,∠ACB的平分线与∠BAC的外角平分线交于点D,连接BD,则tan∠BDC的值是()
A.1B.C.D.
4.如图,⊙O的直径AB=2,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C,则四边形ABCD的面积S的最小值为()
A.1B.C.2D.4
5.方程x2+4x﹣1=0的根可视为函数y=x+4的图象与函数的图象交点的横坐标,那么用此方法可推断出方程x3+x﹣1=0的实根x所在的范围是()
A.﹣1<x0<0B.0<x0<C.<x0<1D.1<x0<2
二、填空题(本大题共5小题,共25.0分)
6.计算:已知2x+5y﹣5=0,则4x•32y的值是.
7.已知实数m、n满足|4﹣m|+(n﹣2)2+=2m﹣4,则m+n=.
8.从﹣2,﹣1,0,1,2这五个数中任取一个数,作为关于x的一元二次方程x2+2x+k=0中k的值,则所得方程中有两个不相等的实数根的概率为.
9.在平面直角坐标中,点A(0,8),点B(6,0),动点C在x轴负半轴上,动点D在y轴负半轴上运动,且CD=10,若N、M分别为AB、CD的中点,则线段MN的最大值为.
10.如图,在△ABO中,∠BAO=90°,AO=AB,且点A(2,4)在双曲线y=(x>0)上,OB边交双曲线于点C,则C点的坐标为.
三、解答题
11.先化简,再求值:,其中a=,.
12.如图,在△ABC中,∠ABC=30°∠ADC=45°,BD=1,,将△ACD沿AD翻折得到△AED,连接BE.
(1)求∠EBC;
(2)求AB长.
13.如图,抛物线y=ax2+bx+c的顶点为C(0,﹣),与x轴交于A、B两点,且A(﹣1,0).(1)求抛物线的解析式;
(2)点P从点B出发,以每秒1个单位的速度向点A运动,同时点Q从点C出发,以每秒v个单位的速度向y轴负方向匀速运动,连接PQ交射线BC于点D,当点P到达点A时,点Q停止运动,以点P 为圆心,PB为半径的圆与射线BC交于点E,若在点P,Q运动的过程中,线段DE的长始终是一个定值,求v的值及DE长.。