三角形中位线的推论
三角形中位线定理及推论
三角形中位线定理及推论一、中位线定理中位线是指连接三角形一个顶点与对边中点的线段。
三角形中位线定理是指在一个三角形中,三条中位线交于一点,且这个交点与三个顶点的距离相等。
我们先来证明中位线交于一点这一结论。
假设ABC为一个三角形,AD是BC中点连线,BE是AC中点连线,CF 是AB中点连线。
我们可以得到△ADC和△BCD是全等三角形。
根据全等三角形的性质,我们可以得到∠ADC=∠CBD,∠ACD=∠BCD,且AD=BD。
同理,我们可以得到△AEB和△CEB是全等三角形,∠AEB=∠CEB,∠ABE=∠CBE,且AE=BE。
因为∠ADC=∠CBD,∠ACD=∠BCD,所以∠ADC+∠ACD=∠CBD+∠BCD,即∠ADC+∠ACD=180°。
同理,∠AEB+∠ABE=180°。
我们可以得到∠ADC+∠ACD+∠AEB+∠ABE=∠ADC+∠ACD+∠AEB+∠ABE+∠BCD+∠CBE。
而∠ADC+∠ACD+∠AEB+∠ABE+∠BCD+∠CBE=360°。
所以∠ADC+∠ACD+∠AEB+∠ABE+∠BCD+∠CBE=360°。
而∠ADC+∠ACD+∠AEB+∠ABE=360°。
所以∠BCD+∠CBE=0°。
由于∠BCD+∠CBE=0°,所以∠BCD=0°,∠CBE=0°。
因此,BD和CE是平行线。
根据平行线的性质,我们可以得到三角形BDF和三角形CEG是全等三角形,∠BFD=∠CGE,∠BDF=∠CEG,且BD=CE。
所以,我们可以得到BF=CG。
因此,在三角形ABC中,三条中位线AD、BE、CF交于一点G,且这个交点与三个顶点的距离相等。
二、中位线推论1. 三角形中位线推论一:中位线长度在一个三角形中,连接一个顶点与对边中点的中位线的长度等于对边的一半。
假设ABC为一个三角形,AD是BC中点连线。
我们已经证明了AD和BC是平行线,且AD=BD。
三角形的中位线与三角形的中线有什么不同?
三角形的中位线与三角形的中线有什么不同?
学过教科书上关于三角形的中位线的知识后,我们可以推出,判定一条线段是三角形的中位线的方法有以下3种:
1.定义:连结三角形两边中点的线段叫做三角形的中位线。
2.判定定理:经过三角形一边中点的直线,如果平行于另一边,那么这条直线位于三角形内的部分是这个三角形的中位线。
3.判定定理:端点位于三角形两边上的线段,如果平行于第三边,且等于第三边的一半,那么这两条线段是这个三角形的中位线。
由此可知:三角形的中位线平分这个三角形的两条边,平行于第三边,且等于第三边的一半,但不经过这个三角形的任何顶点;而三角形的中线只平分这个三角形的一条边,不平行于这个三角形的任何边,但经过与它所平分的边相对的顶点。
三角形的中位线是两两相交;而在将来我们可以证明,三角形的中线相交于一点,这一点把三条中线都分成2比1两段,被称为三角形的重心,它在物理学中用处很大。
三角形中位线定理及推论
三角形中位线定理及推论一、三角形中位线定理三角形中位线定理是指在任意三角形中,连接一个顶点与对边中点的线段称为中位线,三条中位线交于一点,且该点与三个顶点的距离相等。
具体表述为:三角形三条中位线的交点与三个顶点的距离相等。
以三角形ABC为例,连接顶点A与边BC的中点D,顶点B与边AC 的中点E,顶点C与边AB的中点F,根据中位线定理可知,中位线AD、BE和CF三条线段交于一点G,并且AG=BG=CG。
中位线定理的证明可以通过向量法或平面几何法进行,这里我们选择平面几何法证明。
证明思路如下:1. 连接顶点A与边BC的中点D,假设点G是中位线AD与中位线BE 的交点;2. 连接顶点B与边AC的中点E;3. 通过顶点C以平行于边AB的直线与中位线AD交于点H;4. 由平行线的性质可知,AH=CH;5. 进一步,由三角形的对应边成比例可得:AH/AD=CH/CF;6. 由于AH=CH,所以AD=CF;7. 同样地,由中位线定理可得:BE=CF;8. 综上所述,AD=BE=CF,即证明了中位线定理。
二、三角形中位线推论基于中位线定理,我们可以得出一些有关三角形的推论。
1. 三角形中位线长度关系推论根据中位线定理,三角形三条中位线的交点与三个顶点的距离相等,即AG=BG=CG。
由此可得,中位线上的点距离顶点的距离是相等的。
进一步推论,三角形中位线的长度满足以下关系:AG=2GD,BG=2GE,CG=2GF。
2. 三角形中位线与三角形面积推论由三角形中位线定理可知,三条中位线交于一点G。
以G为顶点,三边中点分别为D、E、F,连接DG、EG和FG。
我们可以发现,连接G与三角形顶点的线段将三角形分成了六个小三角形,而这些小三角形的面积相等。
因此,我们可以推论得到:三角形中位线所分割的三个小三角形的面积相等。
3. 三角形中位线与三角形高度推论在三角形中,如果我们将中位线作为底边,那么与之对应的高度就是顶点到底边中点的距离。
三角形中位线定理
三角形的中位线平行于第三边且等于第三边的一半
中位线定理的证明
如图,在△ABC中,D、E分别为AB、AC
的中点,连接DF.
求证:(1) DE ∥ BC 辅助线:延长DF至点F, 使EF=DF,连接FC △AED≌△CEF
1 2) DE (BC 2
一题多解
思考1
△ABC与△DEF的周长、面积有什么等量关系?
取AE中点G,连接DG
△DGF≌△CEF
四边形ABCD,AB与DC不平行,点E、F分别是
BC、AD的中点.求证: EF 1 AB CD
连接AC,取AC中点G 1 1 ∵FG=2 CD GE= AB 2
∴FG+GE>EF
1 EF ∴2 AB CD
2
∴平行四边形ABEC ∴F为BC中点,O为AC中 即:AB=2OF 点
如图,四边形ABCD中,E、F、G、H分别 是AB、BC、CD、DA的中点.求证:四边形EFGH 是平行四边形.
∵HG∥AC∥EF;EH∥BD∥F
GLeabharlann ∴EFGH为平行四边形题型二
增设中点,构造中位线
如图,已知△ABC中,D 是AB的中点, E是BC的三等分点(BE>CE),AE、CD相交于F. 求证:F是DC的中点.
中 点 的 辅 助 线
倍长中线
三线合一
中位线定理
直角三角形斜边中线定理
三角形中位线的定义
连接三角形两边中点的线段叫做三角形的中位线 注意中线和中位线的区别!
中线:
一个顶点和对边的中点连线
中位线:
两个中点的连线
三角形中位线定理
观察并猜想DE与BC的关系
位置关系
数量关系
三角形的中线与中位线
三角形的中线与中位线在几何学中,三角形是最基本的图形之一,而其中线和中位线则是与三角形密切相关的概念。
本文将重点探讨三角形的中线与中位线,并阐述它们在三角形属性研究和实际应用中的重要性。
一、中线的概念首先,我们来介绍三角形的中线。
中线是连接三角形的一个顶点与对边中点的直线段。
对于任意三角形ABC,连接顶点A与对边BC的中点M的线段AM就是该三角形的中线。
中线有以下两个重要性质:1. 中线的长度相等:在任意三角形中,连接一个顶点与对边中点的线段的长度相等。
即AM = BM = CM。
2. 中线互相平分:在任意三角形中,中线互相平分。
即AM与BM 的长度相等,BM与CM的长度相等,CM与AM的长度相等。
二、中位线的概念接下来,我们来介绍三角形的中位线。
中位线是连接三角形的两个顶点的中点与对边中点的直线段。
对于任意三角形ABC,连接顶点A 与对边BC中点M以及连接顶点B与对边AC中点N的线段AM和BN就是该三角形的中位线。
中位线有以下两个重要性质:1. 中位线长度:在任意三角形中,连接一个顶点与对边中点的线段的长度等于对边的一半。
即AM = 0.5 BC,BN = 0.5 AC。
2. 中位线交点:在任意三角形中,三条中位线的交点被称为三角形的重心G,也就是三角形的质心。
重心G将每条中位线都平分成两段,其中一段的长度是另一段的两倍。
三、中线和中位线的应用中线和中位线是研究三角形属性时经常使用的重要工具。
它们有多种应用,如下所示:1. 确定三角形的重心:通过连接三角形的顶点和对边中点,可以确定三角形的重心G。
重心G在三角形内部,对于一些三角形问题的解决具有重要作用。
2. 判断三角形的形状:根据中线和中位线互相平分的性质,可以判断三角形的形状。
例如,如果三角形的三条中位线相等,则该三角形是等边三角形;如果三角形的中线相等,则该三角形是等腰三角形。
3. 解决三角形的证明问题:在三角形的证明中,利用中线和中位线的性质可以简化问题的证明过程。
三角形的中线与中位线
三角形的中线与中位线在解析几何中,三角形是一个基础而重要的概念,而其中线和中位线则是三角形中的两个重要线段。
本文将介绍三角形的中线和中位线,并探讨它们的性质和应用。
一、中线的定义和性质中线是连接三角形两个顶点与对应边中点的线段。
在任意三角形ABC中,连结A与BC的中点D,B与AC的中点E,C与AB的中点F,则线段DE称为三角形ABC的中线。
中线有以下几个重要性质:1. 中线长度相等在任意三角形中,三条中线的长度是相等的。
这一性质可以用中位线定理进行证明。
假设DE为中线,在三角形ABC中,连接EF和FD,由中位线定理可知,EF和FD分别是AC和AB的中位线,所以EF=FD=1/2AC=1/2AB,因此DE与EF长度相等。
2. 中线互相平分在任意三角形中,三条中线相互平分。
换句话说,三条中线的交点是三角形的重心。
设三条中线相交于点G,则可以证明GD:GA=GE:GB=GF:GC=1:2。
3. 中线与对应边平行在任意三角形中,中线与对应边是平行的。
即DE∥AB,EF∥BC,FD∥AC。
这一性质可以通过向量法进行证明,利用向量的平行性质和中点的定义可以推导出这一结论。
二、中位线的定义和性质中位线是连接三角形的两个边中点的线段。
在任意三角形ABC中,连结AB的中点D,AC的中点E,BC的中点F,则线段DE称为三角形ABC的中位线。
中位线有以下几个重要性质:1. 中位线长度相等在任意三角形中,三条中位线的长度是相等的。
由于中位线连接对边的中点,而对边的长度相等,所以中位线的长度也相等。
2. 中位线与对边平行在任意三角形中,中位线与对边是平行的。
即DE∥BC,DF∥AC,EF∥AB。
这一性质同样可以通过利用向量法进行证明。
3. 中位线与中线交点在任意三角形中,三条中位线的交点是三角形的重心。
与中线类似,重心是三角形内部的一个特殊点,可以用中位线的交点来确定。
重心具有平分中线和平分面积的性质,是三角形的一个重要参考点。
三角形中位线定理
。
。B
E
例1:
Байду номын сангаас
已知点O是△ABC内一点,D、E、F、G分 别是AO、BO、CB、CA的中点。
求证:四边形DEFG是平行四边形
C
G
F
O
D A
E B
练习:求证:顺次连结四边形四条边的中点,所得的 四边形是平行四边形
已知:在四边形ABCD中,E.F.G.H 分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形 E
A
D。 。E
B
图1
C
B
D 。 4 。F 53 。
A 图2 E
1.如图1:在△ABC中,DE是中位线 (1)若∠ADE=60°,
则∠B= 60 度,为什么?
(2)若BC=8cm,
则DE= 4 cm,为什么?
2.如图2:在△ABC中,D、E、F分别 是各边中点
AB=6cm,AC=8cm,BC=10cm,
:三角形的中位线平行于第三边,并且等于第三边的 一半
已知:在△ABC 中,DE是△ABC 的中位线 求证:DE ∥ BC,且DE=1/2BC
证明:延 长DE 到 F,使EF=DE ,
A
连 结CF.
D
E
F
B
C
A
D
E
B
C
如果 DE是△ABC的中位线 那么 ⑴ DE∥BC,
⑵ DE=1/2BC
① 证明平行问题 ② 证明一条线段是另一条线段 的2倍或1/2
则△DEF的周长= 12 cm.
C △DEF面积是_________
思考:
如图,在A、B外选一点C,连结AC和BC,
并分别找出AC和BC的中点D、E,如果能测 量出DE的长度,也就能知道AB的距离了。
三角形中位线定理的运用(绝对经典)
三角中位线定理的应用中位线的性质:平行与第三边,并且等于第三边的一半。
三角形有三条中位线,最终将三角形分成四个全等三角形。
能够造出三个平行四边形,其中平行四边形的周长恰好等于三角形长两边之和。
中位线与第三边上的中线互相平分。
利用的是平行四边形的对角线互相平分。
三角形的中位线围成的三角形跟原三角形形状一样,周长是原来的一半,面积是原来的1/4,中位线的应用测距,中位线的定义,经过三角形两边中点的连线。
中线指的是一顶点与对边中点的连线。
中线性质,中线将三角形分成面积相等的两部分(等底同高面积相等)知识要点:三角形的中位线平行于三角形第三边,并且等于第三边的一半.1.三角形三条中位线围成的三角形与原三角形在某些数量上的关系(形状一样/相似)⑴.周长关系三角形的三条中位线围成的三角形的周长是原三角形的周长的一半.⑵.三角形的三条中位线围成的三角形的面积是原三角形的面积的41.2.中点四边顺次连结四边形四边中点所构成的四边形,我们把它简称为中点四边形.中点四边形的特殊性主要是看原四边形的对角线的特征,分为下面几种情况:任意四边形的中点四边形是平行四边形。
对角线相等的四边形的中点四边形是菱形;对角线垂直的四边形的中点四边形的是矩形;对角线既相等又垂直的四边形的中点四边形是正方形。
中位线与第三边上的中线互相平分。
利用的是平行四边形的对角线互相平分。
1、已知△ABC 的周长为1,连结△ABC 的三边中点构成第二个三角形, 再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是()2、如图所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时,那么下列结论成立的是()A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定3、如图ABC 中,EF 为三角形的中位线,AD 是BC 边上的中点,点O 为EF 和AD 的交点.求证:EF 和AD 互相平分.4、如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.四边形EGFH 是平行四边形吗?请证明你的结论.5、如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、CD 、AC 、BD 的中点.四边形EGFH 是平行四边形吗?请证明你的结论.6、如图,在四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,(1)∠PEF=35°,则∠PFE的度数.(2)∠CBD=20°,∠ADB=100°,则∠PFE的度数.7、已知:如图,在四边形ABCD中,对角线AC、BD相交于O,且AC=BD,E、F分别是AB、CD的中点,E、F分别交BD、AC于点G、H.求证:(1)OG=OH.(2)∠ONM=∠OMN.8、如图,在四边形ABCD中,已知AB=CD,点E,F分别为AD,BC的中点,延长BA,CD,分别交射线FE于P,Q两点.求证:∠P=∠CQF..9、点M为△ABC的边BC的中点,AB=12,AC=18,BD⊥AD于点D,连DM.(1)如图1,若AD为∠BAC的平分线,则MD=;(1)DM∥AC;DM=21(AC﹣AB).(2)如图2,若AD为∠BAC的外角平分线,则MD=..【变式】如图,在Rt△ABC中,∠ACB=90°,D为△ABC外一点,使∠DAC=∠BAC,E为BD的中点.若∠ABC=60°,则∠ACE=.10、如图,△ABC的中线BD、CE相交于点O,F、G分别是OB、OC的中点,线段EF与DG之间有什么关系?为什么?11、如图,点E F G H、、、分别是CD BC AB DA、、、的中点.求证:四边形EFGH是平行四边形12、如图,已知在□ABCD中,EF∥BC,分别交AB CD、于E F、两点,DE AF、交于M,CE BF、交于N.求证:1MN AB2=.13、已知:E为ABCD的边DC的延长线上的一点,且CE DC=,连结AE分别交BC BD、于F G、,对角线AC BD、交于点O.求证:AB2OF=。
梯形、三角形中位线
梯形、三角形中位线一、梯形、三角形中位线在证明平行、线段相等及线段的倍、半问题中起了重要的作用,对此我们应给予足够的重视。
二、知识要点:1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。
推论1:经过梯形一腰的中点与底平行的直线必平分另一腰。
推论2:经过三角形一边中点与另一边平行的直线必平分第三边。
2.三角形中位线:(1)定义:连结三角形两边中点的线段叫做三角形的中位线。
(2)三角形中位线定理:三角形中位线平行于第三边,并且等于它的一半。
3.梯形中位线:(1)定义:连结梯形两腰中点的线段叫做梯形中位线。
(2)梯形中位线定理:梯形中位线平行于两底,并且等于两底和的一半。
三、例题例1.如图,△ABC中,D是AB中点,E是AC上的点,且3AE=2AC,CD、BE交于O点。
求证:OE=BE。
分析:已知D是AB中点,遇到中点我们应当考虑到可能要用中位线,有中位线就可以得到线段的一半,同样可能再得到线段的一半,从而可以得到某线段的;又已知3AE=2AC,得AE=AC,如果取AE中点F,连结DF就可得到△ABE的一条中位线。
证明:取AE中点F,连结DF,∵D是AB中点,∴DF是△ABE的中位线∴ DF= BE且DF//BE(三角形中位线定理)∵ 3AE=2AC,∴ AE= AC∴ AF=FE=EC= AC在△CFD中,∵ EF=EC且DF//BE即OE//DF,∴ CO=DO(过三角形一边中点,与另一边平行的直线,必平分第三边)∴ OE是△CDF的中位线∴ OE= DF∴ OE= BE。
说明:本题我们做了一条中位线,使得在两个三角形中可使用中位线定理。
遇中点,作中位线是常见的辅助线。
例2如图,在梯形ABCD中AD//BC,E、F分别是AB、CD的中点,EF分别与BD、AC相交于M、N。
且AD=20cm,BC=36cm。
求MN的长。
分析:因为EF是中位线,所以EF//AD//BC,EF= (AD+BC)如果能求出EM和NF的长,就可以求出MN的长。
三角形的中位线与中心
三角形的中位线与中心三角形是几何学中最基本的图形之一,它有很多重要的性质和特点。
本文将着重讨论三角形的中位线及其与三角形中心的关系。
一、中位线的定义所谓中位线,是指三角形内任意两个顶点之间的连线中点所组成的线段。
对于任意三角形ABC,连接顶点A和B的中点M₁,连接顶点B和C的中点M₂,连接顶点C和A的中点M₃所组成的线段M₁M₂M₃即为三角形的中位线。
二、中位线的性质1. 中位线互相平行在任意三角形中,三条中位线互相平行,即M₁M₂ // M₂M₃ //M₃M₁。
2. 中位线长度相等三角形三条中位线的长度相等,即M₁M₂ = M₂M₃ = M₃M₁。
3. 中位线交于一点三条中位线交于同一点G,这个交点G被称为三角形的重心。
重心是三角形的内心,也是重心到三角形三个顶点的距离之和最小的点。
三、三角形中位线与重心的关系重心是三角形的中位线的交点,也是三角形的一个特殊点。
1. 重心到顶点的距离重心到三角形三个顶点的距离之比为2:1。
即AG = 2GM₁,BG =2GM₂,CG = 2GM₃。
2. 重心的位置重心将每条中位线分成两个部分,即AG = GM₁,BG = GM₂,CG = GM₃。
3. 重心的作用重心是三角形内部重要的几何中心之一,具有以下作用:- 重心所在的中位线可以将三角形分成面积相等的两部分。
- 当三角形悬挂在任意一条中位线上时,重心处于该中位线的中点。
- 重心是三角形内切圆的圆心。
四、应用实例1. 设计建筑在建筑设计中,重心的概念被广泛运用。
由于重心的位置对于建筑物的平衡性和稳定性具有重要影响,建筑师需要在设计过程中考虑到重心的位置,以确保建筑物能够安全地承受外部的压力和重力。
2. 交通规划在交通规划中,重心也是一个重要的考虑因素。
交通规划师通过分析城市不同区域的人口、就业机会和基础设施等因素,可以确定城市的重心位置,从而优化交通网络的设计,提高交通效率。
3. 科学研究三角形的中位线和重心不仅仅在几何学中有重要的应用,它们在其他学科中也扮演着重要的角色。
平行线等分线段定理三角形梯形的中位线(含答案)
平行线等分线段定理,三角形、梯形的中位线重点与难点:三角形、梯形中位线的综合运用 一、知识点(1)平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截取的线段也相等。
推论1:经过梯形一腰与底平行的直线,必平分另一腰。
推论2:经过三角形一边的中点与另一边平行的直线平分第三边。
(2)三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
(3)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半。
二、例题:例1、下列图形是不是中心对称图形?若是,请指出对称中心。
(1)线段;(2)直线;(3)平行四边形;(4)圆解: (1)线段是中心对称图形,对称中心是线段的中点;(2)直线是中心对称图形,对称中心是直线上的任意一点;(3)平行四边形(当然也就包括了矩形、菱形、正方形)是中心对称图形,对称中心是两条对角线的交点;(4)圆是中心对称图形,对称中心是圆心。
例2、判断下列说法是否正确:(1)矩形的对边关于对角线交点对称。
( ) (2)圆上任意两点关于圆心对称。
( )(3)两个全等三角形必关于某一点中心对称。
( ) (4)成中心对称的两个图形中,对应线段平行且相等。
( ) 解:(1)(4)正确(2)(3)错误例3、在下列图形中既是轴对称图菜,又是中心对称图形的是( )①任意平行四边形;②矩形;③菱形;④正方形;⑤正三角形;⑥等腰直角三角形 解:①②③例4、下列图形是中心对称图形而不是轴对称图形的是( ) ①平行四边形;②一条线段;③一个角;④圆 解:①*例5、在△ABC 中,∠A≠90°,作既是轴对称又是中心对称的四边形ADEF ,使D 、E 、F 分别在AB 、BC 、CA 上,这样的四边形可以作( )个D C FEBDCF B A3DCEB A21DCF B A解:如图:因为四边形ADEF 是中心对称图形, 所以它一定是平行四边形; 因为四边形ADEF 是轴对称图形, 所以它的对角线互相垂直。
三角形、梯形的中位线
三角形、梯形的中位线【知识要点】1. 三角形中位线:连结三角形两边中点的线段。
注意:三角形的中位线有3条。
2.梯形的中位线是连结梯形两腰中点的线段。
注意:(1)不是连结两底中点 (2)梯形的中位线是唯一的3.(1)三角形的中位线定理:三角形中位线平行于第三边且等于第三边的一半。
推论:过三角形一边的中点作另一边的平行线,必平分第三边。
(2)梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半。
推论:过梯形一腰的中点,作底边的平行线,必平分另一腰。
( ) ( ) 【典型例题】例1.求证:三角形中位线平行于第三边且等于第三边的一半。
例2.如图,在△ABC 中,BD 、CE 为AC 、AB 边上的中线,M 、N 是BG 、CG 的中点。
求证:(1)ME ∥ND ;(2)ME=ND例3.已知:如图所示,正方形ABCD 的对角线交于O ,∠BAC 的平分线交BO 于E ,交BC 于F ,A BC D E A D E F B C ABEDCM NGMN求证:OE=12FC 。
例4.如图,已知在口ABCD 中,BD=2AD ,E 、F 、G 分别是AO 、BO 、CD 的中点。
求证:EF=EG 。
例5.如图,在等腰梯形ABCD 中,AD ∥BC ,AD=24cm ,BC=26cm ,动点P 从A 点开始沿AD 边向D 以1cm/s 的速度运动,动点Q 从C 点开始沿CB 边向B 以3cm/s 的速度运动,P 、Q 分别从A 、C 同时出发,当其中一点到端点时,另一点也随之停止运动,设运动时间为t s ,问t 为何值时,四边形PQCD 是平行四边形;等腰梯形?【练习与拓展】1.梯形的中位线长为8cm ,高为4cm ,则梯形的面积为 。
2.△ABC 的面积为16cm 2,则三条中位线组成的三角形面积为。
3.梯形的中位线长为6,上下底之差等于3,则此梯形上下底长分别为 。
4.顺次连结四边形各边中点所得的四边形常称为中四边形。
梯形、三角形中位线
梯形、三角形中位线知识要点:1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。
推论1:经过梯形一腰的中点与底平行的直线必平分另一腰。
推论2:经过三角形一边中点与另一边平行的直线必平分第三边。
2.三角形中位线:(1)定义:连结三角形两边中点的线段叫做三角形的中位线。
(2)三角形中位线定理:三角形中位线平行于第三边,并且等于它的一半。
3.梯形中位线:(1)定义:连结梯形两腰中点的线段叫做梯形中位线。
(2)梯形中位线定理:梯形中位线平行于两底,并且等于两底和的一半。
例题分析第一阶梯[例1]在直角梯形ABCD中,∠D=90°,DC∥AB,若△ABC为等边三角形,其边长为a.求:此梯形的中位线及高.提示:(1)梯形的中位线与梯形的哪些元素有什么样的关系?(2)在图形中,梯形的高是哪条线段?为什么?DC、AB的长通过哪些知识可以求出来?是多少?(3)若求出S△ADC∶S△ABC∶S梯形ABCD的值,你发现面积间的内在联系吗?请总结一下规律.参考答案:说明:若在直角梯形中,有一等边三角形那么梯形的高线对角线与边可以构成三个全等的三角形,则其面积应是相等的.[例2]如图M、E、F分别为△ABC的边BC、AC、AB的中点,AD⊥BC于D.求证:四边形DEFM为等腰梯形.提示:(1)在图形中有几条中位线?它们分别是什么图形的中位线?在数量与位置上分别有什么关系?为什么?(2)要想证明一个四边形是等腰梯形,首先要证什么?然后再证什么?在证明过程中,要注意与什么特殊四边形的判定.在哪有区别?(3)请总结一下此题的证明都用到了哪些知识?参考答案:说明:(1)证明梯形时,可通过一组对边平行,另一组对边不平行,或平行的一组对边不相等,来证,要注意与平行四边形的一组,对边平行且相等的条件相区别.(2)在应用三角形中位线定理时,对结论的选择要由具体情况而定.第二阶梯[例1]已知如图,梯形ABCD中,AD∥BC,AB=DC=12cm,E、F分别是AB、BD的中点,连结EF并延长交DC于G,EF=4cm,FG=10cm.求∠ABC的度数.提示:(1)∠ABC与图形中的哪个角相等,为什么?一般求角的度数,可考虑把这个角放在什么样的图形中?(2)根据条件,可添加什么样的辅助线把条件和结论有机的结合起来,构造特殊的三角形?(3)梯形的高,除了用常规方法求;还有别的方法吗?参考答案:解:在梯形ABCD中∵AD∥BC E、F分别是AB、BD的中点.∴EF∥AD 又E、F、G三点在同一直线上.∴G是DC的中点,EG∥BC ∴AD∥EG∥BC.∵AB=DC ∴∠ABC=∠C作DM⊥BC交BC于M.∵EF=4 FG=10 ∴AD=8 BC=20∴MC∵在Rt△DMC中,DC=12 MC=6 ∴∠C=60°说明:(1)等腰梯形具有对称性,所以MC的长度是上、下底差的一半(2)G是DC的中点,要证明,不能默认,EF∥AD利用了中位线的定义及中位线定理,FG ∥BC利用了平行线等分线段定理的推论.[例2]求证:连结梯形两条对角线的中点的线段平行于两底,并且等于两底差的一半.已知:在梯形ABCD中,AB∥CD,M、N分别为对角成AC、BD的中点.求证:(1)MN∥AB∥DC (2)MN=(AB-CD)提示:(1)如何添加辅助线,使MN是某个三角形的中位线?(2)AB与CD的差,可以通过构造什么样的特殊图形表示在AB线段上?点M或点N是否在构造的图形边上?(3)此题还有别的方法吗?请试一试.参考答案:证明:(1)连结CN并延长交AB于E,在梯形ABCD中,AB∥CD∴∠1=∠2 ∠CND=∠ENB BN=ND∴△CDN≌△EBN(ASA)∴CN=EN BE=CD.∴N是CE的中点在△CEA中,M是AC的中点.∴MN∥AE 即MN∥AB ∴MN∥AB∥DC.(2)由(1)可知AB-AE=BE=CD.∴AB-CD=AE 又MN=AE∴.方法二:取AC的中点F,连结NF交AD于M′,梯形ABCD中,AB∥DC∵N为BC的中点,在△ABC中.NF∥AB NF=AB ∴NF∥AB∥DC(三角形的中位线平行于第三边且等于它的一半)∴M′是AD的中点(一组平行线在一条直线上截得的线段相等,在其它的直线上截得的线段也相等)又M是AD的中点∴M与M′重合,即点M在NF上.∴NF=AB MF=DC.∵MN=NF-MF=AB-DC=(AB-DC)∴说明:说明一、(1) N是CE的中点,必须要进行证明.(2)请注意辅助线的作法,是连结CN并延长交AB于E,并不是过C(或N)作DA的平行线,若作平行线,要证过N点.(3)此题还可用同一法证明:即取DA的中点F,连结NF交AC于M′,证明M与M′重合,此法易出错,要特别注意.说明二、(1)菱形常用的判定方法:①从四边形考虑:)四条边相等的四边形)对角线互相垂直平分的四边形②从平行四边形考虑:)一组邻边相等的平行四边形;)对角线相垂直的平行四边形。
3角形中位线定理
3角形中位线定理三角形中位线定理,是在三角形中,与三条相邻边的中点相连的线段,它们构成的三个交点都在同一点上。
本文将从定理的证明、推广应用、例题等三个方面进行阐述。
一、定理的证明证明思路:设三角形ABC的三边分别为a、b、c,D为BC的中点,E为AC的中点,F 为AB的中点,则连接AD、BE、CF的交点为G。
则需证明AD、BE、CF三条线段的交点G是一个固定点。
证明:由于D、E、F都是各边中点,可得:∵ D是BC的中点,∴ BD = DC;又∵ G是AD与BE的交点,故可以得出:∵ D、E分别为BC和AC的中点,∴ DE // AC,同时AE = EC,∴ △AED与△CEB 相似。
$\frac{GA}{BD}=\frac{GC}{CE}$又 $\because BD=DC$ , $\therefore GA=GC$同理可得:于是,我们得到了两个相等的值:GA=GC,GB=GC。
由此,可知三角形GAC是一个等腰三角形,且AG与CF之间的线段垂直于CF,同理可得:因为三角形GAC、GBA、CBG均拥有最长边CG,所以它们就构成了一个共同的圆,而这个圆的中心就是点G。
因此可以得知:三角形ABC的三边中位线的交点G是一个固定点。
二、推广应用利用中位线定理,我们可以推导容易证明的三条定理和一个相关问题:中位线长定值定理、七分线长定值定理、以及在四边形中应用中位线定理、解决中位线问题。
1. 中位线长定值定理在三角形中,如果其中一条中位线相等,那么这个三角形就是等边三角形。
设△ABC为等边三角形,则BD、AE、CF三条中位线的长度均为$\frac{1}{2}$边长,又 $\because BD=AE=CF$ ,所以可以得到:BD=AE=CF=$\frac{1}{2}$a=a,同理可得:b=c=a。
在三角形中,三条中位线可将它们所在线段的长分为1:2:3的比例。
首先,由于三角形的三角形内部对角线互不交于同一点,那么三角形内部的线段AB、AC、BC是不会共线的。
三角形的中位线与高线
三角形的中位线与高线三角形是高中数学中一个重要的几何学概念,具有丰富的性质和特点。
在三角形中,中位线和高线是两个常见的线段,它们对于三角形的性质与构造有着重要的影响。
本文将详细讨论三角形的中位线和高线,并分析它们之间的关系。
一、中位线的定义与性质中位线是连接三角形两个顶点与对边中点的线段。
对于任意三角形ABC,连接顶点A和对边BC中点的线段即为三角形ABC的中位线。
中位线具有以下性质:1. 中位线的长度等于对边的一半。
设中点为M,则AM = BM = MC = 1/2BC。
2. 三条中位线交于同一点。
设中位线分别为AD、BE和CF,它们交于点G,即G为三角形ABC的重心。
3. 中位线将三角形分成面积相等的三个小三角形。
连接G与A、B、C分别交中位线于点M、N和P,则三角形AMN、BMG和CGP的面积相等。
二、高线的定义与性质高线是从三角形的一个顶点到对边的垂直线段。
对于任意三角形ABC,从顶点A向对边BC引一条垂直线段即为三角形ABC的高线。
高线具有以下性质:1. 高线与对边的关系。
设高线为AH,则AH ⊥ BC。
2. 三角形两条高线的交点。
设高线分别为AH、BK和CL,它们交于点O,即O为三角形ABC的垂心。
3. 垂心与顶点和中点的关系。
连接O与A、B和C分别交边于点D、E和F,则三角形ABC的中位线分别平分OD、OE和OF。
三、中位线与高线的关系中位线和高线在三角形中有着重要的联系和性质。
具体而言,中位线与高线有以下关系:1. 中位线和高线的交点。
设中位线分别为AD、BE和CF,高线分别为AH、BK和CL,它们交于点O。
则O既是三角形ABC的垂心,又是其重心。
2. 中位线和高线的长度关系。
设中位线与高线交于点O,则AO =2/3HO。
其中,AO为中位线的长度,HO为高线的长度。
3. 中位线和高线形成的四边形。
连接O与D、E和F,得到四边形ODEF。
根据性质2可知,OD = OE = OF。
因此,四边形ODEF是一个菱形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形中位线的推论
三角形有三条中位线,分别连接每个顶点与对面的中点。
在以下
内容中,我们将讨论中位线的一些推论以及它们在几何学中的应用。
1. 三角形中位线相等
最基本的推论是,三角形中的三条中位线相等。
我们可以通过使
用向量的方法来证明这一点。
通过连接一对顶点并标记对角线上的中点,我们可以将三角形分成两个相等的三角形。
根据向量加法的定义,我们知道中位线的两端点的向量和等于顶点向量的和的一半。
因为我
们拥有两个相等的三角形,它们的顶点向量之和相等,并且它们的中
位线向量之和也相等。
因此,三角形中的三条中位线相等。
2. 中位线的交点是重心
三条中位线的交点形成一个点,叫做三角形的重心。
重心是三条
中位线的交点,并且它到三角形的每个顶点的距离相等。
重心也被定
义为三角形质心的一种形式。
重心在几何学中扮演着重要的角色,因
为它是很多求解问题的关键点。
3. 重心黄金分割
我们可以进一步推导出一个有趣的结论,即:重心将每个中位线
分成两个部分,其中一个部分的长度是另一个部分长度的2倍。
这种
比例被称为“重心黄金分割”,并且在某些证明和设计问题中非常有用。
4. 中位线长度的应用
中位线的另一个应用是在解决三角形面积问题时。
根据中位线长
度的定义,我们可以将三角形分成4个形似的三角形。
其中的3个三
角形是等边三角形,并且它们的边长是中位线的长度。
因此,我们可
以使用等边三角形的公式(底边乘以高的1/2)来计算它们的面积。
通过将3个面积相加,我们得到三角形的面积。
5. 完美一致性
最后,我们需要注意的是,在三角形中位线的推论中,它们之间
存在完美的一致性。
这意味着,如果我们知道了中位线的长度,我们
就可以推导出其他与之相关的所有值,如重心位置、面积等。
同时,
如果我们知道了三角形某些属性,比如重心或者面积,我们也可以计
算出相应的中位线长度。
这种完美一致性使得中位线在解决三角形问
题时非常方便。
综上所述,中位线在解决三角形几何问题时非常有用。
它们的长
度相等,交于重心,将三角形分成形似的三角形并且满足完美一致性。
这些推论不仅为我们提供了解决几何学问题的方法,而且为我们提供
了对三角形结构的新的和更深入的理解。