大一线性代数期末考试试卷+答案

合集下载

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。

2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。

四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。

答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。

大一线性代数期末试题及答案

大一线性代数期末试题及答案

大一线性代数期末试题及答案__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _诚信应试 ,考试舞弊将带来严重结果!线性代数期末考试一试卷及答案号位座注意事项: 1.考前请将密封线内填写清楚;2.所有答案请直接答在试卷上(或答题纸上);线3 .考试形式:开(闭)卷;4. 本试卷共五大题,满分100 分,考试时间 120 分钟。

题号一二三四五总分得分评卷人业一、单项选择题(每题 2 分,共 40 分)。

专1.设矩阵A为2 2矩阵, B为2 3矩阵, C为3 2矩阵,则以下矩阵运算无心义的是【】) 封题答A. BACB. ABC C .BCA D. CAB不院 2. 设 n 阶方阵 A 知足 A2内+ E =0 ,此中 E是 n 阶单位矩阵,则必有【】学线 A. 矩阵 A 不是实矩阵 B. A=-E C. A=E D. det(A)=1封密1( 3. 设 A 为 n 阶方阵,且队列式det(A)= , 则 det(-2A)= 【】-2 nA. -2B.C. -2nD. 14. 设 A 为 3 阶方阵,且队列式det(A)=0 ,则在 A的行向量组中【】A. 必存在一个行向量为零向量B. 必存在两个行向量,其对应重量成比率号密学 C. 存在一个行向量,它是其他两个行向量的线性组合D. 随意一个行向量都是其他两个行向量的线性组合5.设向量组a1, a2,a3线性没关,则以下向量组中线性没关的是【】A.a1a2, a2 a3 , a3 a1 B. a1, a2 ,2a1 3a2C. a2,2a3,2a2 a3D. a1- a3, a2 , a1名姓6. 向量组 (I): a1 , , a m (m 3) 线性没关的充足必需条件是【】A.(I) 中随意一个向量都不可以由其他m-1 个向量线性表出B.(I)中存在一个向量, 它不可以由其他m-1 个向量线性表出C.(I)中随意两个向量线性没关D. 存在不全为零的常数k1, , k m ,使 k1 a1 k m a m 07.设a为m n矩阵,则n元齐次线性方程组Ax 0存在非零解的充足必需条件是【】A.A的行向量组线性有关B. A 的列向量组线性有关C. A的行向量组线性没关D. A 的列向量组线性没关a1 x1 a2 x2 a3 x3 0 8. 设a i、b i均为非零常数(i =1, 2, 3),且齐次线性方程组b2 x2 b3 x3 0b1 x1的基础解系含 2 个解向量,则必有【】a1 a20 B. a1 a20 a1 a2 a3 D.a1 a3A.b3 b1 b2 C.b2 b3 b1 b2b2 b19. 方程组2 x1 x2 x3 1有解的充足必需的条件是【】x1 2x2 x3 13 x1 3x2 2x3 a 1A. a=-3B. a=-2C. a=3D. a=110.设η1,η2,η3 是齐次线性方程组Ax = 0 的一个基础解系,则以下向量组中也为该方程组的一个基础解系的是【】A. 可由η12 3线性表示的向量组 B. 123等秩的向量组,η,η与η,η,ηC. η1-η2,η2-η3,η3-η1D. η1,η1-η3 ,η1-η2-η 311. 已知非齐次线性方程组的系数队列式为0,则【】A. 方程组有无量多解B. 方程组可能无解,也可能有无量多解C. 方程组有独一解或无量多解D. 方程组无解12.n 阶方阵 A 相像于对角矩阵的充足必需条件是 A 有 n 个【】A. 互不同样的特点值B. 互不同样的特点向量C. 线性没关的特点向量D. 两两正交的特点向量13. 以下子集能作成向量空间R n的子空间的是【】A. {( a1, a2, , a n) | a1a2 0}nB. {( a1 ,a2 , , a n ) | a i 0}i 1nC. {( a 1 , a 2 , , a n ) | a i z, i 1,2, ,n}D.{( a 1 ,a 2 , , a n ) | a i1}14. 若 2 阶方阵 A 相像于矩阵 B1 0i 12 ,E 为 2 阶单位矩阵 , 则方阵 E – A 必相像于矩阵- 3【 】1B.-1 0 0 0 - 1A.1 - 4C.4D.1 4- 2-2 -41 0 015. 若矩阵 A0 2 a 正定 , 则实数 a 的取值范围是【】0 a 8A . a < 8B. a > 4C . a < -4 D. -4 < a < 4二、填空题 (每题2 分,共 20 分)。

大学线代期末试题及答案

大学线代期末试题及答案

大学线代期末试题及答案一、选择题(每题5分,共20分)1. 设A为3阶方阵,且|A|=2,则|2A|等于多少?A. 4B. 8C. 16D. 32答案:B2. 若矩阵A可逆,则下列说法正确的是:A. A的行列式为0B. A的行列式不为0C. A的逆矩阵不存在D. A的逆矩阵是唯一的答案:B3. 向量组α1, α2, α3线性无关,则下列说法正确的是:A. 这三个向量可以构成一个平面B. 这三个向量可以构成一个空间C. 这三个向量可以构成一个直线D. 这三个向量可以构成一个点答案:B4. 设A是n阶方阵,如果A的特征值为λ,则下列说法正确的是:A. λ是A的最小特征值B. λ是A的最大特征值C. λ是A的特征值D. λ不是A的特征值答案:C二、填空题(每题5分,共20分)1. 若矩阵A的秩为2,则矩阵A的行列式|A|等于______。

答案:02. 设向量组α1, α2, α3线性相关,则至少存在不全为零的实数k1, k2, k3使得k1α1 + k2α2 + k3α3 = ______。

答案:03. 若A是3阶方阵,且A的迹等于6,则A的特征值之和等于______。

答案:64. 设向量空间V中有两个子空间U和W,若U与W的交集只包含零向量,则称U和W为______。

答案:互补子空间三、解答题(每题15分,共40分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的逆矩阵。

答案:首先计算A的行列式,|A| = 1*4 - 2*3 = -2。

然后计算A的伴随矩阵,即\[\begin{pmatrix} 4 & -2 \\ -3 & 1\end{pmatrix}\]。

最后,A的逆矩阵为\[\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}\] / (-2) = \[\begin{pmatrix} -2 & 1 \\1.5 & -0.5 \end{pmatrix}\]。

线性代数期末试题及参考答案

线性代数期末试题及参考答案

线性代数期末试题及参考答案一、单项选择题<每小题3分,共15分)1.下列矩阵中,< )不是初等矩阵。

<A )001010100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B>100000010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C> 100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(D> 100012001⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是< )。

<A )122331,,αααααα--- <B )1231,,αααα+ <C )1212,,23αααα- <D )2323,,2αααα+3.设A 为n 阶方阵,且250A A E +-=。

则1(2)A E -+=< )(A> A E - (B> E A + (C> 1()3A E - (D> 1()3A E +4.设A 为n m ⨯矩阵,则有< )。

<A )若n m <,则b Ax =有无穷多解;<B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量;<C )若A 有n 阶子式不为零,则b Ax =有唯一解; <D )若A 有n 阶子式不为零,则0=Ax 仅有零解。

5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则< )<A )A 与B 相似 <B )A B ≠,但|A-B|=0<C )A=B <D )A 与B 不一定相似,但|A|=|B|二、判断题(正确填T ,错误填F 。

每小题2分,共10分>1. A 是n 阶方阵,R ∈λ,则有A A λλ=。

< )2. A ,B 是同阶方阵,且0≠AB ,则111)(---=A B AB 。

< )3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。

大学线性代数期末考试练习题含答案

大学线性代数期末考试练习题含答案

线性代数练习题一、单项选择题(本大题共5小题,每小题3分,共15分)1.下列等式中,正确的是( )A.2001002001021⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭B. 1233693456456⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭C.1051002⎛⎫= ⎪⎝⎭D.120120035035--⎛⎫⎛⎫-= ⎪ ⎪--⎝⎭⎝⎭2.设矩阵A =100220340⎛⎫ ⎪⎪ ⎪⎝⎭,那么矩阵A 的列向量组的秩为( )A.3B.2C.1D.03.设向量1α=(-1,4),2α=(1,-2),3α=(3,-8),若有常数a,b 使a 1α-b 2α-3α=0,则()A.a=-1,b=-2B.a=-1,b=2C.a=1,b=-2D.a=1,b=24.向量组1α=(1,2,0),2α=(2,4,0),3α=(3,6,0),4α=(4,9,0) 的极大线性无关组为( )A.1α,4αB.1α,3αC.1α,2αD.2α,3α5.下列矩阵中是正定矩阵的为( )A.1223⎛⎫ ⎪⎝⎭B.3336-⎛⎫ ⎪-⎝⎭C.0331⎛⎫ ⎪-⎝⎭D.1001-⎛⎫⎪-⎝⎭二、填空题(本大题共5小题,每题3分,共15分)6.行列式111123149=___ ___.7.已知3维向量α=(1,-3,3),β=(1,0,-1)则α+3β=_ _. 8.设n 阶矩阵A 的各行元素之和均为0,且A 的秩为n-1,则齐次线性方程组Ax=0的 通解为__ __.9.设1,2,…,n 是n 阶矩阵A 的n 个特征值,则矩阵A 的行列式|A |=_ ___. 10.二次型f(x 1,x 2,x 3)=x 1x 2+x 1x 3+x 2x 3的秩为_ __.三、计算题(本大题共8小题,共70分)11.(9分)已知矩阵A =111210101⎛⎫ ⎪- ⎪ ⎪⎝⎭,B =100210021⎛⎫ ⎪⎪ ⎪⎝⎭,求:(1)A T B ;(2)| A T B |.12.(9分)设⎪⎪⎪⎭⎫ ⎝⎛-=100111001A ,B =2153⎛⎫ ⎪⎝⎭,C =132031⎛⎫ ⎪⎪ ⎪⎝⎭,且满足C AXB =,求矩阵X .13.(9分)求向量组1α=(-1,2,1,0)T ,2α=(0,1,1,2)T ,3α=(1,4,3,4)T ,4α=(1,1,6,4)T 的秩 与一个极大线性无关组.14.(9分)判断线性方程组⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x 是否有解,有解时求出它的解.15.(9分)已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=a A 01020101,01=λ是A 的一个特征值,求A 的全部特征值及其特征向量.16.(9分)求一个正交变换将二次型322322214332x x x x x f +++=化为标准形.17.(8分)求⎪⎪⎪⎭⎫ ⎝⎛=343122321A 的逆矩阵.18.(8分)利用施密特正交化法将向量组()⎪⎪⎪⎭⎫⎝⎛=931421111,,321a a a 正交化.。

《线性代数》期末考试试卷附答案

《线性代数》期末考试试卷附答案

《线性代数》期末考试试卷附答案一、填空题(每小题3分,共30分)1.如果行列式2333231232221131211=a a a a a a a a a ,则=---------333231232221131211222222222a a a a a a a a a 。

2.设2326219321862131-=D ,则=+++42322212A A A A 。

3.设1,,4321,0121-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=A E ABC C B 则且有= 。

4.设齐次线性方程组⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛000111111321x x x a a a 的基础解系含有2个解向量,则=a 。

5.A 、B 均为5阶矩阵,2,21==B A ,则=--1A B T 。

6.设T )1,2,1(-=α,设T A αα=,则=6A 。

7.设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,若λ是矩阵A 的一个特征值,则*A 的一个特征值可表示为 。

8.若31212322212232x x x tx x x x f -+++=为正定二次型,则t 的范围是 。

9.设向量T T )1,2,2,1(,)2,3,1,2(-=β=α,则α与β的夹角=θ 。

10. 若3阶矩阵A 的特征值分别为1,2,3,则=+E A 。

二、单项选择(每小题4分,共20分)1.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( )A .1或2B . -1或-2C .1或-2D .-1或2.2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为1,1,2,3-,则=A ( )A .5B .-5C .-3D .33.设A 、B 均为n 阶矩阵,满足O AB =,则必有( )A .0=+B A B .))B r A r ((=C .O A =或O B =D .0=A 或0=B4. 设21β,β是非齐次线性方程组b X A =的两个解向量,则下列向量中仍为该方程组解的是( )A .21+ββB .()212351ββ+ C .()21221ββ+ D .21ββ-5. 若二次型32312123222166255x x x x x x kx x x f -+-++=的秩为2,则=k ( )A . 1B .2C . 3D . 4三、计算题 (每题10分,共50分)1.计算n 阶行列式abbb a b b b aD n=线性代数答案:一、填空题1.-16; 2. 0; 3.⎪⎪⎭⎫⎝⎛21107; 4. 1; 5.-4;6. ⎪⎪⎪⎭⎫ ⎝⎛----=1212421216655A ;7.λ1A ;8.3535<<-t ; 9. 2π;10. 24。

线性代数期末考试试卷+答案

线性代数期末考试试卷+答案

共3页第1页线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题2分,共10分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。

每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。

( )2. 零向量一定可以表示成任意一组向量的线性组合。

( )3. 向量组m a a a ,,,Λ21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,,Λ21线性相关。

( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。

( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。

( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。

① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,,Λ21(3 ≤ s ≤ n )线性无关的充要条件是( )。

① s ααα,,,Λ21中任意两个向量都线性无关 ② s ααα,,,Λ21中存在一个向量不能用其余向量线性表示 ③ s ααα,,,Λ21中任一个向量都不能用其余向量线性表示 ④ s ααα,,,Λ21中不含零向量 3. 下列命题中正确的是( )。

共3页第2页 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。

线性代数期末测试题及其答案

线性代数期末测试题及其答案

线性代数期末测试题及其答案一、填空题(将正确答案填在题中横线上。

每小题5分,共25分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵ns ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.已知矩阵A 为3⨯3的矩阵,且3||=A ,则=|2|A 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、选择题 (每小题5分,共25分)6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( )A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t7.已知矩阵BA xB A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-58.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B.1≠-A C.n A r =)( D.A 的行向量组线性相关9.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( )A.14322-=-=-z y x B.24322-=-=z y xC.14322+=+=-z y xD.24322+=+=z y x10.已知矩阵⎪⎪⎭⎫⎝⎛-=1513A ,其特征值为( ) A.4,221==λλ B.4,221-=-=λλ C.4,221=-=λλ D.4,221-==λλ三、解答题 (每小题10分,共50分)11.设,1000110001100011⎪⎪⎪⎪⎭⎫⎝⎛---=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000120031204312C 且矩阵X 满足关系式E X B C T =-)(, 求X 。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,满足以下哪两个条件?A. 线性无关B. 可以表示空间中的任何向量C. 可以线性组合出空间中的任何向量D. 以上都是2. 矩阵的秩是指:A. 矩阵中非零行的最大数目B. 矩阵中非零列的最大数目C. 矩阵的行向量组的秩D. 矩阵的列向量组的秩3. 线性变换的核是指:A. 变换后为零的向量集合B. 变换后为单位向量的向量集合C. 变换后保持不变的向量集合D. 变换后向量长度为1的向量集合4. 特征值和特征向量是线性变换中的基本概念,特征向量满足以下条件:A. 变换后保持不变B. 变换后与原向量成比例C. 变换后与原向量垂直D. 变换后与原向量正交5. 对于矩阵A,下列哪个矩阵是A的逆矩阵?B. A的伴随矩阵C. A的行列式D. 与A相乘结果为单位矩阵的矩阵6. 行列式的性质不包括:A. 行列式与矩阵的转置相等B. 行列式与矩阵的伴随矩阵无关C. 行列式与矩阵的行(列)交换有关D. 行列式与矩阵的行(列)乘以常数有关7. 线性方程组有唯一解的条件是:A. 方程组的系数矩阵是可逆的B. 方程组的系数矩阵是方阵C. 方程组的系数矩阵的秩等于增广矩阵的秩D. 方程组的系数矩阵的秩等于未知数的个数8. 矩阵的迹是指:A. 矩阵的对角线元素之和B. 矩阵的行向量长度之和C. 矩阵的列向量长度之和D. 矩阵的行列式9. 线性无关的向量组可以作为向量空间的基,其必要条件是:A. 向量组中的向量数量等于向量空间的维数B. 向量组中的向量数量大于向量空间的维数C. 向量组中的向量数量小于向量空间的维数D. 向量组中的向量数量可以任意10. 对于矩阵A,下列哪个矩阵是A的共轭转置?A. A的转置矩阵C. A的伴随矩阵D. A的复共轭矩阵的转置答案:1. D 2. D 3. A 4. B 5. D 6. B 7. D 8. A 9. A 10. D二、填空题(每空2分,共20分)1. 设向量空间V的基为{v1, v2, ..., vn},则向量v可以表示为______ 。

(完整)线性代数 期末测试题及其答案

(完整)线性代数 期末测试题及其答案

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题5分,共25分)1。

若022150131=---x ,则=χ__________. 2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵. 4.已知矩阵A 为3⨯3的矩阵,且3||=A ,则=|2|A 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、选择题 (每小题5分,共25分)6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( )A.054<<-t B 。

5454<<-t C.540<<t D 。

2154-<<-t7.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A 。

3B 。

-2 C.5 D.—58.设A 为n 阶可逆矩阵,则下述说法不正确的是( )A 。

0≠AB 。

01≠-A C.n A r =)( D.A 的行向量组线性相关9.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( ) A.14322-=-=-z y x B.24322-=-=z y xC.14322+=+=-z y x D 。

24322+=+=z y x10.已知矩阵⎪⎪⎭⎫ ⎝⎛-=1513A ,其特征值为( )A 。

4,221==λλ B.4,221-=-=λλ C.4,221=-=λλ D.4,221-==λλ三、解答题 (每小题10分,共50分)11。

设,1000110001100011⎪⎪⎪⎪⎭⎫⎝⎛---=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000120031204312C 且矩阵X 满足关系式EX B C T =-)(, 求X 。

线性代数期末试题及答案

线性代数期末试题及答案

8.设A 为三阶方阵, 且3=A , 则 12-=A .一、填空题(每小题2分,共20分)1.行列式=-203297302233241.2.设014111112--=D ,则=++333231A A A .3.设 , 231102 ⎪⎪⎭⎫ ⎝⎛-=A , 102324171⎪⎪⎪⎭⎫ ⎝⎛-=B 则= )( TAB . 4.设052=-+I A A ,则=+-1)2(I A .5.已知矩阵⎪⎪⎪⎭⎫⎝⎛-=100120121A ,*A 是A 的伴随矩阵,则=-1*)(A .6.A 、A 分别为线性方程组b AX =的系数矩阵与增广矩阵,则线性方程组b AX =有解的充分必要条件是 .7.设⎪⎪⎪⎭⎫ ⎝⎛-=30511132a A ,且秩(A )=2,则=a .9.向量组1(1,2,1,1),T α=-,)0,3,0,2(2T=αT )1,4,2,1(3--=α的秩等于 . 10.设21,αα是)3(≥n n 元齐次线性方程组OAX =的基础解系,则=)(A r .二、选择题(每小题2分,共20分)1.已知101yxy x aA =,则A 中元素a 的代数余子式11A 等于( ).A.1- B .1 C .a - D .a2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为1,1,2,3-,则=A ( ).A .3B .3-C .5D .5-3.B A ,均为n 阶矩阵,且2222)(BAB AB A ++=+,则必有( ).A.B A = B .I A = C .I B = D .BA AB =4.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ).A.0=+B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B5.设33⨯阶矩阵),,(1γβα=A ,),,(2γβα=B ,其中γβαα,,,21均为3维列向量,若2=A ,1-=B ,则=+B A ( ).A.4 B .4- C .2 D .16.设B AX =为n 个未知数m 个方程的线性方程组,,)(r A r =下列命题中正确的是( ).A .当n m =时,B AX =有唯一解 B .当n r =时,B AX =有唯一解C .当m r =时,B AX =有解D .当n r <时,B AX =有无穷多解7.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( ).A .1或2B .1或-2C .-1或2D .-1或-28.n 阶矩阵A 的秩r n =的充分必要条件是A 中( ).A.所有的r 阶子式都不等于零 B .所有的1r +阶子式都不等于零 C.有一个r 阶子式不等于零 D .有一个r 阶子式不等于零, 且所有1r +阶子式都等于零9.设向量组,),,1(21T a a =α,),,1(22T b b =αT c c ),,1(23=α,则321,,ααα线性无关的充分必要条件是 ( ).A.c b a ,,全不为0 B .c b a ,,不全为0 C .c b a ,,互不相等 D .c b a ,,不全相等10.已知21,ββ为b AX =的两个不同的解,21,αα为其齐次方程组0A X =基础解系,21,k k 为任意常数,则方程组b AX =的通解可表成( ).A.2)(2121211ββααα-+++k kB .2)(2121211ββααα++-+k k线性代数期末试题答案一、填空题(每小题2分,共20分)1.52.03. ⎪⎪⎪⎭⎫⎝⎛-1031314170 4. )(31I A - 5.1/211/2011/2001/2-⎛⎫⎪⎪ ⎪⎝⎭6.)()(A r A r =7.6=a8. 38 9.2 10.2-n二、选择题(每小题2分,共20分)1.B2.C3.D4.D5.A6.C7.B8.D9.C 10.B 三、(8分)解:3211324-824823592373(1)373125212412411131D -===-----18361836(1)1313241=-=-=-四、(10分)解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=14191269629303212114321011324TAA (2)⎪⎪⎪⎭⎫⎝⎛-----=--461351341)2(1E A (3) 由XA AX2+=,得A XE A =-)2(A E A X 1)2(--=⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛-----=9122692683321011324461351341五、(12分)解:将方程组的增广矩阵A 用初等行变换化为阶梯矩阵:22112411411242110228018211240134(1)(4)00(4)2k k k k k k k k k k k ⎡⎤⎢⎥----⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥=-→-→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎣⎦⎣⎦+-⎢⎥-⎣⎦A所以,⑴ 当1k≠-且4k ≠时,()()3r r ==A A ,此时线性方程组有唯一解.⑵ 当1k =-时,()2=A r ,()3=A r ,此时线性方程组无解.⑶ 当4k=时,()()2==A A r r ,此时线性方程组有无穷多组解.此时,原线性方程组化为132334x x x x =-⎧⎨=-⎩ 因此,原线性方程组的通解为13233334x x x x x x=-⎧⎪=-⎨⎪=⎩或者写为123034101x x C x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦x (C R)∈六、(10分)解:记向量组4321,,,αααα对应矩阵为A 并化为行阶梯形矩阵为12341223122324130212(,,,)12030013062300002634000A αααα--⎛⎫⎛⎫⎪ ⎪-----⎪ ⎪ ⎪ ⎪==→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭所以向量组4321,,,αααα的秩为3且它的一个最大无关组为:123,,ααα或124,,ααα1004101020013000000A -⎛⎫⎪ ⎪- ⎪→⎪ ⎪ ⎪ ⎪⎝⎭41231432αααα=--+ 七、(12分)解:(1).⎪⎪⎪⎪⎪⎭⎫⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=61826239131039131024511810957245113322311312A⎪⎪⎪⎪⎪⎭⎫⎝⎛----→0000000039131015801为自由未知量。

线性代数期末考试试卷及答案

线性代数期末考试试卷及答案

一、 填空题(每空3分,共15分)1、设A 为n 阶方阵,且3A =,则|3A |= 。

2、设矩阵5678A ⎡⎤=⎢⎥⎣⎦,则A *= 。

(其中A *是A 的伴随矩阵) 3、已知n 阶矩阵A 满足2A A =,则A 的特征值为 。

4、n 阶方阵A 与对角矩阵相似的充要条件是 。

5、二次型22212312133428f x x x x x x x =-+-+的实对称矩阵为 。

二、选择题(每小题3分,共15分)1、12021k k +≠+的充要条件是( )(A )1k ≠ (B )3k ≠-(C )1k ≠且3k ≠- (D )1k ≠或3k ≠-2、若111221226a a a a =,则121122212020021a a a a --的值为( ) ()A 12 ()B -12 ()C 18 ()D 03、设,A B 都是n 阶方阵,且0AB =,则下列一定成立的是( )()A 0A =或0B = (),B A B 都不可逆 (),C A B 中至少有一个不可逆 ()0D A B += 4、向量组()12,,,2s s ααα≥ 线性相关的充分必要条件是( )()A 12,,,s ααα 中含有零向量。

()B 12,,,s ααα 中有两个向量的对应分量成比例。

()C 12,,,s ααα 中每一个向量都可由其余1s -个向量线性表示。

()D 12,,,s ααα 中至少有一个向量可由其余1s -个向量线性表示。

5、当ad ≠bc 时,1a b c d -⎡⎤⎢⎥⎣⎦=( ) (A )d c b a -⎡⎤⎢⎥-⎣⎦(B )1d b c a ad bc -⎡⎤⎢⎥--⎣⎦(C )1d b c a bc ad ⎡⎤⎢⎥--⎣⎦(D )1d c b a ad bc -⎡⎤⎢⎥--⎣⎦三、(8分)计算行列式411102*********23D -=-四、(11分)求向量组()()()()12342,1,1,1,1,1,7,10,3,1,1,2,8,5,9,11αααα==-=--=的一个最大无关组,并将其余向量用此最大无关组线性表示。

大一期末考试题及答案

大一期末考试题及答案

大一期末考试题及答案本次考试涵盖了本学期所学的主要知识点,包括但不限于高等数学、线性代数、大学物理、英语等科目。

以下是部分科目的期末考试题及答案,供同学们参考。

一、高等数学1. 求函数f(x)=x^3-3x^2+2x的导数。

答案:f'(x)=3x^2-6x+22. 计算定积分∫(0,1) (x^2+1)dx。

答案:∫(0,1) (x^2+1)dx = (1/3x^3+x)|_0^1 = 1/3+1 = 4/3二、线性代数1. 求解线性方程组:\begin{cases}x + 2y - z = 1 \\2x - y + z = 0 \\-x + 3y + 2z = 5\end{cases}答案:\begin{cases}x = 2 \\y = 1 \\z = -1\end{cases}2. 证明矩阵A=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}是可逆的,并求其逆矩阵。

答案:矩阵A的行列式为-5,因为行列式不为0,所以矩阵A是可逆的。

逆矩阵A^{-1}=\begin{bmatrix} -4/5 & 2/5 \\ 3/5 & -1/5\end{bmatrix}。

三、大学物理1. 一物体以初速度v0=10m/s沿水平方向抛出,忽略空气阻力,求物体落地时的速度大小。

答案:根据机械能守恒,物体落地时的速度大小为v=\sqrt{v0^2+2gh}=\sqrt{10^2+2*9.8*h},其中h为物体抛出的高度。

2. 一质量为m的物体在水平面上受到一恒定的拉力F作用,摩擦力为f,求物体的加速度a。

答案:根据牛顿第二定律,a=(F-f)/m。

四、英语1. Translate the following sentence into English: "随着科技的发展,人们的生活变得越来越方便。

"答案:"With the development of technology, people's lives are becoming more and more convenient."2. Fill in the blanks with the correct prepositions: He isvery interested in ________ music.答案:in以上是部分科目的期末考试题及答案,希望对同学们有所帮助。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 1/4C. 2D. 4答案:B2. 向量α=(1,2,3)和向量β=(4,5,6),则向量α和向量β的点积为:A. 32B. 22C. 14D. 0答案:A3. 设A为3×3矩阵,且A的秩为2,则A的行向量线性相关,下列说法正确的是:A. 正确B. 错误答案:A4. 若A为n阶方阵,且A^2=0,则A的秩为:A. nB. n-1C. 0D. 不确定答案:C5. 设A为3阶方阵,且A的特征值为1,2,3,则矩阵A的迹为:A. 6B. 1C. 2D. 3答案:A二、填空题(每题5分,共30分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置为\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]。

答案:\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]2. 设向量α=(2,3),向量β=(4,6),则向量α和向量β共线,其比例系数为2。

答案:23. 若矩阵A=\[\begin{bmatrix}1 & 1 \\ 2 & 2\end{bmatrix}\],则矩阵A的行列式为2。

答案:24. 设矩阵B=\[\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}\],则矩阵B的逆矩阵为\[\begin{bmatrix}0 & -1 \\ 1 &0\end{bmatrix}\]。

答案:\[\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\]5. 设矩阵C=\[\begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\],则矩阵C的特征值为1和2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数期末考试题
一、填空题(将正确答案填在题中横线上。

每小题2分,共10分)
1. 若,则__________。

2.若齐次线性方程组只有零解,则应满足。

4.矩阵的行向量组线性。

5.阶方阵满足,则。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×".每小题2分,共10分)
1。

若行列式中每个元素都大于零,则。

( )
2. 零向量一定可以表示成任意一组向量的线性组合。

( )
3. 向量组中,如果与对应的分量成比例,则向量组线性相关。

()
4. ,则。

( )
5. 若为可逆矩阵的特征值,则的特征值为. ( )
三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内.每小题2分,共10分)
1。

设为阶矩阵,且,则().
①②③④4
2. 维向量组(3 ≤ s ≤ n)线性无关的充要条件是( )。

①中任意两个向量都线性无关
②中存在一个向量不能用其余向量线性表示
③中任一个向量都不能用其余向量线性表示
④中不含零向量
3. 下列命题中正确的是( )。

①任意个维向量线性相关
②任意个维向量线性无关
③任意个维向量线性相关
④任意个维向量线性无关
4。

设,均为n 阶方阵,下面结论正确的是()。

①若,均可逆,则可逆②若,均可逆,则可逆
③若可逆,则可逆④若可逆,则,均可逆
5. 若是线性方程组的基础解系,则是的()
①解向量②基础解系③通解④ A的行向量
四、计算题( 每小题9分,共63分)
2。

设,且求。

3.设且矩阵满足关系式求。

4.问取何值时,下列向量组线性相关?。

5. 为何值时,线性方程组有唯一解,无解和有无穷多解?当方程组有无穷多解时求其通解。

6。

设求此向量组的秩和一个极大无关组,并将其余向量用该极大无关组线性表示.
线性代数期末考试题答案
一、填空题
1. 5 2。

3. 4。

相关
5.
二、判断正误
1. ×
2. √
3. √4。

√5. ×
三、单项选择题
1. ③2。

③3。

③4. ②5。


四、计算题
2.

3.
4.
当或时,向量组线性相关.
5.
①当且时,方程组有唯一解;
②当时方程组无解
③当时,有无穷多组解,通解为
6.
则 ,其中构成极大无关组,
7。

特征值,对于λ1=1,,特征向量为。

相关文档
最新文档