近似数及其计算方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近似数及其计算方法

江苏省泗阳县李口中学沈正中

一、求近似数的三种方法

1. 四舍五入法

这是一种最常用的求近似数的方法,就是看确定保留数位的下一位数字,比5小的(即0、1、2、3、4),就把这个数字以及后面的所有数字舍去;如果这个数字比4大(即5、6、7、8、9),就把这个数字以及后面的所有数字舍去后,向前一位进一。如64.96283,保留到万分位写为64。9628,即64。96283≈64.9628(以下类推),保留到千分位写作64。963,保留到百分位写作68.96,保留到十分位写作64.0,保留到整数写作64.由此可以看出:“四舍”时,近似数比准确值小,“五入”时,近似数比准确值大。

2. 进一法

在实际生活中,有时把一个数的保留数位确定后,只要下一位数字或后面的数字有不为0的(即1、2、3、……、9),都要向前一位进一。如:同学们同时去划船,每只船上最多能载7个同学,17个同学至少需几只船?17÷7≈2.4,就是说17个同学需要2只船还余3人,这3人还需一只船,所以一共需要3只船.即17÷7=≈3 (只)。由此可知:用进一法得到的近似数总比准确值大.

3。去尾法

在实际生活中,有时把一个数的保留数位确定后,不管下一位数字

或后面的数字是几(即0、1、2、3、……、9),都不要向前一位进一.如:用一根5m米长水管做成一批27cm长相同规格的水管,可以做成多少根?500÷27=≈18(根)由此可知:用去尾法得到的近似数总比准确数小。

二、近似数的四则混合运算

1. 近似数的加减法

在一般情况下,近似数相加减的和或差精确到哪一位,与已知数中精确度最低的一个相同,计算法则:

(1)确定结果精确到哪一个数位(与已知数中精确度最低那个数精确数位相同);

(2)把已知数中的其它数,四舍五入到已知数中精确度最低那个数数位的下一位;

(3)进行计算,并且把算得的数的末位数字四舍五入.

【例1】求近似数25。4、0。456、8.738和56的和.

解:25.4+0.456+8.738+56≈25.4+0。5+8.7+56=90。6≈91 【例2】求近似数0。095减0.002173的差。

解:0.095-0。002173≈0。0095-0。0022=0.0928≈0.093

2. 近似数的乘除法

在一般情况下,近似数相乘除的积或商取几个有效数字,与已知数中有效数字最少的相同,计算法则:

(1)确定结果有多少个有效数字(与已知数中有效数字最少的相同);

(2)把已知数中其它数,四舍五入到比已知数中有效数字最少的多一个;

(3)进行计算(除法要比结果有效数字多算出一位),并把算得的数四舍五入到应该有的有效数字的个数。

【例3】(1)求近似数26。79与0。26的积。

(2)求近似数9。7除以近似数31。48的商。

解:(1)26.79×0.26≈26。8×0。26=6.968≈7.0

(2)9.7÷31.48≈9。7÷31。5≈0.307≈0.31

【例4】量得一个圆的周长约是3.73厘米,求这个圆的直径。

分析:题目要求直径长度,需用“3.73÷π"去计算。其中3。73是近似数,有三个有效数字;π是个准确数,它有任意多个有效数字,计算时,π取四个有效数字。

解3.73÷π≈3.73÷3.142÷1。19(厘米)

答:这个圆的直径约是1.19厘米。

三、近似数混合运算方法

计算法则:近似数的混合运算,要分步来做。运算的中间步骤的计算结果,所保留的数字要比加、减、乘、除计算法则规定的多取一个。

【例5】完成下面近似数的混合计算:

57。71÷5.14+3.18×1.16-4。6307×1.6。

解:原式≈57.71÷5。14+3.18×1.16-4。63×1.6

≈11.23+3。689-7。41≈7.5

说明:(1)57。71÷5。14,3.18×1.16,4.6307×1。6,所得的中间结果11.23,3。689,7。41,都比法则规定应当取的有效数字多取了一个。

(2)11.23+3.689-7。41是加减法,各数中精确度最低的是7。41,这个数实际上只有两个有效数字(7、4,1是多取的),就是只精确到十分位。因此,最后求得的结果应当四舍五入到十分位,得7。5.

【例6】有一块梯形土地,量得上底约为68.73米,下底约为104.20米,高约为9.57米。求这块土地的面积。

解:(68.73+104.20)×9。57÷2=172.93×9.57÷2≈1654。9÷2=827。45≈827(平方米)

答:这块土地的面积约为827平方米。

说明:(1)68。73+104.20,所得的中间结果172。93,精确到0.01,没有多取的数位。

(2)因2是准确数,在172.93×9.57÷2中,有效数字最少的是9.57,是三个有效数字,按法则172.93×9。57结果应取4个有效数字,但由于172。93没有多取一个有效数字,所以172.93×9。57结果应取5个有效数字为1654。9,最后结果按四舍五入到三个有效数字,得827。

四、预定精确度的计算法则

已给出计算结果所要求达到的精确度,要求确定原始数据的精确度,通常称其为“预定精确度的计算"。预定精确度的计算法则,一般有:

1.预定结果的精确度用有效数字给出的问题。如果预定结果有n个有效数字,那么原始数据一般取到n+1个有效数字。

2.对于加法和减法,由于计算结果的精确度是按小数的位数来确定的,所以当预定结果的精确度用有效数字个数给出,那么就要先估计出和或差里最高一位数在哪一位上。

【例7】圆形面积大约是140平方米,要使算出的结果具有两个有效数字,那么测量半径r应达到怎样的精确度?π应取几个有效数字的近似值?

解:因圆形面积大约是1.4×10平方米,为了使面积S具有两个有效数字,π和r就都要有三个有效数字。因为

r应该有一位整数,所以测量半径时,应该精确到0.01米。

π应该取三个有效数字的近似值3.14。

【例8】梯形上底a约50米,下底b约60米,高h约40米。测量时,应达到怎样的精确度,才能使算出的面积S有两个有效数字?

解:

因a约5×10米,b约6×10米,高h约×40米,要使S有两个有效数字,则(a+b)与h都应该有三个有效数字。所以,测量h应精确到0.1米,而测量上底和下底,只需要精确到1米(因a+b有三个整数数位。)

相关文档
最新文档