九年级数学上册用树状图或表格求概率画树状图法和列表法教案北师大
北师大版九年级数学上册3.1用树状图或表格求概率教学设计
一、教学目标
(一)知识与技能
1.理解并掌握概率的基本概念,知道概率是描述随机事件发生可能性大小的数值。
2.学会使用树状图和表格列举所有可能的结果,并能运用概率公式计算简单事件的概率。
3.能够利用树状图和表格解决实际问题,提高解决问题的能力。
4.掌握如何判断事件的独立性,以及如何计算相互独立事件的概率。
三、教学重难点和教学设想
(一)教学重难点
1.重点:让学生掌握使用树状图和表格列举所有可能结果的方法,以及如何运用概率公式计算简单事件的概率。
难点:培养学生将实际问题转化为数学模型的能力,以及如何在实际问题中运用概率知识进行求解。
2.重点:让学生理解独立事件的定义,掌握相互独立事件的概率计算方法。
难点:引导学生运用独立事件的概率计算方法,解决实际问题。
3.小组合作,共同探究一个复杂的概率问题,例如“抛掷两枚骰子,求两个骰子点数和为7的概率”。要求学生在讨论过程中,充分运用所学知识,发挥团队协作精神,共同解决问题。
4.完成一份关于本节课学习心得的反思报告,内容包括:对本节课知识的理解、在解题过程中遇到的困难与解决方法、对概率学习的感悟等。通过反思,促使学生深入思考,提高自我认知。
本章节的教学设计旨在让学生掌握概率的基本概念和求解方法,提高他们解决实际问题的能力。在教学过程中,注重培养学生的学习兴趣、团队协作能力和自主学习能力,使他们形成正确的价值观,为将来的学习和生活打下坚实基础。
二、学情分析
九年级的学生已经具备了一定的数学基础,对概率的概念有初步的了解,但在具体问题分析和解决方法上仍需加强。他们在之前的学习中,已经接触过简单的概率计算,能够列举一些事件的可能结果,但对于复杂事件的概率求解,还需要进一步引导和训练。此外,学生在团队合作、问题探究等方面的能力有待提高。因此,在本章节的教学中,应注重以下几点:
北师大版九年级数学上册第三章《概率的进一步认识》教案
第三章概率的进一步认识1 用树状图或表格求概率第1课时用树状图或表格求概率(1)1.能运用树状图和列表法计算简单事件发生的概率.2.经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.3.通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性.【教学重点】运用树状图和列表法计算简单事件发生的概率.【教学难点】运用树状图和列表法计算简单事件发生的概率.一、情境导入,初步认识问题1:求概率的基本步骤是什么?问题2:列举一次试验的所有可能结果时,学过哪些方法?【教学说明】对以前所学方法的步骤进行归纳,温故以利知新.二、思考探究,获取新知自主学习:阅读课本P148,这个游戏为什么对三人不公平?请相互交流.【教学说明】通过自主学习、相互交流可提高学生自学的能力.探究甲乙两地之间有A和B两条道路,小亮从甲地到乙地,大刚从乙地到甲地,二人同时出发.如果每人从A和B两条道路中都任选一条,那么他们途中相遇的概率是多少?思考以下问题:小亮从甲地到乙地,有几条路可走,大刚从乙地到甲地,有几条路可走?如果小亮选了A道路,那么这时大刚选的有可能是哪条路?同样,如果小亮选的是B呢?什么情况下,他们才能相遇?小亮走的道路可能是A或B,当小亮选A时,大刚可能是A或B;当小亮选B时,大刚也可能是A或B,画图如下:【归纳结论】上图像一棵横倒的树,我们叫它树状图.由上图可知,所有等可能性的结果共有4种:AA,AB,BA,BB.其中两人相遇的情况有2种,即AA,BB.由已学过的的概率计算方法,可得P(相遇)=2/4=1/2 .所以,他们途中相遇的概率是1/2 .上表中的第一行表示小亮走道路A或B的两种可能,第一列则表示大刚走道路A或B的两种可能,从而在表中列出了本题所有等可能的4种结果,其中二人相遇的结果有两种,即:可得P(相遇)=2/4=1/2.【教学说明】设计探究学习活动,有利于向学生展示解决问题的不同策略,真正体会解决问题的过程,培养学生的创新精神和克服困难的勇气.三、运用新知,深化理解1.在A、B两个盒子里都装入写有数字0、1的两张卡片,分别从每个盒子里任取1张卡片,两张卡片上的数字之积为0的概率是多少?解法1:画树状图从A盒或B盒中任取一张卡片,上面有数字0或1的可能性相等,由树状图可以看出,两张卡片上的数字之积共有4种等可能的结果,其中两数之积为0的结果有3种,于是P(积为0)= 3/4.解法2:完成下表:由上表可知,两张卡片上的数字之积共有4种等可能的结果,积为0的结果有3种.所以P(积为0)=3/4.2.把大小和形状一模一样的6张卡片分成两组,每组3张,分别标上数字1,2,3.将这两组卡片分别放入两个盒子中搅匀,再从中各随机抽取一张,试求取出的两张卡片数字之和为偶数的概率(要求用树状图或列表法求解).解:画树状图:由上图可知,所有等可能结果共有9种,其中两张卡片数字之和为偶数的结果有5种.∴P(和为偶数)=5/9.列表如下:由上表可知,所有等可能结果共有9种,其中两张卡片数字之和为偶数的结果有5种.∴P(和为偶数)=5/9.3.袋中有一个红球和两个白球,它们除了颜色外都相同.任意摸出一个球,记下球的颜色,放回袋中,搅匀后再任意摸出一个球,记下球的颜色.为了研究两次摸球出现某种情况的概率,画出如下树状图.(1)请把树状图填写完整.(2)根据树状图可知摸到一红一白两球的概率是______.解答:(1)红白白(2)4/9【教学说明】巩固画树状图求概率的知识,感受概率与生活的密切联系.四、师生互动,课堂小结通过本节课的学习你有什么收获?还有哪些疑惑?请与同伴交流.1.布置作业:教材“习题3.1”中第1、2题.2.完成练习册中相应练习.在教学时要反复强调:在借助于树状图或表格求事件发生的概率时,应注意到各种情况出现的等可能性,以免学生忽略这个条件错误使用树状图或表格求事件发生的概率.第2课时用树状图或表格求概率(2)1.会运用树状图和列表法计算事件发生的概率.2.经历试验、探讨过程,在活动中进一步发展学生合作交流的意识和能力.3.通过自主探究、合作交流激发学生的学习兴趣,感受数学的简捷美,及数学应用的广泛性.【教学重点】运用树状图和列表法计算事件发生的概率.【教学难点】树状图和表格法的运用方法.一、情境导入,初步认识(1)从黑桃1和2中摸一张牌,摸到几的可能性大?概率是多少?(2)加上红桃1和2,如果摸得黑桃为1,那么摸到红桃数字为几的可能性大?如果摸得黑桃的数字为2呢?【教学说明】学生交流讨论,利用上节课所学知识解答.二、思考探究,获取新知探究 1 若同时从两组牌中各摸一张出来,共有几种可能性?每种可能性是否相同?概率分别是多少?可能出现的结果(1,1)(1,2)(2,1)(2,2).从上面的树状图可以看出,一次试验可能出现的结果共有4种:(1,1)(1,2)(2,1)(2,2)而且每种结果出现的可能性相同,也就是说,每种结果出现的概率都是1/4.探究2 小颖设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,两个转盘停止转动时,若一个转盘的指针指向蓝色,另一个转盘的指针指向红色,则“配紫色”成功,游戏者获胜.求游戏者获胜的概率.(指针指在分界线上则重转)用树状图来说明:用表格来说明:所以,配成紫色的概率P(配成紫色)=3/6=1/2,所以游戏者获胜的概率为1/2.【教学说明】思考讨论,由两位学生板书展示他们的思维过程.通过学生互学感受思维的条理性和实施的有序性,为后续的教学做好准备.三、运用新知,深化理解1.将分别标有数字1,1,2,3的四张卡片洗匀后,背面朝上放在桌面上.(1)任意抽取一张卡片,求抽到卡片上的数字是奇数的概率;(2)任意抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,请你列表或画树状图分析并求出组成的两位数恰好是13的概率.解:(1)P(抽到奇数)=3/4;(2)解法一:列表所以组成的两位数恰好是13的概率P=2/12=1/6.解法二:树状图所以组成的两位数恰好是13的概率P=2/12=1/6.2.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片上分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)的方法计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?解:(1)利用列表法得出所有可能的结果,如下表:由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率P(甲获胜)=5/16.(2)这个游戏对双方不公平,因为甲获胜的概率P(甲获胜)=5/16,乙获胜的概率P(乙获胜)=11/16,5/16≠11/16,所以,游戏对双方是不公平的.3.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C,都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于_______;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.解:(1)1/4(2)正确画出树状图(或列表),图略(表略).任意闭合其中两个开关的情况共有1/2种,其中能使小灯泡发光的情况有6种,所以小灯泡发光的概率是1/2.【教学说明】巩固画树状图求概率的知识,感受概率与生活的密切联系.四、师生互动,课堂小结1.本节课你有哪些收获?有何感想?2.用树状图或表格求概率时应注意什么情况?1.布置作业:教材“习题3.2”中第1 、3题.2.完成练习册中相应练习.以现实生活为背景提出问题,激发学生的学习兴趣和主动参与意识.面对这些问题时,鼓励学生主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略,使学生感受数学和生活的密切联系,在解决问题的过程中培养学习兴趣和解题能力.2 用频率估计概率1.能够通过试验获得事件发生的频率,并通过大量重复试验,让学生体会到随机事件内部所蕴涵的客观规律——频率的稳定性.知道大量重复试验时频率可作为事件发生概率的估计值.2.结合生活实例,能进一步明确频率与概率的区别与联系,了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.3.培养学生的动手能力和处理数据的能力,培养学生的理性精神.【教学重点】了解用频率估计概率的必要性和合理性.【教学难点】大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.一、情境导入,初步认识问题1:投掷一枚质地均匀的硬币时,结果正面向上的概率是多少?答:0.5问题2:周末,县体育馆有一场精彩的篮球比赛,小亮手中有一张球票,小强和小明都是班上的篮球迷,两人都想去,小亮很为难,不知给谁,请大家帮小亮想个办法解决这个问题.方案:投掷硬币,若正面朝上,小强获得球票;若反面朝上,小明获得球票.问题3:为什么要用投掷硬币的方法呢?理由:这样做公平.能保证小强和小明得到球票的可能性一样大,即得票概率相同.问题4:如果掷硬币机会均等,若投掷10次硬币,是否一定是5次正面向上?投掷50次,100次……?【教学说明】在此基础上,导出课题试验.二、思考探究,获取新知1.自主学习课本157~159页内容,初步了解如何用频率估计概率.2.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,他们共做了60次试验,试验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么?分析:概率是描述随机现象的数学模型,它不能等同于频率.只有在一定的条件下,大量重复试验时,随机事件的频率所逐渐稳定到的常数,才可估计此事件的概率.解:(1)“3点朝上”的频率是6/60=1/10;“5点朝上”的频率是20/60=1/3.(2)小颖的说法是错误的.因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大,只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近.小红的说法也是错误的.因为事件的发生具有随机性,所以“6点朝上”的次数不一定是100次.3.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的不透明的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动的人数为40000人次,公园游戏场发放的福娃玩具为10000个.(1)求参加一次这种游戏活动得到福娃玩具的频率;(2)请你估计袋中白球接近多少个?分析:(1)由40000人次中公园游戏场发放的福娃玩具为10000个,结合频率的意义可直接求得.(2)由概率与频率的关系可估计从袋中任意摸出一个球,恰好是红球的概率,从而引进未知数,构造方程求解.解:(1)因为1000/040000=1/4,所以参加一次这种游戏活动得到福娃玩具的频率为1/4.(2)因为试验次数很大时,频率接近于理论概率.所以估计从袋中任意摸出一个球,恰好是红球的概率是1/4.设袋中白球有x个,则根据题意,得6/(x+6)=1/4,解得x=18.经检验x=18是方程的解.所以估计袋中白球接近18个.【教学说明】利用频率估计概率,并以此引进未知数构造方程是求解此类问题的常用方法,同学们在学习时应注意体会和运用.【归纳结论】1.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计事件发生的概率,但两者不能简单地等同.2.用频率估计概率的方法,主要适合试验的所有可能结果不是有限个,或者各种可能结果发生的可能性不相等的随机事件.三、运用新知,深化理解1.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为(C)A.1/16B.1/4C.π/16D.π/42.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是1/2.3.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有6个.4.在有一个10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是多少?该镇看中央电视台早间新闻的大约是多少人?解:根据概率的意义,可以认为其概率大约等于250/2000=0.125;该镇约有100000×0.125=12500人看中央电视台的早间新闻.【教学说明】让学生进一步感受用频率估计概率方法的适用范围,并用概率值来解释生活经验.四、师生互动,课堂小结通过本节课的学习你有哪些收获?还有哪些疑惑?请与同伴交流.【教学说明】学生根据本节课所学,总结本节课的内容,教师补充强调.1.布置作业:教材“习题3.4”中第1题.2.完成练习册中相应练习.通过本节课的学习,使学生明白通过大量的重复试验,可以把稳定在某个常数附近的频率作为事件发生的概率.教师需要引导学生体会统计概率的本质是估计,用频率估计概率的目的是为了解释现象、解释生活,而不是为了得到一个准确的数值.本章复习1.回顾本章内容,用所学的概率知识去解决某些现实问题,再归纳和总结试验频率与理论概率的关系.2.学会与人合作,进一步发展学生合作交流的意识和能力.3.形成解决问题的一些策略,体验解决问题的多样性,发展实践能力和创新精神.【教学重点】用所学的概率知识去解决某些现实问题.【教学难点】用所学的概率知识去解决某些现实问题.一、知识结构【教学说明】通过回顾知识点,使学生掌握各知识点之间的联系.二、释疑解惑,加深理解1.用树状图或表格求概率.回顾:用树状图或表格求概率时应注意什么情况?2.用频率估计概率.如何用频率估计概率?【教学说明】让学生通过知识性内容的小结,了解本章所学内容,如何用所学知识解决实际问题.三、典例精析,复习新知1.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是()A.1/3B.5/12C.1/12D.1/2解析:让黄灯亮的时间处于总时间即为抬头看信号灯时,是黄灯的概率.每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒共60秒,所以是黄灯的概率是5/60=1/12.故选C.解答:C2.以下说法合理的是()A.小明在10次抛图钉的试验中发现有3次钉尖朝上,由此他说钉尖朝上的概率是30%B.抛掷一枚普通的正方体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6C.某彩票的中奖机会是2%,那么如果买100张彩票一定有2张中奖D.在一次课堂上进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51解析:概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.A选项,10次抛图钉的试验太少,错误;B选项,概率是反映事件发生机会的大小的概念,机会大也不一定发生,错误;C选项,概率是反映事件发生机会的大小的概念,机会大也不一定发生,错误;D选项,根据概率的统计定义,可知正确.解答:D3.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是()A.2/5B.3/10C.3/20D.1/5解析:列举出所有情况,看转盘停止后,指针都落在奇数上的情况数占总情况数的多少即可.列表得:所以两个转盘的组合有20种结果,其中有6种指针都落在奇数,所以指针都落在奇数上的概率是6/20=3/10,故选B.解答:B4.小明每天骑自行车上学都要经过三个安装有红绿灯的路口,假如每个路口红灯和绿灯亮的时间相等,那么,小明从家随时出发去学校,他至少遇到一次红灯的概率是多少?不遇红灯的概率是多少?分析:用列举法列举出符合题意的各种情况的个数,再根据概率公式解答即可.解:A表示红灯,B表示绿灯,根据题意画出树状图,如图所示:他至少遇到一次红灯的概率是7/8;不遇红灯的概率是1/8.【教学说明】通过例题的分析和讲解,突出本章内容的重点、难点和解题的方法.在整节课中起到画龙点睛的作用.四、复习训练,巩固提高1.某学校的初二(1)班,有男生20人,女生24人,其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则抽到一名走读女生的概率是_______.解析:本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.共44名学生,其中女生24人,有20人住宿,即4人走读.故抽到一名走读女生的概率是4/44=1/11.解答:1/112.小明与小亮在一起做游戏时需要确定做游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定,请问在一个回合中两个人都出“布”的概率是______.解析:小明与小亮在用“锤子、剪刀、布”的方式确定时共9种结果,故在一个回合中两个人都出“布”的概率是1/9.解答:1/93.中央电视台《幸运52》栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是________.解析:本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.∵某观众前两次翻牌均获得若干奖金,即现在还有18个商标牌,其中有奖的有3个,∴他第三次翻牌获奖的概率是3/18=1/6.解答:1/64.口袋里有红球4个、绿球5个和黄球若干个,任意摸出一个球是绿色的概率是1/3.求:(1)口袋里黄球的个数;(2)任意摸出一个球是红色的概率.分析:(1)设口袋中有黄球m个,根据概率的求法求任意摸出一个球是绿色的概率,将1/3代入即可求出m的值;(2)口袋里有红球4个,共有15个球任意摸出一个球是红色的概率为4/15.解:(1)设口袋中有黄球m个,任意摸出一个球是绿色的概率是5/(4+5+m)=1/3,解可得m=6,即有6个黄球;(2)口袋里有红球4个,共有4+5+6=15个球,故任意摸出一个球是红色的概率为4/15.5.将分别标有数字1、2、3的三张硬纸片,反面一样,现把三张硬纸片搅均反面朝上.(1)随机抽取一张,恰好是奇数的概率是多少?(2)先抽取一张作为十位数(不放回),再抽取一张作为个位数,能组成哪些两位数,将它们全部列出来,并求所组成的两位数中大于20的概率.分析:根据概率的求法,找准两点:①符合条件的情况数目;②全部情况的总数,二者的比值就是其发生的概率.解:(1)根据题意分析可得:有分别标有数字1、2、3的三张硬纸片,其中奇数有2个,故随机抽取一张,恰好是奇数的概率为2/3;(2)共有12、13、21、23、31、32六种情况,大于20的有4个,故其概率为2/3.6.某校九年级1,2班联合举行毕业晚会,组织者为了使晚会气氛热烈、有趣,策划时计划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行游戏,胜者获得一件奖品,负者表演一个节目.1班的文娱委员利用分别标有数字1,2,3和4,5,6,7的两个转盘(如图)设计了一个游戏方案,两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时,1班代表胜,否则2班代表胜,你认为该方案对双方是否公平?为什么?分析:本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可:解:该方案对双方是公平的.理由如下:列表如下:由上表可知,该游戏所有可能的结果共有12种,其中两数字之和为偶数的有6种,和为奇数的也有6种.所以1班代表获胜的概率为P1=6/12,2班代表获胜的概率为P2=6/12,即P1=P2,所以该游戏方案对双方是公平的.【教学说明】通过练习,巩固概率的基础知识,加深对概率知识、方法及应用的认识.通过老师的辅导,帮助学生对本节内容进行查漏补缺.五、师生互动,课堂小结你有什么收获?请同学们自己谈谈.【教学说明】师生共同小结.在小结时教师根据学生完成以上练习的情况穿插点评.布置作业:教材“复习题”中第2、4、5题.本节课复习课,力求串起全章主要知识点,达到复习目的.使学生具备随机观念,从而能明智地应付变化和不确定性,是概率教学的主要目标.随机观念的培养需要一个长期的过程,教学中以学生自主活动和合作交流为主,使学生在活动中加深对知识的理解,并能进一步应用.。
3.1《用树状图或表格求概率》第1课时 北师大版九年级数学上册教案
第三章概率的进一步认识3.1 用树状图或表格求概率第 1 课时一、教学目标1.经历猜测、试验、收集试验数据、分析试验结果等活动过程,进一步体验数据的随机性,记录数学活动经验.2.通过试验进一步感受随机事件发生的频率的稳定性,理解事件发生频率与概率的关系,并能用试验频率估计事件发生的概率,加深对概率意义的理解.3.能运用画树状图和列表的方法计算一些简单事件的概率.4.能利用概率解决一些简单的实际问题,理解概率对日常生活和生产实践的指导作用,体会概率是描述随机现象的数学模型,发展应用意识.5.在试验和收集数据的活动过程中,发展合作交流的意识和发现问题、提出问题的能力.二、教学重点及难点重点:会用树状图和列表的方法计算随机事件发生的概率.难点:理解事件出现的等可能性,正确地分析出两步试验中出现的所有情况.三、教学用具多媒体课件.四、相关资源《掷一枚质地均匀的骰子》动画,《用列举法求概率——画树状图法》动画.五、教学过程【复习引入】问题(1)具有何种特点的试验称为古典概型?(2)对于古典概型的试验,如何求事件的概率?师生活动:教师利用多媒体出示问题,学生回答:(1)一次试验中,可能出现的结果有有限多个;各种结果发生的可能性相等.具有以上特点的试验称为古典概型.(2)对于古典概型的试验,我们可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.一般地,如果在一次试验中,有种可能的结果,并且它们发生的可能性都相等,事件A包含其中的种结果,那么事件A发生的概率为.设计意图:通过问答的方式,帮助学生回忆学过的知识,为本节课的学习准备好知识基础.【探究新知】列举法:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.师生活动:教师讲授,学生聆听,掌握列举法的定义.设计意图:因为教材没有列举法的概念,通过教师讲授,使学生对列举法有初步的认识.小明、小颖和小凡都想去看周末电影,但只有一张电影票,三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜;若两枚反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?做一做:连续掷两枚质地均匀的硬币,“两枚正面朝上”、“两枚反面朝上”、“一枚正面朝上,一枚反面朝上”这三个事件发生的概率相同吗?先分组进行试验,然后累计各组的试验数据,分别计算这三个事件复习的频数与频率,并由此估计这三个事件发生的概率.师生活动:教师出示问题,学生分组进行试验,交流数据并累计各组数据后再计算.设计意图:通过实际问题中的游戏背景引入,激发学生的学习兴趣.由学生亲自动手进行试验,经历猜测、试验、收集试验数据、分析试验结果等活动过程,进一步体验数据的随机性.学生通过交流与合作,体会到与他人合作交流的重要性,发展学生合作交流的意识与能力.当试验次数越多,频率稳定,用频率估计事件发生的概率.议一议:在上面掷硬币的试验中,(1)掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?(2)掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?师生活动:教师出示问题,学生思考、讨论,教师分析、引导.教师分析:由于硬币质地均匀,因此掷第一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.本题中掷第一枚硬币和掷第二枚硬币是两个相互独立的事件.解:(1)掷第一枚硬币可能出现“正面朝上”和“反面朝上”两种结果;它们发生的可能性一样.(2)掷第二枚硬币也是可能出现“正面朝上”和“反面朝上”两种结果;它们发生的可能性一样.(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现“正面朝上”和“反面朝上”;它们发生的可能性相同;如果第一枚硬币反面朝上也一样.利用树状图或表格列出所有可能出现的结果:总共有4种结果,每种结果出现的可能性相同.其中,小明获胜的结果有1种:(正,正),所以小明获胜的概率是;小颖获胜的结果有1种:(反,反),所以小颖获胜的概率也是;小凡获胜的结果有2种:(正,反),(反,正),所以小凡获胜的概率是.因此,这个游戏对三人是不公平的.归纳利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.思考 利用画树状图和列表的方法求概率时应注意些什么?师生活动:教师出示问题,学生思考、讨论,教师找学生代表回答,最后师生共同得出答案.答:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同.设计意图:通过这个问题,让学生知道利用树状图和列表的方法求概率时各种结果出现的可能性要相同.如果学生用其他的方法不重复、不遗漏地列出所有的结果,也应给予鼓励,但引导学生对不同列举方法进行比较,使学生体会画树状图、列表这两种方法的优越性.【典例精析】例 小颖有两件上衣,分别为红色和白色,有两条裤子,分别为黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?解:画树状图得:共有4种等可能的结果,恰好是白色上衣和白色裤子的有1种情况,恰好是白色上衣和白色裤子的概率是:.设计意图:指导学生如何规范应用列表法解决概率问题.此外,对于本题,教师也可以让学生用画树状图法解答.【课堂练习】1.不透明的袋子中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为().A .B .C .D .2.在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为( ).A.B.C.D.3.小明对小红说:“我们来做一个游戏,我向空中扔3个硬币,如果它们落地后全是正面朝上,你就得10分,如果它们全是反面朝上,你也得10分,但是,如果它们落地时是其他情况,我就得5分,得分多者获胜,好不好?”小红说:“让我考虑一分钟,至少有两枚硬币必定情况相同,因为如果有两枚情况不同,则第三枚一定会与这两枚硬币之一情况相同.而如果两枚情况相同,则第三枚与其他两枚情况相同或情况不同的可能性一样.因此,3枚硬币情况完全相同或情况不完全相同的可能性是一样的.但是小明是用5分来赌它们的,这分明对我有利,好吧,小明,我和你做这个游戏!”请问:小红的推理正确吗?参考答案1.C.2.C.3.解:首先利用树状图列出3枚硬币落地时的所有可能结果:由图可知总共有(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)8种结果,每种结果出现的可能性都相等,其中3枚情况完全相同的概率是,3枚情况不完全相同的概率是.因为×10<×5,所以这个游戏规则不公平,对小明有利.小红的推理不正确.设计意图:让学生加深对所学知识的理解.六、课堂小结1.列举法的定义:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.2.适合用列表法解决概率的情况:当一次试验涉及两个因素(例如掷两枚骰子),并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.我们不妨把两枚骰子分别记为第1枚和第2枚,这样就可以用方形表格列举出所有可能出现的结果.3.适合用画树状图法解决概率的情况:用树状图列举出的结果看起来一目了然,当事件要经过多次步骤(三步以上含三步)完成时,用这种“画树状图”的方法求事件的概率很有效.注意:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计3.1 用树状图或表格求概率(1)1.列举法的定义2.用树状图或表格求概率。
初中数学北师大版九年级上册《31用树状图或表格求概率(1)》教学设计
北师大版数学九年级上3.1 用树状图或表格求概率(1)教学设计朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.指出:我们通常利用树状图或表格列出所有可能出现的结果.树状图:表格:做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三人决定一起做连续抛掷两枚均匀的硬币游戏,谁获胜谁就去看电影.小明:两枚正面朝上,我获胜小颖:两枚反面朝上,我获胜小凡:一枚正面朝上、一枚反面朝上,我获胜你认为这个游戏公平吗?解:连续掷两枚均匀的硬币总共有4种结果,每种结果出现的可能性相同.其中:小明获胜的结果有1种:(正,正),所以小明获胜的概率是14;小颖获胜的结果有1种:(反,反),所以小颖获胜的概率也是14;小凡获胜的结果有2种:(正,反)(反,正),所以小凡获胜的概率是21 42 ;因此,这个游戏对三人是不公平的.归纳:利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.1.三张外观相同的卡片分别标有数字1,2,3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是( )1211A B. C. D.3369. 答案:A2.袋内装有标号分别为1,2,3,4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( )1571A B. C. D.416162. 答案:B3.如图,一个小球从入口A 往下落,在每个交叉口都有向左或向右两种可能,且两种可能性相等,则小球最终从出口E 落出的概率为( )A.18B.16C.14D.12 答案:C34x x +>⎧①由树状图可知共有12种等可能的结果,其中积为正数的有2种,∴积为正数的概率为21126下面让我们一起赏析一道中考题:(2019•广西)小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )1242131A.B.C 525.D.252答案:A在课堂的最后,我们一起来回忆总结我们这节课所学的知。
《用树状图或表格求概率》第2课时 北师大版九年级数学上册教案
第三章概率的进一步认识3.1 用树状图或表格求概率第 2 课时一、教学目标1.能运用画树状图和列表的方法计算一些简单事件的概率.2.能利用概率解决一些简单的实际问题,理解概率对日常生活和生产实践的指导作用,体会概率是描述随机现象的数学模型,发展应用意识.二、教学重点及难点重点:会用树状图和列表的方法计算随机事件发生的概率.难点:理解事件出现的等可能性,正确地分析出两步试验中出现的所有情况.三、教学用具多媒体课件.四、相关资源《石头、剪刀、布》图片、《用列举法求概率——列表法》微课.五、教学过程【复习引入】1.列举法的定义:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.2.适合用列表法解决概率的情况:当一次试验涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.3.适合用画树状图法解决概率的情况:用树状图列举出的结果看起来一目了然,当事件要经过多次步骤(三步以上含三步)完成时,用这种“画树状图”的方法求事件的概率很有效.注意:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同.师生活动:教师出示问题,学生回忆上节课节课所学内容.设计意图:通过对上节课的复习帮助学生回忆学过的知识,为本节课的学习准备好知识基础.【探究新知】小明、小颖和小凡做“石头、剪刀、布”游戏.游戏规则如下:由小明和小颖做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?师生活动:教师出示问题,学生思考、讨论,教师适当引导,最后师生共同得出答案.解:因为小明和小颖每次出这三种手势的可能性相同,所以可以利用树状共同图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同.其中,两人手势相同的结果有3种:(石头,石头)(剪刀,剪刀)(布,布),所以小凡获胜的概率为31 93 =;小明胜小颖的结果有3种:(石头,剪刀)(剪刀,布)(布,石头),所以小明获胜的概率为31 93 =;小颖胜小明的结果也有3种:(剪刀,石头)(布,剪刀)(石头,布),所以小颖获胜的概率为31 93 =.因此,这个游戏对三人是公平的.师生活动:教师出示问题,学生思考、讨论,教师找学生代表回答,最后师生共同得出答案.设计意图:本例题从理论上求出了在玩“石头、剪刀、布”的游戏时双方胜、平、负的概率,让学生进一步体会“数学就在我们身边”,发展“用数学”的意识与能力.通过这个问题,让学生知道利用树状图和列表的方法求概率时各种结果出现的可能性要相同.【典例精析】例小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?师生活动:教师找几名学生板演,讲解出现的问题.分析:掷得的点数之和是哪个数的概率最大,选择这个数后获胜的概率就最大.解:选择数字7;理由:列表如下:由表可知,共有36种可能的结果,每种结果出现的可能性相同,其中和为7的概率最大,概率为61366=,所以选择数字7获胜的概率最大.【课堂练习】1.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得的面朝上的点数之和是3的倍数的概率是().A .B .C .D .2.“石头、剪刀、布”是民间广为流传的游戏.游戏时,双方每次任意出“石头”“剪刀”“布”这三种手势中的一种,那么双方出现相同手势的概率P =_________.3.小莉和爸爸玩“锤子、剪刀、布”的游戏,每次用一只手可以出“锤子、剪刀、布”三种手势之一,规则是:锤子赢剪刀、剪刀赢布、布赢锤子.若两人出相同手势,则算打平.如果小莉这次出“布”手势,则小莉赢的概率是___________.4.甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏________(填“公平”或“不公平”).5.有三张大小一样而画面不同的画片,先将每一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率.师生活动:教师找几名学生板演,讲解出现的问题.6.现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字1,2,3,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,请用列表或画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.参考答案1.A .2..3.13.4.不公平.5.解:将三张大小一样而画面不同的画片分别记为A ,B ,C ,将出现的可能结果列表如下:由表可知,出现的总结果有9种,其中,能拼成原来的一幅画的结果有(A 上,A 下),13165185613(B 上,B 下),(C 上,C 下)三种,所以所求的概率为3193. 解:列表分析如下:由列表可知,所有可能出现的结果有9种,其中第二次抽取的数字大于第一次抽取的数字的情况有3种,所以P (第二次抽取的数字大于第一次抽取的数字)==.设计意图:让学生加深对所学知识的理解.六、课堂小结1.用树状图或表格求概率注意:利用画树状图和列表的方法求概率时,应注意各种结果出现的可能性要相同. 师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计3.1 用树状图或表格求概率(2)1.用树状图或表格求概率3913。
九年级上册数学《用树状图或表格求概率》教案-北师版
3.1用树状图或列表求概率(第一课时)一、课标要求:(一)内容要求1.了解利用数据可以进行统计推断, 发展建立数据分析观念;感受随机现象的特点。
2.能通过列表、画树状图等方法列出简单随机事件所有可能的结果, 以及指定事件发生的所有可能结果, 了解事件的概率。
(二)数学思想方法(核心概念):本节课是简单的两步实验, 可以通过计算得到它的概率, 所渗透的数学思想是:转化、类比、在树状图中体会几何直观。
本节课的核心概念为: 模型思想、数据分析观念、应用意识。
二、教材与学情分析(一)教材分析:本节课是九年级上册第三章《概率的进一步认识》第一节第一课时, 通过七年级下册“概率初步”的学习, 学生已经通过试验、统计等活动感受随机事件发生频率的稳定性即“当试验次数很大时, 事件发生的频率稳定在相应概率的附近”;体会到概率是描述随机现象的数学模型。
学生已经获得概率的计算有两种方式:理论计算和试验估算。
本章第一节通过游戏活动, 让学生经历猜测、试验、收集数据、分析数据等活动过程, 然后学习计算这类事件发生概率的两种方法---画树状图和列表法。
本节共三课时, 第一课时通过一个试验活动引出求概率的树状图和列表法,第二课时和第三课时分别选择不同的情境, 让学生经历利用画树状图和列表法求出概率并解决问题的过程。
(二)学情分析:1.学习条件和起点能力分析学生已经认识到现实生活中存在大量的随机事件, 初步感受到数据的随机性, 并研究了一些简单随机事件发生的概率, 对一些现象做出了合理的解释, 对游戏活动的公平性可借助概率作出评判;学生已经感受到了频率的稳定性, 能理解在大量重复试验的基础上, 可用试验频率估计事件发生的概率。
2.学生在七年级已经通过试验、统计等活动感受随机事件发生的频率的稳定性即“当试验次数很大时, 事件发生的频率稳定在相应概率的附近”, 初步体会概率是描述随机现象的数学模型, 实验的过程就是渗透“概率模型思想”的过程, 通过之前的学习学生大脑中初步建立起了“概率是刻画现实世界随机事件发生可能性大小的重要模型”, 具备了将实际问题转化为相应的概率模型的意识、模型化思维和应用意识。
【北师版九年级数学上册教案】3.1第1课时用树状图或表格求概率
3.1 用树状图或表格求概率第 1 课时用树状图或表格求概率教课目的1.能运用树状图和列表法计算简单事件发生的概率.2.经历试验、统计等活动过程,在活动中进一步提升学生合作沟通的意识和能力.3.经过自主研究、合作沟通激发学生的学习兴趣,感觉数学的简捷美,及数学应用的宽泛性.教课重难点【教课要点】运用树状图和列表法计算简单事件发生的概率.【教课难点】经过两种求概率方法的选择使用,理解两种方法各自的特色,并能依据不一样情境选择适合的方法 .课前准备课件等 .教课过程一、情境导入 ,生成问题1.某校学生会倡导双休日到养老院参加服务活动,初次活动需要7 位同学参加,现有包含小杰在内的50 位同学报名,所以学生会将从这 50 位同学中随机抽取7 位,小杰被抽到7.参加初次活动的概率是502.将一质地平均的正方体骰子掷一次,察看向上一面的点数,与点数3相差 2的概率是(B)1111A. 2B. 3C.5D.6二、自学互研,生成能力知识模块一研究用树状图或表格求简单随机事件的概率自主研究阅读教材 P60“做一做”前方的内容,而后回答下边的问题:1.这个游戏对三人能否公正?请互相沟通.2.阅读教材P60“议一议”部分内容,达成“议一议”中的三个问题,请互相沟通.合作研究1.分小组达成教材P60“做一做”学习任务.概括结论:经过大批重复试验我们发现,在一般状况下,“一枚正面向上、一枚反面朝上”发生的概率大于其余两个事件发生的概率.所以,这个游戏不公正,它对小凡比较有益.2.深入研究:在上边投掷硬币试验中,(1)投掷第一枚硬币可能出现哪些结果?它们发生的可能性能否同样?(2)投掷第二枚硬币可能出现哪些结果?它们发生的可能性能否同样?(3) 在第一枚硬币正面向上的状况下,第二枚硬币可能出现哪些结果?它们发生的可能性能否同样?假如第一枚硬币反面向上呢?研究领会:因为硬币是平均的,所以投掷第一枚硬币出现“正面向上”和“反面向上”的概率同样.不论投掷第一枚硬币出现如何的结果,投掷第二枚硬币时出现 “正面向上”和“反面向上” 的概率也是同样的. 所以,投掷两枚平均的硬币, 出现的 (正,正 )(正,反 )(反,正)( 反,反 )四种状况是等可能的. 所以,我们能够用下边的树状图或表格表示全部可能出现的结果:第一枚硬币第二枚硬币正反正 (正,正 ) (正,反)反(反,正 )(反,反)此中,小明获胜的结果有一种:(正,正 ). 所以小明获胜的概率是1;小颖获胜的结果4有一种: (反,反 ).所以小颖获胜的概率也是1;小凡获胜的结果有两种: (正,反 )(反,正 ).所42以小凡获胜的概率是4.所以,这个游戏对三人是不公正的.概括结论: 利用树状图或表格, 我们能够不重复, 不遗留地列出全部可能的结果, 进而比较方便地求出某些事件发生的概率.知识模块二 利用树状图或表格求简单事件发生的概率自主研究解答以下问题:1.假如一次试验中,全部可能出现的结果有n 个,并且全部结果出现的可能性同样,那么每个结果出现的概率( B )1D .都 是 nA .都是 1C .不必定相等B .都是 n2.如图,有以下3 个条件:① AC =AB ,② AB ∥CD ,③∠ 1=∠ 2,从这 3 个条件中 任选 2 个作为题设,另1 个作为结论,则构成的命题是真命题的概率是( D )12A . 0B. 3C.3D . 1合作研究典例解说:把大小和形状如出一辙的 6 张卡片分红两组, 每组 3 张,分别标上数字 1,2,3.将这两组卡片分别放入两个盒子中搅匀, 再从中各随机抽取一张, 试求拿出的两张卡片数字之和为偶数的概率 (要求用树状图或列表法求解 ).解:画树状图:由上图可知,全部等可能结果共有 9 种,此中两张卡片数字之和为偶数的结果有5 种.∴ P(和为偶数 )= 5.列表以下:9第一组第二组1 2 3 1 (1, 1) (1, 2) (1,3) 2 (2, 1) (2, 2) (2,3) 3(3, 1)(3, 2)(3,3)由上表可知,全部等可能结果共有9 种,此中两张卡片数字之和为偶数的结果有5 种.∴ P(和为偶数 )= 5.9对应练习:1. 达成教材 P 61 随 堂练习.2.在 A 、B 两个盒子都装入写有数字 0、1 的两张卡片,分别从每个盒子里任取1 张卡片,两张卡片上的数字之积为 0 的概率是多少?解法 1:画树状图以下:从 A 盒或 B 盒中任取一张卡片, 上边有数字 0 或 1 的可能性相等, 由树状图能够看出,两张卡片上的数字之积有4 种等可能的结果,此中两数之积为0 的结果有 3 种,于是 P(积3为 0)= 4.解法 2:列表以下:B1[根源学A科 网 Z,X,X,K]0 0 0 11由表可知, 两张卡片上的数字之积共有4 种等可能的结果, 积为 0 的结果有 3 种.所以3P(积为 0)= 4.三、沟通展现,生成新知1.将阅读教材时“生成的问题”和经过“自主研究、合作研究”得出的“结论”展现在各小组的小黑板上. 并将疑难问题也板演到黑板上, 再一次经过小组间就上述疑难问题互相释疑.2.各小组由组长一致分派展现任务,由代表将“问题和结论”展现在黑板上,经过沟通“生成新知” .四、检测反应,达成目标1.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都同样,随机从中摸出一个球,记下颜色后放回袋子中,充足摇匀后,再随机摸出一个球,两次都摸到黑球的概率是 ( A)1112A. 4B.3C.2D.32.在a24a 4 的空格中,随意填上“+”或“-” ,在所得的代数式中,能够构成完好平方式的概率是( B)111A . 1 B. 2 C.3 D. 43.长城企业为希望小学捐献甲、乙两种品牌的体育器械,甲品牌有A、B、C 三种型号,乙品牌有 D、E 两种型号,现要从甲、乙两种品牌的器械中各选购一种型号进行捐献.将下边所画树状图增补完好.一共有 6 种结果,每种结果出现的可能性同样.那么 A 型号器械被选中的概率为1.3五、课后反省,查漏补缺1.收获:_________________________________________________________2 .存在疑惑:____________________________________________________。
九年级数学上册3.1.3用树状图或表格求概率教案(新版)北师大版
课题:用树状图或表格求概率教课目的:1.能运用画树状图或列表的方法计算一些简单事件的概率,并能利用概率解决一些简单的实质问题,提升运用所学的概率知识解决问题的能力.2 .鼓舞学生思想的多样性,展开学生的合作沟通的意识和发现问题、提出问题的能力.教课重、难点:要点:借助树状图、列表法计算随机事件的概率.难点:在利用树状图或许列表法求概率时,各样状况出现可能性不一样时的状况办理.课前准备:多媒体课件.教课过程:一、创建情境,导入新课活动内容 1:“配紫色〞游戏游戏1:小颖为学校联欢会设计了一个“配紫色〞游戏:下边是两个能够自由转动的转盘,每个转盘被分红面积相等的几个扇形.游戏者同时转动两个转盘,假如转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,由于红色和蓝色在一同配成了紫色.(1)利用树状图或列表的方法表示游戏者全部可能出现的结果.游戏者获胜的概率是多少?办理方式:教师利用课件展现游戏规那么及演示转动每个转盘,让学生认识到每个转盘转出的结果都是等可能的.而后让两名学生板书借助树状图、借助表格的方法求出游戏者全部可能出现的结果,并计算出游戏者获胜的概率,其余同学在练习本上达成,达成后让其余学生进行评论,领会每个转盘转出的结果都是等可能的.解法一:借助树状图解:全部可能出现的结果以下:黄(红,黄)红 绿〔红,绿〕开始蓝(红,蓝)黄〔白,黄〕会白绿〔白,绿〕蓝(白,蓝)总合有6种结果,每种结果出现的可能性同样.此中,能够配成紫色的结果有1 种:〔红色,蓝色〕,因此游戏者的概率P 〔游戏者获胜〕=1.6解法二: 借助表格解:全部可能出现的结果以下:B 盘A 盘黄色蓝色 绿色红色 〔红,黄〕〔红,蓝〕 〔红,绿〕 白色〔白,黄〕〔白,蓝〕〔白,绿〕总合有6种结果,每种结果出现的可能性同样.此中,能够配成紫色的结果有1种:〔红色,蓝色〕,因此游戏者的概率P 〔游戏者获胜〕=1.6活动内容2:导入新课导语:同学们,前面我们已经学习了利用树状图或列表的方法求出每种事件发生的可能性同样的概率,当每种事件发生的可能性不一样时, 你能想法解决吗?本节课我们来持续学习 用树状图或表格求每种事件发生的可能性不一样时的概率.【教师板书课题:用树状图或 表格求概率〔3〕】设计企图:经过转转盘“配紫色〞游戏 ,回想经历利用树状图或表格的方法求出概率的过程,领会求概率时一定使每种事件发生的可能性同样; 教师用挑战性的语言提出:当每种事件发生的可能性不一样时, 可否利用树状图或表格的方法求出概率. 有益于激起学生的挑战 欲念,培育学习兴趣.二、研究学习,获得新知2活动内容1:提出问题〔多媒体出示〕游戏2:假如把转盘变为如右图所示的转盘进行“配紫色〞游戏.利用树状图或列表的方法表示游戏者全部可能出现的结果.游戏者获胜的概率是多少?办理方式:教师利用课件展现游戏规那么及转动每个转盘,提示学生仔细剖析转盘,让学生认识A转盘转出的结果不是等可能的,A转盘红色地区是蓝色地区的2倍,用A转盘转出红色的可能性是转出蓝色的2倍.设计企图:经过问题情境的设计,让学生认识事件的结果有的是不等可能的,在解决这类问题时不可以简单的利用树状图或表格求概率.活动内容2:方案分析请仔细察看小颖与小亮两位同学不一样的做法,他们的办理方法能否存在问题?为何?1小颖做法如以下列图,并据此求出游戏者获胜的概率为2红〔红,红〕红蓝〔红,蓝〕开始红〔蓝,红〕蓝蓝〔蓝,蓝〕小亮那么先把A转盘的红色地区平分红2份,分别记作“红色1〞“红色2〞,而后制作了下表,据此求出游戏者获胜的概率也是1.2B盘蓝色红色A盘红色1〔红1,红〕〔红1,蓝〕红色2〔红2,红〕〔红2,蓝〕蓝色〔蓝,红〕〔蓝,蓝〕你以为谁做得对?谈谈你的原因.办理方式:先让学生试试借助树状图或表格表示出全部可能出现的结果,而后察看小颖3与小亮两位同学不一样的做法,先在小组内沟通,后选代表讲话展现,教师关注每一个学生的参加状况,同时发问:A转盘与游戏1中B转盘有什么差别?经过对比,让学生知道小颖同学的做法是错误的,由于利用树状图或列表的方法求概率时,各样结果出现的可能性一定相同,而A盘红色地区和蓝色地区的面积不一样,指针落在红色地区或蓝色地区的可能性是不一样的.小亮同学的做法是正确的,把A转盘中的红色地区平分红2份,分别记作“红色1〞“红色2〞,保证了A转盘中指针落在“蓝色〞“红色1〞“红色2〞三个地区的等可能性,这样各种结果出现的可能性就同样,就能够利用树状图或列表的方法计算概率.设计企图:让学生先自己画树状图或许表格表示出全部可能出现的结果,而后经过合作沟通察看A盘和游戏1中B转盘的差别并做出正确判断,并总结出求一件事情发生的概率一定是全部可能出现的结果都同样.活动内容3:总结提练利用画树状图和列表的方法求概率时应注意些什么?办理方式:先让学生自己领会,而后组内沟通,最后班内展现,其余同学增补说明,教师实时评论.教师重申:利用画树状图或列表的方法求概率时,各样结果出现的可能性一定同样,假定可能性不一样,就一定想法进行办理,务必使各样结果出现的可能性同样.三、例题分析,应用新知例2一个盒子中装有两个红球、两个白球和一个蓝球,这些球除颜色外都同样.从中随机摸出一个球,记下颜色后放回,再从中随机摸出一球,求两次摸到的球的颜色能配成紫色的概率.办理方式:教师先提示学生剖析题意,指引剖析以下:1〕盒子中所装的球有什么特点?从盒子中随机摸出一球,摸出红球、白球、蓝球的可能性同样吗?怎样办理才能使从盒子中随机摸出一球结果出现的可能性同样?2〕从盒子中随机摸出一球,记下颜色后放回,再从中随机摸出一球,为何?3〕从盒子中随机摸出一球与利用转转盘的成效同样吗?而后,分组沟通展现,教师依据认识状况,选不一样组的代表分别用树状图或列表法,求两次摸到的球的颜色能配成紫色的概率.解:先将两个红球分别记作“红1〞“红2〞,两个白球分别记作“白1〞“白2〞,而后4列表以下:第一次红1红2白1白2蓝第二次1〔红1,红1〕〔红1,红2〕〔红1,白1〕〔红1,白2〕〔红1,蓝〕2〔红2,红1〕〔红2,红2〕〔红2,白1〕〔红2,白2〕〔红2,蓝〕白1〔白1,红1〕〔白1,红2〕〔白1,白1〕〔白1,白2〕〔白1,蓝〕白2〔白2,红1〕〔白2,红2〕〔白2,白1〕〔白2,白2〕〔白2,蓝〕蓝〔蓝,红1〕〔蓝,红2〕〔蓝,白1〕〔蓝,白2〕〔蓝,蓝〕总合有25种结果,每种结果出现的可能性同样,而两次摸到的球的颜色能配成紫色的结果有4种:〔红1,蓝〕〔红2,蓝〕〔蓝,红1〕〔蓝,红2〕,4因此,P〔配成紫色〕=.25设计企图:经过典型例题分析,让学生学会用画树状图或列表的方法计算一些简单事件的概率,提升运用所学的概率知识解决问题的能力.四、牢固训练,落实新知1.用以下列图的两个转盘做“配紫色〞游戏,每个转盘都被分红三个面积相等的三个扇形,恳求出配成紫色的概率是多少?2.设计两个转盘做“配紫色〞游戏,使游戏者获胜的概率为1.3办理方式:第1题让学生板书其余同学在练习本达成,找学生评论;第2题以小组为单位设计详细方案,而后沟通各组的设计思路,展开小组比赛活动,教师巡视学生的设计方案,选择有代表性的设计借助实物投影展现.设计企图:经过这个训练题组,检测学生掌握状况,进行查缺补漏,展现学生的思想过程,使学生领会概率是描绘随机现象的数学模型,展开应企图识.五、回想反省,提炼升华经过这节课的学习,你有哪些收获?学会了哪些方法?在利用树状图或表格求概率时要注意些什么?还有哪些疑惑?先想想,再分享给大家.办理方式:学生畅聊自己的收获!设计企图:讲堂总结是知识积淀的过程,经过对本节课所学概率进行梳理,使学生养成反省与总结的习惯,领会概率是描绘随机现象的数学模型,展开应用概率的意识.5六、达标检测,反响提升活动内容:经过本节课的学习,我相信你们必定能运用所学的概率知识解决以下问题,请达成达标检测题并进行自我评论.〔同时多媒体出示〕1.用以下列图的两个转盘进行“配紫色〞游戏,配得紫色的概率是多少?2.在一个不透明的袋子中有2个黑球,3个白球,它们除了颜色外都同样.充足摇匀后,先摸出1个球不放回,再摸出1球,那么两个球都是黑球得概率为.办理方式:学生做完后,教师出示答案,学生自我评论,并统计学生答题状况,学生依据答案进行纠错.设计企图:经过当堂检测实时获知学生对所学知识的掌握状况,并能最大限度地调换全体学生学习数学的踊跃性,使每个学生都能有所利润、有所提升,明确哪些学生需要在课后增强指导,抵达全面提升的目的.七、部署作业,讲堂延长根基作业:课本P习题第2题.68拓展作业:课本P68习题第3题.板书设计:§用树状图或表格求概率(3)活动1:配紫色游戏活动2:想想活动3:仪一议结论:用树状图或列表法求随机事件发生的概率时,应注意各样结果出现的可能性一定同样.2解:投影区学生活动区6。
北师大版数学九年级上册3.1《用树状图或表格求概率(三)》 教案
北师大版数学九年级上册3.1《用树状图或表格求概率(三)》教案一. 教材分析《北师大版数学九年级上册3.1《用树状图或表格求概率(三)》》这一节主要讲述了如何利用树状图或表格来求解概率问题。
本节课的内容是学生在学习了概率的基本知识、如何列举等可能结果和如何求解概率之后的内容,是进一步培养学生解决实际问题的能力,使学生能够灵活运用所学的知识来解决生活中的问题。
二. 学情分析学生在学习这一节之前,已经学习了概率的基本概念,掌握了如何列举等可能的结果和求解概率的方法。
但是,对于如何利用树状图或表格来求解概率问题,可能还存在一定的困难。
因此,在教学过程中,我需要引导学生将已学的知识运用到实际问题中,通过实际问题来理解和掌握如何利用树状图或表格来求解概率问题的方法。
三. 教学目标1.理解并掌握如何利用树状图或表格来求解概率问题的方法。
2.能够灵活运用所学的知识来解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:如何利用树状图或表格来求解概率问题的方法。
2.难点:如何引导学生将所学的知识运用到实际问题中,灵活求解概率问题。
五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握如何利用树状图或表格来求解概率问题的方法。
在教学过程中,注重培养学生的逻辑思维能力和解决问题的能力。
六. 教学准备1.准备相关的实际问题,用于引导学生解决概率问题。
2.准备树状图和表格,用于辅助学生理解和掌握求解概率问题的方法。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何求解概率问题。
例如:一个袋子里有5个红球和4个蓝球,随机取出一个球,求取到红球的概率。
2.呈现(10分钟)呈现树状图和表格,引导学生理解树状图和表格的作用,以及如何利用它们来求解概率问题。
通过具体的例子,解释树状图和表格的每一项代表什么,如何计算概率。
3.操练(10分钟)让学生分组,每组解决一个实际问题,利用树状图或表格来求解概率问题。
北师大版九年级数学上册第三章《概率的进一步认识》用树状图或表格求概率教案
第三章 概率的进一步认识教案第1课时 用树状图或表格求概率教案1.会用画树状图或列表的方法计算简单随机事件发生的概率;(重点)2.能用画树状图或列表的方法不重不漏地列举事件发生的所有可能情况,会用概率的相关知识解决实际问题.(难点)一、情景导入游戏:小明对小亮说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,算我赢,如果落地后两面一样,算你赢.”结果小亮欣然答应,请问:你觉得这个游戏公平吗?二、合作探究探究点:用树状图或表格求概率 【类型一】 两步决定的概率问题明华外出游玩时带了2件上衣(白色、米色)和3条裤子(蓝色、黑色、棕色),他任意拿出一件上衣和一条裤子恰好是白色和黑色的概率是多少?解析:可采用画树状图或列表法把所有的情况都列举出来. 解:解法1:画树状图如图所示:由图中可知共有6种可能,而白衣、黑裤只有1种可能,概率为16;解法2:将可能出现的结果列表如下:裤子上衣 蓝色 黑色 棕色 白色 (白,蓝) (白,黑) (白,棕) 米色(米,蓝)(米,黑)(米,棕)由表可知共有6种可能,而白衣、黑裤只有1种可能,概率为16.方法总结:求某随机事件的概率,一般需要用画树状图或列表两种方法将所有可能发生结果一一列举出来,再求所关注的结果在所有结果中占的比值.【类型二】 两步以上决定的概率问题小可、子宣、欣怡三人在一起做游戏时,需要确定做游戏的先后顺序,她们约定用“石头、剪子、布”的方式确定,那么在一个回合中,三个人都出“剪子”的概率是多少?解:用树状图分析所有可能的结果,如图.由树状图可知所有可能的结果有27种,三人都出“剪子”的结果只有1种,所以在一个回合中三个人都出“剪子”的概率为127.方法总结:当一次试验涉及三个或更多的因素时,为了不重不漏地列出所有可能的结果,通常采用树状图.【类型三】 有无放回试验一只箱子里共有3个球,其中有2个白球,1个红球,它们除了颜色外均相同. (1)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率;(2)从箱子中任意摸出一个球,将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率.解析:题中(1)(2)的区别在于第一次摸出的球是否放回了箱子.由题可知,第二次摸球时(1)的箱子中应减少第一次摸出的那个球,那么还剩两个球可以摸,而(2)的箱子中还是有三个球可以摸.所以,两个白球应该区别开来,我们用“白1”“白2”表示.解:(1)列表如下:第一次第二次白1 白2 红 白1 —— (白2,白1)(红,白1) 白2 (白1,白2) —— (红,白2)红(白1,红)(白2,红)——由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P (两次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次白1 白2 红 白1 (白1,白1) (白2,白1) (红,白1) 白2 (白1,白2) (白2,白2) (红,白2) 红(白1,红)(白2,红)(红,红)由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P (两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率⎩⎨⎧画树状图法列表法第1课时 用树状图或表格求概率教 学 目 标教学知识点:学习用树状图和列表法计算随机事件发生的概率.能力训练要求:1.培养学生合作交流的意识和能力;2.提高学生对所研究问题的反思和拓广的能力,逐步形成良好的反思意识.情感与价值观要求:积极参与数学活动,经历成功与失败,获得成功感,提高学习数学的兴趣.重 点 用树状图和列表法计算随机事件发生的概率.难 点 通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法.教学过程:一、创设问题,引入新课游戏:小明对小亮说:“我向空中抛2枚同样的—元硬币,如果落地后一正一反,你给我10元钱,如果落地后两面一样,我给你10元线.”结果小亮欣然答应,请问,你觉得这个游戏公平吗?分析得很好,当然,这只是个数学游戏.教师只是想用此介绍一些概率问题,而国家规定中小学生是不能参与购买彩票的,而赌博更是有百害而无一益的噢!下面我们再来看一个游戏. 二、引入新课如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢? 小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为93,即31.小颖的做法:通过列下表得到牌面数字和等于4的概率为51.牌面数字的可能值 23456相应的概率 5151 51 51 51]小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为31.第一张牌的牌 面数字第二张 牌的牌面数1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)你认为谁做得对?说说你的理由.小颖和小亮都用了列表法,而小颖的做法是错误的,小亮的做法是正确的.你认为用列表法求概率时要注意些什么?用列表法求概率时应注意各种情况出现的可能性务必相同.从小亮的表格中你还能获得哪些事件发生的概率呢?用树状图或列表的方法求出:1.将两枚均匀的一元硬币抛出去,两个都是正面朝上的概率是多少?2.掷两枚骰子.它们的点数和可能有哪些值?求出点数和为6的概率.探索活动:( 教材P62 例1)小明、小颖和小凡做“石头、剪刀、布”的游戏游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.。
北师大九年级上册 3.1.2 用树状图或表格求概率 教学设计
3.1.2用树状图或表格求概率教学设计人民喜爱.那么同学们想一想“石头、剪刀、布”有没有规则漏洞可钻呢?如果三人在一起做游戏时,需要确定做游戏的先后顺序,她们约定用“石头、剪刀、布”的方式确定,那么在一个回合中,三个人都出“剪刀”的概率是多少?问题1:这个游戏是几步试验完成?问题2:每种都有几个可能性?问题3:一共有多少种可能性?下面让我们一起来研究。
例 1 小明、小颖和小凡做“石头、剪刀、布”游戏。
游戏规则如下:由小明和小颖做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?解:因为小明和小颖每次出这三种手势的可能性相同,所以可以利用树状图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同.两人手势相同的结果有3种:(石头,石头)(剪刀,剪刀)(布,布)所以小凡获胜的概率为:31 = 93小明胜小颖的结果有3种:(石头,剪刀)(剪刀,布)(布,石头),所以小明获胜的概率为:31=93;小颖胜小明的结果有3种:(剪刀,石头)(布,剪刀)(石头,布),所以小颖获胜的概率为:31 = 93你能用列表法来解决这个问题吗?解:利用表格列出所有可能的结果:【做一做】小明和小军两人一起做游戏。
游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次质地均匀的骰子,谁事先选择的数字等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负。
如果你是游戏者,你会选择哪个数?方法指导:这个问题看上去复杂,实际上等同于:两人各掷一次均匀的骰子,将两人掷得的点数相加,点数之和为几的概率最大?所以掷得的点数之和是哪个数的概率最大,选择这个数后获胜的概率就大。
利用列表法列出所有可能出现的结果:从表格中,能看出和为7出现的次数最多,所以选择7,概率最大!【想一想】这个题目用树状图合适吗?解:因为小明和小军掷骰子出现的可能性相同,所以可以利用树状图列出所有可能出现的结果:共有36种等可能的结果.和为7出现的次数最多,所以得到点数之和是7的概率最大;所以一般来说,选择7这个数获胜的可能性最大.123456123456小明小军234567345678456789567891067891011789101112。
2019—2020年最新北师大版九年级数学上册《用树状图或表格求概率》(教学设计).doc
《用树状图或表格求概率》教案教学目标1、理解每次实验的所有可能性(即概率)相同,和前次实验结果无关.2、会运用树状图和列表法计算简单事件发生的概率.3、经历试验、探讨过程,在活动中进一步发展学生合作交流的意识和能力.教学重点运用树状图和列表法计算事件发生的概率.教学难点树状图和列表法的运用方法.教学方法合作交流,共同探究.教学过程一、问题引入:(3分钟)(1)从黑桃1和2中摸一张牌,摸着几的可能性大?概率是多少?(2)加上红桃1和2,如果摸得黑桃为1,那么摸红桃数字为几的可能性大?如果摸得黑桃的数字为2呢?(学生交流讨论,由此引入知识要点1)二、合作交流、构建知识:(20分钟)(一)总结出知识要点1:每次实验具有的可能性相同.和前一次实验结果无关(二)思考交流:(3分钟)(3)同时从两组牌中各摸一张出来,共有几种可能性?每种可能性是否相同?概率分别是多少?(三)分别用树状图和表格求概率(7分钟)开始第一张牌数字: 1 2第二张牌数字: 1 2 1 2可能出现的结果(1,1)(1,2)(2,1)(2,2)(解释(1,1)的表示方法-------有序----类似点坐标)解:从上面的树状图或表格可以看出,一次试验可能出现的结果共有4种:(1,1)(1,2)(2,1)(2,2),而且每种结果出现的可能性相同,也就是说,每种结果出现的概率都是1/4.总结出知识要点2:利用树状图或表格,可以比较方便地求出某些事件发生的概率.(四)例题解析(10分钟)例1:小明、小颖和小凡做“石头、剪刀、布”游戏.游戏规则如下:由小明和小颖做“石头、剪刀、布”的游戏,如果两人的手势相同,那么小凡获胜;如果两人的手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?例题处理(解题过程略):(1)学生先尝试完成,然后2个学生用两种方法板演,师生共同订正(2)让学生根据例1自己设计问题考其他同学,其他学生解答三、运用拓展(20分钟)(一)知识要点1强化练习----口答:(5分钟)1、小王夫妇第一胎生了女孩,如果政策允许生第二胎,那么他们第二胎生男孩和生女孩哪种可能性哪种大?生男孩的概率是多少?2、小明正在做扔硬币的试验,他已经扔了3次硬币,不巧的是这3次都是正面朝上.那么,你认为小明第4次扔硬币,出现正面朝上的可能性和反面朝上的可能性哪种大?概率分别是多少?3、福利彩票“3D”中奖的概率是1/1000,小丽的爸爸买了999次都没中奖,那么他下次买彩票中奖的概率是多少?(二)知识要点1强化练习-----用树状图或表格求概率:(1 5分钟)4、袋中有外观相同的红球和白球各一个,随机摸出一球记下颜色,放回摇匀后再随机摸出一球,则两次摸到球的颜色不相同的概率是多少?5、左边有两张卡片分别标着数字1和2,右边有三张卡片分别标着数字3、4和5.鹦鹉随机从左边叼一张卡片作十位数,再从右边叼一张卡片作个位数.那么鹦鹉叼出的数字恰好是23的概率是多少?6、王俊杰有两套运动衣,一套是黄衣服、黄裤子,另一套是红衣服、红裤子.他在漆黑的夜晚随手穿上衣服和裤子.那么他刚好穿着红衣服和红裤子的概率是多少?(总结时强调解题规范性和下节重点研究放回)四、课堂小结:1、每一次试验具有的可能性相同2、利用树状图或表格可以方便地求出事件发生的概率.五、课外作业----先玩后做:(2分钟)小明和小丽在玩“棒子,老虎,鸡,虫”的游戏----- 游戏规则:两人同时喊,其中棒子打老虎,老虎吃鸡,鸡吃虫,虫吃棒子,被吃或被打者输.(1)同桌试着玩几次(2)请用树状图或表格求出:○1小明赢的概率是多少?○2两人叫出来的名称一样的概率是多少?。
北师大版九年级数学上册:3.1用树状图或表格求概率(教案)
-难点内容:理解并正确应用树状图和表格列举所有可能结果。
-突破方法:通过直观的图形展示和步骤分解,帮助学生理解树状图的构建过程,以及表格的填写方法。
-举例解释:在掷骰子的问题中,如何通过树状图将每次掷出的可能结果清晰展示出来,以及如何用表格形式列出所有组合。
-难点内容:计算简单事件的概率。
北师大版九年级数学上册:3.1用树状图或表格求概率(教案)
一、教学内容
北师大版九年级数学上册:3.1用树状图或表格求概率。本节课主要围绕以下内容展开:
1.理解概率的定义,掌握用树状图和表格列举所有可能结果的方法。
2.利用树状图和表格求简单事件的概率。
3.掌握如何利用概率的性质求解实际问题。
内容包括但不限于:列举所有可能结果的方法,树状图的构建,表格的设计,概率的计算,以及如何应用概率知识解决实际问题。通过本节课的学习,使学生能够熟练运用树状图和表格求概率,提高解决问题的能力。
关于学生小组讨论环节,我觉得自己在引导和启发方面还有待提高。有时候,同学们在讨论过程中可能会偏离主题,我没有及时把他们引导回来。在今后的教学中,我需要更加关注学生的讨论进度,适时给出建议和指导,帮助他们聚焦问题的关键点。
最后,我觉得在课堂总结环节,可以更多地让同学们参与进来。例如,让他们回顾今天学到的知识点,并尝试用自己的话进行总结。这样既能检验他们对知识的掌握程度,也能提高他们的语言表达能力。
其次,在讲解重点和难点时,我尽量用简单明了的语言和具体的例子进行解释。但观察同学们的反应,我觉得可能还需要进一步简化讲解,突出关键步骤,让他们更容易理解和掌握。
此外,实践活动中的小组讨论环节,同学们表现得非常积极,提出了很多有创意的想法。但在分享成果时,有些小组的表达不够清晰,可能是因为他们对问题的理解还不够深入。为了提高同学们的表达能力,我计划在接下来的课程中,多增加一些小组内的讨论和展示环节,鼓励他们多思考、多表达。
北师大版数学九年级上册《树状图或表格求简单事件的概率》教学设计
北师大版数学九年级上册《树状图或表格求简单事件的概率》教学设计一. 教材分析《树状图或表格求简单事件的概率》是北师大版数学九年级上册的一节内容。
本节课的主要内容是让学生掌握利用树状图或表格求简单事件的概率的方法。
通过学习本节课,学生能够理解概率的基本概念,学会使用树状图或表格来求解事件的概率,为后续学习更复杂的概率问题打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于一些基本的数学概念和运算规则有一定的了解。
但是,学生在学习概率这一概念时,可能会感到较为抽象和难以理解。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出概率模型,并通过树状图或表格的形式来进行分析和计算。
三. 教学目标1.知识与技能:让学生掌握利用树状图或表格求简单事件的概率的方法,并能够运用到实际问题中。
2.过程与方法:通过学生的自主探究和合作交流,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:让学生体验到数学与生活的紧密联系,激发学生对数学学习的兴趣。
四. 教学重难点1.重点:让学生掌握利用树状图或表格求简单事件的概率的方法。
2.难点:如何引导学生从实际问题中抽象出概率模型,并运用树状图或表格来进行分析和计算。
五. 教学方法1.情境教学法:通过生活实例的引入,激发学生的学习兴趣,引导学生从实际问题中抽象出概率模型。
2.启发式教学法:在教学过程中,教师引导学生进行自主探究和合作交流,培养学生的逻辑思维能力和解决问题的能力。
3.直观教学法:通过树状图或表格的展示,使学生更加直观地理解和掌握概率的计算方法。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示树状图或表格的例子。
2.教学素材:准备一些实际问题,作为学生练习的题目。
3.学生活动材料:准备一些纸张,供学生绘制树状图或表格。
七. 教学过程1.导入(5分钟)教师通过生活实例的引入,引导学生思考事件的概率问题。
例如,抛硬币实验,让学生思考抛两次硬币,正面向上的概率是多少。
北师大版九上数学(教案)第三章:第1节 用树状图或表格
北师大版九年级上第三章《概率的进一步认识》《用树状图或表格求概率》第三课时教案【教学目标】1.知识与技能经历利用树状图和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯。
2.过程与方法鼓励学生思维的多样性,提高应用所学知识解决问题的能力。
3.情感态度和价值观经历自主探究、合作交流等学习方式的学习及激励评价,让学生在学习中锻炼能力.【教学重点】借助于树状图、列表法计算随机事件的概率。
【教学难点】在利用树状图或者列表法求概率时,各种情况出现可能性不同时的情况处理。
【教学方法】合作、探究【课前准备】多媒体课件【教学过程】一、复习回顾1.求概率的一般方法:树状图和列表法2.若某游戏不计得分情况,当双方获胜的概率___相等_____,则游戏公平;当双方获胜的概率____不相等____,则游戏不公平.3.用树状图和列表的方法求概率时应注意各种结果出现的可能性相同.二、探究新知探究:游戏1小颖为学校联欢会设计了一个“配紫色”游戏:下面的几个扇形,游戏规则是:游戏者同时转动两个转盘,如果转盘A转出红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)利用树状图或列表方法表示游戏所有可能出现的结果.(2)游戏者获胜的概率是多少?三、例题讲解:例1.已知△ABC 和 △DEF,根据下列条件判断它们是否相似. (1)AB=3, BC=4, AC =6.DE =6, EF =8, DF =9. ( 否) (2)AB=4, BC=8, AC =10.解:树状图可以是:游戏者获胜的概率是61. 利用表格可以是:红 白黄A盘B 盘游戏者获胜的概率是61. 游戏2:若将A,B 盘进行以下修改.其他条件不变,请求出获胜概率?小颖和小亮分别对A 盘、B 盘进行了分析,都计算出获胜概率是21,请你根据所学的知识认为谁做的正确,说说你的理由。
小颖制作下图:B 盘A 盘配成紫色的情况有:(红,蓝),(蓝,红)2种.总共有4种结果. 所以配成紫色的概率P =21. 小亮制作下表:小亮将A 盘中红色区域等分成2份,分别记“红1”,“红2”,配成紫色的情况有:(红1,蓝),(红2,蓝),(蓝,红)3种. 所以配成紫色的概率P =21. 总结:小颖的做法不正确.因为右边的转盘中红色部分和蓝色部分的面积不相同,因而指针落在这两个区域的可能性不同.小亮的做法是解决这类问题的一种常用方法. 问题2:用树状图和列表的方法求概率时应注意些什么?用树状图和列表的方法求概率时应注意各种结果出现的可能性务必相同. 三、例题讲解例1: 一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其它都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球。
九年级数学上册用树状图或表格求概率用树状图或表格求概率教案北师大
用树状图或表格求概率教学目标一、知识与技能经历计算理论概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.二、过程与方法进一步经历用树状图、列表法计算两步随机实验的概率三、情感态度和价值观鼓励学生思维的多样性,发展学生的创新意识.进一步提高学习数学的信心重点借助于树状图、列表法计算随机事件的概率. 难点正确利用树状图、列表法计算随机事件的概率教学用具课件、多媒体教学环节说明二次备课复习利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;较方便地求出某些事件发生的概率. 用树状图和列表的方法求概率时,应注意各种结果出现的可能性务必相同.新课导入同学们玩儿过“配紫色”游戏吗?知道它们发生的概率吗?带着你们的疑问咱们一起来玩儿“配紫色”的游戏吧!课程讲授第一环节:合作学习,解决问题活动内容:“配紫色”游戏.活动目的:以“配紫色”游戏为主要情境,让学生再次经历利用树状图或列表的方法求出概率并解决问题的过程,通过应用所学知识解决问题的能力.活动过程:游戏1:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?解法一:借助树状图(1)(2)游戏者获胜的概率是1/2.解法二: 借助表格(1)红色蓝色红色(红,红)(红,蓝)蓝色(蓝,红)(蓝,蓝)游戏者获胜的概率是1/2.游戏2 “配紫色2”用图所示的转盘进行“配紫色”游戏.小颖制作了下面的树状图, 并据此求出游戏者获胜的概率是1/2.小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是21.你认为谁做得对?说说你的理由.活动效果:有了上节课对利用树状图或列表的方法求出概率的体验,这节课学生基本能顺利完成本节教学内容.本节以学生练习为主.对于游戏2,学生能指出“小颖的做法不正确,小亮的做法正确.因为左边的转盘中红色部分和蓝色部分的面积不同,因而指针落在两个区域的可能性不同.而用列表法求随机事件发生的概率时,应注意各种情况出现的可能性务必相同.而小亮的做法把左边转盘中的红色区域等分成2份,分别记作“红色1”“红色2”,保证了左边转盘中指针落在“蓝色区域”“红色1”“红色2”三个区域的等可能性,因此是正确的”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
画树状图法和列表法课题3.1画树状图法和列表法课型新授教学目标用树状图和列表法计算涉及两步实验的随机事件发生的概率.重点用树状图和列表法计算涉及两步实验的随机事件发生的概率.难点用树状图和列表法计算涉及两步实验的随机事件发生的概率.教学用具教学环节说明二次备课复习新课导入阅读教材P60~61,完成下列问题:问题:甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5;从两个口袋中各随机取出1个小球.用列表法写出所有可能的结果.如果还有丙口袋中装有2个相同的小球,它们分别写有字母H和I.从甲、乙、丙三个口袋中各随机取出1个小球.此时可以继续用列表法吗?你有没有更好的方法?与同学交流一下.当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法.当一次试验涉及三个因素时,列表法就不方便了,那么为不重不漏地列出所有可能的结果,我们该怎么办呢?课程讲授活动1 小组讨论例在抛掷硬币试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?(2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?解:(1)可能出现正、反两种结果,它们发生的可能性相同.(2)可能出现正、反两种结果,它们发生的可能性相同.(3)可能出现正、反两种结果,发生的可能性相同,第一枚硬币反面朝上亦然.注意不重不漏地列出每一种可能发生的结果.活动2 跟踪训练1.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( )A.0 B.13C.23D .12.“五·一”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家抽到同一景点的概率是( ) A.13 B.16C.19D.143.在x 2□2xy □y 2的□中,分别填上“+”或“-”,所得的代数式中,能构成完全平方式的概率是( ) A .1 B.34C.12D.144.经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率: (1)三辆车全部继续直行;(2)两辆车右转,一辆车左转. 活动3 课堂小结本堂课你学到了哪些知识与方法?在运用时有哪些细节需要注意呢?【预习导学】1 2 3 (3,1) (3,2) 4 (4,1) (4,2) 5(5,1)(5,2)【合作探究】 活动2 跟踪训练 1.B 2.A 3.C 4.(1)127.(2)19. 小结 作业布置板书设计课后反思中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得 A .B .C .D .【答案】A【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x 千米/小时,故选A .2.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解 【答案】C【解析】当k 0=时,方程为一元一次方程x 10-=有唯一解. 当k 0≠时,方程为一元二次方程,的情况由根的判别式确定: ∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .3.已知a ,b ,c 在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是( )A .4b+2cB .0C .2cD .2a+2c【答案】A【解析】由数轴上点的位置得:b<a<0<c ,且|b|>|c|>|a|, ∴a+c>0,a−2b>0,c+2b<0, 则原式=a+c−a+2b+c+2b=4b +2c. 故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.4.如图,65,AFD CD EB ∠=︒∕∕,则B 的度数为( )A .115°B .110°C .105°D .65°【答案】A【解析】根据对顶角相等求出∠CFB =65°,然后根据CD ∥EB ,判断出∠B =115°. 【详解】∵∠AFD =65°, ∴∠CFB =65°, ∵CD ∥EB ,∴∠B =180°−65°=115°, 故选:A . 【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键. 57的值在( ) A .2和3之间 B .3和4之间 C .4和5之间 D .5和6之间【答案】B【解析】分析:直接利用273,进而得出答案. 详解:∵273,∴3<7+1<4,故选B.点睛:此题主要考查了估算无理数的大小,正确得出7的取值范围是解题关键.6.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是()A.90°B.60°C.45°D.30°【答案】B【解析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案选:B.【点睛】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.7.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A .30°B .40°C .50°D .60°【答案】C【解析】试题分析:∵DC ∥AB ,∴∠DCA=∠CAB=65°. ∵△ABC 绕点A 旋转到△AED 的位置,∴∠BAE=∠CAD ,AC=AD.∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC ﹣∠DCA="50°." ∴∠BAE=50°. 故选C .考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质. 8.函数y =ax 2与y =﹣ax+b 的图象可能是( )A .B .C .D .【答案】B【解析】A 选项中,由图可知:在2y ax =,0a >;在yax b =-+,0a ->,∴0a <,所以A 错误;B 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a -<,∴0a >,所以B 正确;C 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以C 错误;D 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以D 错误.故选B .点睛:在函数2y ax =与y ax b =-+中,相同的系数是“a ”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“a ”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.9.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°【答案】A【解析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.10.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°【答案】A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.二、填空题(本题包括8个小题) 11.如图,直线4y x =+与双曲线ky x=(k≠0)相交于A (﹣1,a )、B 两点,在y 轴上找一点P ,当PA+PB 的值最小时,点P 的坐标为_________.【答案】(0,52). 【解析】试题分析:把点A 坐标代入y=x+4得a=3,即A (﹣1,3),把点A 坐标代入双曲线的解析式得3=﹣k ,即k=﹣3,联立两函数解析式得:,解得:,,即点B 坐标为:(﹣3,1),作出点A 关于y 轴的对称点C ,连接BC ,与y 轴的交点即为点P ,使得PA+PB 的值最小,则点C 坐标为:(1,3),设直线BC 的解析式为:y=ax+b ,把B 、C 的坐标代入得:,解得:,所以函数解析式为:y=x+52,则与y 轴的交点为:(0,52). 考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.12.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_____. 【答案】13【解析】将三个小区分别记为A 、B 、C ,列举出所有情况即可,看所求的情况占总情况的多少即可. 【详解】解:将三个小区分别记为A 、B 、C , 列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种, 所以两个组恰好抽到同一个小区的概率为39=13. 故答案为:13. 【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比. 13.关于x 的分式方程211x ax +=+的解为负数,则a 的取值范围是_________. 【答案】12a a >≠且【解析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a 的范围即可 【详解】分式方程去分母得:2x+a=x+1 解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1 解得:a >1且a≠2, 故答案为: a >1且a≠2 【点睛】此题考查分式方程的解,解题关键在于求出x 的值再进行分析14.若关于x 的方程x 2有两个相等的实数根,则锐角α的度数为___. 【答案】30°【解析】试题解析:∵关于x 的方程2sin 0x α+=有两个相等的实数根, ∴()2241sin 0,α=--⨯⨯= 解得:1sin 2α=, ∴锐角α的度数为30°;故答案为30°.15.一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k的值为______.【答案】3 4±【解析】首先求出一次函数y=kx+3与y轴的交点坐标;由于函数与x轴的交点的纵坐标是0,可以设横坐标是a,然后利用勾股定理求出a的值;再把(a,0)代入一次函数的解析式y=kx+3,从而求出k的值.【详解】在y=kx+3中令x=0,得y=3,则函数与y轴的交点坐标是:(0,3);设函数与x轴的交点坐标是(a,0),根据勾股定理得到a2+32=25,解得a=±4;当a=4时,把(4,0)代入y=kx+3,得k=34 -;当a=-4时,把(-4,0)代入y=kx+3,得k=34;故k的值为34或34-【点睛】考点:本体考查的是根据待定系数法求一次函数解析式解决本题的关键是求出函数与y轴的交点坐标,然后根据勾股定理求得函数与x轴的交点坐标,进而求出k的值.16.关于x的一元二次方程ax2﹣x﹣14=0有实数根,则a的取值范围为________.【答案】a≥﹣1且a≠1【解析】利用一元二次方程的定义和判别式的意义得到≠1且△=(﹣1)2﹣4a•(﹣14)≥1,然后求出两个不等式的公共部分即可.【详解】根据题意得a≠1且△=(﹣1)2﹣4a•(﹣14)≥1,解得:a≥﹣1且a≠1.故答案为a≥﹣1且a≠1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2﹣4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.17.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A 、B 、C 、D 、O 都在横格线上,且线段AD ,BC 交于点O ,则AB :CD 等于______.【答案】2:1.【解析】过点O 作OE ⊥AB 于点E ,延长EO 交CD 于点F ,可得OF ⊥CD ,由AB//CD ,可得△AOB ∽△DOC ,根据相似三角形对应高的比等于相似比可得AB OE CD OF=,由此即可求得答案. 【详解】如图,过点O 作OE ⊥AB 于点E ,延长EO 交CD 于点F ,∵AB//CD ,∴∠OFD=∠OEA=90°,即OF ⊥CD ,∵AB//CD ,∴△AOB ∽△DOC ,又∵OE ⊥AB ,OF ⊥CD ,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴AB OE CD OF ==23, 故答案为:2:1.【点睛】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键. 18.若关于x 的一元二次方程(m-1)x 2-4x+1=0有两个不相等的实数根,则m 的取值范围为_____________.【答案】5m <且1m ≠【解析】试题解析: ∵一元二次方程()21410m x x --+=有两个不相等的实数根, ∴m−1≠0且△=16−4(m−1)>0,解得m<5且m≠1,∴m 的取值范围为m<5且m≠1.故答案为:m<5且m≠1.点睛:一元二次方程()200.ax bx c a ++=≠方程有两个不相等的实数根时:0.∆>三、解答题(本题包括8个小题)19.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.求该反比例函数的解析式;若△ABC的面积为6,求直线AB的表达式.【答案】(1)y6x=;(2)y12=-x+1.【解析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案.【详解】(1)由题意得:k=xy=2×3=6,∴反比例函数的解析式为y6x =;(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),∵反比例函数y6x=的图象经过点B(a,b),∴b6a =,∴AD=36a -,∴S△ABC12=BC•AD12=a(36a-)=6,解得a=6,∴b6a==1,∴B(6,1),设AB 的解析式为y =kx+b ,将A(2,3),B(6,1)代入函数解析式,得2361k b k b +=⎧⎨+=⎩,解得:124k b ⎧=-⎪⎨⎪=⎩, 所以直线AB 的解析式为y 12=-x+1. 【点睛】本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC ,AD 的长是解题的关键.20.如图,在▱ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙O 相交于点F .若EF 的长为2π,则图中阴影部分的面积为_____.【答案】S 阴影=2﹣2π. 【解析】由切线的性质和平行四边形的性质得到BA ⊥AC ,∠ACB=∠B=45°,∠DAC=∠ACB=45°=∠FAE ,根据弧长公式求出弧长,得到半径,即可求出结果.【详解】如图,连接AC ,∵CD 与⊙A 相切,∴CD ⊥AC ,在平行四边形ABCD 中,∵AB=DC,AB ∥CD ∥BC ,∴BA ⊥AC ,∵AB=AC,∴∠ACB=∠B=45°,∵AD ∥BC,∴∠FAE=∠B=45°,∴∠DAC=∠ACB=45°=∠FAE ,∴EF EC =∴EF 的长度为45=1802R ππ 解得R=2,S 阴=S △ACD-S 扇形=2214522-=2-23602ππ⨯⨯【点睛】此题主要考查圆内的面积计算,解题的关键是熟知平行四边形的性质、切线的性质、弧长计算及扇形面积的计算.21.如图,已知:△ABC 中,AB=AC ,M 是BC 的中点,D 、E 分别是AB 、AC 边上的点,且BD=CE .求证:MD=ME .【答案】证明见解析.【解析】试题分析:根据等腰三角形的性质可证∠DBM=∠ECM ,可证△BDM ≌△CEM ,可得MD=ME ,即可解题.试题解析:证明:△ABC 中,∵AB=AC ,∴∠DBM=∠ECM.∵M 是BC 的中点,∴BM=CM.在△BDM 和△CEM 中,∵{BD CEDBM ECM BM CM=∠=∠=,∴△BDM ≌△CEM (SAS ).∴MD=ME .考点:1.等腰三角形的性质;2.全等三角形的判定与性质.22.观察下列各式:①()()2111x x x -+=- ②()()23111x x x x -++=-③()()324111x x x x x -+++=- 由此归纳出一般规律()()111n n x x x x --++⋅⋅⋅++=__________. 【答案】x n+1-1【解析】试题分析:观察其右边的结果:第一个是2x ﹣1;第二个是3x ﹣1;…依此类推,则第n 个的结果即可求得.试题解析:(x ﹣1)(n x +1n x -+…x+1)=11n x +-.故答案为11n x +-.考点:平方差公式.23.雾霾天气严重影响市民的生活质量。