第二章MATLAB的基本使用方法教程
第二章 MATLAB基础
3 )向量是一个数学量,一般高级语言中也未引入, 它可视为矩阵的特例。从MATLAB的工作区可以查 看到:一个 n 维的行向量是一个 1 × n 阶的矩阵,而 一个n维的列向量则当成n×1阶的矩阵。 如A=[1 2 3 4]就是一个4维的行向量。也可看成是 一个一维数组,还要看成是一个1×4阶的矩阵。
3
数据类型转换函 数 uint8 uint16 uint32 uint64 int8 int16 int32 int64
说 明 无符号8位整数 无符号16位整数 无符号32位整数 无符号64位整数 有符号8位整数 有符号16位整数 有符号32位整数 有符号64位整数
字节数 1 2 4 8 1 2 4 8
22
【例 2.8】变量赋值 >> a=3.14 a= 3.1400 >> class(a) %函数class用来是判断变量数据类 型的 ans = double %变量a是双精度的浮点型数据
23
>> a='hello!' hello! >> class(a) ans = char
%变量a重新赋值
13
>> whos Name Size a 1x1 x 1x1 y 1x1 z 1x1
Bytes Class Attributes 16 double complex 4 int32 4 int32 8 int32 complex
14
2.2MATLAB的常量及变量
2.2.1常量 常量是程序语句中取不变值的那些量。如表达式 y=0.314*x,其中就包含一个0.314这样的数值常数,它 便是一个数值常量。而在另一表达式s='Hello'中,单引 号内的英文字符串“Hello”则是一个字符串常量。
Matlab的使用方法及步骤详解
Matlab的使用方法及步骤详解一、Matlab简介Matlab是一种非常流行的科学计算软件,其全称为Matrix Laboratory(矩阵实验室)。
Matlab具有强大的数学计算和数据分析能力,广泛应用于工程、科学、经济等领域。
本文将详细介绍Matlab的使用方法及步骤。
二、安装与启动Matlab1. 下载与安装首先,访问MathWorks官方网站,找到适用于您操作系统的Matlab版本,并下载安装程序。
安装程序将引导您进行安装,按照提示完成即可。
2. 启动Matlab安装完成后,您可以在开始菜单或桌面上找到Matlab的启动图标。
点击启动图标,Matlab将打开并显示初始界面。
三、Matlab基本操作1. 工作区与编辑器Matlab的界面主要由工作区和编辑器组成。
工作区显示变量及其值,可用于查看和操作数据。
编辑器则用于编写和编辑Matlab脚本、函数等。
2. 脚本与命令窗口Matlab提供了两种主要的运行方式:脚本和命令窗口。
脚本是一系列命令的集合,可以一次性执行,适用于较复杂的计算任务。
命令窗口则可逐行输入命令并立即执行,用于快速测试和调试。
3. 基本算术和数学运算Matlab支持各种基本算术和数学运算,如加减乘除、幂运算、三角函数等。
可以直接在命令窗口输入表达式并执行。
四、数据操作与处理1. 数组的创建与操作在Matlab中,数组是最基本的数据结构之一。
可以使用多种方法创建数组,例如手动输入、加载外部文件、使用特定函数等。
一旦创建,可以对数组进行各种操作,如索引、切片、拼接等。
2. 矩阵运算Matlab对矩阵运算提供了强大的支持。
可以进行矩阵加减乘除、转置、求逆等运算。
矩阵运算在解决线性方程组、最小二乘拟合等问题时非常有用。
3. 数据可视化Matlab提供了丰富而强大的数据可视化功能。
使用plot、scatter、histogram等函数可以绘制各种类型的图表。
还可以对图表进行格式设置、添加标签、调整坐标轴等。
MATLAB的基本使用教程
MATLAB的基本使用教程MATLAB是一种强大的数学计算软件,广泛应用于科学、工程和技术领域。
它提供了丰富的功能和工具,能够快速、有效地处理和分析各种数学问题。
本文将介绍MATLAB的基本使用方法,帮助初学者快速入门。
一、MATLAB的安装与启动1、下载和安装MATLAB软件:在MathWorks官方网站上下载适合自己操作系统的MATLAB软件,并根据安装提示进行安装。
安装完成后,会生成一个MATLAB的启动图标。
2、启动MATLAB:双击MATLAB的启动图标,或者在命令行中输入"matlab"命令,即可启动MATLAB。
二、MATLAB的基本操作1、工作环境:MATLAB提供了一个强大的集成开发环境(IDE),可以在其中编写和运行代码。
在MATLAB的界面中,包括主窗口、命令窗口、变量窗口、编辑器等。
2、命令窗口:在命令窗口中可以输入和执行MATLAB命令。
可以直接在命令窗口中输入简单的计算,例如输入"2+3"并按下回车键,即可输出计算结果。
3、脚本文件:MATLAB可以编写和运行脚本文件,将一系列命令组织起来,并按顺序执行。
在编辑器中编写MATLAB代码,并将文件保存为.m扩展名的脚本文件。
然后在命令窗口中输入脚本文件的文件名(不带扩展名),按下回车键即可执行脚本文件中的代码。
4、变量和赋值:在MATLAB中,可以创建和操作各种类型的变量。
例如,可以使用"="符号将一个值赋给一个变量,例如"A=5"。
在后续的计算和分析中,可以使用这个变量,例如输入"B=A+3",结果B 将被赋值为8。
5、矩阵和向量:MATLAB中的基本数据结构是矩阵和向量。
可以使用方括号[]来创建矩阵和向量,并使用逗号或空格来分隔不同的元素。
例如,"[1,2,3]"表示一个包含3个元素的行向量。
6、矩阵运算:MATLAB提供了丰富的矩阵运算符和函数,可以对矩阵进行各种运算。
二MATLAB基本操作
10
§2.4 逻辑和关系运算
二. 关系操作符 MATLAB提供了六种关系操作符,这些
操作符与逻辑运算配合使用,可使程序 设计更加灵活。 例如:if and(a==1,b>5)
……
end 则当a=1且b>5时执行指定的语句。
例如:a=[1 2 3; 4 5 6; 7 8 9] 又如:b=[1:3; 4:6; 7:9]
c=[1: 6 : 0.5] 注意:关于:的使用相当灵活,大家可随
着学习的不断深入对:的使用逐步加深 灵活。
§2.2 矩阵基础
(2)从外部数据文件读取 load score.dat
(3) 利用matlab内部函数产生矩阵 例如:b=eye(3); 单位阵 c= ones(2,5); 全一阵 d=zeros(3,2); 全零阵 e=rand(2,3); 随机阵
这样很容易产生元素等值的矩阵: c3=8×ones(8,9);
§2.3 矩阵产生和操作
MATLAB提供的rand和randn可分别产 生均匀分布和正态分布的随机数。 例如要产生[0,1]之间均匀分布的随机向 量R(100×1),可输入R=rand(100,1) 如果要产生[-a,a](a为正数)之间均匀分 布的随机数则应输入
§2.5操作符和特殊字符
7. xor 功能:异或操作。 格式:C=xor(A,B) C=xor(A,B)完成阵列A和B对应元素的 异或操作。 如: A=[0 0 pi eps]
B=[0 -2 4 1.2] C=xor(A,B) C=0 1 0 1
§2.7 基本数学函数
一.三角函数
第二章MATLAB语言基本语法PPT课件
E为底的指数
log
自然对数
名称
log10 log2
含义
名称
10为底的对数 pow2 2为底的对数 sqrt
含义
2的幂 平方根
含义 名称
名称
复数a函bs 数 绝对值 conj
angle
相角 imag
含义
复数共轭 复数虚部
名
含义
称
real 复数实部
23
元素群的常用数学函数
其他函数
名称
含义
名称
min
8
30
12
7 8 9 1 6 7 7 *1 8*6 9*7 7 48 63
21
元素群的常用数学函数
三角函数和双曲函数
名称 sin cos tan cot asin acos atan acot sec
含义
正弦 余弦 正切 余切 反正弦 反余弦 反正切 反余切 正割
名称
csc asec acsc sinh cosh tanh coth asinh acosh
加减乘 A+B A-B A*B
只有维数相同的矩阵才能进行加减运算。 只有当两个矩阵中前一个矩阵的列数和后一个矩阵的
行数相同时,才可以进行乘法运算。
>>A=[1 2 3;4 5 6];
>>B=[2 1 3;3 2 6];
>>A+B ans =
>>A-B ans =
>> A*B' ans =
336 7 7 12
线段n等分
n1
n2
例:A=linspace(1,10,10)
29
定义矩阵要点
MATLAB教学 最新第二章 矩阵与数组2-4
把D的逆阵右乘以B,记作/D,称之为右除.
2.5.3 基本数组运算 1,数组转置 数组转置的操作符是在矩阵转置操作符前加符号".".(实数情 况下等价) 例:数组转置操作
2,数组幂 数组幂运算符 (单个符号自身运算)就是在矩阵运算符前加上符 号".".
3.数组乘法
2.5.4 基本数学函数 在MATLAB中部分函数可以用来进行基本的 数学运算,有三角函数,指数运算函数,复数 运算函数等. 注意:这些函数的参数可以是矩阵,向量或者 多维数组,函数在处理参数时,都是按照数组 运算运算的规则来进行的. 函数数目较多,不一一列出,后面用到时再 作说明. 2.5.5 矩阵(数组)操作函数
例2-5 使用logspace函数创建向量.
上面创建的都是行向量,即创建的都 是一行n列的二维数组.如果需要创建 列向量,即n行一列的数组,则需要使 用分号作为元素与元素之间的间隔或 者直接使用转置运算符" ' ".
2.3 创建矩阵 在编程语言中,矩阵和二维数组一般指的是同一 个概念,在M语言中,矩阵的元素可以为任意的 MATLAB数据类型的数值或者对象.创建矩阵的方 法也有多种,不仅可以直接输入元素,还可以使用 MATLAB MATLAB的数组编辑器编辑矩阵的元素. 2.3.1直接输入法 直接输入矩阵元素创建矩阵的方法适合创建元素较 少的矩阵. 例2-7 用直接输入矩阵元素的方法创建矩阵.
length获取向量长度若输入参数为矩阵或多维数组则返回各个维尺寸的最大值ndims获取矩阵或多维数组的维数numel获取矩阵或数组的元素个数disp显示矩阵或者字符串的内容cat合并不同的矩阵或者数组reshape保持矩阵元素的个数不变修改矩阵的行数和列数repmat复制矩阵元素并扩展矩阵fliplr交换矩阵左右对称位置上的元素flipud交换矩阵上下对称位置上的元素flipdim按照指定的方向翻转交换矩阵元素find获取矩阵或数组中非零元素的索引55例
第二章 MATLAB语言的使用与程序设计
命令历史窗口:显示已执行过的命令。在窗口的某一命令上单击鼠标 右键,会弹出菜单,对所选命令进行操作。
当前路径窗口:提供了当前路径文件的操作
演示
MATLAB的搜索路径
搜索路径是一系列文件路径的组合。当程序和命令执行 时, MATLAB 在搜索路径中查找程序或命令运行所需的函数文 件。 MATLAB 在执行搜索时按照规定的顺序。如:在命令窗口 中输入example,MATLAB将按下面的步骤来处理: 1.检查example是不是一个变量,如果是,则返回变量的值;
本章重点:
MATLAB工作环境掌握 主要文件类型及常用命令
矩阵、变量、表达式、常用函数
MATLAB语言的基本语句结构及程序调试方法
一、MATLAB系统简介
MATLAB的主要组成部分
1.MATLAB语言体系:MATLAB 语言是一种以矩阵运算为基础的高级 语言,具有条件控制、函数调用、数据结构、输入输出及面向对象等 程序语言特征,可以进行程序设计。
6 )对矩阵的特殊操作: rot90(a) 将 a 矩阵旋转 90 度、 fliplr(a) 将 a 矩阵的列反序、 flipud(a) 将 a 矩阵的行反序、diag(a) 将向量 a 构 成对角阵( 元素放在主对角线上 )---a 为向量、triu(a) 提取矩阵的上 三角部分、reshape改变矩阵的阶数,按列的顺序重排。
逻辑运算符: 在MATLAB中,逻辑运算符有3种。 & 逻辑与。当运算双方对应元素都为非零时; 结果为1,否则,结果为0。
| 逻辑或。当运算双方对应元素有一个为非零 时;结果为1,否则,结果为0。
~ 结果为0。 逻辑非。当元素的值为 0 时,结果为 1 ,否则,
例: a=[1 0 3;0 –1 6] , b=[-1 0 0;0 5 0.3] ,计算两矩
MATLAB基础教程第2章
第二章 数组、矩阵及其运算
2.1 数组的创建和寻访
例2-2 一维数组的生成与访问
命令:X=rand(1,5) 命令:X(3) 命令:X([1 2 5]) 命令:X(1:3) 命令:X(3:end) 命令:X(3:-1:1) 命令:X(find(X>0.5)) 命令:X([1 2 3 4 4 3 2 1])
第二章 数组、矩阵及其运算
2.2 矩阵的运算
例2-6 矩阵的乘法(接着上面的例子) A*B 3*A
注意:矩阵相乘时要求A的列数等于B的行数
第二章 数组、矩阵及其运算
2.2 矩阵的运算
A/B(矩阵右除)表示的是方程X*B=A的解 A\B(矩阵左除)表示的是方程A*X=B的解
例2-7 矩阵的除法( 见教材P.23)
第二章 数组、矩阵及其运算
2.3 数组的运算
1、数组的基本运算
例2-8 ( 见教材P.25)
第二章 数组、矩阵及其运算
2.3 数组的运算
数组运算和矩阵运算指令对照表
数组运算 指令 A.’ A=s A+s,A-s s.*A s./A,A.\s A.^n A+B,A-B A.*B A./B B.\A 含义 非共轭转置,相当于conj(A’) 把标量s赋给A中每个元素 标量s分别于A的元素之和(差) 标量s分别于A的元素之积 S分别被A的元素除 A的每个元素自乘n次 对应元素相加(减) 对应元素相加(乘) A的元素被B的对应元素相除 (与上相同) A^n A+B,A-B A*B A /B B\A 方阵A自乘n次 矩阵和(差) 同内维矩阵相乘 A右除B A左除B S*A 标量s分别于A的元素之积 A’ 指令 共轭转置 矩阵运算 含义
第二章 数组、矩阵及其运算
第二章Matlab 基本功能
>> A=[1,2,3,4;5,6,7,8;9,10,11,12;13,14,15,16] A=
1234 5678 9 10 11 12 13 14 15 16
>> B=[1,sqrt(25),9,13 2,6,10,7*2 3+sin(pi),7,11,15 4,abs(-8),12,16]
B= 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16
3.利用M文件建立矩阵
对于比较大且比较复杂的矩阵,可以为它专门建立一个M
文件。下面通过一个简单例子来说明如何利用M文件创建
矩阵。
A=[1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 16,17,18,19,20 21,22,23,24,25]
(1)启动有关编辑程序或MATLAB文本 编辑器,并输入待建矩阵:
3.访问多个元素
操作符“:”可以用来表示矩阵的多个元素。 若A是二维矩阵,其主要用法如下: Ø A(:,:) 返回矩阵A的所有元素。 Ø A(i,:) 返回矩阵A第i行的所有元素。
Ø A(i,k1:k2) 返回矩阵A第i行的自k1到k2 列的所有元素。
Ø A(:,j) 返回矩阵A第j列的所有元素。 Ø A(k1:k2,j) 返回矩阵A第j列的自k1到k2
>> a= linspace(-6,6,4) a=
-6 -2 2 6
>> b=logspace(0,2,4) b=
1.0000 4.6416 21.5443 100.0000
2.2.2 矩阵下标引用
本小节将介绍通过矩阵 下标 来存取元素值 的方法,包括访问单个元素、线性引用元 素和访问多个元素等。
第2章 MATLAB基本操作
6. 逻辑操作符 功能: 功能:逻辑操作运算。 格式: 格式:A&B A|B ~A 注意逻辑操作有相应的M文件 文件: 注意逻辑操作有相应的 文件:A&B等效 等效 ),A|B等效于 等效于or(A,B), 于and(A,B), ( , ), 等效于 , , ~A等效为 等效为not(A)。 等效为 。
2.关系操作符 关系操作符 关系运算符包括: 关系运算符包括:< 、< = 、〉、> = 、= = 、 ~= 3.测试用的逻辑函数 测试用的逻辑函数 1)all函数测定矩阵中是否全为非零元素 2)any函数测试出矩阵中是否有非零值 3) find函数可找出矩阵中的非零元素及其下 标 4) exist函数在装入数据之前对数据文件作 检测
利用取整和求余函数,可得到整数或精确到小数点后的第 几位。例如: x1=10-round(20*rand(2,5)) %产生[-10 10]之间的随机数(取整) x1 = -4 4 -1 -4 7 -7 -2 0
2 −7
x2=10-round(2000*rand(2,5))/100 %产生[−10 10]之间的随机 数(精确到0.01) x2 = -8.0000 -2.9000 -3.2000 -6.4300 -6.3600 3.1600 4.2100 -0.6800 3.1800 -4.5400
5.函数 函数 内部函数、工具箱函数、自定义函数。 1)函数的嵌套 x=sqrt(log(z)) 函数的嵌套 2)多输入函数 theta=atan2(y,x) 多输入函数 3)多输出函数 [v,d] = eig(a) 多输出函数 [y,I] = max(x) 6.表达式 表达式 a=(1+sqrt(10))/2 b=abs(3+5i) c=sin(exp(-2.3))
第二章 MATLAB基础知识
2.2 数组及其运算
例 ascii_a=double(a) %将字符转换为相应的双精度值 ascii_a = Columns 1 through 13 84 104 105 115 32 105 115 32 97 110 32 101 120 Columns 14 through 19 97 109 112 108 101 46 例 char(ascii_a) %将双精度值转换为字符 ans = This is an example. 例 w=find(a>=‘a’&a<=‘z’); %查找所有小写字母的位置 ascii_a(w)=ascii_a(w)-32; %将小写字母ascii值转换为大写 char(ascii_a) %将双精度值转换为字符 ans = THIS IS AN EXAMPLE.
2.2 数组及其运算
2.2.2 数组的运算
运算 加 运算符 + 表达式 a+b
减 乘 除 幂 点乘 点除 点幂
*
/或\ ^ .* ./或.\ .^
a-b a*b
a/b或a\b a^b a .* b a ./ b或a.\b a.^b
2.2 数组及其运算
例 a=3 14 7 1 4 9 3 6 10 b=2 8 3 2 10 0 11 2 7 a+b ans= 5 22 10 3 14 9 14 8 17
2.2 数组及其运算
高维数组的创建
直接通过“全下标”元素赋值方式创建高维数组; 由若干个同样大小的低维数组组合成高维数组; 由函数ones、zeros、rand、randn直接创建标准
高维数组;
借助cat、repmat、reshape等函数构造高维数组。
Am
MATLAB的基本使用方法
MATLAB的基本使用方法一、MATLAB基础1.启动和退出MATLAB若要启动MATLAB,双击桌面上的MATLAB图标或通过命令行输入"matlab"。
若要退出MATLAB,可以在命令窗口中输入"quit"或直接关闭窗口。
2.MATLAB界面3.基本操作在命令窗口中,可以执行各种MATLAB命令和表达式。
例如,可以进行简单的数学计算:>>2+3>> sqrt(16)也可以定义变量:>>x=5;>>y=x+3;>>y84.矩阵和向量可以使用中括号创建矩阵和向量:>>A=[123;456;789];>>B=[123];>>C=[1;2;3];可以通过A(row, col)的方式访问矩阵元素:>>A(2,3)6可以进行矩阵运算:>>A+2>>A*B>> inv(A)5.图形绘制使用plot函数,可以绘制曲线图:>> x = linspace(0, 2*pi, 100);>> y = sin(x);>> plot(x, y);可以通过给plot函数传递额外参数来设置图形属性,如线型、颜色和标记等:>> plot(x, y, 'r--o');>> xlabel('x');>> ylabel('y');>> title('Sine Curve');6.控制流程可以使用if-else语句进行条件判断:>>x=5;>> if x > 0>> disp('x is positive');>> else>> disp('x is negative');>> end可以使用for循环语句进行迭代操作:>> for i = 1:10>> disp(i);>> end7.函数和脚本可以在MATLAB中编写和调用函数。
MATLAB第二章
function [egg1,egg2,chicken1]=myegg(n)
% egg1 隔1天的蛋个数 % egg2 隔2天的蛋个数 % chicken1 过n天后母鸡个数 if n==1
egg1=1; egg2=0; chicken1=1; elseif n==2 egg1=1; egg2=1; chicken1=1;
27
>> x=0:0.1:2*pi; >> y=sin(x); >> plot(x,y) >> plot(x,y,‘ro’) %默认是蓝色曲线 >> x=[0 1 2 5];y=[4 -2 1 2]; >> plot(x,y) >> fplot(‘x^2+4*x+1’,[-15 15]) %函数用字符串表示
1 -8 4 9 -4 5 7 -9 >> fun=@myfun5 %例28中的函数 fun =
@myfun5 >> y=fun(A) %直接调用 y=
1 -13 16 81 -5 25 49 -15 >> y=feval(fun,A) %利用feval y=
1 -13 16 81 -5 25 49 -15
1 4 9 16 5 10 15 20
2024/7/5
第二章 MATLAB编程与作图
24
>> k=5;
>> ff=@(x)x^2+2*x+k %可以使用空间中的变量k
ff =
@(x)x^2+2*x+k
>> ff(5)
ans =
40
>> A=[1 2 ;3 4]
02第二章Matlab语言基础-Matlab教程
MATLA于分隔某一行的元素,分号用于区分不同的行. 除了分号,在输入矩 阵时,按Enter键也表示开始一新行. 输入矩阵时,严格要求所有行有相同的列 例m=[1 2 3 4 ;5 6 7 8;9 10 11 12] p=[1 1 1 1 2222 3 3 3 3] 特殊矩阵的建立: a=[ ] 产生一个空矩阵,当对一项操作无结果时,返回空矩阵,空矩阵的大小为零. b=zeros(m,n) 产生一个m行、n列的零矩阵 c=ones(m,n) 产生一个m行、n列的元素全为1的矩阵 d=eye(m,n) 产生一个m行、n列的元素的单位矩阵 e=randn(m,n) 产生一个m行、n列正态分布随机矩阵
3、数组的方向 前面例子中的数组都是一行数列,是行方向分布的 称之为行向量 数组也可以是列向 行向量. 前面例子中的数组都是一行数列,是行方向分布的. 称之为行向量 数组也可以是列向 量,它的数组操作和运算与行向量是一样的,唯一的区别是结果以列形式显示. 它的数组操作和运算与行向量是一样的,唯一的区别是结果以列形式显示 产生列向量有两种方法: 产生列向量有两种方法: 直接产生 例 转置产生 例 c=[1;2;3;4] ; ; ; b=[1 2 3 4]; c=b’
Matlab语言基础 Matlab语言基础
1)启动与退出
双击matlab图标,进入matlab命令窗口(command window) 双击matlab图标,进入matlab命令窗口(command window),即可 输入命令语句,开始运算,或从开始菜单的程序中单击matlab进入。 输入命令语句,开始运算,或从开始菜单的程序中单击matlab进入。 单击file菜单中的Exit,或在命令窗口输入Exit并回车即可退出。 单击file菜单中的Exit,或在命令窗口输入Exit并回车即可退出。
MATLAB的基本使用方法
MATLAB的基本使用方法1.安装和启动MATLAB-启动MATLAB,可以通过桌面快捷方式或开始菜单中的MATLAB图标启动。
2.MATLAB界面-命令窗口是主要的交互界面,可以在其中输入命令并查看结果。
-工具栏提供了一些常用功能按钮,如新建脚本、运行脚本等。
3.MATLAB基本操作-命令窗口:可以直接在命令窗口中输入命令并按回车执行,MATLAB 将显示计算结果。
-例如,输入`2+3`并按回车执行,MATLAB将显示计算结果`5`。
-变量赋值:可以将值赋给一个变量,并在之后的计算过程中使用该变量。
-例如,输入`a=5`,表示将值`5`赋给变量`a`。
-可以在任何地方使用变量`a`,例如输入`a+3`,MATLAB将计算`5+3`并显示结果`8`。
- 清除命令窗口:使用`clc`命令可以清除命令窗口中的所有内容,使界面清空。
4.基本数学运算-支持常见的数学运算符,如加法`+`、减法`-`、乘法`*`、除法`/`等。
-例如,输入`5+3*2`,MATLAB将先计算`3*2`得到`6`,然后计算`5+6`得到`11`。
-支持括号`(`,可以用来改变运算的优先级。
-例如,输入`(5+3)*2`,MATLAB将先计算`5+3`得到`8`,再计算`8*2`得到`16`。
5.矩阵和向量操作-MATLAB是一个专门用于处理矩阵和向量的环境,支持各种矩阵和向量运算。
-创建矩阵和向量:可以使用方括号`[]`创建矩阵和向量。
-例如,输入`a=[1,2,3]`,将创建一个行向量`a`,包含元素`1,2,3`。
-输入`A=[1,2;3,4]`,将创建一个2x2的矩阵`A`,包含元素`1,2,3,4`。
-数组索引:可以使用括号`(`和索引位置来访问数组的元素。
-例如,输入`a(1)`,将访问向量`a`的第一个元素,即返回`1`。
-输入`A(2,1)`,将访问矩阵`A`的第二行第一列的元素,即返回`3`。
-矩阵运算:支持矩阵的加法、减法、乘法等运算。
MATLAB如何使用-教程-初步入门大全资料
运算 数学表达式
加 a+b
减
a-b
乘 a×b
除 a÷ b
幂 a^b
MATLAB运算符
+ *
/(右除)或\(左除)
^
MATLAB表达式
a+b a-b a*b a/b或b\a a^b
示例
1+2 5-3 2*3
6/2或2\6 2^3
指出:右除相当于通常的除法。
22
七、MATLAB的变量与函数
1、变量 变量就是在程序的运行过程中,其数值可以变化的量
MATLAB是交互式的语言,输入命令即给出运算结 果。而命令窗口则是MATLAB的主要交互窗口,用 于输入和编辑命令行等信息,显示结果(图形除 外)。
当命令窗口中出现提示符“>>”时,表示MATLAB已 经准备好,可以输入命令、变量或运行函数。提示 符总是位于行首。
在每个指令行输入后要按回车键,才能使指令被 MATLAB执行。
28
矩阵的创建(续)
1、直接输入法-在命令窗口按规则输入方式创建矩阵
例1.在命令窗口创建简单的数值矩阵。
>>A=[1 3 2;3 1 0;2 1 5] 回车后在命令窗口显示如下结果
A=
132
310
215 例2.在命令窗口创建带运算表达式的矩阵,不显示结果。
>>y=[sin(pi/3),cos(pi/6);log(20),exp(2)]; 输入“y”回车,在命令窗口显示出来。
(3)在MATLAB安装目录\MATLAB6p5中双击 MATLAB快捷方式。
(4)在MATLAB安装目录\MATLAB6p5\bin\win32 中双击MATLAB.exe图标。
MATLAB实用教程第二章
1.矩阵的合并
矩阵的合并就是把两个或者两个以上的矩阵 连接成一个新矩阵矩阵构造符 可用于构造矩阵并 可以作为一个矩阵合并操作符 ➢ 表达式C=A B在水平方向合并矩阵A和B; ➢ 表达式C=A;B在竖直方向合并矩阵A和B
具有相同行数的两个矩阵合并为一个新矩阵
12 34 56 3×2
1.访问单个元素
2.线性引用元素
➢ 对于矩阵A线性引用元素的格式为 Ak通常这样的引用用于行向量或列 向量但也可用于二维矩阵
➢ MATLAB按列优先排列的一个长列向量格 式线性引用元素来存储矩阵元素
3.访问多个元素
操作符:可以用来表示矩阵的多个元 素若A是二维矩阵其主要用法如下: ➢ A:: 返回矩阵A的所有元素 ➢ Ai: 返回矩阵A第i行的所有元素
3.用满矩阵和稀疏矩阵存储方式分别构造下述矩 阵:
4.采用向量构造符得到向量159…41 5.按水平和竖直方向分别合并下述两个矩阵:
6. 分别删除第5题两个结果的第2行 7. 分别将第5题两个结果的第2行最后3列的数值
改为11 12 13 8. 分别查看第5题两个结果的各方向长度 9. 分别判断pi是否为字符串和浮点数 10.分别将第5题两个结果均转换为29的矩阵 11.计算第5题矩阵A的转秩 12.分别计算第5题矩阵A和B的A+B、A.* B和
行运算; ➢ 不同优先级的运算符采用先进行优先高的
运算
运算符的优先等级表
由表中可以看到括号的优先级别最高因此可 以用括号来改变默认的优先等级
2.4 字符串处理函数
2.4.1 字符串的构造 2.4.2 字符串的比较 2.4.3 字符串的查找和替换 2.4.4 字符串与数值间的转换
matlab第二章
ceil(1.8)=2
4)round四舍五入到最近的整数,如round(-1.3)=-1;round(-1.52)=2;round(1.3)=1;round(1.52)=2。
MATLAB 中的变量不需要事先定义,在 遇到新的变量名时,MATLAB会自动建立该变 量并分配存储空间。当遇到已存在的变量时, MATLAB会更新其内容,如有必要会重新分配
存储空间。
下一页
变量名由字母、数字和下划线构成, 并且必须以字母开头,最长为31个字符。 MATLAB能区分大小写字母,变量A和a是
例如: if a>1
disp('a>1')
elseif a==1
disp('a=1')
else disp('a<1') end 上一页 返回
3、逻辑函数
MATLAB提供了许多测试用的逻辑函数,
主要有all、any、find、exist、is*等。
返回
all函数
利用all函数可以测定矩阵每列所有
元素是否非零。若该列所有元素非零,则
利用重复函数repmat可以将小矩阵以
重复的形式产生大矩阵。
例如: f=repmat(a,2,3)
3、矩阵缩小 将大矩阵变成小矩阵的方法有两种: 抽取法和删除法。 (1)抽取法是指从大的矩阵中抽取中 的一部分,从而构成新的矩阵。例如: a=[1:4; 5:8; 9:12; 13:16] b=a(2:3, 3:4) c=a([1 4],[1 3]) d=a([2 4],[1 3])
MATLAB的基本使用教程详解
MATLAB的基本使用教程详解MATLAB(Matrix Laboratory,矩阵实验室)是一种用于数值计算和可视化的编程环境。
它提供了强大的数值计算功能、丰富的数学函数库、快捷的可视化工具和易于使用的编程语言。
以下是关于MATLAB基本使用的一些教程:1. 安装和启动MATLAB:- 访问MATLAB官方网站下载并安装MATLAB。
- 安装完成后,在桌面上找到MATLAB图标并点击启动。
2. 创建一个新的MATLAB文件:- 在MATLAB界面,点击“新建”按钮,选择“新建图形”,或者使用快捷键Ctrl+N。
3. 基本的MATLAB命令:- 在命令窗口中输入命令并按Enter键执行。
例如,输入`1+2`并按Enter 键,将显示结果`3`。
- 可以使用括号对表达式进行组包。
例如,输入`(1+2)*3`并按Enter键,将显示结果`9`。
- 在MATLAB中,可以使用逗号将多个命令分开执行。
例如,输入`a = 1,b = 2,c = a+b`,将依次执行这三个命令并显示结果。
4. 变量和数组:- 在MATLAB中,可以使用`a = 1`的形式创建一个变量a并将其值设为1。
- 数组是一种可以存储多个相同类型数据的数据结构。
例如,可以使用`A = [1,2,3;4,5,6]`创建一个包含两行三列的数组。
5. 数学函数:- MATLAB提供了丰富的数学函数库,例如可以使用`sin(pi/2)`计算sin(π/2)的值。
- 可以同时使用多个函数对同一组输入参数进行操作。
例如,可以使用`c = a*b; d = log(a/b); e = sin(a)+cos(b)`同时对变量a、b进行多种操作。
6. 控制结构:- 可以使用`if`、`else`和`end`关键字创建条件语句。
例如,输入`if a > b, a = b; end`将使a的值等于b的值(如果a大于b)。
- 可以使用`for`循环遍历数组或向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/11/5
4
2.1.2 MATLAB中的常用数学函数
MATLAB提供的基本初等函数包括三角函 数、指数函数、对数函数、复数函数、取 整和求余函数、坐标变换函数、数理函数 和一些特殊函数。 教材P14-16 MATLAB中使用函数不需要先对函数声明
2018/11/5
5
例2-3:已知三角形三个边长度分别为1、2、 3 ,求长度为 1和2的两条边的夹角大小。
数组列分隔符;函 数参数分隔符
点(.)
小数点;结构体成员 访问
省略号(…) 续行符
在数组中应用较多, 引号(‘’) 定义字符串 如生成等差数列 等号(=) 感叹号(!) 赋值语句 调用操作系统运算
指定运算优先级; 圆括号(( )) 函数参数调用;数 组索引
方括号([ ]) 定义矩阵 花括号({ }) 定义单元数组
2018/11/5
百分号(%) 注释语句的标识
10
1:分号(;) 功能:用于区分数组的行,或者用于一个语句的结尾处, 取消运行行显示。 2:百分号(%) 功能:用于在程序文本中添加注释,提高程序的可读性。 百分号之后的文本都将视为注释,系统不对其进行编译。 >> c=ones(2,3); >> c=ones(2,3) %create a 2*3 matrix of ones. c= 1 1 1 1 1 1
Ctrl + ←
Ctrl + → Esc
2018/11/5
光标左移一个单词
光标右移一个单词 取消当前输入行
Shift + Home
Shift + End Ctrl + k
>> a=magic(3)
a=
8
1
6Hale Waihona Puke >> 3 c=ones(2,3) 5 7 c =4 9 2
1 1 1 魔术矩阵为每行、每列以及对角之和 均相等的矩阵 1 1 1
2018/11/5
9
2.1.4 标点符号的使用
标点符号 定义 标点符号 定义
分号(;)
逗号(,) 冒号(:)
数组行分隔符;取 消运行显示
2018/11/5
11
3: 逗号(,) >> x=[1.545,2.1] x= 1.5450 2.1000 >> round(x) ans = 2 2 >> x,x' x= 1.5450 2.1000 ans = 1.5450 2.1000
>> x,b=x'; x= 1.5450 2.1000
2018/11/5
第2章 基本使用方法
教学内容
1. 2. 3. 4. 5. 6. 简单的数学运算 常用的操作命令和快捷键 MATLAB R2010a 的数据类型 MATLAB R2010a 的运算符 MATLAB的一些基础函数 MATLAB脚本文件
2018/11/5
1
MATLAB两大特点
1: 面向复数设计的运算
>> a=-8;ra=a^(1/3) ra = 1.0000 + 1.7321i >> p=[1 0 0 -a];r=roots(p) r= -2.0000 1.0000 + 1.7321i 1.0000 - 1.7321i
12
2.2 常用的操作命令和快捷键
命令 cd clc 功能
得对MATLAB的操作更加便利。
清空命令窗口 load
命令 功能 掌握一些常用的操作命令和快捷键,可以使 hold 显示或改变工作目录 图形保持命令 加载指定文件中 的变量
clear
clf
清除工作区中的变量
清除图形窗口
pack
path quit save type
a\b=b/a。
实例 3+5=8 3-5=-2 3*5=15
./
\ .\ ^ .^ ' .'
2018/11/5
数组右除
左除 数组左除 乘方 数组乘方 矩阵共轭转置 矩阵转置
8
例:矩阵乘法和点乘
>> a=[1 2;3 4]; >> b=[2 3;1 1]; >> c=a*b c= 4 5 10 13 >> d=a.*b d= 2 6 3 4
整理内存碎片
显示搜索目录 退出 MATLAB 保存内存变量 显示文件内容
diary 日志文件命令 dir 显示当前目录下文件 disp 显示变量或文字的内容
echo
命令窗口信息显示开关
2018/11/5
13
clear命令
>> x x= 1.5450 2.1000 >> clear x >> x ??? Undefined function or variable 'x'.
2018/11/5 2
2: 面向数组设计的运算
2018/11/5
3
2.1简单的数学运算
2.1.1 最简单的计算器使用方法
1. 直接输入法 >> pi*4^2 ans = 50.2655 没有将结果赋予一个变量 时,MATLAB自动将结果赋 予一个暂时的变量名ans
2. 存储变量法 >> s=pi*4^2 s= 50.2655 >> h=2 h= 2 >> v=s*h v= 100.5310
2018/11/5 6
>> a=1,b=2,c=sqrt(3) a= 1 b= 2 c= 1.7321
观察一下符号分号“;”,逗号“,”的区别。
2018/11/5
7
2.1.3MATLAB的数学运算符
符号 + * .* / 功能 加法 减法 矩阵乘法 乘,点乘,即数组乘法 右除 3/5 =0.6000 3\5= 1.6667 3^5= 243
2018/11/5
14
快捷键及其功能
快捷键 ↑(Ctrl + p) ↓(Ctrl + n) ←(Ctrl + b) →(Ctrl + f) 功能 调用上一行 调用下一行 光标左移一个字符 光标右移一个字符 快捷键 功能
Home(ctrl+a) 移动到命令行开头 End(ctrl+e) Ctrl + Home Ctrl + End 移动到命令行结尾 移动到命令窗口顶 部 移动到命令窗口底 部 选中光标和表达式 开头之间的内容 选中光标和表达式 结尾之间的内容
>> a=1;b=2;c=sqrt(3); >> cos_alpha=(a^2+b^2-c^2)/(2*a*b) cos_alpha = 0.5000 >> alpha=acos(cos_alpha) %反余弦函数acos() alpha = 1.0472 >> alpha=alpha*180/pi %将弧度值转化为角度 alpha = 60.0000