定积分的证明题

合集下载

考研定积分经典例题(完美讲析)

考研定积分经典例题(完美讲析)

定积分常见问题一、关于含“变上限积分”的问题321(1)()x x F x =⎰例、求下列导数32(2)()x x F x =⎰220(3)()()xF x tf x t dt =-⎰2例、求下列极限2221(1)lim(1)x t xx t e dt x -→∞+⎰求 2204()(2)lim,()(0)0,(0)2xx tf x t dtf x f f x→-'==⎰求连续,3例1(1)()()()sin f x f tx dt f x x x =+⎰求连续函数,使之满足1ln 1(2)()0()()1xt f x dt x f x f t x =>++⎰、设,其中,求 ()()3213()0(),1()8,()3f x f x xg x g t dt x f x >=-⎰()设在可微。

其反函数为且求二、定积分计算的有关问题411(1)例、(常见形式积分)4(2)1cos 2xdx x π+⎰(3).2(4)(0)aa >⎰0(5)⎰0(6)a例2、(分段函数,绝对值函数)[(1)()b a xdx a b <⎰0,02(2)(),()(),2x l kx x f x x f t dt l c x l ⎧≤≤⎪⎪=Φ=⎨⎪≤≤⎪⎩⎰、设求10(3)t t x dt -⎰sin ,02(4).()(),(0)0(),()0,2xx x f t g x t dt x x f x x g x x ππ⎧≤<⎪⎪-≥≥==⎨⎪≥⎪⎩⎰其中当时,而例3(对称区间上积分)11(1)(1sin )()x x x e e dx --++⎰(1212(2)sin ln x x x dx -⎡⎢⎣⎰244sin (3)1x x dx e ππ--+⎰()4[]()()baf x dx f xg x +⎰例、形如的积分42(1)dx sin 2sin cos 0(2)xx x e dxe e π+⎰2(3),1()dxtgx πλ+⎰例5、(由三角有理式与其他初等函数通过四则成复合而成的函数的积分)22022001.(sin )(cos ))2.(sin )(sin )21331,24223.sin cos ,1342,1253n n f x dx f x dx xf x dx f x dxn n n n n xdx xdx n n n n n ππππππππ==--⎧⋅⋅⋅⎪⎪-==⎨--⎪⋅⋅⎪-⎩⎰⎰⎰⎰⎰⎰ 常用结论,为正偶自然数为大于的正奇数,2(sin )(1)(sin )(cos )f x dxf x f x π+⎰2π⎰101020sin cos (2)4sin cos x x dx x x π---⎰、2(3)ln sin xdx π⎰ 320sin (4)1cos x xdx x π+⎰2220sin (5),sin cos n n n n x x I dx n N x x π+=∈+⎰计算 640(6)sin cos x x xdxπ⎰[]2(7)(),,()()sin ,()1cos xf x f x f x xdx f x x ππππ--=++⎰设在上连续且满足求1210011(8)(1)x dx--⎰求0(9)n π⎰2sin (10)()sin ,().x t xF x e tdt F x A B C D π+=⎰则是()正常数负常数恒为零不是常数例6 利用适当变量代换计算积分4(1)ln(1)tgx dx π+⎰120ln(1)(2)1x dx x ++⎰ 200(3)sin n x xdx π⎰20(4)(1)(1)dxx x α+∞++⎰求例7(其它)22(1)()[0,]()cos ()()2f x f x x x f t dt f x ππ=+⎰、设在上连续,且,求212(2)()()2()()f x x x f x dx f x dx f x =-+⎰⎰设,求120(3)()()arcsin(1),(01),()y y x y x x x y x dx '==-≤≤⎰设满足求22011(4)()(2)arctan ,(1)1,()2x f x tf x t dt x f f x dx -==⎰⎰、设连续,且满足求的值2200cos sin cos (5),,(2)1x x xdx A dx x x ππ=++⎰⎰已知:求220(6)()ln(12cos )(),()F a a x a dx F a F a π=-+-⎰设,求(2)(),()a xay a y f x edy f x dx --=⎰⎰(7)、设求1(8)(1)m n x x dx -⎰例8、计算下列广义积分(基本题)2(1),1dxx +∞-∞+⎰1(2),e 2ln (3),1xdx x+∞+⎰51(4)1(5)cos(ln ),x dx ⎰例9(1)0)pt te dt p p +∞->⎰(是常数,且2(2).(1)xx xe dx e +∞--+⎰例10、计算下列广义积分(广义积分变量代换例)3(1)23202ln(1)(2)(1)x x dx x +∞++⎰22200200.cos sin (1)(1)1sin sin (2),()2x x xdx A A dx x x x x dx dxx x π+∞+∞+∞+∞++=⎰⎰⎰⎰例11已知广义积分收敛于,试用表示广义积分的值已知求 经典例题例1求21limn n→∞ . 解将区间[0,1]n 等分,则每个小区间长为1i x n∆=,然后把2111n n n =⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即21limn n →∞+ =1lim n n →∞+ =34=⎰.例20⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则⎰=22tdt ππ-⎰=2tdt =2202cos tdt π⎰=2π例3 比较12x e dx ⎰,212x e dx ⎰,12(1)x dx +⎰.解法1在[1,2]上,有2x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又1221()()f x dx f x dx =-⎰⎰,从而有2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.解法2 在[1,2]上,有2xx e e ≤.由泰勒中值定理212!xe e x x ξ=++得1x e x >+.注意到1221()()f x dx f x dx =-⎰⎰.因此2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.例4 估计定积分22xxe dx -⎰的值.解设 2()xxf x e -=, 因为 2()(21)xxf x e x -'=-, 令()0f x '=,求得驻点12x =, 而 0(0)1f e ==, 2(2)f e =, 141()2f e -=,故124(),[0,2]ef x e x -≤≤∈,从而21224022xxee dx e --≤≤⎰,所以21024222x xe edx e ---≤≤-⎰.例5设()f x ,()g x 在[,]a b 上连续,且()0g x ≥,()0f x >.求lim (ban g x →∞⎰.解 由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x >知0M >,0m >.又()0g x ≥,则()b ag x dx (b ag x ≤⎰()bag x dx ≤.由于1n n =,故lim (ban g x →∞⎰=()bag x dx ⎰.例6求sin lim n pnn xdx x+→∞⎰, ,p n 为自然数. 解法1 利用积分中值定理 设 sin ()xf x x=, 显然()f x 在[,]n n p +上连续, 由积分中值定理得 sin sin n p n x dx p x ξξ+=⋅⎰, [,]n n p ξ∈+, 当n →∞时, ξ→∞, 而sin 1ξ≤, 故sin sin lim lim 0n pnn x dx p xξξξ+→∞→∞=⋅=⎰.解法2 利用积分不等式 因为sin sin 1ln n pn p n p nn n x x n pdx dx dx x x x n++++≤≤=⎰⎰⎰, 而limln0n n pn→∞+=,所以 sin lim 0n pnn xdx x+→∞=⎰. 例7求10lim 1nn x dx x→∞+⎰.解法1 由积分中值定理 ()()()()bbaaf xg x dx f g x dx ξ=⎰⎰可知101nx dx x +⎰=111n x dx ξ+⎰,01ξ≤≤.又11lim lim01n n n x dx n →∞→∞==+⎰且11121ξ≤≤+, 故10lim 01n n x dx x→∞=+⎰. 解法2 因为01x ≤≤,故有01nn x x x≤≤+.于是可得110001nn x dx x dx x ≤≤+⎰⎰.又由于110()1n x dx n n =→→∞+⎰. 因此10lim 1nn x dx x→∞+⎰=0. 例8设函数()f x 在[0,1]上连续,在(0,1)内可导,且3414()(0)f x dx f =⎰.证明在(0,1)内存在一点c ,使()0f c '=.证明 由题设()f x 在[0,1]上连续,由积分中值定理,可得3413(0)4()4()(1)()4f f x dx f f ξξ==-=⎰,其中3[,1][0,1]4ξ∈⊂.于是由罗尔定理,存在(0,)(0,1)c ξ∈⊂,使得()0f c '=.证毕.例9(1)若22()x t x f x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2)由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例10 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例11函数1()(3(0)x F x dt x =>⎰的单调递减开区间为_________.解()3F x'=,令()0F x '<3>,解之得109x <<,即1(0,)9为所求. 例12求0()(1)arctan xf x t tdt =-⎰的极值点.解()f x '(1)arctan x x -()f x '0得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例13已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中 2arcsin 0()x t g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.解由已知条件得20(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知(0)(0)1f g =''===.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n →∞→∞-'=⋅==-. 例14 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;解22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x →-⋅-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例15试求正数a 与b,使等式201lim1sin x x x b x →=-⎰成立.解2001lim sin x x x b x →-⎰=20x →=20lim 1cos x x x b x →→-2011cos x x b x →==-, 由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2011cos x x x →==-, 得4a =.即4a =,1b =为所求. 例16设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小. 解法1由于 22300()sin(sin )cos lim lim ()34x x f x x xg x x x →→⋅=+2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B . 解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342xf x t t dt x x =-+=-+⎰ , 则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x →→→-+-+===++. 例17证明:若函数()f x 在区间[,]a b 上连续且单调增加,则有()baxf x dx ⎰()2baa b f x dx +≥⎰.证法1 令()F x =()()2xxa a a x tf t dt f t dt +-⎰⎰,当[,]t a x ∈时,()()f t f x ≤,则 ()F x '=1()()()22x a a x xf x f t dt f x +--⎰=1()()22xax a f x f t dt --⎰≥1()()22x a x a f x f x dt --⎰=()()22x a x a f x f x ---0=. 故()F x 单调增加.即 ()()F x F a ≥,又()0F a =,所以()0F x ≥,其中[,]x a b ∈. 从而()F b =()()2bba a ab xf x dx f x dx +-⎰⎰0≥.证毕. 证法2 由于()f x 单调增加,有()[()()]22a b a bx f x f ++--0≥,从而 ()[()()]22baa b a bx f x f dx ++--⎰0≥. 即()()2baa b x f x dx +-⎰()()22b a a b a b x f dx ++≥-⎰=()()22b a a b a bf x dx ++-⎰=0.故()baxf x dx ⎰()2baa b f x dx +≥⎰. 例18计算21||x dx -⎰.分析被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解21||x dx -⎰=021()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x在0x =处间断且在被积区间内无界.例19 计算220max{,}x x dx ⎰.分析 被积函数在积分区间上实际是分段函数212()01x x f x x x ⎧<≤=⎨≤≤⎩. 解23212221201011717max{,}[][]23236x x x x dx xdx x dx =+=+=+=⎰⎰⎰例20设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =. 解 因()f x 连续,()f x 必可积,从而1()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a +=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例21 设23, 01()52,12x x f x x x ⎧≤<=⎨-≤≤⎩,0()()x F x f t dt =⎰,02x ≤≤,求()F x , 并讨论()F x 的连续性.解 (1)求()F x 的表达式.()F x 的定义域为[0,2].当[0,1]x ∈时,[0,][0,1]x ⊂, 因此23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当(1,2]x ∈时,[0,][0,1][1,]x x = , 因此, 则1201()3(52)xF x t dt t dt =+-⎰⎰=31201[][5]xt t t +-=235x x -+-, 故32, 01()35,12x x F x x x x ⎧≤<⎪=⎨-+-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(35)1x x F x x x ++→→=-+-=, 311lim ()lim 1x x F x x --→→==, (1)1F =. 因此, ()F x 在1x =处连续, 从而()F x 在[0,2]上连续.例22 计算21-⎰.由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.解21-⎰=211--+⎰⎰.由于2是偶函数,而是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx-⎰⎰由定积分的几何意义可知4π=⎰, 故2114444dxππ-=-⋅=-⎰⎰.例23计算3412ee⎰.解3412ee⎰=34e3412ee⎰=⎰=3412ee=6π.例24计算4sin1sinxdxxπ+⎰.解4sin1sinxdxxπ+⎰=42sin(1sin)1sinx xdxxπ--⎰=244200sintancosxdx xdxxππ-⎰⎰=244200cos(sec1)cosd xx dxxππ---⎰⎰=44001[][tan]cosx xxππ--=24π-注此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试.例25计算2a⎰,其中0a>.解2a⎰=20a⎰,令sinx a a t-=,则2a⎰=3222(1sin)cosa t tdtππ-+⎰=3222cos0a tdtπ+⎰=32aπ.注 ,一般令sin x a t =或cos x a t =. 例26 计算a⎰,其中0a >.解法1 令sin x a t =,则a⎰2cos sin cos tdt t tπ=+⎰201(sin cos )(cos sin )2sin cos t t t t dt t t π++-=+⎰ 201(sin cos )[1]2sin cos t t dt t tπ'+=++⎰ []201ln |sin cos |2t t t π=++=4π. 解法2 令sin x a t =,则a⎰=2cos sin cos tdt t tπ+⎰.又令2t u π=-,则有20cos sin cos t dt t t π+⎰=20sin sin cos u du u u π+⎰.所以,a⎰22001sin cos []2sin cos sin cos t t dt dt t tt t ππ+++⎰⎰=2012dt π⎰=4π. 注 如果先计算不定积分,再利用牛顿-莱布尼兹公式求解,则比较复杂,由此可看出定积分与不定积分的差别之一.例27计算ln 0⎰.解设u =2ln(1)x u =+,221udx du u =+,则ln 0⎰=22220(1)241u u u du u u +⋅=++⎰22222200442244u u du du u u +-=++⎰⎰ 222001284du du u =-=+⎰⎰4π-.例28 计算220()xd tf x t dt dx -⎰,其中()f x 连续.分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解由于220()xtf x t dt -⎰=2221()2x f x t dt -⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()xtf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰, 故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x ⋅=2()xf x . 错误解答220()xd tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例29 计算30sin x xdx π⎰.解30sin x xdx π⎰30(cos )xd x π=-⎰330[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=-.例30 计算120ln(1)(3)x dx x +-⎰. 解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x+-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x -++-⎰11ln 2ln324=-. 例31计算20sin x e xdx π⎰.解由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1) 而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2) 将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例32 计算10arcsin x xdx ⎰.解10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰ 21142π=-⎰. (1) 令sin x t =,则21⎰220sin t π=⎰220sin cos cos ttdt tπ=⋅⎰220sin tdt π=⎰201cos 22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例33设()f x 在[0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '. 解 由于0[()()]cos f x f x xdx π''+⎰0()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例34(97研)设函数()f x 连续,1()()x f xt dt ϕ=⎰,且0()limx f x A x→=(A 为常数), 求()x ϕ'并讨论()x ϕ'在0x =处的连续性.分析 求()x ϕ'不能直接求,因为10()f xt dt ⎰中含有()x ϕ的自变量x ,需要通过换元将x从被积函数中分离出来,然后利用积分上限函数的求导法则,求出()x ϕ',最后用函数连续的定义来判定()x ϕ'在0x =处的连续性.解 由0()limx f x A x→=知0lim ()0x f x →=,而()f x 连续,所以(0)0f =,(0)0ϕ=.当0x ≠时,令u xt =,0t =,0u =;1t =,u x =.1dt du x =,则()()xf u du x xϕ=⎰,从而02()()()(0)xxf x f u dux x xϕ-'=≠⎰.又因为02()()(0)()limlimlim22xx x x f u du x f x A x xx ϕϕ→→→-===-⎰,即(0)ϕ'=2A.所以 ()x ϕ'=02()(),0,02x xf x f u du x x Ax ⎧-⎪≠⎪⎨⎪=⎪⎩⎰. 由于22000()()()()lim ()limlim limxxx x x x xf x f u duf u du f x x xx x ϕ→→→→-'==-⎰⎰=(0)2A ϕ'=. 从而知()x ϕ'在0x =处连续.注 这是一道综合考查定积分换元法、对积分上限函数求导、按定义求导数、讨论函数在一点的连续性等知识点的综合题.而有些读者在做题过程中常会犯如下两种错误: (1)直接求出2()()()xxf x f u dux xϕ-'=⎰,而没有利用定义去求(0)ϕ',就得到结论(0)ϕ'不存在或(0)ϕ'无定义,从而得出()x ϕ'在0x =处不连续的结论.(2)在求0lim ()x x ϕ→'时,不是去拆成两项求极限,而是立即用洛必达法则,从而导致()()()1lim ()lim ().22x x xf x f x f x x f x x ϕ→→'+-''==又由0()limx f x A x→=用洛必达法则得到0lim ()x f x →'=A ,出现该错误的原因是由于使用洛必达法则需要有条件:()f x 在0x =的邻域内可导.但题设中仅有()f x 连续的条件,因此上面出现的0lim ()x f x →'是否存在是不能确定的.例35(00研)设函数()f x 在[0,]π上连续,且()0f x dx π=⎰,0()cos 0f x xdx π=⎰.试证在(0,)π内至少存在两个不同的点12,ξξ使得12()()0f f ξξ==.分析 本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt =⎰,找出()F x的三个零点,由已知条件易知(0)()0F F π==,0x =,x π=为()F x 的两个零点,第三个零点的存在性是本题的难点.另一种方法是利用函数的单调性,用反证法证明()f x 在(0,)π之间存在两个零点.证法1 令0()(),0xF x f t dt x π=≤≤⎰,则有(0)0,()0F F π==.又00()cos cos ()[cos ()]()sin f x xdx xdF x xF x F x xdx ππππ==+⎰⎰⎰()sin 0F x xdx π==⎰,由积分中值定理知,必有(0,)ξπ∈,使得()sin F x xdx π⎰=()sin (0)F ξξπ⋅-.故()sin 0F ξξ=.又当(0,),sin 0ξπξ∈≠,故必有()0F ξ=. 于是在区间[0,],[,]ξξπ上对()F x 分别应用罗尔定理,知至少存在1(0,)ξξ∈,2(,)ξξπ∈,使得12()()0F F ξξ''==,即12()()0f f ξξ==.证法2 由已知条件0()0f x dx π=⎰及积分中值定理知必有10()()(0)0f x dx f πξπ=-=⎰,1(0,)ξπ∈,则有1()0f ξ=.若在(0,)π内,()0f x =仅有一个根1x ξ=,由0()0f xd x π=⎰知()f x 在1(0,)ξ与1(,)ξπ内异号,不妨设在1(0,)ξ内()0f x >,在1(,)ξπ内()0f x <,由()cos 0f x xdx π=⎰,0()0f x dx π=⎰,以及cos x 在[0,]π内单调减,可知:100()(cos cos )f x x dx πξ=-⎰=11110()(cos cos )()(cos cos )f x x dx f x x dx ξπξξξ-+-⎰⎰0>.由此得出矛盾.故()0f x =至少还有另一个实根2ξ,12ξξ≠且2(0,)ξπ∈使得 12()()0.f f ξξ==例36计算243dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算.解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32. 例37计算3+∞⎰.解3+∞⎰2233sec tan sec tan d ππθθθθθ+∞=⎰⎰23cos 1d ππθθ==⎰ 例38计算42⎰分析 该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32)⎰43⎰解 由于32⎰32lim aa +→⎰32lim aa +→⎰=32lim[arcsin(3)]a a x +→-=2π.43⎰34lim bb -→⎰34lim bb -→⎰=34lim[arcsin(3)]b b x -→-=2π. 所以42⎰22πππ=+=.例39计算0+∞⎰.分析 此题为混合型反常积分,积分上限为+∞,下限0为被积函数的瑕点. 解t ,则有+∞⎰=50222(1)tdt t t +∞+⎰=50222(1)dt t +∞+⎰,再令tan t θ=,于是可得5022(1)dt t +∞+⎰=25022tan (tan 1)d πθθ+⎰=2250sec sec d πθθθ⎰=230sec d πθθ⎰ =320cos d πθθ⎰=220(1sin )cos d πθθθ-⎰=220(1sin )sin d πθθ-⎰=3/21[sin sin ]3πθθ-=23. 例40计算21⎰. 解 由于221112111())d x x x +-==⎰⎰⎰,可令1t x x=-,则当x =时,t =;当0x -→时,t →+∞;当0x +→时,t →-∞;当1x =时,0t =;故有21010211()()12()d x d x x x x x--=+-⎰⎰⎰022dt t +∞-∞=++⎰⎰1arctan )2π=+ . 注 有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.例41求由曲线12y x =,3y x =,2y =,1y =所围成的图形的面积. 分析 若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.下面选取以y 为积分变量. 解选取y 为积分变量,其变化范围为[1,2]y ∈,则面积元素为dA =1|2|3y y dy -=1(2)3y y dy -. 于是所求面积为211(2)3A y y dy =-⎰=52. 例42抛物线22y x =把圆228x y +=分成两部分,求这两部分面积之比.解 抛物线22y x =与圆228x y +=的交点分别为(2,2)与(2,2)-,如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有图5-21S =222)2y dy -⎰=24488cos 3d ππθθ--⎰=423π+,218S A π=-=463π-,于是12S S =423463ππ+-=3292ππ+-.例43 求心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积.分析 心形线1cos ρθ=+与圆3cos ρθ=的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可. 解求得心形线1cos ρθ=+与圆3cos ρθ=的交点为(,)ρθ=3(,)23π±,由图形的对称性得心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积为图5-3A =223203112[(1cos )(3cos )]22d d πππθθθθ++⎰⎰=54π. 3πθ=3cos ρθ=3211-o11-1cos θ+例44求曲线ln y x =在区间(2,6)内的一条切线,使得该切线与直线2x =,6x =和曲线ln y x =所围成平面图形的面积最小(如图5-4所示).分析 要求平面图形的面积的最小值,必须先求出面积的表达式.解 设所求切线与曲线ln y x =相切于点(,ln )c c ,则切线方程为1ln ()y c x c c-=-.又切线与直线2x =,6x =和曲线ln y x =所围成的平面图形的面积为图5-4A =621[()ln ln ]x c c x dx c -+-⎰=44(1)4ln 46ln62ln 2c c-++-+.由于dA dc =2164c c-+=24(4)c c --,令0dA dc =,解得驻点4c =.当4c <时0dA dc<,而当4c >时0dAdc >.故当4c =时,A 取得极小值.由于驻点唯一.故当4c =时,A 取得最小值.此时切线方程为: 11ln 44y x =-+. 例45求圆域222()x y b a +-≤(其中b a >)绕x 轴旋转而成的立体的体积.解 如图5-5所示,选取x 为积分变量,得上半圆周的方程为2y b =下半圆周的方程为1y b =图5-5则体积元素为dV =2221()y y dx ππ-=4π.于是所求旋转体的体积为V=4ab π-⎰=08b π⎰=284a b ππ⋅=222a b π.注 可考虑选取y 为积分变量,请读者自行完成.例46(03研)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D .(1)求D 的面积A ;(2)求D 绕直线x e =旋转一周所得旋转体的体积V . 分析 先求出切点坐标及切线方程,再用定积分求面积A ,旋转体积可用大的立体体积减去小的立体体积进行图5-6计算,如图5-6所示.解(1)设切点横坐标为0x ,则曲线ln y x =在点00(,ln )x x 处的切线方程是0001ln ()y x x x x =+-. 由该切线过原点知0ln 10x -=,从而0x e =,所以该切线的方程是1y x e=.从而D 的面积10()12y eA e ey dy =-=-⎰. (2)切线1y x e =与x 轴及直线x e =围成的三角形绕直线x e =旋转所得的旋转体积为2113V e π=,曲线ln y x =与x 轴及直线x e =围成的图形绕直线x e =旋转所得的旋转体积为1222011()(2)22y V e e dy e e ππ=-=-+-⎰.因此,所求体积为212(5123)6V V V e e π=-=-+.例47有一立体以抛物线22y x =与直线2x =所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.解 选x 为积分变量且[0,2]x ∈.过x 轴上坐标为x 的点作垂直于x 轴的平面,与立体相截的截面为等边三角形,其底边长为得等边三角形的面积为图5-7()A x 2=. 于是所求体积为 V =2()A x dx ⎰=2⎰=.例48(03研)某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而作功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k ,0k >),汽锤第一次击打进地下a (m ),根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r (01r <<).问: (1)汽锤打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m 表示长度单位米) 分析 本题属于变力作功问题,可用定积分来求.解 (1)设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为n W (1n =,2,).由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以12211022x k k W kxdx x a ===⎰,2122222211()()22x x k kW kxdx x x x a ==-=-⎰.由21W rW =得22221x x ra -=,即 222(1)x r a =+,3222223323()[(1)]22x x k kW kxdx x x x r a ==-=-+⎰.由2321W rW r W == 得22223(1)x r a r a -+=,即 2223(1)x r r a =++.从而汽锤击打3次后,可将桩打进地下3x =m ).(2)问题是要求lim n n x →∞,为此先用归纳法证明:1n x +=.假设n x ,则12211()2n nx n n n x k W kxdx x x +++==-⎰2121[(1...)]2n n kx r r a -+=-+++.由2111...n n n n W rW r W r W +-====,得21221(1...)n n n x r r a r a -+-+++=.从而1n x +.于是1lim n n n x +→∞=.()m .例49有一等腰梯形水闸.上底为6米,下底为2米,高为10米.试求当水面与上底相接时闸门所受的水压力.解 建立如图5-8所示的坐标系,选取x 为积分变量.则过点(0,3)A ,(10,1)B 的直线方程为135y x =-+.于是闸门上对应小区间[,]x x dx +的窄条所承受的水压力为2dF xy gdx ρ=.故闸门所受水压力为F =10012(3)5g x x dx ρ-+⎰=5003g ρ,其中ρ为水密度,g 为重力加速度.图5-8。

定积分练习题

定积分练习题

第九章 定 积 分练 习 题§1定积分概念习 题1.按定积分定义证明:⎰-=ba ab k kdx ).(2.通过对积分区间作等分分割,并取适当的点集{}i ξ,把定积分看作是对应的积分和的极限,来计算下列定积分:(1)⎰∑=+=1012233)1(41:;ni n n i dx x 提示 (2)⎰10;dx e x (3)⎰ba x dx e ; (4)2(0).(:bi adxa b xξ<<=⎰提示取§2 牛顿一菜布尼茨公式1.计算下列定积分:(1)⎰+10)32(dx x ; (2)⎰+-102211dx x x ; (3)⎰2ln e e x x dx ;(4)⎰--102dx e e xx ; (5)⎰302tan πxdx (6)⎰+94;)1(dx xx(7)⎰+40;1x dx(8)⎰eedx x x12)(ln 1 2.利用定积分求极限: (1));21(1334lim n nn +++∞→ (2);)(1)2(1)1(1222lim⎥⎦⎤⎢⎣⎡++++++∞→n n n n n n (3));21)2(111(222lim nn n n n +++++∞→ (4))1sin 2sin (sin 1lim nn n n n n -+++∞→ ππ3.证明:若f 在[a,b]上可积,F 在[a,b]上连续,且除有限个点外有F '(x )=f (x),则有()()().ba f x dx Fb F a =-⎰§3 可积条件1.证明:若T ˊ是T 增加若干个分点后所得的分割,则∑∑∆≤∆'.''T Ti i i i χωχω2.证明:若f 在[a,b]上可积,[][][]上也可积在则ββ,,,,a f b a a ⊂.3.设f ﹑g 均为定义在[a,b]上的有界函数。

证明:若仅在[a,b]中有限个点处()(),χχg f ≠则当f 在[a,b]上可积时,g 在[a,b]上也可积,且()().χχχχd g a bd f a b ⎰⎰=3.设f 在[a,b]上有界,{}[],,b a a n ⊂.lim c ann =∞→证明:在[a,b]上只有() ,2,1=n a n 为其间断点,则f 在[a,b]上可积。

定积分典型习题

定积分典型习题

第六章 定积分第一节 定积分的概念思考题:1. 如何表述定积分的几何意义?根据定积分的几何意义推出下列积分的值: (1)⎰-x x d 11, (2)⎰--x x R R R d 22, (3)⎰x x d cos 02π, (4)⎰-x x d 11.解:若[]⎰≥∈x x f x f b a x ab d )(,0)(,,则时在几何上表示由曲线)(x f y =,直线b x a x ==,及x 轴所围成平面图形的面积. 若[]b a x ,∈时,⎰≤x x f x f ab d )(,0)(则在几何上表示由曲线)(x f y =,直线b x a x ==,及x 轴所围平面图形面积的负值.(1)由下图(1)所示,0)(d 1111=+-=⎰-A A x x .(2)由上图(2)所示,2πd 2222R A x x R R R==-⎰-.(3)由上图(3)所示,0)()(d cos 5353543π20=--++=+-+=⎰A A A AA A A x x .( 2)( 1 )( 3 )(4)(4)由上图(4)所示,1112122d 611=⋅⋅⋅==⎰-A x x . 2. 若当b x a ≤≤,有)()(x g x f ≤,下面两个式子是否均成立,为什么?(1)x x g x x f ba b a d )(d )(⎰≤⎰, (2)x x g x x f d )(d )(⎰≤⎰.答:由定积分的比较性质知(1)式成立,而不定积分的结果表示一族函数,x x f d )(⎰与x x g d )(⎰不能比较大小,故(2)式不成立.3. n 个数的算术平均值与连续函数在闭区间上的平均值有何区别与联系?答:二者均反映了多个数的平均值大小,后者是前者的推广,但n 个数的算术平均值是有限个数的平均值,而连续函数在闭区间上的平均值反映的是无限个数的平均值,前者计算公式是∑=ni i a n 11,后者计算公式是⎰-b a x x f a b d )(1.习作题:1. 用定积分的定义计算定积分⎰bax c d ,其中c 为一定常数.解:任取分点b x x x x a n =<<<<= 210,把],[b a 分成n 个小区间],[1i i x x -)2,1(n i =,小区间长度记为∆i=i x -1-i x )2,1(n i =,在每个小区间[]i i x x ,1-上任取一点i ξ作乘积i i x f ∆⋅)(ξ的和式:∑∑==--=-⋅=∆⋅n i ni i iiia b c x xc x f 111)()()(ξ,记}{max 1i n i x ∆=≤≤λ, 则)()(lim )(lim d 0a b c a b c x f x c ni i i b a-=-=∆⋅=∑⎰=→→λλξ.2. 利用定积分的估值公式,估计定积分⎰-+-1134)524(x x x d 的值.解:先求524)(34+-=x x x f 在[]1,1-上的最值,由0616)(23=-='x x x f , 得0=x 或83=x . 比较 7)1(,102427)83(,5)0(,11)1(=-===-f f f f 的大小,知 11,102427max min =-=f f ,由定积分的估值公式,得[])1(1d )524()]1(1[max 1134min --⋅≤+-≤--⋅⎰-f x x x f ,即 22d )524(512271134≤+-≤-⎰-x x x . 3. 求函数21)(x x f -=在闭[-1,1]上的平均值.解:平均值⎰-=⋅⋅=---=11224π21π21d 1)1(11x x μ.4. 利用定积分的定义证明⎰-=b aa b x d .证明:令1)(=x f ,则⎰⎰=b ab a x x f x d )(d ,任取分点10x x a <=…b x n =<,把[]b a ,分成n 个小区间[]i i x x ,1-,并记小区间长度为),2,1(1n i x x x i i i ⋅⋅⋅⋅=-=∆-,在每个小区间[]i i x x ,1-上任取一点i ξ,作乘积⋅)(i f ξi x ∆的和式a b x x f n i ni i i i -=∆=∆⋅∑∑==11)(ξ,记}{max 1i ni x ∆=≤≤λ, 则 a b a b x f x x ni i i ba -=-=∆⋅=→=→∑⎰)(lim )(lim d 01ξλ.第二节 微积分基本公式思考题:1. ='⎰)d sin (d d 1xt t t ?答:因为⎰x t t 1d sin 是以x 为自变量的函数,故⎰xt t t1d sin d d =0. 2. ?)d )((21='⎰x x f答:因为⎰21d )(x x f 是常数,故0)d )((21='⎰x x f .3.=⎰ba x x f xd )(d d ? 答:因为⎰b ax x f d )(的结果中不含x ,故=⎰ba x x f xd )(d d 0. 4. =⎰xax t x d cos d d 2? 答:由变上限定积分求导公式,知=⎰x ax t x d cos d d 22cos x .5.=⎰1d e d d 2xt t x ? 答:=⎰1d e d d 2x t t x 22e )d e (d d 1x x t t x-=-⎰. 6. 若⎰=2d sin )(2x xt t x f ,则)(x f '=?答:)(x f '=242222sin sin 2sin )sin()(x x x x x x -=-'.7. 当)(x f 为积分区间],[b a 上的分段函数时,问如何计算定积分⎰b ax x f d )(?试举例说明.答:分段函数的定积分应采用定积分关于积分区间的分割性质,将⎰b ax x f d )(分解为部分区间上的定积分来计算.例如:若⎩⎨⎧<≤-≤≤=,01,,10,)(2x x x x x f 则x x f d )(11⎰-=x x d 01⎰-+x x f d )(11⎰-=1301232x x +-=61-.8. 对于定积分,凑微分法还能用吗?为什么?答:能用.因为定积分是通过被积函数的原函数来计算,而凑微分法所得原函数不须作变量置换.习作题:1. 计算下列定积分(1)⎰-20d |1|x x , (2)⎰-122d ||x x x , (3)⎰π20d |sin |x x .解:(1)⎰-20d |1|x x =⎰-1d )1(x x +⎰-21d )1(x x=212122)1(2)1(-+--x x =2121+=1.(2)⎰-122d ||x x x =⎰--023d )(x x +⎰103d x x=1402444x x +--=4+41741=. (3)⎰π20d |sin |x x =⎰π0d sin x x +⎰-π2πd )sin (x x=π2ππ0cos )cos (xx +-=2+2=4.2. 求极限x tt x x πcos 1d πsin lim11+⎰→.解:此极限是“0”型未定型,由洛必达法则,得x tt x x πcos 1d πsin lim11+⎰→=)πcos 1()d πsin (lim11'+'⎰→x t t xx =π1)π1(lim πsin ππsin lim11-=-=-→→x x x x3. 计算下列各题: (1)⎰10100d x x , (2)⎰41d x x , (3)⎰1d e x x , (4)x xd 10010⎰,(5)x x d sin 2π0⎰, (6)x x x d e 210⎰, (7)x x d )π2sin(2π0+⎰,(8)x x d )4π4cos(π+⎰, (9)x x x d 2ln e 1⎰, (10)⎰+102100d x x , (11)⎰4π02d cos tan x xx, (12)⎰10d sh x x , (13)⎰10d ch x x .解:(1)⎰10100d x x =101110110101=x .(2)⎰41d x x =314324123=x. (3)1e ed e 1010-==⎰xx x .(4)x xd 10010⎰=100ln 99100ln 10010=x .(5)1cos d sin 2π02π0=-=⎰x x x .(6)21e 2e )(d e 21d e 121010222-==⎰=⎰x x x x x x . (7)x x d )π2sin(2π0+⎰=)π2(d )π2sin(212π++⎰x x =2π0)π2cos(21+-x =1-. (8)x x d )4π4cos(π+⎰=)4π4d()4π4cos(4π0++⎰x x =π0)4π4sin(4+x =224-.(9)x x x d 2ln e 1⎰=)d(ln ln 21e 1x x ⎰=41ln 41e12=x .(10) ⎰+102100d x x=⎰+102)10(1d 1001x x =1010arctan 101x =101arctan 101.(11)⎰4π02d cos tan x x x =⎰4π0)tan d(tan x x =4π022)(tan x =21. (12)⎰⎰--=1010d 2e e d sh x x x x x =12e e xx -+=11ch 12e e 1-=-+-. (13)⎰10d ch x x =⎰-+10d 2e e x x x =12e e xx --=1sh 2e e 1=--.第三节 定积分的积分方法思考题:1. 下面的计算是否正确,请对所给积分写出正确结果:(1)x x x d cos cos 2π2π3⎰--=x x x d sin )(cos 2π2π21⎰-=)cos d()(cos 2π2π21x x ⎰--=0cos 322π2π23=--x .(2)⎰⎰---=-111122)sin d()(sin 1d 1t t x x=⎰-⋅11d cos cos t t t=⎰-112d )(cos t t =2⎰12d )(cos t t=22sin 211)2sin 21(d 22cos 11010+=+=+⎰t t t t . 答:(1)不正确,应该为:x x x x x x d sin )(cos 2d cos cos 212π2π2π3⎰⎰-=-=34cos 34)cos d()(cos 22π0232π021=-=-⎰x x x .(2)不正确,应该为:⎰⎰⎰---=-=-112π2π2π2π222d )(cos )sin d()(sin 1d 1t t t t x x=2=+=+=⎰⎰2π02π02π02)2sin 21(d 22cos 12d )(cos t t t t t t 2π.2. 定积分与不定积分的换元法有何区别与联系?答:定积分与不定积分的换元法的区别在于:不定积分换元积分后要作变量回代,定积分在换元时要同时变换积分限,而不用作变量回代. 联系在于:二者均要求置换的变元)(t x ϕ=单调可导,且选择变元)(t x ϕ=的规律相同.3. 利用定积分的几何意义,解释奇偶函数在对称区间上的积分所具有的规律. 答:如图, 设)(x f 在[]a ,0上满足)(x f ≥0,则⎰a x x f 0d )(表示由曲线)(x f y =,直线0=x ,a x =及x 轴所围图形的面积,不妨记为A ,则当)(x f 为偶函数时,⎰⎰==-aaa x x f A x x f 0d )(22d )((如下图(1)所示),当)(x f 为奇函数时,0)(d )(=+-=⎰-A A x x f aa(如下图(2)所示).(1)习作题:1. 计算下列定积分:(1)x x d 16402⎰-, (2)⎰+12d 41x x .解:(1)令x =t sin 4, 则t t x t x d cos 4d ,cos 4162==-,当x = 0 时,t = 0 ; 当x = 4 时,2π=t , 于是 x x d 16402⎰-=π4)2sin 48(d )2cos 1(8d cos 4cos 42π02π020=+=+=⋅⎰⎰t t t t t t t π.(2)⎰+102d 41x x =⎰+12)2d()2(1121x x =21arctan 212arctan 2110=x . 2. 计算下列定积分: (1)x x xd e )15(405⎰+, (2)x x d )12ln(e21⎰+,(3)x x xd πcos e10π⎰, (4)x x x x x d )e 3(1033⎰++.解:(1)x x xd e )15(405⎰+=5ed )15(540xx ⎰+=⎰+-+10515)15(d 5e )15(5e x x x x=5155e 5e 51e 6=--x.(2)x x d )12ln(e21⎰+=()())12ln d(12ln e21e21+-+⎰x x x xx x xd 1223ln )1e 4ln(e 2e21⎰+--+= --+=3ln )1e 4ln(e 2x x )d 1211(e 21⎰+---+=3ln )1e 4ln(e 2()e21)12ln 21(+-x x()1e 23ln 231e 4ln )21e 2(+--++=.(3) x x xd πcose 10π⎰=ππsin d e 10πx x ⎰x x x x πde ππsin πsin e π11010π⎰-= =0x x x d πsin e 10π⎰-=)ππcos d(e 10πx x--⎰ xx x x πde ππcos πcos e π11010π⎰-= =-+-)1e (π1πx x x d πcos e 10π⎰移项合并得x x x d πcos e 10π⎰)1e (π21π+-=. (4)x x x xxd )e 3(1033⎰++)e 313ln 34(d 3104xx x x ++=⎰ ⎰++-++=1034134d )e 313ln 34()e 313ln 34(x x x x xx x x=4514e 923ln 23ln 3)e 913ln 320(e 313ln 3413213253++-=++-++x x x .第四节 广义积分思考题:1. 下列解法是否正确?为什么?2ln 1ln 2ln ||ln d 12121=-==--⎰x x x .答:不正确.因为x1在[1-,2]上存在无穷间断点0=x ,⎰-21d 1x x 不能直接应用Leibniz Newton -公式计算,事实上,⎰-21d 1x x =⎰-01d 1x x +⎰20d 1x x =⎰--→+1110d 1lim εεx x +⎰+→2022d 1lim εεx x=[]1110)ln(lim εε--→-+x +[]222ln lim εεx +→=10ln lim 1εε+→+-2ln 202lim εε+→不存在,故⎰-21d 1x x 发散.2. 指出下面广义积分的计算错误:101)e 1(lim elim d e lim d e 0=-=-=-==-∞→-∞→-∞→∞⎰⎰b b bx b bxb xx x .答:本题计算错误在于0e lim =-∞→bb ,因为0e lim =-+∞→b b ,而-∞=--∞→b b e lim ,故bb -∞→elim 不存在,从而⎰∞0d e x x 发散.习作题:1. 研究广义积分⎰∞+02d 1x x 的敛散性. 解:⎰∞+02d 1x x =+∞=-=-+∞→→+∞+x x x x x 1lim 1lim )1(00,∴⎰∞+02d 1x x 发散. 2. 计算广义积分x x d )4(6032⎰--.解:x x d )4(6032⎰-- =x x d )4(6432⎰--+x x d )4(4032⎰--=)42(3430023)4(3)4(3333340316431+=--+-⋅=-+-x x .3. 计算广义积分x x d e 1100⎰∞+-.解:x xd e1100⎰∞+-=1001001100e 1001)100e (0100e --+∞-=--=-x .4. 计算广义积分⎰∞++02100d xx. 解: ⎰∞++02100d x x =20π10arctan 1010=+∞x .。

习题课_定积分的应用(解答)

习题课_定积分的应用(解答)
2 f ( x) (2)又设 f ( x ) 在 (0,1) 中可导,且 f '( x) ,证明(1) x
中的 x0 唯一。
证明: (1)构造函数 g( x ) x f (t )dt ,对 g ( x ) 用罗尔定理即 可得证 。
x 1
(2) 考虑 g '( x) 的单调性来证明。
11

dx dx dx 2 2 2 2 0 1 2cos x 1 2cos x 2 1 2cos x

令 tan x t dx d tan x dt 2 2 而 ; 0 1 2cos 2 x 0 3 tan 2 x 0 3 t2 2 3
S S1 S2 (2 x x )dx ( x 2 2 x )dx 2
y x2 2 x
V y [(1 1 y )2 12 ]dy
1
0
[33 (1 1 y )2 ]dy 9
0
3 2 2 1 1
3
S2
1
o
3 2
d tan x 令 tan x t 0 dx dt 2 1 2cos2 x 2 3 tan2 x 3 t 2 2 3 ;
故原式

3
15
定积分的物理应用:
常 数 ,长度为 L 的细杆, 1.如图,x 轴上有一线密度为
有一质量为 m 的质点到杆右端的距离为 a ,已知引力 系数为 k,则质点和细杆之间引力的大小为( A ) (A) L
3
5. 设曲线 y f ( x ) 在 x 轴的上方,并过点 (1,1) ,该曲线与直线
x 1 , y 0 及动直线 x b(b 1) 所围图形绕 y 轴旋转所得的旋

数学分析9定积分总练习题

数学分析9定积分总练习题

第九章 定积分总练习题1、证明:若φ在[0,a]上连续,f 二阶可导,且f ”(x)≥0,则有⎰a 0(t)) f(φa 1dt ≥f(⎰a(t) φa 1dt). 证:设T 为[0,a]的一个分割,其分点为n ka , k=0,1,…,n, 即x k =nka. 由f ”(x)≥0知f 凸,∴f(∑=n1k k )(x φn 1)≤∑=n1k k ))(x f(φn 1.即∑=n 1k k n a ))(x f(φa 1≥f(na)(x φa 1n 1k k ∑=). ∵f, φ在[0,a]上都可积,且f 连续, ∴令n →∞,有⎰a 0(t)) f(φa 1dt ≥f(⎰a(t) φa 1dt).2、证明下列命题.(1)若f 在[a,b]上连续增,F(x)=⎪⎩⎪⎨⎧=∈⎰ a.x ,f(a)b].a,(x f(t)dt a -x 1xa , 则F 在[a,b]上增.(2)若f 在[0,+∞)上连续,且f(x)>0,则φ(x)=⎰⎰x 0x0f(t)dttf(t)dt 在(0,+∞)上严格增.要使φ(x)在[0,+∞)上严格增,需要补充定义φ(0)=?证:(1)F ’(x)= ⎪⎩⎪⎨⎧=∈-⎰ a.x ,0b].a,(x a)-(x f(t)dt a -x f(x)2xa, 根据积分中值定理知,存在ξ∈(a,x),⎰xa f(t)dt =f(ξ)(x-a). 又f 在[a,b]上增, ∴F ’(x)=a-x )f(ξ-f(x)>0, x ∈(a,b],∴F ’(x)≥0, x ∈[a,b],∴F 在[a,b]上增.(2)任给x>0,有φ’(x)=2x0xx)f(t)dt (tf(t)dtf(x )f(t)dt x f(x )⎰⎰⎰- =2x0x0)f(t)dt (t)f(t)dt -(x f(x )⎰⎰.∵f(x)>0,∴(x-t)f(x)>0,∴⎰x0t)f(t)dt -(x >0,∴φ’(x)>0, x ∈(0,+∞),∴φ(x)=⎰⎰x 0x0f(t)dttf(t)dt 在(0,+∞)上严格增. 又+→0x lim φ(x)=⎰⎰+→x 0x00x f(t)dttf(t)dt lim=f(x )x f(x )lim 0x +→=+→0x lim x=0, ∴只要补充定义φ(0)=c ≤0,则φ(x)在[0,+∞)上严格增.3、设f 在[0,+∞)上连续,且+∞→x lim f(x)=A. 证明:⎰+∞→x0x f(t)dt x1lim=A. 证:∵+∞→x lim f(x)=A ,∴任给ε>0,存在M>0,使当x>M 时,有|f(x)-A|<2ε,又当T>M 时,|A f(x)dx T 1T 0-⎰|=T1|⎰⎰-T 0T0Adx f(x )dx | =T1|⎰T0A]dx -[f(x )|≤⎰T 0dx |A -f(x)|T 1=⎰M 0dx |A -f(x)|T 1+⎰T M dx|A -f(x)|T 1 ≤⎰M 0dx |A -f(x)|T 1+2ε(1-TM). ∴只要取T 1=max{⎰M 0dx |A -f(x)|ε2, 2M},则 当T>T 1时,就有|A f(x)dx T 1T 0-⎰|<2ε+2ε=ε.∴⎰+∞→T 0T f(x)dx T 1lim =⎰+∞→x0x f(t)dt x 1lim =A.4、设f 是定义在R 上的一个连续周期函数,周期为p ,证明:⎰+∞→x0x f(t)dt x 1lim =⎰p 0f(t)dt p 1. 证:令x=p λ,y=λt,则⎰x0f(t)dt x1=⎰p λ0y) y)d(λ f(λp λ1=⎰p 0y)dy f(λp 1=⎰p 0 t)dt f(λp 1. 由f(t)=f(t+np), n 为任意正整数,又np)f(t lim n ++∞→= t)f(λlim λ+∞→,∴⎰+∞→x0x f(t)dt x 1lim =⎰+∞→p 0λ t)dt f(λp 1lim =⎰++∞→p 0n )dt np f(t p 1lim =⎰p 0f(t)dt p1.5、证明:连续的奇函数的一切原函数皆为偶函数;连续的偶函数的原函数中只有一个是奇函数.证:设连续的奇函数f ,连续的偶函数g ,则它们的原函数分别为: F(x)=⎰x0f(t)dt +C ,G(x)=⎰x0g(t)dt +C.∵F(-x)=⎰-x 0f(t)d(t)+C=⎰x 0f(-t)d(-t)+C=-)f(t)d(-t x 0⎰+C=⎰x0f(t)dt +C=F(x), ∴连续的奇函数的一切原函数皆为偶函数又G(-x)=⎰-x0g(t)dt +C=⎰x 0g(-x )d(-t)+C=⎰x 0g(x )d(-t)+C=-⎰x0g(x )dt +C ≠-G(x), ∴仅当G(x)=⎰x 0g(t)dt 时,G(-x)=-⎰x0g(x )dt =-G(x), 即连续的偶函数的原函数中只有一个是奇函数.6、证明许瓦尔兹不等式:若f 和g 在[a,b]上可积,则 (⎰ba f(x )g(x )dx )2≤⎰b a 2(x )dx f ·⎰ba 2(x )dx g .证:若f 和g 在[a,b]上可积,则f 2,g 2,fg 都可积. 且对于任何t, (f+tg)2也可积.∵(f+tg)2≥0,∴⎰+b a 2tg)(f =⎰ba 2(x )dx f +2t ⎰ba f(x )g(x )dx +t2⎰ba2(x )dx g ≥0.∴二元一次方程的判别式△=4(⎰ba f(x )g(x )dx )2-4⎰ba 2(x )dx f ·⎰ba 2(x )dx g ≤0.∴(⎰b a f(x )g(x )dx )2≤⎰b a 2(x )dx f ·⎰ba 2(x )dx g .7、利用许瓦尔兹不等式证明:(1)若f 在[a,b]上可积,则(dx f(x )ba ⎰)2≤(b-a)⎰ba 2(x )dx f ; (2)若f 在[a,b]上可积,且f(x)≥m>0,则⎰ba f(x )dx ·⎰baf(x )dx≥(b-a)2; (3)若f,g 都在[a,b]上可积,则有闵可夫斯基不等式:21ba 2dx g(x))(f(x)⎥⎦⎤⎢⎣⎡+⎰≤21ba 2(x)dx f ⎥⎦⎤⎢⎣⎡⎰+21ba 2(x)dx g ⎥⎦⎤⎢⎣⎡⎰. 证:(1)记g(x)=1,∵f 和g 在[a,b]上可积,根据许瓦尔兹不等式,有 (dx f(x )ba ⎰)2 ≤⎰b a dx ·⎰b a 2(x )dx f =(b-a)⎰ba 2(x )dx f . (2)若f 在[a,b]上可积,且f(x)≥m>0,则f ,f1在[a,b]上也可积. 根据许瓦尔兹不等式,⎰b a f(x )dx ·⎰baf(x )dx ≥(⎰⋅b a dx f(x)1f(x))2=(b-a)2. (3)∵⎰+ba 2dx g(x ))(f(x )=⎰⎰⎰++ba 2ba ba 2(x )dxg f(x )g(x )dx 2(x )dx f≤⎰⎰⎰⎰+⎥⎦⎤⎢⎣⎡⋅+ba 221ba ba 22ba 2(x)dx g (x)dx g (x)dx f 2(x)dx f=221b a 221b a 2(x)dx g (x)dx f ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎰⎰. ∴21ba 2dx g(x))(f(x)⎥⎦⎤⎢⎣⎡+⎰≤21ba 2(x)dx f ⎥⎦⎤⎢⎣⎡⎰+21ba 2(x)dx g ⎥⎦⎤⎢⎣⎡⎰.8、证明:若f 在[a,b]上连续,且f(x)>0,则 ln ⎪⎭⎫⎝⎛⎰b a f(x )dx a -b 1≥⎰b a lnf(x)dx a -b 1. 证:在[a,b]中插入n-1个等分点a=x 0<x 1<x 2<…<x n =b. 记f(x i )=y i >0,于是由平均值不等式na-b (y 1+y 2+…+y n )≥(b-a)n n 21y y y ⋯=(b-a)e )y ln y (ln n a-b a -b 1n 1⋯+⋅.两边取极限得:⎰ba f(x )dx =na-b limn +∞→(y 1+y 2+…+y n )≥(b-a)na -b lim n +∞→e)y ln y (ln na-b a -b 1n 1⋯+⋅=(b-a)e⎰balnf(x)dx a -b 1.∴⎰b a f(x)dx a -b 1≥e ⎰balnf(x)dx a -b 1,∴ln ⎪⎭⎫ ⎝⎛⎰b a f(x )dx a -b 1≥⎰b a lnf(x)dx a -b 1.9、设f 为R +上的连续减函数,f(x)>0;又设a n =∑=n1k f(k)-⎰n1f(x )dx .证明:{a n }为收敛数列. 证:∵f 为R +上的连续减函数,∴a n =∑=n1k f(k)-⎰n1f(x )dx =∑=n 1k f(k)-∑⎰=+1-n 1k 1k k f(x )dx ≥∑=n 1k f(k)-∑=+1-n 1k k)-1f(k)(k =f(n)>0,即数列{a n }有下界,又a n+1-a n =f(n+1)-⎰+1n nf(x )dx ≤f(n+1)-⎰++1n n1)dx f(n =0.∴{a n }为递减数列. 由单调有界定理知{a n }收敛.10、证明:若f 在[a,b]上可积,且处处有f(x)>0,则⎰ba f(x )dx>0. 证:∵在[a,b]上处处有f(x)>0,∴使f(x)≤0的点只有有限个, 对[a,b]上任一分割T ,添加这些点为分点,则 在每一个小区间(x i ,x i+1)上恒有f(x)>0, ∴⎰+1i ix x f(x)dx>0, (i=0,1,…,n) 其中x 0=a, x n+1=b.∴⎰baf(x )dx =∑⎰=+ni 1i if(x )dx >0.。

定积分习题

定积分习题
1 1
y
x
确定 y 是 x 的函数 , 求f(x)。 解:方程两端对 x 求导, 得
f ( x y ) ⋅ ( y + x y′) = ∫ f (t ) d t + x ⋅ f ( y ) ⋅ y′
1
y
令 x = 1, 得
f ( y ) y = ∫ f (t ) d t + y f (1)
1
y
+ y ′ ∫ f (t ) d t + y ⋅ f ( x)
例12. 求 lim
x →0
= cot t 。
4
∫ ⎢∫ ⎣
0
x2 0
x ⎡ u2 0
⎤ arctan(1 + t ) dt ⎥ du ⎦ = lim x →0 x ⋅ (1 − cos x )

x
0
⎡ u arctan 1 + t dt ⎤ du ( ) ⎥ ⎢ ∫0 ⎣ ⎦ x2 x⋅ 2
2
⎛0⎞ ⎜ ⎟ ⎝0⎠
解: 等式两边对 x 求导, 得 不妨设 f (x)≠0, 则
sin x 1 ) 2 f (x) f ′(x) = f (x⋅ 2 2 + cos x
∴ f ( x) = ∫ 1 sin x dx f ′( x) dx = ∫ 2 2 + cos x
1 = − ln (2 + cos x ) + C 2
习题课
定积分及其相关问题
一、与定积分概念有关的问题的解法 二、有关定积分计算和证明的方法
曲边梯形的面积 曲边梯形的面积
问题1: 问题1:
变速直线运动的路程 变速直线运动的路程
问题2: 问题2:
定积分 定积分 的的 定定 性性 积积 质质 分分 定定 计计 积 算算 分积 法法 的分 的

定积分证明题

定积分证明题
0 0
x 0
F ( x ) f (t )dt xf ( x ) xf ( x ) f (t )dt
0 x x 0
x
x
F ( x )与( x )都是 f (t )dt的原函数
F ( x )=( x ) C F (0)=(0) 0 C 0 F ( x )=( x )
0
T
F ( a)
a T a
f ( x)dx
0
F (a ) f (a T ) f (a ) 0
F (a) C F (0) f ( x)dx
0 T
于是

a T a
f ( x)dx f ( x)dx
0
T
例5. 设 f C a, b , f x 0, x a, b ,
2 x
[ 12dt ][
a
a x
f ( x) dx] a
x
2
( x a) [ f (t )]2 dt
x
( x a) [ f ( x)]2dx,
a
a b
f ( x )dx [ f ( x )] dx ( x a )dx
2 2 a a a
M.
例 10 若 f (x) 在[a,b]上连续可导,且 f(a)=0, 2 b b 1 2 2 则 f ( x )dx (b a ) f ( x ) dx . a a 2 x , 证 显然 f ( x ) a 1 f (t )dt由柯西-施瓦兹不等式, 则
f ( x) [ 1 f (t )dt )]2
由广义积分中值定理
n 1
x 1 1 1 n 1 xdx 1 x dx 1 n 1 0 0

江苏专转本高等数学 定积分 例题加习题

江苏专转本高等数学 定积分 例题加习题

- 106 -第四章 定积分本章主要知识点● 定积分计算● 特殊类函数的定积分计算 ● 变限积分● 定积分有关的证明题 ● 广义积分敛散性 ● 定积分应用(1)面积 (2)旋转体体积一、定积分计算定积分计算主要依据牛顿—莱伯尼兹公式:设⎰+=C x F dx x f )()(,则()()()()bb a af x dx F b F a F x =-=⎰。

其主要计算方法与不定积分的计算方法是类似的,也有三个主要方法,但需要指出的是对于第Ⅱ类直接交换法,注意积分限的变化:()111()()()()()(())x t bb aa t x f x dx f t t dt ϕϕϕϕϕϕ---=='=⎰⎰。

例4.1.111)edx x ⎰解:原式=e11)ln d x ⎰=32125((ln )ln )|33ex x +=例4.2.30dx ⎰ 解:原式t x t x =+-==11222 1121t tdt t -+⎰=32 121t t dt t -+⎰=322125()|33t t -= 例4.3.⎰22sin πxdx x- 107 -解:原式=⎰-22cos 21πx xd =⎰+-2022cos 21|2cos 21ππxdx x x =20|2sin 414ππx +=4π 二、特殊类函数的定积分计算1.含绝对值函数利用函数的可拆分性质,插入使绝对值为0的点,去掉绝对值,直接积分即可。

例4.4.⎰--21|1|dx x解:原式=121 1(1)(1)x dx x dx --+-⎰⎰=212|)2(2x x -+=)121(02--+=25例4.5.⎰--++22|)1||1(|dx x x解:原式=112211(|1||1|)(|1||1|)(|1||1|)x x dx x x dx x x dx ---++-+++-+++-⎰⎰⎰=112211(11)(11)(11)x x dx x x dx x x dx ------++++-+++-⎰⎰⎰=112211222xdx dx xdx ----++⎰⎰⎰=212122|4|x x ++---=)14(4)41(-++--=102.分段函数积分例4.6.⎩⎨⎧≤+>=0,10,)(2x x x x x f ,求⎰-11)(dx x f解:原式=⎰⎰-+0110)()(dx x f dx x f =⎰⎰-++01102)1(dx x dx x =103012|31|)2(x x x ++- =31)121(+--=65- 108 -例4.7.⎩⎨⎧≤>+=1,1,12)(x x x x x f ,求⎰-+12)1(dx x f解:原式11221(1)()u x f x dx f u du =+--=+==⎰⎰1211()()f u du f u du -+⎰⎰1222111(21)0()udu u du u u -=++=++⎰⎰624=-=3.奇函数积分如果 ()f x 为定义在[],a a -的奇函数,则()0aaf x dx -≡⎰,这是一个很重要考点。

定积分的证明题

定积分的证明题

又x3 > 0,∴ 4 − x2 − x3 > 4 − x2
∴1 <
1
<1
2 4 − x2 + x3 4 − x2
∫1 1dx = 1
02 2
∫1 dx = π
0 4 − x2 6
∫ ∴ 1 < 1
dx
< π。
2 0 4 − x2 + x3 6
∫ ∫ ∫ 6. 设函数f (x)和g(x)在[a,b]上连续,证明: [ b f (x)g(x)dx]2 ≤ b f 2(x)dx ⋅ b g2(x)dx 。
dx a = − f (a) + f (x) = f (x) − f (a)。
∫ 2. 设函数f (x)在[a,b]内可导,且f (a) = 0, b f (x)dx = 0, 证明:在[a, b]内至少存在一点ξ , a
使f ′(ξ ) = 0。
证明:
由积分中值定理,在(a, b)存在一点ξ
,使
1
∫ 1. 证明 d x (x − t) f ′(t)dt = f (x) − f (a) 。
dx a 证明:
∫ x (x − t) f ′(t)dt a x
= ∫a (x − t)df (t)
xx
= (x − t) f (t) a + ∫a f (t)dt
x
= (a − x) f (a) + ∫a f (t)dt ∫ ∴ d x (x − t) f ′(t)dt
即f (a) − (x − a) ≤ f (x) ≤ f (a) + (x − a) 由定积分的不等性质, 有
b
b
b
∫a [ f (a) − (x − a)]dx ≤ ∫a f (x)dx ≤ ∫a [ f (a) + (x − a)]dx

定积分典型例题

定积分典型例题

定积分典型例题例1求33322321lim(2)nnnn n.分析将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限.解将区间[0,1]n 等分,则每个小区间长为1ix n ,然后把2111n n n的一个因子1n乘入和式中各项.于是将所求极限转化为求定积分.即33322321lim(2)nnnn n=333112lim ()nn nnnn=1334xdx.例2222x x dx =_________.解法1由定积分的几何意义知,2202x x dx 等于上半圆周22(1)1x y(0y )与x 轴所围成的图形的面积.故222xx dx =2.解法2本题也可直接用换元法求解.令1x=sin t (22t),则222xx dx =2221sin cos t tdt =22021sin cos t tdt =2202cos tdt =2例3 比较12xe dx ,212x e dx ,12(1)x dx .分析对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小.解法1在[1,2]上,有2xxee .而令()(1)xf x ex ,则()1xf x e.当0x时,()0f x ,()f x 在(0,)上单调递增,从而()(0)f x f ,可知在[1,2]上,有1xex .又1221()()f x dx f x dx ,从而有2111222(1)xx x dx e dxe dx .解法2在[1,2]上,有2xxee .由泰勒中值定理212!xe exx 得1xex .注意到1221()()f x dxf x dx .因此2111222(1)xx x dxe dxe dx .例4 估计定积分22x xedx 的值.分析要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.解设2()x xf x e, 因为2()(21)x xf x ex, 令()0f x ,求得驻点12x, 而(0)1f e, 2(2)f e , 141()2f e,故124(),[0,2]ef x e x ,从而2122422x xeedxe ,所以2124222xxee dx e.例5设()f x ,()g x 在[,]a b 上连续,且()0g x ,()0f x .求lim()()b n ang x f x dx .解由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x 知0M,0m .又()0g x ,则()b nam g x dx()()b nag x f x dx()b naMg x dx .由于limlim1nnnnmM,故lim ()()bnang x f x dx =()bag x dx .例6求sin limn p nnx dx x, ,p n 为自然数.分析这类问题如果先求积分然后再求极限往往很困难,解决此类问题的常用方法是利用积分中值定理与夹逼准则.解法1利用积分中值定理设sin ()xf x x, 显然()f x 在[,]n np 上连续, 由积分中值定理得sin sinn pnx dxp x,[,]n np ,当n时,, 而sin1, 故sin sinlim lim0n pnnx dx px.解法2利用积分不等式因为sin sin 1lnn pn pn pnnnx x n pdxdxdx xxxn,而limln0nn pn,所以sin lim0n p nnx dxx.例7求10lim1nnxdx x.解法1由积分中值定理()()()()b b aaf xg x dxf g x dx 可知101nxdx x=1011nx dx ,01.又11lim lim 01nnnx dxn 且11121,故10lim01nnxdxx.解法2因为01x,故有1nnx x x.于是可得111nnxdxx dx x.又由于110()1nx dx nn.因此10lim1nnxdx x=0.例8设函数()f x 在[0,1]上连续,在(0,1)内可导,且3414()(0)f x dxf .证明在(0,1)内存在一点c ,使()0f c .分析由条件和结论容易想到应用罗尔定理,只需再找出条件()(0)f f 即可.证明由题设()f x 在[0,1]上连续,由积分中值定理,可得3413(0)4()4()(1)()4f f x dxf f ,其中3[,1][0,1]4.于是由罗尔定理,存在(0,)(0,1)c,使得()0f c .证毕.例9(1)若22()x t xf x e dt ,则()f x =___;(2)若0()()x f x xf t dt ,求()f x =___.分析这是求变限函数导数的问题,利用下面的公式即可()()()[()]()[()]()v x u x d f t dtf v x v x f u x u x dx.解(1)()f x =422xxxee ;(2)由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x xf t dt ,则可得()f x =()()xf t dtxf x .例10 设()f x 连续,且31()x f t dtx ,则(26)f =_________.解对等式310()x f t dtx 两边关于x 求导得32(1)31f xx,故321(1)3f xx,令3126x得3x ,所以1(26)27f .例11函数11()(3)(0)x F x dt xt 的单调递减开区间为_________.解1()3F x x,令()0F x 得13x,解之得19x,即1(0,)9为所求.例12求0()(1)arctan x f x t tdt 的极值点.解由题意先求驻点.于是()f x =(1)arctan x x .令()f x =0,得1x,0x.列表如下:故1x为()f x 的极大值点,0x为极小值点.例13已知两曲线()y f x 与()y g x 在点(0,0)处的切线相同,其中2arcsin 0()xt g x e dt ,[1,1]x,试求该切线的方程并求极限3lim ()nnf n.分析两曲线()yf x 与()yg x 在点(0,0)处的切线相同,隐含条件(0)(0)f g ,(0)(0)f g .解由已知条件得2(0)(0)0t f g edt,且由两曲线在(0,0)处切线斜率相同知2(arcsin )2(0)(0)11x xef g x.故所求切线方程为y x .而x(,0)0(0,1)1(1,)()f x -+-3()(0)3lim ()lim33(0)330nnf f n nf f nn.例14 求22000sin lim(sin )x x xtdt t t t dt;分析该极限属于00型未定式,可用洛必达法则.解22000sin lim (sin )x x xtdt t tt dt=222(sin )lim (1)(sin )x x x x xx =220()(2)lim sin x x x x =304(2)lim1cos x xx=212(2)limsin xxx=0.注此处利用等价无穷小替换和多次应用洛必达法则.例15试求正数a 与b ,使等式221lim1sin x xt dtxb xat成立.分析易见该极限属于00型的未定式,可用洛必达法则.解2201limsin x xt dt xb xat=22lim1cos x xa xb x =221lim lim1cos x xxb xa x21lim 11cos x xb xa,由此可知必有0lim(1cos )0xb x ,得1b.又由212lim11cos xxxa a,得4a .即4a ,1b为所求.例16设sin 2()sin xf x t dt ,34()g x xx ,则当0x时,()f x 是()g x 的().A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小.解法1由于223()sin(sin )cos limlim()34xxf x x xg x xx2200cos sin(sin )lim lim 34x x x x x x 2211lim 33x x x.故()f x 是()g x 同阶但非等价的无穷小.选B .解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 22337111()[()]sin sin 3!342x f x tt dtxx,则344341111sin (sin )sin ()1342342lim lim lim ()13x x x x x xf xg x xxx.例17证明:若函数()f x 在区间[,]a b 上连续且单调增加,则有()b axf x dx()2b aa bf x dx .证法1 令()F x =()()2x x aaax tf t dtf t dt ,当[,]t a x 时,()()f t f x ,则()F x =1()()()22x aaxxf x f t dt f x =1()()22x ax a f x f t dt1()()22x ax af x f x dt =()()22xa xa f x f x 0.故()F x 单调增加.即()()F x F a ,又()0F a ,所以()0F x ,其中[,]x a b .从而()F b =()()2b b aaa b xf x dxf x dx0.证毕.证法2由于()f x 单调增加,有()[()()]22a b a bxf x f 0,从而()[()()]22b aa ba b xf x f dx0.即()()2b aa bxf x dx ()()22b aa ba bxf dx =()()22b aa ba b f xdx =0.故()b axf x dx()2b aa bf x dx .例18计算21||x dx .分析被积函数含有绝对值符号,应先去掉绝对值符号然后再积分.解21||x dx =021()x dxxdx =22021[][]22xx=52.注在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dxxx ,则是错误的.错误的原因则是由于被积函数21x在0x 处间断且在被积区间内无界.例19计算22max{,}x x dx .分析被积函数在积分区间上实际是分段函数212()1x x f x xx.解23212221201011717max{,}[][]23236x x x x dxxdx x dx 例20设()f x 是连续函数,且1()3()f x x f t dt ,则()________f x .分析本题只需要注意到定积分()b af x dx 是常数(,a b 为常数).解因()f x 连续,()f x 必可积,从而10()f t dt 是常数,记10()f t dta ,则()3f x xa ,且11(3)()x a dxf t dt a .所以2101[3]2x ax a ,即132a a ,从而14a,所以3()4f x x.例21设23,1()52,12x x f x x x,0()()x F x f t dt ,02x ,求()F x , 并讨论()F x 的连续性.分析由于()f x 是分段函数, 故对()F x 也要分段讨论.解(1)求()F x 的表达式.()F x 的定义域为[0,2].当[0,1]x时,[0,][0,1]x , 因此233()()3[]x xxF x f t dtt dt t x .当(1,2]x时,[0,][0,1][1,]x x , 因此, 则121()3(52)x F x t dtt dt =31201[][5]xt t t =235xx ,故32,01()35,12x x F x xx x.(2) ()F x 在[0,1)及(1,2]上连续, 在1x 处,由于211lim ()lim(35)1xxF x xx , 311lim ()lim 1xxF x x, (1)1F .因此, ()F x 在1x处连续, 从而()F x 在[0,2]上连续.错误解答(1)求()F x 的表达式,当[0,1)x 时,233()()3[]x xxF x f t dtt dt t x .当[1,2]x 时,有0()()x F x f t dt(52)x t dt =25x x .故由上可知32, 01()5,12x x F x xx x.(2) ()F x 在[0,1)及(1,2]上连续, 在1x 处,由于211lim ()lim(5)4xxF x xx , 311lim ()lim 1xxF x x, (1)1F .因此, ()F x 在1x处不连续, 从而()F x 在[0,2]上不连续.错解分析上述解法虽然注意到了()f x 是分段函数,但(1)中的解法是错误的,因为当[1,2]x 时,0()()x F x f t dt 中的积分变量t 的取值范围是[0,2],()f t 是分段函数,11()()()()xxF x f t dtf t dtf t dt才正确.例22 计算2112211x x dx x.分析由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.解2112211x x dx x=211112221111x x dxdx x x.由于22211xx是偶函数,而211x x是奇函数,有112011x dx x, 于是2112211x x dx x=2102411xdx x=2212(11)4x x dx x=112441dx x dx由定积分的几何意义可知1214x dx , 故211122444411x x dx dx x.例23计算3412ln (1ln )e e dx x x x .分析被积函数中含有1x 及ln x ,考虑凑微分.解3412ln (1ln )e e dx x x x =34(ln )ln (1ln )e ed x x x =34122(ln )ln 1(ln )e e d x x x =341222(ln )1(ln )e e d x x =3412[2arcsin(ln )]e e x =6.例24计算40sin 1sin x dx x .解40s i n 1s i nx dx x =42sin (1sin )1sin x x dx x=2442sin tan cos x dxxdxx=2442cos (sec 1)cos d x x dxx =44001[][tan ]cos xx x=224.注此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试.例25计算222a x ax x dx ,其中0a.解222a x ax x dx =222()a x axa dx ,令sin xa a t ,则222a x axx dx =3222(1sin )cos at tdt=32202cos 0atdt=32a .注若定积分中的被积函数含有22ax ,一般令sin xa t 或cos x a t .例26 计算022a dx xax,其中0a.解法1令sin xa t ,则22a dx xax2cos sin cos t dttt201(sin cos )(cos sin )2sin cos t t t t dttt 201(sin cos )[1]2sin cos t t dttt201ln |sin cos |2t tt =4.解法2 令sin xa t ,则22a dx xax=20cos sin cos t dt tt.又令2tu ,则有20cos sin cos t dt tt=20sin sin cos u du uu.所以,22a dx xax=2201sin cos []2sin cos sin cos t t dtdt tttt=2012dt =4.注如果先计算不定积分22dx xax,再利用牛顿莱布尼兹公式求解,则比较复杂,由此可看出定积分与不定积分的差别之一.例27计算ln 5013xxxeedx e.分析被积函数中含有根式,不易直接求原函数,考虑作适当变换去掉根式.解设1xue,2ln(1)xu,221u dxdu u,则ln 5013xxxeedx e=2222(1)241u u udu u u 222222442244u udu du uu 2221284duduu4.例28 计算22()x d tf xt dt dx,其中()f x 连续.分析要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解由于22()x tf xt dt =2221()2x f xt dt .故令22xtu ,当0t 时2ux ;当tx 时0u,而2dt du ,所以22()x tf xt dt =21()()2x f u du =201()2x f u du ,故220()x d tf x t dt dx=201[()]2x d f u du dx =21()22f x x =2()xf x .错误解答22()x d tf xt dtdx22()(0)xf xx xf .错解分析这里错误地使用了变限函数的求导公式,公式()()()x ad x f t dt f x dx中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f xt 含有x ,因此不能直接求导,而应先换元.例29计算30sin x xdx .分析被积函数中出现幂函数与三角函数乘积的情形,通常采用分部积分法.解3s i n x x d x30(c o s )xd x 330[(c o s )](c o s )x x xd x 3cos 6xdx326.例30计算12ln(1)(3)x dx x .分析被积函数中出现对数函数的情形,可考虑采用分部积分法.解12ln(1)(3)x dx x =101ln(1)()3x d x =110111[ln(1)]3(3)(1)x dxxx x =101111ln 2()2413dxxx 11ln 2ln324.例31计算20sin xe xdx .分析被积函数中出现指数函数与三角函数乘积的情形通常要多次利用分部积分法.解由于20sin xe xdx20sin xxde220[sin ]cos xxe x e xdx220cos xee xdx ,(1)而20cos xe xdx20cos xxde220[cos ](sin )xxe x ex dx20sin 1xe xdx ,(2)将(2)式代入(1)式可得20sin xe xdx220[sin 1]xee xdx ,故20sin xe xdx21(1)2e .例32 计算10arcsin x xdx .分析被积函数中出现反三角函数与幂函数乘积的情形,通常用分部积分法.解10arcsin x xdx21arcsin ()2xxd 221100[arcsin ](arcsin )22x xx d x 21021421x dx x.(1)令sin xt ,则21021xdxx2202sin sin 1sin t d tt 220sin cos cos t tdtt 220sin tdt201cos22tdt 20sin 2[]24t t 4.(2)将(2)式代入(1)式中得10arcsin x xdx8.例33设()f x 在[0,]上具有二阶连续导数,()3f 且[()()]cos 2f x f x xdx,求(0)f .分析被积函数中含有抽象函数的导数形式,可考虑用分部积分法求解.解由于[()()]cos f x f x xdx()sin cos ()f x d xxdf x 0{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ()(0)2f f .故(0)f 2()235f .例34(97研)设函数()f x 连续,1()()x f xt dt ,且0()limx f x A x(A 为常数),求()x 并讨论()x 在0x处的连续性.分析求()x 不能直接求,因为10()f xt dt 中含有()x 的自变量x ,需要通过换元将x从被积函数中分离出来,然后利用积分上限函数的求导法则,求出()x ,最后用函数连续的定义来判定()x 在0x 处的连续性.解由0()limxf x A x知0lim ()0xf x ,而()f x 连续,所以(0)0f ,(0)0.当0x时,令u xt ,0t ,0u ;1t,ux .1dtdu x,则()()xf u du x x,从而02()()()(0)xxf x f u dux xx.又因为02()()(0)()limlim lim 022xx x x f u du x f x A xxx,即(0)2A .所以()x =2()(),0,2xxf x f u dux x A x.由于22()()()()lim ()lim lim lim xxx x x x xf x f u duf u du f x x xxx=(0)2A .从而知()x 在0x处连续.注这是一道综合考查定积分换元法、对积分上限函数求导、按定义求导数、讨论函数在一点的连续性等知识点的综合题.而有些读者在做题过程中常会犯如下两种错误:(1)直接求出02()()()xxf x f u dux x,而没有利用定义去求(0),就得到结论(0)不存在或(0)无定义,从而得出()x 在0x处不连续的结论.(2)在求0lim()xx 时,不是去拆成两项求极限,而是立即用洛必达法则,从而导致()()()1lim()lim ().22xxxf x f x f x x f x x又由0()limxf x A x用洛必达法则得到0lim ()x f x =A ,出现该错误的原因是由于使用洛必达法则需要有条件:()f x 在0x的邻域内可导.但题设中仅有()f x 连续的条件,因此上面出现的0lim ()xf x 是否存在是不能确定的.例35(00研)设函数()f x 在[0,]上连续,且()0f x dx,0()cos 0f x xdx.试证在(0,)内至少存在两个不同的点12,使得12()()0f f .分析本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt ,找出()F x 的三个零点,由已知条件易知(0)()0F F ,0x,x为()F x 的两个零点,第三个零点的存在性是本题的难点.另一种方法是利用函数的单调性,用反证法证明()f x 在(0,)之间存在两个零点.证法1 令0()(),0x F x f t dt x,则有(0)0,()0F F .又000()cos cos ()[cos ()]()sin f x xdxxdF x xF x F x xdx()sin 0F x xdx,由积分中值定理知,必有(0,),使得()sin F x xdx =()sin(0)F .故()sin 0F .又当(0,),sin 0,故必有()0F .于是在区间[0,],[,]上对()F x 分别应用罗尔定理,知至少存在1(0,),2(,),使得12()()0F F ,即12()()0f f .证法2 由已知条件()0f x dx及积分中值定理知必有1()()(0)0f x dx f ,1(0,),则有1()0f .若在(0,)内,()0f x 仅有一个根1x,由()0f x dx 知()f x 在1(0,)与1(,)内异号,不妨设在1(0,)内()0f x ,在1(,)内()0f x ,由0()cos 0f x xdx,()0f x dx,以及cosx 在[0,]内单调减,可知:10()(cos cos )f x xdx =11110()(cos cos )()(cos cos )f x xdxf x x dx 0.由此得出矛盾.故()0f x 至少还有另一个实根2,12且2(0,)使得12()()0.f f 例36计算243dxxx .分析该积分是无穷限的的反常积分,用定义来计算.解243dx xx =2lim43t tdx xx =0111lim()213t tdxx x =011lim[ln]23t txx=111lim (lnln )233tt t=ln 32.例37计算322(1)2dxx xx.解322(1)2dxx xx223223sec tan 1secsectan(1)(1)1dxx dx x 233cos 12d .例38 计算42(2)(4)dx xx .分析该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32(2)(4)dxx x 和43(2)(4)dx xx 均收敛时,原反常积分才是收敛的.解由于学无止境32(2)(4)dx xx =32lim(2)(4)aadx xx =322(3)lim1(3)aad x x=32lim[arcsin(3)]a ax =2.43(2)(4)dx xx =34lim(2)(4)bbdx xx =324(3)lim1(3)b bd x x=34lim[arcsin(3)]bbx=2.所以42(2)(4)dx xx 22.例39计算5(1)dxx x .分析此题为混合型反常积分,积分上限为,下限0为被积函数的瑕点.解令xt ,则有5(1)dxx x =5222(1)tdtt t=5222(1)dtt,再令tan t ,于是可得522(1)dtt=2522tan(tan1)d =225secsecd=23secd =320cosd =220(1sin)cos d=220(1sin)sind =3/201[sinsin]3=23.例40 计算214211x dx x.解由于221114222222111()11112()d xx xx dxdxxx xxx,可令1t xx,则当2x时,22t ;当0x 时,t ;当0x 时,t;当1x时,0t;故有21014222211()()11112()2()d x d x x x x dxxx xx x2222()22d t dt tt21(arctan )22.注有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.例41求由曲线12y x ,3y x ,2y,1y所围成的图形的面积.分析若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.下面选取以y 为积分变量.解选取y 为积分变量,其变化范围为[1,2]y ,则面积元素为dA =1|2|3yy dy =1(2)3yy dy .于是所求面积为211(2)3Ayy dy =52.例42抛物线22yx 把圆228xy分成两部分,求这两部分面积之比.解抛物线22yx 与圆228xy的交点分别为(2,2)与(2,2),如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有图5-21S =2222(8)2yydy =24488cos3d=423,218S A =463,于是12S S =423463=3292.2A 1A 12(2,2)o xy22yx228xy2112122x y1y 3y x o 133212112xy2y 图5-1342例43 求心形线1cos 与圆3cos 所围公共部分的面积.分析心形线1cos 与圆3cos的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可.解求得心形线1cos 与圆3cos 的交点为(,)=3(,)23,由图形的对称性得心形线1cos 与圆3cos 所围公共部分的面积为图5-3A =223203112[(1cos )(3cos )]22dd =54.例44求曲线ln y x 在区间(2,6)内的一条切线,使得该切线与直线2x,6x和曲线ln yx 所围成平面图形的面积最小(如图5-4所示).分析要求平面图形的面积的最小值,必须先求出面积的表达式.解设所求切线与曲线ln y x 相切于点(,ln )c c ,则切线方程为1ln ()ycx c c.又切线与直线2x,6x和曲线ln y x 所围成的平面图形的面积为图5-4A =621[()ln ln ]x c cx dx c=44(1)4ln 46ln 62ln 2c c.由于dA dc=2164cc=24(4)c c,令0dA dc,解得驻点4c.当4c时0dA dc ,而当4c时0dA dc.故当4c 时,A 取得极小值.由于驻点唯一.故当4c时,A 取得最小值.此时切线方程为:11ln 44yx .例45求圆域222()xy b a (其中ba )绕x 轴旋转而成的立体的体积.解如图5-5所示,选取x 为积分变量,得上半圆周的方程为222y b ax ,下半圆周的方程为221y b ax .图5-5则体积元素为(0,)b o222()(0)xy b a baxy1xoy2312145673ln yx2x6x (,ln )c c 33cos3211xoy1211cosdV =2221()yy dx =224b ax dx .于是所求旋转体的体积为V =224aabax dx =228a bax dx =284a b=222a b .注可考虑选取y 为积分变量,请读者自行完成.例46(03研)过坐标原点作曲线ln yx 的切线,该切线与曲线ln yx 及x 轴围成平面图形D .(1)求D 的面积A ;(2)求D 绕直线x e 旋转一周所得旋转体的体积V .分析先求出切点坐标及切线方程,再用定积分求面积A ,旋转体积可用大的立体体积减去小的立体体积进行图5-6计算,如图5-6所示.解(1)设切点横坐标为0x ,则曲线ln yx 在点00(,ln )x x 处的切线方程是0001ln ()yx xx x .由该切线过原点知ln 10x ,从而0x e ,所以该切线的方程是1yx e.从而D 的面积1()12ye Ae ey dy.(2)切线1yx e与x 轴及直线x e 围成的三角形绕直线xe 旋转所得的旋转体积为2113V e ,曲线ln y x 与x 轴及直线xe 围成的图形绕直线x e 旋转所得的旋转体积为122211()(2)22y V e e dyee.因此,所求体积为212(5123)6VV V ee .例47有一立体以抛物线22y x 与直线2x 所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.解选x 为积分变量且[0,2]x .过x 轴上坐标为x 的点作垂直于x 轴的平面,与立体相截的截面为等边三角形,其底边长为22x ,得等边三角形的面积为图5-7()A x =23(22)4x =23x .于是所求体积为V =2()A x dx =223xdx =43.xy zo22yx2x ln yxln y xyxo12311yxe例48(03研)某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而作功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k ,0k),汽锤第一次击打进地下a (m ),根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r (01r).问:(1)汽锤打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m 表示长度单位米)分析本题属于变力作功问题,可用定积分来求.解(1)设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为n W (1n ,2,).由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以1221122x k k W kxdxxa ,2122222211()()22x x k k W kxdxx x x a .由21W rW 得22221x xra ,即222(1)xr a ,3222223323()[(1)]22x x k kW kxdxxx xr a .由2321W rW r W 得22223(1)x r ar a ,即2223(1)xrr a .从而汽锤击打3次后,可将桩打进地下231x a rr (m ).(2)问题是要求lim n nx ,为此先用归纳法证明:11nnx a rr.假设11n nx r ra ,则12211()2nnx nn nx k W kxdx xx 2121[(1...)]2n nk x r ra .由2111...nnn nW rW r W r W ,得21221(1...)n n nx r rar a .从而11nnx rr a .于是111lim lim11n nnnra x arr.若不限打击次数,汽锤至多能将桩打进地下()1a m r.例49有一等腰梯形水闸.上底为6米,下底为2米,高为10米.试求当水面与上底相接时闸门所受的水压力.解建立如图5-8所示的坐标系,选取x 为积分变量.则过点(0,3)A ,(10,1)B 的直线方程为135yx .于是闸门上对应小区间[,]x xdx 的窄条所承受的水压力为2dF xy gdx.故闸门所受水压力为F =10012(3)5gx x dx =5003g ,其中为水密度,g 为重力加速度.图5-8o xyxdxx(0,3)A (10,1)B。

(完整word版)定积分的证明题44题(word文档良心出品)

(完整word版)定积分的证明题44题(word文档良心出品)

题目1证明题容易d x证明(x -t) f (t)dt = f (x) - f (a) dx」a题目2证明题容易JI利用积分中值定理证明:lim 4 sin n xdx ^0 b=0题目3证明题一般b设函数f(x)在[a,b]内可导,且f(a) =0, a 证明:在[a,b]内至少存在一点•使f ()f (x)dx = 0 =0。

题目4证明题一般设f (x) = f (x +a),na证明:当n为正整数时° f (x)dxan 0f (x)dx。

题目5证明题一般1 1 证明:oX m (1-x)n dxx n (1-x)m dx o 题目6证明题 一般设f (x)在[a,b ]上有定义,且对[a,b ]上任意两点x, y,有 f (x) — f (y) _ x — y.则f (x)在[a,b ]上可积,且1题目7证明题一般 设f (x)在[a,b ]上的连续,在(a,b)内可导,且f(a) = f (b) =0.b 2 证明:4 | f (x)dx 兰 M (b —a),其中 M = sup f "(x)。

a *x :bb[f (x)dx —(b —a) f (a)兰一(b —a)题目8证明题一般设f(x)在[a,b]上正值,连续,则在(a,b)内至少存在一点t ,b 1 b使f(x)dx = f(x)dx f(x)dx 。

■ a ' 2 ■ a题目9证明题一般jc 丑证明:0:::2sin n1xdx ::刁sin n xdx。

题目10证明题一般11 dx 二求证2°4-x2 x3 6题目11证明题一般设f(x)在区间(a,b)上连续,且在(a,b)内任一闭区间上积分为零,证明f(x)在(a,b)内恒等于零。

题目12证明题一般若函数f (x)在[0,1]上连续,a 3 2 1 a2证明:o x f(x )dx xf (x)dx (a 0)。

题目13证明题一般设函数f(x)和g(x)在[a,b]上连续,b 2 b 2 b 2证明:[f(x)g(x)dx]2乞f2(x)dx g2(x)dxa a a题目14证明题一般设f (x)在[0,1]上连续,证明:02f (sin2 Jcos「d = 04f(sin2 J(cos「sin「)d「题目15证明题一般设f (x)在[a,b]上可导,且 f (x)玄M, f(a) =0,b Me证明:a f(x)dx^3(b—a)2。

定积分专项习题

定积分专项习题

第五章 定积分(A)1.利用定积分定义计算由抛物线12+=x y ,两直线)(,a b b x a x >==及横轴所围成的图形的面积。

2.利用定积分的几何意义,证明下列等式: ⎰=112)1x d x 41)212π=-⎰dx x⎰-=ππ0s i n )3x d x ⎰⎰-=2220cos 2cos )4πππxdx xdx3.估计下列各积分的值 ⎰331a r c t a n )1x d x x dx exx ⎰-022)24.根据定积分的性质比较下列各对积分值的大小 ⎰21ln )1xdx 与dx x ⎰212)(ln dx e x ⎰10)2与⎰+1)1(dx x5.计算下列各导数dt t dx d x ⎰+2021)1 ⎰+3241)2x x t dt dx d⎰xxdt t dx d cos sin 2)cos()3π6.计算下列极限xdt t xx ⎰→020cos lim)1 xdt t xx cos 1)sin 1ln(lim)20-+⎰→2220)1(lim)3x xt x xedt e t ⎰+→7.当x 为何值时,函数⎰-=xt dt tex I 02)(有极值?8.计算下列各积分 dx xx )1()12142⎰+dx x x )1()294+⎰⎰--21212)1()3x dx ⎰+ax a dx3022)4⎰---+211)5e x dx⎰π20sin )6dx xdx x x ⎰-π3sin sin )7⎰2)()8dx x f ,其中⎪⎩⎪⎨⎧+=2211)(x x x f11>≤x x9.设k ,l 为正整数,且l k ≠,试证下列各题:⎰-=ππ0c o s )1k x d x πππ=⎰-kxdx 2cos )2⎰-=⋅ππ0s i n c o s )3l x d x kx ⎰-=ππ0sin sin )4lxdx kx10.计算下列定积分 ⎰-πθθ03)s i n 1()1d ⎰262cos )2ππududx xx ⎰-121221)3 dx x a x a 2202)4-⎰ ⎰+31221)5xxdx dx x ⎰-2132)1(1)6⎰-2221)7x x dx ⎰--1145)8xxdx⎰-axa x d x 20223)9 dt tet ⎰-1022)10⎰-++02222)11x x dx⎰-222cos cos )12ππxdx x⎰--223c o s c o s )13ππdx x x ⎰-++2221)(cos )14xdxx x x ⎰+π2c o s 1)15dx x11.利用函数的奇偶性计算下列积分⎰-224c o s 4)1ππθθd dx xx ⎰--2121221)(arcsin )2dx x x xx ⎰-++55242312sin )312.设f (x )在[]b a ,上连续,证明:⎰⎰-+=babadx x b a f dx x f )()(13.证明:)0(1111212>+=+⎰⎰x x dx x dx xx14.计算下列定积分⎰-10)1dx xe x⎰342sin )2ππdx x xdx xx⎰41ln )3 ⎰10arctan )4xdx x⎰202c o s )5πx d x e x dx x x ⎰π2)sin ()6⎰edx x 1)sin(ln )7 dx x ee⎰1ln )815.判定下列反常积分的收敛性,如果收敛,计算反常积分的值。

定积分

定积分

- 106 -第四章 定积分本章主要知识点● 定积分计算● 特殊类函数的定积分计算 ● 变限积分● 定积分有关的证明题 ● 广义积分敛散性 ● 定积分应用(1)面积 (2)旋转体体积历年真考题 1.(2001) 定积分21x dx -=⎰( D )A. 0B. 2C. -1D. 1 解析:2121111(1)(1)122x dx x dx x dx -=-+-=+=⎰⎰⎰ 2. (2001)设()f x 为连续函数,则232[()()]f x f x x x dx -+-+=⎰645. 解析:22233412222[()()][()()]f x f x x x dx f x f x x dx x dx I I ---+-+=+-+=+⎰⎰⎰由于1I 中被积函数为奇函数,且积分区间为对称区间,所以10I =, 所以原式=2244226425I x dx x dx -===⎰⎰. 3. (2001)2112k dx x -∞=+⎰,求常数k . 解: []002arctan (lim arctan )12x k k dx k x k x x π-∞-∞→-∞==-=+⎰ 由题意122k π=,所以1k π=.- 107 -4. (2001)计算220limsin xt x x e dtx x→-⎰解: 22222200012lim lim lim sin 2sin cos 2sin 4cos sin xt x x x x x x e dte xe x xx x x x x x x x x →→→---==++-⎰222202(2)1lim6cos 6sin cos 3x x x e x e x x x x →-+==---. 5. (2001)过(1,0)P作抛物线y =1)切线方程;(2)由抛物线、切线、以及x 轴所围平面图形的面积;(3)该平面分别绕x 轴、y 轴旋转一周的体积。

解:(1)由已知条件,可设切线方程:(1)y k x =-(2)将切线方程与抛物方程联立,消去y ,得:22212(2)(1)0x x k k-+++=, (3)由于切点是唯一的交点,上述关于x 的方程必须有重根,即:222121(2)4(1)02k k k +-⋅+=⇒=±(负号舍去) 得切线方程为:1(1)2y x =-(4)解出切点坐标(3,1),沿y 轴积分,则所求面积1201(2)(21)3A y y dy ⎡⎤=+-+=⎣⎦⎰ (5)该平面图形分别绕,x y 轴旋转一周的体积:2233121(1)26x V x dx dx πππ⎡⎤=--=⎢⎥⎣⎦⎰⎰ ()()1222062215y V y y dy ππ⎡⎤=+-+=⎢⎥⎣⎦⎰ 6. (2002)41I dx =⎰,则I 的范围是( A )A. 02I ≤≤B. 1I ≥C. 0I ≤D. 12I ≤≤- 108 -解析:在[0,1]上402≤≤再利用定积分的性质.7. (2002) 若广义积分11p dx x +∞⎰收敛,则p 应满足( B )A. 01p <<B. 1p >C. 1p <-D. 0p <解析: 利用反常积分审敛法8. (2002)2121tan 1x xdx x -=+⎰ 0 . 解析: 被积函数为奇函数,且积分区域是对称区间.9.(2002)设1,01()1,01x x xf x x e ⎧≥⎪⎪+=⎨⎪<⎪+⎩,求20(1)f x dx -⎰.解:令1t x =-,则2x =时1t =,0x =时,1t =-,所以201101011(1)1ln(1)11x f x dx dx dx e e x---=+=++++⎰⎰⎰ 10.(2002)求极限20tan lim(sin )xx x xt t t dt→+⎰解: 2222220000212tan tan 1(1)1lim lim lim sin 1cos (sin )x x x x x x x x x x x x x x x t t t dt→→→-+++++==+++⎰=3211.(2002)从原点作抛物线2()24f x x x =-+的两条切线,由这两条切线与抛物线所围成的图形记为S 。

7定积分的证明题

7定积分的证明题
定积分的证明题
20]上连续且单调递增,
证明:
b
ab
xf (x)dx
b
f (x)dx
a
2a
3.设f (x)在[0, 1]上连续且递减,
证明:当0 a 1时,
a
f (x)dx a
1
f (x)dx
0
0
2020/9/10
2
例4:. 设f (x)a,+上连续,且单调增加
1
a
a
f [u(t)]dt
0
f
1 a
a 0
u(t
)dt
2020/9/10
9
15.设
S(
x
)
x
0
cos t
dt ,
(1)当 n 为正整数,且 n x ( n 1)时,
证明:2n S( x ) 2( n 1);
(2)求lim S( x ) . x x
2
2020/9/10
10
1例6.: 当f (x)是以2为周期的连续函数时,
证明 2,4,使2 f ( ) (1 ) f ( )
2020/9/10
7
12.
2020/9/10
8
13.设f (x)在[0,1]上二次可微,且f (x) 0
证明:01 f (xn )dx
f( 1 ) n 1
14. 设函数处处二阶可导且 f ( x) 0,
u(t )为任意连续函数,
证明:对任意常数a 0有
(2)
已知f
(
x)=
4
sinx cos2
x
2 xf ( x)dx,求f ( x)
0
2020/9/10
16
证明:函数G( x) 20x f (t)dt-x02 f (t)dt

伍胜健《数学分析》(第2册)配套题库-章节题库(定积分)

伍胜健《数学分析》(第2册)配套题库-章节题库(定积分)

第7章定积分1.试证明下列命题:(1)设.若则(2)(3)设a,d>0,且令则证明:(1)因为所以得到(2)对.写出此时有(3)记b=a/d,有易知上式分母当n→∞时趋于1/2,对分子有分子对上式乘积中第一和第三项有估计:从而得到1.试证明下列不等式:(1)设f(x)是[a,b]上的非负上凸函数,则(2)设,则(3)设则(4)设在(a,b)上可导,则证明:(1)不妨设且,则由题设知类似地可得两式相加即得所证.(2)对,作f(x)在x=0,2处的T aylor公式:由此知,以及.故得但据题设,不能有.从而得(3)因为所以(4)不妨设,则对有由此知1.试证明证明:引用公式(约定,x=0时,左端=2n+1),可知注意到的原函数是,有1.试证明下列问题:(1)设,且,则存在极限(2)设,且是以T>0为周期的函数,则(3)设正数列(a n)满足,则证明:(1)由可知{f(n)}是递增数列.又因所以{f(n)}是有界列.由此即得所证.(2)不妨假定(否则以代替f(x),其中M是f(x)的上确界).对任给x>0,存在n,使得.由题设知从而可得令结论得证(3)..此时有,以及因此得1.试证明下列极限等式:证明:(1)注意到在上可积,有(2)乍看有点像函数sinx:在[0,π]上的积分和:但实际上不是,其不同之处就在乘积因子.因此,要把它化去,为此,需要运用放大缩小的方法:由此令可得(3)(i)首先(ii)其次(n>k)因为且有,所以(4)根据不等式。

定积分证明题方法总结

定积分证明题方法总结

定积分证明题方法总结1. 引言在微积分学中,定积分是一种重要的概念,它用于计算曲线下的面积或曲线的定积分值。

在解决定积分证明题时,有一些常用的方法可以帮助我们简化问题和推导定积分的计算过程。

本文将总结一些常见的定积分证明题方法。

2. 几何解释法定积分可以被解释为曲线下面积的概念,这一特性可以用几何解释法来进行证明。

在这种方法中,我们可以将定积分问题转化为求曲线下某个区域的面积,然后通过几何图形的性质进行计算。

例如,我们要证明函数f(x)在区间[a,b]上的定积分值为I,可以进行如下步骤:1.将函数f(x)和x轴围成的曲线下面积表示为S。

2.将区间[a,b]平均分为n段,即将[a,b]划分为n个小区间。

3.将每个小区间的长度设定为Δx,将小区间的起点和终点分别表示为xi和xi+1。

4.在每个小区间上,选择一个插值点ci,计算f(ci)。

5.根据插值点计算出小区间的面积ΔSi,即ΔSi = f(ci)* Δx。

6.将所有小区间的面积加起来,得到近似的曲线下面积Sn = Σ(ΔSi)。

7.当n趋向于无穷大的时候,Sn的极限值即为S。

8.由于S表示曲线下面积,所以证明Sn趋于S,即证明了定积分的值为I。

这种方法通过将定积分转化为几何问题,使得证明过程更加直观明了。

3. 确定积分值的边界法定积分值的边界法是另一种常见的方法,通过确定积分的上下界来简化问题。

这种方法通常适用于具有特殊性质的函数。

例如,我们要证明函数f(x)在区间[a,b]上的定积分值为I,可以进行如下步骤:1.设定积分的下界和上界分别为g(x)和h(x),即g(x)≤ f(x) ≤ h(x)。

2.对区间[a,b]上的g(x)和h(x)进行定积分,分别得到下界和上界的定积分值:Ig = ∫[a,b] g(x) dx,Ih = ∫[a,b] h(x) dx。

3.如果可以证明Ig ≤ I ≤ Ih,即下界小于等于积分值小于等于上界,那么定积分值为I。

有关定积分问题的常见题型解析(全题型)

有关定积分问题的常见题型解析(全题型)

有关定积分问题的常见题型解析题型一 利用微积分基本定理求积分 例1、求下列定积分:(1)()13031x x dx -+⎰ (2)()941x x dx +⎰(3)⎰--2224x分析:根据求导数与求原函数互为逆运算,找到被积函数得一个原函数,利用微积分基本公式代入求值。

评注:利用微积分基本定理求定积分dx x f ab )(⎰的关键是找出)()(/x f x F =的函数)(x F 。

如果原函数不好找,则可以尝试找出画出函数的图像, 图像为圆或者三角形则直接求其面积。

题型二 利用定积分求平面图形的面积例2 如图 ,求直线y=2x+3与抛物线y=x 2所围成的图形面积。

分析:从图形可以看出,所求图形的面积可以转化为一个梯形与一个曲边梯形面积的差,进而可以用定积分求出面积。

为了确定出被积函数和积分和上、下限,我们需要求出两条曲线的交点的横坐标。

评注:求平面图形的面积的一般步骤:⑴画图,并将图形分割成若干曲边梯形;⑵对每个曲边梯形确定其存在的范围,从而确定积分上、下限;⑶确定被积函数;⑷求出各曲边梯形的面积和,即各积分的绝对值之和。

关键环节:①认定曲边梯形,选定积分变量;②确定被积函数和积分上下限。

知识小结:几种典型的曲边梯形面积的计算方法:(1)由三条直线x=a 、x=b (a <b )、x 轴,一条曲线y=()x f (()x f ≥0)围成的曲边梯形的面积: S =()⎰badx x f ,如图1。

(2)由三条直线x=a 、x=b (a <b )、x 轴,一条曲线y=()x f (()x f ≤0)围成的曲边梯形的面积: S =()()⎰⎰-=babadx x f dx x f ,如图2。

(3)由两条直线x=a 、x=b (a <b )、两条曲线y=()x f 、y=()x g (()()x g x f ≥)围成的平面图形的面积:S =()()⎰-badx x g x f ][,如图3。

题型三 解决综合性问题例3、在曲线2x y =(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴所围的面积为121。

考研必备(数学分析知识点之_定积分之证明)

考研必备(数学分析知识点之_定积分之证明)
例5、1若 在 上二次可微,且 证明:
其中 .
证明1:将 在 处用Taylor公式展开,注意到 有

上式两端在 上积分,再两端取绝对值得
其中 .
证明2:考虑 则 在 上三阶可微,且 , , .
由Taylor公式知
其中
从而

,
于是

得证
例5、2设函数 处处二阶可导,且 又 为任意一连续函数,证明:
证明:由Taylor公式知存在
证明:由 ,对 ,有 ,又 在 上单调不增,有
.从而, .
于是,问题得证. 成立.
评注:当不等式中的积分限不同时,常借助变量代换改变积分限或被积函数,证明不等式.
例1、设 在 上连续,且单调减少 求证:对于满足 的任何 ,有 .
证明:因为 .

注意到 在 上单减,
由比较原理(两端从 )得

又 由比较原理和
证明:由于 在 上单调递减,则
对于任意 有
所以பைடு நூலகம்


所以对任何 ,有
评注:比较原理的基本思想:若
(其中等号仅当 时成立)
考察其特殊情况,主要利用定积分的单调性、绝对值及估值不等式来证明,尤其对于 以及 的不等式,可用微积分先求出 在定义的区间的最大值、最小值,再用估值定理求证.
例4、求证
证明:先求被积函数 在区间 上的最值.
所以

于是,
.
题目三:设函数 在 上连续,在 上可导, 且
证明:
分析:本题利用拉格朗日中值定理,即可证明.
证明:由拉格朗日微分中值定理
又 所以有

于是
评注:对于类似问题题型可采用的方法:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分的证明题work Information Technology Company.2020YEAR题目1证明题 容易。

证明)()()()(a f x f dt t f t x dx d xa -='-⎰解答_。

)()()()()()()()()()()()()()()()( a f x f x f a f dt t f t x dx d dtt f a f x a dtt f a x t f t x t df t x dtt f t x xaxa xa xax a -=+-='-=∴+-=+-=-='-⎰⎰⎰⎰⎰题目2证明题 容易。

利用积分中值定理证明 0sin lim :400=⎰→dx x n n π解答_。

使上存在点在由积分中值定理 0sin lim 0sin lim 1sin 0sin lim 4]4[0, ( )04(sin lim sin lim ,]4,0[, 400040=∴=∴<<⋅=∈-⋅=⎰⎰→→→∞→∞→ππξξξππξπξξπxdx dx x n n n n n n n n n n Q题目3证明题 一般。

使内至少存在一点证明:在,内可导,且在设函数0) (f ],[0)(0)(],[)(='==⎰ξξb a dx x f a f b a x f ba解答_。

使,在一点应用罗尔定理,可知存上,在区间,使存在一点由积分中值定理,在0) (b)(a,) (a ,] [0) (0))( ()( ),(11111='⊂∈=∴=-=⎰ξξξξξξξf a f a b f dx x f b a ba题目4证明题 一般。

为正整数时证明:当,设⎰⎰=+=anadx x f n dx x f n a x f x f 0 0)()( )()(解答_。

证明:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰=∴=-+-+===+=++===++=∴+=++=--anaaaana a n a aaa aa aaaa a naan aaa nadx x f n dx x f dxx f dyy f dya n y f a n y x dx x f dxx f dy y f dya y f dy a y f a y x dx x f dxx f dy y f dy a y f a y x dx x f a x f x f dxx f dx x f dx x f dx x f 0)1 ( 03 2 02 )1( 2 0)()( )( )( ))1(( )1( )( )()( )()2( 2 )( )()()( )( )()( )()()()(题目5证明题 一般。

证明: )1()1(10 10 ⎰⎰-=-dx x x dx x x m n nm解答_。

时时且则令证⎰⎰⎰⎰-=-=--=-∴====-=-=11110 )1( )1( )()1( )1( 0, 1 1, 0 1:dx x x dtt t dt t t dxx x t x t x dt dx t x m n m n n m n m题目6证明题 一般。

且上可积在则有上任意两点且对上有定义在设2)(21)()()(,],[)( .)()(,,],[,],[)(a b a f a b dx x f b a x f y x y f x f y x b a b a x f ba-≤---≤-⎰解答_。

有由定积分的不等性质即又由题设知上可积在于是上连续在因为证明222)(21)()()( 2)( )()()( 2)( )]()([ )( )]()([ , )()()()()( )()()( .],[)(,],[)( 0lim )()(),(:a b a f a b dx x f a b a f a b dx x f a b dx a x a f dxx f dxa x a f a x a f x f a x a f a x a x a f x fb a x f b a x f y x x f x x f y b a x bababa baba x -≤--∴-≤--≤---+≤≤---+≤≤--≥-≤-∴=∆∴∆≤-∆+=∆∈∀⎰⎰⎰⎰⎰→∆题目7证明题 一般。

其中证明且内可导在上的连续在设 )(sup ,)()(4 :.0)()(,),(,],[)( 2x f M a b M dx x f b f a f b a b a x f bx a ba'=-≤==<<⎰解答_。

有两式相加有取绝对值故又由有定理由假设并利用微分中值证明2222222i 2211)(4)( , )(8)()( )(8)()( )()( )()(, 2,1 .) ()(sup ),( ) ()()()()( ),( ) ()()()()( ,:a b M dx x f a b Mdx x b M dx x f a b Mdx a x M dx x f M x b x f M a x x f i M f x f M b x f b x b f x f x f x a f a x a f x f x f b a b b a bba ba ab a a bx a -≤-=-≤-=-≤-≤-≤=≤''=∈'-=-=∈'-=-=⎰⎰⎰⎰⎰++++<<ξξξξξ题目8证明题 一般。

使,内至少存在一点上正值,连续,则在在设⎰⎰⎰==bb dx x f dx x f dx x f b a b a x f a a )(21)()( ),( ],[ )(ξξξ解答_从而原式成立。

又即使在一点由根的存在性定理,存时,由于证:令⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰=+=+===∈>=<-=∴>∈-=ξξξξξξξξξ aaaaaaa xa)(2)()()()()()()(0) F(b)(a, 0)()(0)()(0)( ],[)()()(dxx f dxx f dx x f dxx f dx x f dt t f dtt f dt t f dt t f b F dt t f a F x f b a x dtt f dt t f x F bbb bbbbx Q题目9证明题 一般。

证明: sin sin0 20201⎰⎰<<+ππxdx xdx n n解答_⎰⎰⎰⎰⎰⎰<<∴>-=->-=-∈∃-=->>∈∃++++++++202012012020100010012010101sin sin00sin sin )sin(sin 0)sin 1(sin sin sin ],2,0[]2,0[)sin 1(sin sin sin 0sin 0sin]2,0[.]2,0[sin ππππππππππxdxxdx xdx xdx dx x x x x x x x x x x x xdx x x x n n n nn n n n n n n n n n n ,由性质,有使且连续非负,在又已知函数,由性质,有,使非负,且连续在已知函数证明:题目10证明题 一般。

求证:⎰<+-<1032 6421πx x dx解答_。

又时,⎰⎰⎰<+-<∴=-=-<+-<∴->--∴>=<--∴>∈10321021023223233232642164 2121 414121440244)1,0(ππx x dx x dx dx x x x x x x x x x x x x题目11证明题 一般 内恒等于零。

在区间上积分为零,证明内任一闭上连续,且在在区间设),()(),(),()(b a x f b a b a x f 解答_。

而从而则由题设。

令,证明:设0)( )()( 0)( 0)( )()( ),(),(00≡∴=Φ'=Φ'=Φ=Φ∈∀∈⎰x f x f x x x dtt f x b a x b a x xx题目12证明题 一般。

证明上连续在若函数0)(a )(21)(:,]1,0[ )( 20 0 23>=⎰⎰a adx x xf dx x f x x f解答_。

时,时,,且,则令证⎰⎰⎰⎰==⋅=∴======2220 0 0 0 2322)(21 )(21 21)( )( 0021:a a a adx x xf dtt tf dtt tf dxx f x a t a x t x dt xdx t x题目13证明题 一般。

证明上连续在和设函数⎰⎰⎰⋅≤ba ba ba dx x g dx x f dx x g x fb a x g x f )()(])()([ :,],[)()(222解答_。

即所以其判别式此二次式均非负且对任意的二次三项式不等式左端是关于即故有上连续并由题设知它在显然为参数的定积分考虑以])(][)([])()([0])(][)([])()([ 0.,,0)()()(2)(0])()([ ,],[.0)]()([])()([222222222222⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰≤∴≤-≤∆≥+-≥-≥--bab ab ababababab ab ababadx x g dx x f dx x g x f dx x g dx x f dx x g x f t t dx x f dx x g x f t dx x g t dx x tg x f b a x tg x f dxx tg x f t题目14证明题 一般⎰⎰+=42)d sin )(cos 2(sin d cos )2(sin ]1,0[ )( ππϕϕϕϕϕϕϕ。

证明:上连续,在设f f x f解答_右式。

左式,,则在第二个积分中,令左式=+=+=∴==--===-=+==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰4444 040 04 24 2442)d sin )(cos 2(sind sin )2(sin d cos )2(sind sin )2(sinsintd )2(sin d(-t) )2cos())2(sin(d cos )2(sin -dtd 2t - 22d cos )2(sin d cos )2(sind cos )2(sin ππππππππππππϕϕϕϕϕϕϕϕϕϕϕϕϕππϕϕϕϕπϕπϕϕϕϕϕϕϕϕϕϕf f f f t t f t t f f t f f f题目15证明题 一般。

证明且上可导在设2)(2)(:,0)(,)(,],[)(a b Mdx x f a f M x f b a x f b a -≤=≤'⎰解答_。

有由定积分的比较定理又则微分中值定理上满足在由假设可知证明2)(2)()( , )()( ),( M,(x )f x )(a, ))(( )()()( , ],[)(),(,:a b Mdx a x M dx x f a x M x f b a x a x f a f x f x f x a x f b a x baba-=-≤-≤∴∈∀≤'∈-'=-=∈∀⎰⎰ ξξ题目16证明题 一般。

相关文档
最新文档