博弈论中常见的一些例子
博弈论经典案例
博弈论经典案例在我们的生活中,博弈论的应用无处不在。
从商业竞争到政治决策,从人际关系到体育比赛,博弈论的智慧都在发挥着作用。
接下来,让我们一起来探讨几个经典的博弈论案例。
案例一:囚徒困境假设有两个犯罪嫌疑人 A 和 B 被警察抓住,但警察并没有足够的证据证明他们有罪。
于是,警察将两人分别关押在不同的房间进行审讯,并给出了以下的条件:如果 A 和 B 都保持沉默(不认罪),那么他们都会被判刑 1 年。
如果 A 认罪并指证 B,而 B 保持沉默,那么 A 将被无罪释放,B将被判刑 10 年。
如果 B 认罪并指证 A,而 A 保持沉默,那么 B 将被无罪释放,A将被判刑 10 年。
如果 A 和 B 都认罪并互相指证,那么他们都会被判刑 8 年。
从理性的角度来看,对于 A 来说,如果 B 保持沉默,那么自己认罪可以无罪释放;如果B 认罪,那么自己认罪也能少判刑2 年。
所以,A 会选择认罪。
同样的,B 也会做出相同的选择。
最终的结果是,两人都认罪,都被判刑 8 年。
然而,从整体的最优结果来看,如果两人都保持沉默,那么他们总共只需要判刑 2 年。
但由于双方无法信任对方,都为了自身利益做出了看似最优的选择,却导致了次优的结果。
这个案例在现实生活中有很多应用。
比如在商业竞争中,两个企业可能会为了争夺市场份额而采取降价策略。
如果双方都不降价,可能都能获得一定的利润;但如果一方降价,另一方不降价,那么降价的一方就能获得更多的市场份额;如果双方都降价,虽然都能获得一些市场份额,但利润都会大幅减少。
案例二:智猪博弈假设猪圈里有一头大猪和一头小猪。
猪圈的一头有猪食槽,另一头安装着控制猪食供应的按钮。
按一下按钮会有 10 个单位的猪食进槽,但谁按按钮就会首先付出 2 个单位的成本。
若大猪先到槽边,大猪吃到 9 个单位,小猪只能吃到 1 个单位;若同时到槽边,大猪吃 7 个单位,小猪吃 3 个单位;若小猪先到槽边,大猪吃 6 个单位,小猪吃 4个单位。
博弈论的经典案例
博弈论的经典案例博弈论是研究冲突和合作情况下的决策科学,它广泛应用于经济学、政治学、生物学等领域。
在博弈论中,经典案例可以帮助我们理解各种策略和结果,下面将介绍几个经典的博弈案例。
1. 囚徒困境(Prisoner's Dilemma):囚徒困境是博弈论中最著名的案例之一。
假设有两个囚犯被逮捕,但检察官没有足够的证据来定罪。
如果两人都坦白认罪,他们将每人被判6个月的徒刑;如果两人都保持沉默,他们将只被判2个月的徒刑;如果一个人坦白认罪而另一个人保持沉默,坦白的人将被判1年刑,沉默的人将被无罪释放。
在这个案例中,每个囚犯都面临着合作(保持沉默)和背叛(坦白认罪)的选择,他们必须考虑对方的动作来做出最佳的选择。
尽管每个囚犯都会选择坦白认罪,这样他们能够获得较短的刑期,但合作(保持沉默)是最好的策略,因为这样两人都只会被判2个月的徒刑。
2. 非零和博弈(Non-zero Sum Game):非零和博弈是指在博弈中,各方的利益不是完全相反的。
一个典型的例子是坐在两个对面的人之间有一块饼的案例。
这两个人都可以选择合作或背叛,如果两人都合作,他们将平分饼的一半;如果一个人背叛而另一个人合作,背叛的人将获得全部饼;如果两人都背叛,他们将不会有任何饼。
在这个案例中,为了最大化自己的利益,每个人都会选择背叛,因为这样他们有机会获得全部饼。
然而,如果他们能够建立信任和合作,他们可以共同获得更多的饼。
3. 报复博弈(Tit for Tat Game):报复博弈是另一个经典的案例,它出现在许多情况下,比如政治、商业等。
这个案例可以被描述为一种策略,其中一个团队以对抗和报复的方式回应对手的行动。
一个经典的例子是在政治竞选中,如果一个候选人发起攻击广告,另一个候选人就会以类似的攻击广告回应。
这种博弈往往会导致恶性循环,双方都会不断升级攻击,最终导致双方的声誉受损。
然而,一个更好的策略是采取合作和积极的行动来推动利益最大化。
博弈论经典案例
博弈论经典案例在我们的日常生活中,博弈论的应用无处不在。
从商业竞争到政治决策,从体育比赛到人际关系,博弈论为我们理解和预测各种策略互动提供了有力的工具。
接下来,让我们一起探讨几个经典的博弈论案例。
案例一:囚徒困境假设有两个犯罪嫌疑人 A 和 B 被警方抓获,但警方缺乏足够的证据指控他们。
于是,警方将两人分别关押在不同的房间进行审讯,并分别向他们提出相同的条件:如果一人认罪并揭发对方的罪行,而对方保持沉默,那么认罪的人将被从轻处罚,只判 1 年有期徒刑,而沉默的人将被判处 10 年有期徒刑;如果两人都保持沉默,那么他们都将因证据不足而被判处 2 年有期徒刑;如果两人都认罪,那么他们都将被判处 8 年有期徒刑。
对于嫌疑人 A 来说,如果 B 认罪,那么自己认罪将被判 8 年,不认罪将被判 10 年,所以认罪是更好的选择;如果 B 不认罪,那么自己认罪将被判 1 年,不认罪将被判 2 年,还是认罪更好。
同样的逻辑对于嫌疑人 B 也适用。
因此,从个体理性的角度出发,两人都会选择认罪,最终都被判处 8 年有期徒刑。
但从整体的角度来看,如果两人都保持沉默,那么他们总共只需要服刑4 年,这显然是一个更好的结果。
囚徒困境揭示了个体理性与集体理性之间的冲突。
在许多现实情况中,人们往往只考虑自己的利益最大化,而忽视了共同合作可能带来的更优结果。
案例二:智猪博弈猪圈里有一头大猪和一头小猪。
猪圈的一侧有一个食槽,另一侧有一个控制食物供应的按钮。
按一下按钮,会有 10 份食物进入食槽,但按按钮需要付出 2 份食物的成本。
如果大猪先去按按钮,然后小猪去吃,大猪能吃到 6 份食物,小猪能吃到 4 份食物;如果小猪先去按按钮,然后大猪去吃,大猪能吃到 9 份食物,小猪只能吃到 1 份食物;如果大猪和小猪同时去按按钮,大猪能吃到 7 份食物,小猪能吃到 3份食物;如果大猪和小猪都不去按按钮,那么它们都没有食物吃。
对于小猪来说,如果大猪去按按钮,自己等待可以吃到 4 份食物,自己去按按钮只能吃到 1 份食物;如果大猪等待,自己去按按钮没有食物吃,等待也没有食物吃,所以小猪的最优策略是等待。
博弈论的经典案例
博弈论的经典案例博弈论自从被引入到经济研究中以来,逐渐成为主流经济学的一部分,甚至可以说成为微观经济学的基础。
以下是店铺分享给大家的关于博弈论的经典案例,欢迎大家前来阅读!博弈论的经典案例篇1:在美国西部的小镇上,三个枪手准备进行一场生死较量。
枪手甲枪法精准,十发八中;枪手乙枪法不错,十发六中;枪手丙枪法拙劣,十发四中。
假如三人同时开枪,谁活下来的概率大一些?经详细分析,枪法最劣的枪手丙活下来的概率最大。
假如这三个枪手相互之间充满仇恨,意见不可能达成一致,作为枪手甲,他的最佳策略是对枪手乙开枪,因为这个人对他的威胁最大。
这样他的第一枪不可能瞄准丙。
同样,对于枪手乙来说,他也会把甲作为第一目标,一旦把他干掉,下一轮(如果还有下一轮的话)和丙对决,他的胜算较大;相反,如果他先打丙,即使活了下来,到了下一轮与甲对决时也是凶多吉少。
而丙呢?自然他所选的目标人物也是甲,因为不管怎么说,枪手乙还是比甲差一些(尽管比自己强),如果一定要和某个人对决下一场的话,选择枪手乙,自己获胜的概率要比对决甲多少大一点。
于是,第一阵乱枪过后,甲还能活下来的概率非常小(将近10%),乙是20%,丙是100%。
通过概率分析,不难看出丙很可能在这一轮就成为胜利者,即使某个对手幸运地活下来,在下一轮的对决中也并非十拿九稳,毕竟丙还有胜出的机会。
而三人中作为强者的甲,却面临着最大的生存风险。
从这个博弈案例中可以总结出一个道理:强者并非一定能赢,正所谓“木秀于林,风必摧之”。
博弈论的经典案例篇2:在博弈论(Game Theory)经济学中,“智猪博弈”是一个著名的纳什均衡的例子。
假设猪圈里有一头大猪、一头小猪。
猪圈很长,一头有一踏板,另一头是饲料的出口和食槽。
猪每踩一下踏板,另一边就会有相当于10份的猪食进槽,但是踩踏板以后跑到食槽所需要付出的“劳动”,加起来要消耗相当于2份的猪食。
问题是踏板和食槽分置笼子的两端,如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
博弈论的经典案例
智猪博弈
按钮 食槽
智猪博弈
假设食物进入食槽后, 1.大猪先吃,吃9个食物; 2.小猪先吃,吃4个食物; 3.同时吃,大猪吃7个食物,小 猪吃3个食物。
智猪博弈
小猪
按 按 大猪 等待 5, 1 9,-1 等待 4,4 0,0
智猪博弈
大猪按按钮。
Nash均衡——(按,等待)。
结果——(4,4)。
斗鸡博弈
性别战和斗鸡博弈引出的问题:
当存在多个Nash均衡时,如 何选择,即如何达到一致性预测。
5 猜硬币
甲乙两人玩猜硬币游戏。甲出正反, 乙猜正反。若乙猜对,则甲给乙一元钱; 否则,乙给甲一元钱。
猜硬币
B 正 反
1,-1
正
A 反
- 1 ,1
1,-1 -1,1
猜硬币
不存在前面所讨论的Nash均衡。
斗鸡博弈
B 进 退
2, 0 0, 0
进
A 退
-3,-3 0, 2
斗鸡博弈
斗鸡博弈存在两个Nash均衡——(进, 退)和(退,进)。
博弈结果——(2,0)和(0,2)。
斗鸡博弈
斗鸡博弈实例:
1.公共产品提供; 2.美苏争霸; 3.警察与游行队伍; 4.夫妻吵架; 5. 古巴导弹危机。
斗鸡博弈
现实生活中的象骑虎难下、进退 两难的局面都可看成是斗鸡博弈的具 体体现。
3 性别战
女 足球 足球 男 芭蕾 芭蕾
2,1 0,0
0,0 1,2
性别战
性别战博弈中存在两个Nash均衡— —(足球,芭蕾)和(芭蕾,足球)。
博弈结果——(2,1)和(1,2)。
4 斗鸡博弈
设想两个勇士举着火棍从独木桥两端冲向 中央进行火拼。
十大博弈论经典案例
十大博弈论经典案例1.《囚徒困境》。
囚徒困境是博弈论中最著名的案例之一。
在这个案例中,两名囚犯被捕,但检察官没有足够的证据来判定他们犯罪。
如果两名囚犯都沉默,他们将被判处较轻的刑罚;如果其中一人选择交代,而另一人保持沉默,那么交代的囚犯将获得豁免,而另一人将被判处重刑;如果两人都交代,他们将被判处较重的刑罚。
在这种情况下,每个囚犯都面临着一个困境,无论对方选择什么,自己都会受到损失。
2.《合作博弈》。
合作博弈是指参与者之间可以进行合作的博弈。
在合作博弈中,参与者可以通过合作来获得更好的结果。
例如,两家公司可以通过合作来共同开发新产品,从而获得更大的利润。
合作博弈强调参与者之间的合作和协调,以实现共同的利益。
3.《竞争博弈》。
竞争博弈是指参与者之间存在竞争关系的博弈。
在竞争博弈中,参与者的利益往往是相互对立的。
例如,两家公司在市场上竞争销售同一种产品,它们的利润往往是相互竞争的。
竞争博弈强调参与者之间的竞争和对抗,以争取最大的利益。
4.《博弈的策略》。
在博弈中,参与者可以选择不同的策略来影响结果。
策略是参与者在博弈中可以采取的行动。
不同的策略选择会导致不同的结果,而博弈论就是研究参与者如何选择最优策略以达到最大利益的学科。
5.《信息不对称博弈》。
信息不对称博弈是指参与者在博弈中拥有不同的信息。
在这种情况下,有一方可能掌握更多的信息,从而在博弈中占据优势。
信息不对称博弈强调信息的重要性,以及如何在信息不对称的情况下做出最优决策。
6.《博弈的均衡》。
博弈的均衡是指在博弈中参与者达到一种稳定状态的结果。
在这种状态下,参与者不会再改变自己的策略,因为任何单方面的改变都不会给自己带来更好的结果。
博弈的均衡是博弈论中非常重要的概念,它可以帮助我们预测参与者的行为和结果。
7.《博弈的合作与对抗》。
在博弈中,合作和对抗是两种常见的行为方式。
合作可以带来共同的利益,而对抗则是为了争取最大的利益。
在实际的博弈中,参与者往往需要权衡合作和对抗之间的关系,以达到最优的结果。
博弈论经典案例
博弈论经典案例1. 恶魔的游戏 (Devil's game)这是一种博弈论的思想实验,假设有两个玩家 A 和 B 同时选择一个数字,如果两个数字相等,则 A 赢;如果两个数字不相等,则 B 赢。
问题在于,无论 A 和B 怎样选择,是否存在一种策略,使得 A 有必胜的把握?答案是不存在这样的必胜策略。
因为无论 A 和 B 怎样选择,都有 50% 的概率两个数字相等,这个概率不受选择策略的影响。
所以,这个游戏是一个“随机游戏”,任何一方都没有必胜策略。
2. 囚徒困境 (Prisoner's dilemma)囚徒困境是最著名的博弈论案例之一。
在这个游戏里,有两个人被抓住了,被判处各自坐牢20 年。
检察官给他们一个选择:如果两个人都认罪,那么各坐8 年;如果其中一个人认罪,而另一个人不认罪,那么认罪的人不用坐牢,而不认罪的人要坐 30 年;如果两个人都不认罪,那么各坐 20 年。
问题在于,两个人应该做什么选择才能最大化自己的利益?这个游戏的特殊之处在于,两个人之间的合作可以带来更大的利益,但是他们又互相不信任。
如果两个人都认罪,那么他们的利益是最小的,但是这么做可以避免另一个人的背叛,因此是一种安全策略。
如果两个人都不认罪,那么他们的利益也不是最大的,因为他们错失了合作的机会。
最终,由于信任问题,两个人可能会都选择认罪,而得到不太理想的结果。
3. 鸽子和猫 (Pigeon and Cat)这是一个有趣的案例。
假设有一个狭长的走廊,有一只鸽子和一只猫在两端等待。
如果鸽子朝左走,那么猫就会朝右走;如果鸽子朝右走,那么猫就会朝左走。
如果两只动物在同一个地方相遇,那么鸽子就会被吃掉。
问题在于,这个走廊有多长时,鸽子才有足够的概率逃脱?答案是 2/3。
如果走廊长度小于等于 2/3,那么猫可以直接守在鸽子的对面,而鸽子无法逃脱。
如果走廊长度大于 2/3,那么猫不得不冒着追错方向的风险前进,这就给了鸽子逃脱的机会。
博弈论经典例子
博弈论经典例子
1. 囚徒困境知道不?就好比两个小偷被抓了,警察分别审问他们。
要是都不坦白,那可能都判轻一点;但要是其中一个坦白了,另一个不坦白,那坦白的那个就立功减刑,不坦白的就倒霉啦!这可真是个纠结的选择啊!
2. 再来想想拍卖,大家都抢着出价,那场面紧张刺激得很!每个人都想着自己能拍到,但又担心出价太高亏了,这不就是一场精彩的博弈嘛!
3. 再说说那个商家竞争,就像肯德基和麦当劳,都拼命想办法吸引顾客,这可不是你争我夺的博弈嘛!
4. 还有股市啊,大家不都在那分析来分析去,想着怎么买卖股票能赚钱,这就是投资者之间的博弈呀!
5. 谈恋爱其实也有博弈的成分呢,你对我好,我对你咋样,不是得衡量衡量嘛,哈哈!
6. 像是两家公司研发新产品,谁先推出,谁就能抢占市场份额,这中间的算计可不少哩!
7. 选举不也是嘛,候选人们为了拉选票各显神通,这就是政治上的博弈呢!
8. 石头剪刀布也算哦,你出啥我出啥,都在猜对方的心思,可别小瞧这小游戏,也是一种博弈呢!
总之,生活中博弈无处不在,我们每天都在参与各种博弈呢!。
博弈论例子——精选推荐
博弈论例子一.信号博弈1. 网购市场逆向选择行为交易发生之前的信息不对称易产生逆向选择问题。
当交易市场中信息不对称时,通常卖方比买方拥有更多的私人信息,买方处于信息劣势。
由于买方无法完全掌握商品的质量信息,或者无法鉴别卖方传递的信息是否有效,从而难以准确辨别商品质量的优劣。
由于劣质商品成本低于优质商品,卖方更倾向于销售劣质商品滥竽充数,若两者具有相同的价格,则劣质商品的卖方能够获取高额利润。
此时,优质商品卖方处于劣势状态,会逐渐被驱逐出市场,这就是逆向选择的基本过程。
在网购市场,由于交易信息传递的虚拟性、较大的信息搜寻成本、商家的信息垄断和网络监管的不健全,从而导致了消费者和商家之间的信息不对称。
网购市场是一个不完全信息市场,但在不完全信息的博弈中,参与人为了显示自己的类型,可以通过传递信号给其它参与人以便使对方观察到某种信号而调整自身行动。
因此,高质量的商家为了向消费者显示自己所属类型,会有强烈动机对外传递信号。
在网购中传递信号可以是某种质量认证、消费保障和信誉机制等。
不少网购购物平台会根据消费者好评设置信誉等级,如淘宝根据信誉积分将商家分为20个等级。
这些等级将会给企业带来巨大的信誉资产,并为商家赢得大量的订单。
当然,商家为了获得并传递这种声誉信号需要在在付出成本。
高质量商家获取声誉信号的成本相对较低,低质量商家为了冒充高质量商家要付出的信号成本很高。
假定高质量商家认证的成本为α,低质量商家认证的成本为β,显然α<β分离均衡:高质量商家会通过传递高质量显示信号,从而获得(0,-α)的收益;低质量商家则不会传递高质量显示信号,消费者会据此判断其类型,并实现(0,0)的收益。
混同均衡:高质量的商家有积极传递高质量显示信号的动机,因为如果不传递,消费者便无法分清该商家的商品是高质量还是低质量,会按照低质量的价格支付,此时高质量商家就会退出市场。
高质量商家继续参与市场交易就必须通过传递高质量显示信号,在现实中,高质量商家一般都会进行质量认证。
妙趣横生博弈论案例
妙趣横生博弈论案例一、海盗分金。
话说有五个海盗,抢到了100枚金币,他们打算分赃。
这可不是简单的平分哦,他们有一套奇特的规则。
那1号海盗要怎么分配才能既保命又拿到最多的金币呢?这可就涉及到博弈论了。
我们从最后一个海盗5号的想法开始倒推。
如果前面的海盗都被扔到海里了,只剩下4号和5号,那4号只要把100枚金币都给自己(100,0),因为他自己一票就占了半数,5号什么都得不到。
所以5号肯定不想让这种情况发生,他得在前面有人提出能给他金币的方案时就同意。
再看3号海盗,他知道4号的想法,也知道5号的担心。
所以他就会提出(99,0,1)的方案,给5号1枚金币,自己拿99枚,4号不给。
因为5号如果不同意,等4号分配的时候他就什么都没有了,所以5号只能同意3号的这个方案。
2号海盗呢,他也不傻,他能猜到3号的方案。
于是他就会提出(99,0,1,0)的方案,给3号0枚,给4号1枚,自己拿99枚。
因为4号如果不同意,等3号分配的时候他只能得到0枚,所以4号会同意2号的方案。
最后到了1号海盗,他可是把这一切都看透了。
他提出(98,0,1,0,1)的方案,给3号1枚,给5号1枚,自己拿98枚。
因为3号和5号如果不同意,等2号分配的时候他们得到的更少,所以他们就会同意1号的这个方案。
这就是1号海盗在这场博弈中的最优策略。
二、囚徒困境。
有两个小偷,甲和乙,一起偷东西被警察抓住了。
警察把他们分别关在不同的审讯室里,然后跟他们说:“如果你们两个都不坦白,那就各判1年;如果你们都坦白,那就各判8年;要是一个坦白一个不坦白,坦白的那个就当场释放,不坦白的那个判10年。
”这时候甲就开始想了:“如果乙坦白了,我不坦白我就得判10年,我坦白就判8年;要是乙不坦白,我不坦白判1年,我坦白就当场释放。
不管乙怎么选,我坦白对我来说都是更好的选择。
”乙呢,他也在自己的审讯室里这么琢磨,最后得出了同样的结论。
所以这两个小偷都会选择坦白,结果就是各判8年。
十大博弈论经典案例
十大博弈论经典案例博弈论是研究冲突和合作行为的数学理论,主要研究各方在一定规则下作出决策的过程。
在现实生活中,博弈论可以帮助我们分析各种决策情境,揭示行为背后的逻辑。
下面介绍十大博弈论经典案例,展示不同情境下的决策策略及其结果。
1. 囚徒困境囚徒困境是博弈论中最著名的案例之一。
两名囚徒被单独关押,检察官给每人下达选择“合作”或“背叛”的指令。
如果两人都合作,各自判刑较轻;如果其中一人背叛而另一人合作,则背叛者判刑为0,而合作者将被重判;如果两人都背叛,两者皆受重刑。
在这种情况下,每名囚徒都会选择背叛,因为无论另一人选择什么,背叛都是最优选择。
2. 霍巴和鲍勃游戏霍巴和鲍勃游戏是研究博弈过程中的信任和合作的实例。
霍巴拥有100美元,可以选择分享给鲍勃一部分;鲍勃可以选择保留所有款项或回馈一部分给霍巴。
如果鲍勃选择合作并分享款项,那么霍巴会获得更多回报;反之,如果鲍勃保留所有款项,霍巴就会损失。
通过这一博弈,可以观察到信任和合作如何影响双方的回报。
3. 石头剪刀布石头剪刀布是一种简单的博弈,展示了不完全信息博弈的情形。
两名玩家同时出示石头、剪刀或布中的一种手势,胜利者根据规则确定。
在这个博弈中,玩家需要考虑对手可能的策略,选择最佳的手势进行应对。
4. 抢手织物抢手织物是关于资源分配的博弈。
多位玩家竞相争夺一种有限资源,但资源数量不足以满足所有玩家的需求。
玩家需要权衡合作和竞争的策略,以最大化自己的利益。
这个案例揭示了在资源有限的情况下,合作和竞争之间的平衡。
5. 拍卖博弈拍卖博弈是在资源分配中常见的情景。
卖家将物品提供给潜在买家,买家通过出价来竞争物品,最高出价者将得到物品。
在这种情况下,买家需要权衡自己对物品的价值以及出价策略,以获得最大的利益。
6. 鸿门宴鸿门宴是中国古代著名的博弈案例之一。
项羽与刘邦在鸿门相会,项羽有机会消灭刘邦,但最终刘邦却逆袭成功。
这个案例揭示了在战略选择上的巧妙和胜负的关键。
博弈论大学生活中例子
博弈论大学生活中例子
1、囚徒困境
“囚徒困境”是两个囚徒一起做坏事,结果被警察发现抓了起来,进行隔离审讯。
如果他们都承认犯罪,每人将入狱三年;如果他们都不坦白,由于证据不充分,每人将只入狱一年;如果一个抵赖而另一个坦白并且愿意作证,那么抵赖者将入狱五年,而坦白者将得到宽大释放。
2、双寡头垄断者是否会采用垄断价格
假设市场上的供给只有两个企业来提供,每一个企业具有相同的成本和需求结构,每个企业都将考虑是采用正常价格,还是抬高价格形成垄断,并尽力获取垄断利润。
用矩阵图形来分析两个企业进行决策的根据。
3、污染环境的博弈
如果考虑到外部性的经济,企业在不受到管制的环境里为了追求利润最大化,宁可污染环境,也不愿安装昂贵的治污处理设备。
这种思维策略会使得任何企业都不可能通过减少污染而增加利润。
4、斗鸡博弈
有两人狭路相逢,每人有两个行动选择:一是退下来,一是进攻。
对每个人来说,最好的结果是,对方退下来,而自己不退。
5、胜者为王的博弈
在胜者为王中有才能的、有天赋的或者是机遇好的赢家有强大的动力去参加胜者为王的比赛。
高高在上的赢家在比赛中获胜左面的亚军有可能被引诱进入高收益工作的行列。
就如同太多的需求者去渔船追逐同一条鱼,市场过于拥挤,最终得到的总收益很小。
博弈论的日常生活例子
博弈论的日常生活例子以下是 9 条关于博弈论的日常生活例子:1. 买菜的时候,你和小贩讨价还价,这不就是一场博弈嘛!你想着压低价格,小贩想着多赚点,这就跟下棋一样,都在算计着怎么出招才能达到自己的目的。
比如他说这个菜 10 块钱,你说 8 块行不,哎呀呀,这不就是在斗智斗勇嘛!2. 玩扑克牌的时候呀,你得揣测其他人手里的牌,还得想好自己怎么出牌,这不就是典型的博弈!大家都在互相猜测,看谁能笑到最后。
要是你一下就把好牌都打出去了,那可就糟糕啦,这就像在走钢丝,得小心翼翼呀!3. 在职场上,和同事竞争一个项目,这可是一场大博弈嘞!你要展现自己的优势,又得防止同事出什么奇招。
就像在擂台上,谁能最终获胜呢?是不是想想都紧张刺激呀!4. 跟朋友分蛋糕的时候,怎么分才能让大家都满意,这也是博弈呀!谁多一点谁少一点都可能引发“世界大战”呢。
哎呀呀,这小小的蛋糕也能有这么大的学问嘞!5. 去商场买衣服,你和店员砍价不?那就是一场博弈呀!你说这么贵能不能便宜点,店员说这已经很优惠啦,这不就是在互相拉扯嘛。
就好像拔河比赛,谁能坚持到最后呢?6. 在家庭中,比如决定周末去哪里玩,每个人都有自己的想法,这也算是一种博弈吧!爸爸想去爬山,妈妈想去逛街,孩子想去游乐园,最后怎么决定呢?这可真是让人头疼又有趣呀!7. 打车的时候和司机商量车费,也算博弈呀!你觉得贵了,司机觉得就该这么多,那不得好好讲讲价。
这就跟两军对垒似的,谁能说服谁呢?8. 选班长的时候,同学们互相竞争,各自展示自己的能力,这就是博弈呀!都想获得大家的认可,当上那个班长。
这竞争可激烈啦,真的像一场没有硝烟的战争呢!9. 跟朋友约着看电影,选择看什么电影就是一轮博弈哦!你想看爱情片,他想看科幻片,得商量出一个都能接受的来。
这就像在谈判桌上,谁能让对方让步呢?我觉得呀,博弈论真的无处不在,生活就是一场场大大小小的博弈!我们都在其中摸爬滚打,不断学习和成长呢!。
博弈论经典案例
博弈论经典案例博弈论是研究决策者之间相互作用的数学理论,它涉及到策略的制定、收益的分配以及决策者之间的互动关系。
在现实生活中,博弈论可以被应用到各种各样的情境中,从商业竞争到国际政治。
下面我们将介绍一些博弈论的经典案例,帮助大家更好地理解这一理论。
1. 囚徒困境。
囚徒困境是博弈论中最经典的案例之一。
在这个案例中,两名犯罪嫌疑人被捕,然后被单独审讯。
如果两人都保持沉默,那么他们将会被判处较轻的刑罚;如果其中一人选择交代另一人,而另一人保持沉默,那么交代的人将会被免罪,而另一人将被判处重刑;如果两人都选择交代对方,那么他们将会被判处较重的刑罚。
在这种情况下,每个人都会选择最大化自己的利益,最终导致了一个对双方都不利的结果。
2. 霍夫丁格-普雷兹勒模型。
霍夫丁格-普雷兹勒模型是用来解释两个公司之间的价格竞争的经典案例。
在这个模型中,两家公司同时决定它们的价格,然后根据对方的价格来调整自己的价格。
最终,这种竞争会导致价格不断下降,最终使得两家公司的利润都减少。
这个案例表明,即使在追求自身利益的情况下,双方最终都会受到损害。
3. 博弈论在国际政治中的应用。
博弈论在国际政治中也有着广泛的应用。
例如,在两个国家之间的军备竞赛中,双方都会不断增加军备以保持自己的安全。
然而,这种竞赛最终会导致双方都陷入困境,因为军备竞赛会对双方的经济造成负担,最终对双方都不利。
4. 超市定价竞争。
在超市的定价竞争中,每家超市都会根据对手的价格来调整自己的价格。
这种竞争往往会导致价格战,最终使得双方都陷入亏损。
这个案例表明,即使在追求市场份额的情况下,双方最终都会受到损害。
5. 博弈论在合作与冲突中的应用。
博弈论不仅可以解释竞争的情况,也可以解释合作与冲突的情况。
例如,在合作博弈中,参与者可以通过制定合适的策略来最大化整体利益;而在冲突博弈中,参与者则会通过制定对抗性的策略来争夺有限的资源。
总结。
博弈论作为一种研究决策者之间相互作用的数学理论,可以被广泛应用到各种情境中。
十大博弈论经典案例
十大博弈论经典案例1. 约翰·冯·诺伊曼的合作博弈。
约翰·冯·诺伊曼提出了合作博弈的概念,这是一种让参与者通过合作来达成共同利益的博弈形式。
最经典的案例就是囚徒困境,两名犯人被捕,如果他们都保持沉默,那么警察就没有足够的证据定罪,但如果其中一个人选择交待另一个人,那么他可以减轻自己的刑罚,而另一个人将面临更严重的处罚。
这个案例展示了合作博弈中的困境和冲突。
2. 纳什均衡。
约翰·纳什提出了纳什均衡的概念,这是一种在博弈中参与者通过最优化自己的策略来达到一种平衡状态。
经典案例是《美丽心灵》中的情景,两个人面对同一个女孩的选择,他们的最优策略是不知道对方的选择的情况下做出自己的选择,这样才能达到最优的结果。
3. 最优反应原则。
最优反应原则是博弈论中的一个重要概念,它指的是在博弈中参与者根据对手的策略选择自己的最优反应。
一个经典案例是企业之间的价格竞争,如果一家企业降低价格,另一家企业的最优反应可能是跟随降价,但如果两家企业都降价,最终可能会导致双方利润下降。
4. 博弈中的信息不对称。
信息不对称是博弈论中一个重要的概念,它指的是在博弈中参与者拥有不同的信息,这可能会导致不公平的结果。
一个经典案例是二手车市场,卖家通常比买家更了解车辆的情况,这就造成了信息不对称,导致买家很难做出理性的决策。
5. 博弈中的策略与信任。
在博弈中,策略和信任是非常重要的因素。
一个经典案例是国际贸易谈判,各国之间需要通过博弈来确定最优的贸易政策,同时也需要建立信任关系,否则很难达成协议。
6. 零和博弈与非零和博弈。
零和博弈是指参与者的利益完全对立,一方的利益损失就是另一方的利益增加,而非零和博弈则是指参与者的利益可以同时增加。
经典案例是资源的分配,如果资源有限,那么参与者之间的博弈就是零和博弈,但如果资源可以通过合作来增加,那么就可以转变为非零和博弈。
7. 演化博弈论。
演化博弈论是一种研究博弈中策略演化和稳定状态的理论,经典案例是动物群体中的合作行为,通过博弈来解释为什么动物会选择合作而不是竞争,以及合作行为是如何在群体中传播和演化的。
十大博弈论经典案例
十大博弈论经典案例博弈论是一门研究决策制定和互动行为的学科,它通过分析参与者之间的策略选择和结果影响来研究决策的最优解。
在博弈论中,经典案例可以帮助我们理解博弈论的基本概念和原理。
下面将介绍十大博弈论经典案例。
1. 战略井字棋战略井字棋是一种基于井字棋游戏的扩展形式,其中每个玩家都可以选择放置一个标记或阻止对手放置标记。
这个案例展示了零和博弈的情况,即一方的收益等于另一方的损失。
这种情况下,每个玩家都会采取最佳策略,因此博弈结果是可预测的。
2. 牛市与熊市的博弈股票市场中牛市和熊市的交替是博弈论的典型应用场景。
在牛市中,投资者倾向于买入股票以获取更高的回报;而在熊市中,投资者倾向于卖出股票以避免损失。
这种情况下,每个投资者都要权衡风险与收益,并根据市场走势调整策略。
3. 囚徒困境囚徒困境是博弈论中的经典案例,用于研究自利个体之间的合作问题。
两名犯人被抓获,检察官分别与他们单独交谈,给他们提供选择:合作或背叛对方。
根据他们的选择不同,将得到不同的判决。
这个案例展示了合作和背叛之间的博弈以及结果的影响。
4. 社交网络中的网络效应社交网络中的网络效应也是博弈论的研究领域之一。
人们在社交网络中的决策往往受到他人决策的影响。
例如,在社交媒体上,用户参与与否、跟随与否都会受到其他用户的决策影响。
这种情况下,每个个体的策略选择会受到网络效应的影响。
5. 价格竞争价格竞争是博弈论中的常见案例,特别是在市场竞争中。
公司之间的价格竞争会影响到市场份额和利润。
根据博弈论的原理,公司会在选择价格时考虑对手的策略,并权衡自身利益和市场需求。
在价格竞争中,涉及到策略的选择和博弈结果的分析。
6. 拍卖拍卖是博弈论中的经典案例之一,也是交易理论的重要组成部分。
在拍卖中,买方和卖方之间进行价格竞争,竞拍者的策略选择和出价会影响最终交易结果。
拍卖中涉及到的博弈与策略选择有助于了解经济交易中的决策制定。
7. 博弈与金融市场博弈论在金融市场中的应用也非常广泛。
博弈论案例分析
博弈论案例分析在经济学、政治学、社会学以及商业策略中,博弈论是一个重要的分析工具。
它研究在具有相互依赖关系的决策者之间如何做出最优决策。
以下是几个典型的博弈论案例分析:1. 囚徒困境囚徒困境是博弈论中最著名的例子之一。
它描述了两个被捕的罪犯面临的决策问题。
每个囚犯可以选择合作(保持沉默)或背叛(供出对方)。
如果两人都合作,他们都会被轻判;如果两人都背叛,他们都会被重判;如果一个合作而另一个背叛,背叛者将被释放,而合作者将受到最重的惩罚。
在这种情况下,尽管两人都合作是最优的集体结果,但个体理性导致他们最终选择背叛对方。
2. 纳什均衡纳什均衡是博弈论中的一个核心概念,由数学家约翰·纳什提出。
它指的是在一个非合作博弈中,每个参与者都选择了自己的最优策略,前提是其他参与者的策略是已知的。
在囚徒困境中,纳什均衡就是两人都选择背叛,因为无论对方如何选择,背叛都是每个囚犯的最优策略。
3. 公共物品的提供公共物品的提供是博弈论在现实世界中的一个应用。
公共物品具有非排他性和非竞争性,即一个人使用公共物品不会减少其他人的使用,且无法阻止未付费者使用。
这导致了一个“搭便车”的问题,即个体可能倾向于不支付公共物品的成本,而是依赖其他人的支付。
博弈论可以用来分析如何通过激励机制来解决这个问题,比如通过征税或罚款。
4. 拍卖理论拍卖理论是博弈论在经济活动中的一个应用。
它研究在不同拍卖规则下,买家和卖家如何制定策略以达到最优结果。
例如,在英式拍卖中,价格逐步上升,直到只剩下一个出价者;而在荷兰式拍卖中,价格从高到低下降,直到有人接受当前价格。
博弈论可以帮助分析在不同拍卖形式下,参与者如何制定出价策略以最大化自己的利益。
5. 冷战时期的核威慑冷战时期,美国和苏联之间的核威慑是一个典型的博弈论案例。
双方都拥有能够摧毁对方的核武器,但任何一方首先使用核武器都会导致灾难性的后果。
这种情况下,双方都有动机保持克制,以避免触发全面的核战争。
博弈论的经典案例
博弈论的经典案例
博弈论是一种应用数学,研究决策制定和策略执行的科学。
它通
过分析参与者之间的决策和互动,来预测他们可能的行为和结果。
以下是几个经典的博弈论案例:
1.囚徒困境
囚徒困境是一个经典的博弈论案例,指两名罪犯之间的博弈,在
这个博弈中,两人都被指控犯有某个罪行,但没有足够的证据来定罪。
如果两人都认罪,每个人都将受到较重的惩罚;如果一人认罪,而另
一人不认罪,认罪者将获得更轻的惩罚,而不认罪者将受到较重的惩罚。
如果两人都不认罪,双方将受到较轻的惩罚。
这个案例是研究合
作和背叛的标准案例。
2.拍卖
拍卖是博弈论的另一种重要应用场景。
在拍卖中,卖家出售商品,并邀请买家进行竞价。
买家之间的竞争可能导致卖家得到更好的价格,但是买家也可能会在竞争中付出更高的价格。
不同的拍卖机制和规则
可以产生非常不同的结果和效率。
3.企业竞争
企业竞争是博弈论的又一个重要应用。
企业之间的竞争不仅仅基
于产品差异和价格,在决策制定和市场营销策略上也需要考虑对手的
行为和策略。
企业之间的竞争还涉及到潜在的谈判和合作机会。
博弈论的经典案例不仅帮助我们了解现实生活中的决策制定和行为模式,而且还提供了解决方案的方法。
随着科技的发展,博弈论在金融、政治、军事、环境等领域的应用正在不断扩展。
博弈论经典案例
博弈论经典案例1. 囚徒困境:这是一种经典的博弈论案例,两名囚犯被关押在不同的牢房中,警方缺乏确凿的证据将他们定罪,决定让他们进行交涉。
如果两人都认罪,每人将会被判刑5年;如果一个人认罪而另一个人保持沉默,认罪的人将会被判刑1年,而保持沉默的人将被判无期徒刑;如果两人都保持沉默,每人将被判刑3年。
在这种情况下,每个囚犯都面临着是否信任对方合作的决策。
2. 麦氏定理:这是美国经济学家约翰·N·纳什于1950年提出的经典问题。
假设有两家咖啡店A和B,它们的位置一个在城市的北边,另一个在南边。
两家咖啡店需要决定每天早上的开门时间。
如果A咖啡店在北边开门,而B咖啡店在南边也同样开门,北部居民会去A店,南部居民会去B店,两家店的收入会平均分。
但是,如果A店在北边开门,而B店在南边关门,南部居民不得不去北边排队等待,这将导致北边的队伍变长,北部居民也会选择去B店。
麦氏定理指出,当两家店选择不同的开门时间时,总是有一种策略,使得两家店的收入之和最大。
3. 社交圈中的追逐游戏:在一个社交聚会上,一对情侣分手后,男方试图追回女方。
男方完成了一连串的行动,女方必须在每个行动之后做出回应。
游戏的目标是让女方接受男方的求爱。
这个案例涉及到博弈论中的策略选择和不确定性。
4. 价格竞争:在一场市场竞争中,两家公司决定销售产品的价格。
低价通常会吸引更多的消费者,但是公司也需要考虑到自己的成本和利润。
每家公司需要在出售产品的定价上权衡竞争和利润之间的平衡。
这个案例涉及到博弈论中的纳什均衡和即时反应策略。
5. 投标博弈:在一场拍卖中,多个竞争者竞相出价,以获得拍卖品。
每个竞争者必须决定自己的出价,以获得最大的利润。
这个案例涉及到博弈论中的最优出价和风险评估。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杨义群经济管理网、杨义群投资理财网博弈论中常见的一些例子1、(夫妻争执问题)一对新婚夫妻为晚上看什么电视节目争执不下,丈夫(记为I 方)要看足球比赛节目,而妻子(记为Ⅱ方)要看戏曲节目.他们新婚燕尔,相亲相爱,所以若这方面的行动不一致,则是很伤感情的.因此,这对夫妻间的争执是一次非零和对策。
2、(entry deterrence市场威慑)设某市场已被Ⅱ方(场内者)占据,现I方(场外者)正在考虑是进去争夺(记为策略I1)还是不进去争夺(记为策略I2),而Ⅱ方相应应考虑的是采取合作共享的态度(记为策略Ⅱ1)还是采取坚决斗争的态度(记为策略Ⅱ2)。
3、(prisoner’s dilemma囚犯困境)设有两个囚犯曾犯过大罪,现因犯小罪而被捕,正分别受警方审讯.这两个囚犯都明白:如果两人都拒不坦白犯过大罪,那么当局只能以当前的小罪而判处1年徒刑;要是两人都坦白犯过大罪,那么当局将判处9年徒刑;如果一人坦白,而另一人拒不坦白,那么坦白者将会立即获得释放,另一个将会被判处10年徒刑。
(北京大学1999年研究生入学考试微观试题) 举出一个你在现实生活中遇到的囚犯两难困境的例子。
4、(两寡头降价竞争)这一模型,在数学结构上,与上例完全相同。
设某一市场上仅有两个寡头,他们分别都可以选择降价与不降价两种策略。
5、(打假)设当局对商品采取查假行动的费用为a万元,查出假货后,罚款为b万元,且销毁的假货成本为c万元;若商人出售假货,而当局不采取查假行动,则商人可额外获利d万元,且社会的进一步损失为e万元。
6、(监督博弈)设税务局查税的费用为a万元,查出逃税后,罚款为b(b>a)万元,纳税人应纳的税金为c万元。
则税务局与纳税人的该两人非零和对策模型的赢得表具体如下。
7、(boxed pigs智猪博弈)设猪圈里有一个按钮与两只猪,大猪与小猪,按一次按钮,就会有10份食品进入,大猪与小猪同时吃的话,将分别能吃到7份与3份,但去按一次按钮,必须耗费a份食品,而且按按钮者,由于耽误了时间,还将少吃到2份食品。
当1<a<5时,Ⅱ2(等待)是小猪的占优策略,所以大猪只能采用策略I1(去按),于是,多劳者反而少得!这主要是小猪在此有机遇。
当a>5时,“等待”既是小猪的占优策略,也是大猪的占优策略,所以变成了占优战略均衡,大家都等待,陷入困境。
8、(两寡头产量竞争)设某市场只有两个寡头厂商,其中厂商1与2的产量分别记为x与y,市场总产量记为 Q:=x+y. 又设,厂商1与2的产量边际成本都恒为2,而且都没有固定成本,也即他们的成本分别为2x与2y。
再设,将这些产品全部销售出去的平均价格函数为 P=8-Q.于是,厂商1与2的利润分别为9、(北京大学1995年研究生入学考试微观试题,招生专业:国民经济学、产业经济学、金融学、企业管理、管理科学与工程) A、B两企业利用广告进行竞争。
若A、B两企业都作广告,在未来销售中,A企业可以获得20万元利润,B企业可以获得8万元利润;若A企业作广告,B企业不作广告,A企业可以获得25万元利润,B企业可以获得2万元利润;若A企业不作广告,B企业作广告,A企业可以获得10万元利润,B企业可以获得12万元利润;若A、B两企业都不作广告,A企业可以获得30万元利润,B企业可以获得6万元利润。
10、(北京大学1998年研究生入学考试微观试题,2003年浙江大学博士生入学考试微观试题) 家用电气市场上有两个厂商,各自都可以选择生产空调和彩电,彼此的利润如下列收益矩阵所示11、可口可乐与百事可乐(参与者)的价格决策:双方都可以保持价格不变或者提高价格(策略);博弈的目标和得失情况体现为利润的多少(收益);利润的大小取决于双方的策略组合(收益函数);博弈有四种策略组合,其结局是:(1)如果双方都不涨价,各得利润10单位;(2)如果可口可乐不涨价,百事可乐涨价,可口可乐利润100,百事可乐利润-30;(3)如果可口可乐涨价,百事可乐不涨价,可口可乐利润-20,百事可乐利润30;(4)如果双方都涨价,可口可乐利润140,百事可乐利润35;博弈的稳定状态有两个:都不涨价或者都涨价(均衡),均衡称为博弈的解,它是由博弈规则(即参与者采取什么策略会取得什么结局,市场的需求弹性、交叉价格弹性等)决定的。
博弈论与诺曼底战役决策普林斯顿大学的一道习题题目:如果给你两个师的兵力,由你来当“司令”,任务是攻克“敌人”占据的一座城市,而敌军的守备力量是三个师,规定双方的兵力只能整师调动。
通往城市的道路只有甲乙两条。
当你发起攻击的时候,你的兵力超过敌人,你就获胜;你的兵力比敌人的守备兵力少或者相等,你就失败,那么,你将如何制定攻城方案?“司令”发牢骚躺倒不干:“为什么给敌人三个师的兵力,而只给我两个师?这太不公平,兵力已经吃亏,居然还要规定兵力相等则敌胜我败,连规则都不公平,完全偏袒敌人。
”为此你也许会大为不满。
来个躺倒不干。
其实,这次模拟“作战”,每一方取胜的概率都是50%,即谁胜谁负的可能性是一半对一半。
你这个司令能否神机妙算,指挥队伍克敌制胜,还得看你的本事。
为什么说取胜的概率是一半对一半呢,让我们先学一点儿“纸上谈兵”。
我们来分析一下:敌人有三个师,布防在甲乙两条通道上。
由于必须整师布防,敌人有四种部署方案,即:A、三个师都驻守甲方向;B、两个师驻守甲方向,一个师驻守乙方向;C、一个师驻守甲方向,两个师驻守乙方向:D、三个师都驻守乙方向。
同样,你有两个师的攻城部队,可以有三种部署方案,即:a、集中全部两个师的兵力从甲方向攻击;b、兵分两路,一师从甲方向,另一师从乙方向,同时发起攻击;c、集中全部两个师的兵力从乙方向攻击。
和以前一样,如果我们用“+,-”表示我方攻克,用“-,+”表示敌方守住,就可以画出交战双方的胜负分析表:敌A B C Da -,+ -,+ +,- +,-我 b +,- -,+ -,+ +,-c +,- +,- -,+ -,+假设你采取a方案,那么如果“敌人”采取A方案,你的两个师将遇到敌军三个师的抵抗,你要败下阵来,所以是(一,十);如果“敌人”取B方案,你的两个师遇到敌军两个师以逸待劳的抵抗,你也要败下阵来,同样是(一,+);但是如果“敌人”取C方案,你以两个师打“敌人”一个师,你就会以优势兵力获得胜利,结果是(十,一);同样,如果“敌人”采取D方案,你攻在敌军的薄弱点上,你就能长驱直入,轻取城池,结果也是(十,一)。
和以前的博弈表示略微不同的地方,是现在每个格子里面只有正负号,没有数目字。
希望这不会使你感到不安。
如果你还是喜欢有数目字,那也容易得很,每个正负号后面都加上同一个数目字就行,同一个1.同一个1944,或者同一个1998。
要紧是表达出输赢。
这你就知道,在上述表达中,正负号要紧,具体数目字无所谓。
诺曼底登陆模拟:取胜概率相等交战双方的胜负分析表画出来以后,从“+,一”的分布来看,似乎双方取胜的机会都一样大。
一直看《博弈论平话》的读者,可以运用劣势策略消去法把它化简。
实际做这个题目的时候,如果先从我方入手,一下子是分不出优劣来的。
a和b,b和c,a和c之间,都说不上谁比谁优,谁比谁劣。
于是,我们从敌方入手,尝试站在敌军的立场,比较策略A和B。
如果我军采取策略a,敌军取A或B都会赢,结果一样。
如果我军采取策略b,敌军取A会输取B会赢,如我军采取策略c,敌军取A或B都会输。
可见,在敌军看来,策略B比策略A好:采取策略A会赢的话(如果我军取a),采取策略B一定也会赢;采取策略A会输的话(如果我军取b或c),采取策略B却不一定会输,因为假如我军取b,敌军就赢了。
同样,策略C和D比较,C是优势策略,而D是劣势策略。
智慧的或者说理性的局中人是不会采用劣势策略的,所以当做出博弈的矩阵表示以后,如果发现劣势策略,你就可以把它划去,这就是劣势策略消去法。
现在,剩下上边那个三行两列的矩阵,六个格子中,(一,+)比(十,一)多,似乎敌方的赢面比较大,其实不然。
因为到了敌方不会采用“笨蛋”策略的时候,到了敌方只剩下B和C两个较优策略的时候,我方的三个策略之中,原来不是劣势策略的b现在就变成劣势策略了。
我们也不是笨蛋,所以我们也应该把b删去。
最后,得到下边那个两行两列的矩阵博弈表示。
情况最终就是这样:敌军必取B或C那样的二一布防,一路两个师,另一路一个师,而我军必集中兵力于某一路实施攻击,即a或c那样的攻击策略。
这样,你若攻在敌军的薄弱处,你就获胜,你若攻在敌人兵力较多的地方,你就失败,总之,敌我双方获胜的可能性还是一样大,“司令”先生:不要躺倒不干,你不比对方吃亏。
这虽然是一个模拟的例子,却具有相当的现实意义,诺曼底战役前的情况,大体也是这个样子。
跨海作战,攻方能够调动来渡海作战的兵力,通常总是比守方可以用于守备的兵力少。
模拟作战中假设攻方兵力力两个师而守方的兵力为三个师,就是这样的背景。
另外,渡海登陆作战,通常至少在一开始的时候,攻方要承受很大的牺牲。
模拟作战中规定若攻守双方兵力相等则攻方失败,体现了这个意思。
博弈论简介董志强1999-6对于一些非数学专业和经济学专业的人们来说,博弈论可能是一个极为陌生的概念。
事实上,就是一些经济学专业毕业的学生,他们的博弈论知识也十分有限,我自己也是这样,略知皮毛而已(不,甚至连皮毛都未能真正了解)。
因为国内学者把博弈论运用于经济学研究不过是近几年的事,也不普遍,而且它本身的内容也博大精深。
但在国外,博弈论已成为占据主流的分析工具,如果你不懂得博弈论,那么你会被认为是没有真正懂得经济学。
博弈论的提法可能太过于学术化,容易让人们退避三舍。
其实它有一个非常通俗的名字——游戏理论(博弈论的英文名字叫做“Game Theory”,如果直译,就是“游戏理论”)。
博弈论在我国还有一个名字,叫对策论。
这些名字都很好理解,博弈字面意思就是赌博、下棋,赌博和下棋当然是游戏了,赌博和下棋的时候常常要千方百计地应付对手,自然是要讲究对策了。
如果我们要进行一场游戏,首先肯定要有参加游戏的人,没有人参加,游戏就不会进行下去,游戏活动的参与人有一个学术名称叫“局中人”;其次,每一个“局中人”都有自己的“行动”,或者叫做“策略”、“对策”,如果行动不是单一的,那么这个局中人所有的行动构成一个集合,称行动组合或策略组合;另外,还应该约定输家要付出什么代价,赢家可获得什么利益,这在术语上叫做“支付”(或“报酬”)。
当然,一场游戏肯定结果不是唯一的,各个参与人分散决策采取不同的行动,会造成不同的结果。
但是纳什证明出,在有限个局中人参加的有限行为对策中,至少存在一个所有参与人的最优战略的组合,这叫做“纳什均衡”。
处于纳什均衡状态下,每个人都不能通过改变策略来得到更大的收益,所以谁也不存在改变现状的动力。