单相交流调压电路的性能研究
单相交流调压电路实验报告
大学电力电子技术课程设计总结报告题目:单相交流调压电路学生姓名:系别:专业年级:指导教师:年月日一、实验目的与要求(1)加深理解单相交流调压电路的工作原理。
(2)掌握单相交流调压电路的调试步骤和方法。
(3)熟悉单相交流调压电路各点的电压波形。
(4) 掌握直流电动机调压调速方法电力电子技术是专业技术基础课,做课程设计是为了让我们运用学过的电路原理的知识,独立进行查找资料、选择方案、设计电路、撰写报告、制作电路等,进一步加深对变流电路基本原理的理解,提高运用基本技能的能力,为今后的学习和工作打下良好的基础,同时也锻炼了自己的实践能力。
二、实验设备及仪器1、DT01B 电源控制屏2、DT09 转速显示3、DT15 交流电压表4、DT14 直流电流表5、DT20 电阻(900欧)6、DT04 电阻(3000欧)7、DT02 220V直流稳压电源8、DDS12单相交流调压电路触发器9、DD202 晶闸管、二极管、续流二极管、电感 10、导线若干 11、双踪示波器三、实验线路及原理1、主电路的设计所谓交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出电压的有效值。
交流调压电路广泛用于灯光控制及异步电动机的软启动,也用于异步电动机调速。
此外,在高电压小电流或低电压大电流之流电源中,也常采用交流调压电路调节变压器一次电压。
本次课程设计主要是研究单相交流调压电路的设计。
由于交流调压电路的工作情况与负载的性质有很大的关系,因此下面就反电势电阻负载予以重点讨论。
①电阻负载图1、图2分别为电阻负载单相交流调压电路图及其波形。
图中的晶闸管VT1和VT2也可以用一个双向晶闸管代替。
在交流电源U2的正半周和负半周,分别对VT1和VT2的移相控制角进行控制就可以调节输出电压正、负半周α起始时刻(α=0),均为电压过零时刻。
在tωα=时,对VT1施加触发脉冲,当VT1正向偏置而导通时,负载电压波形与电源电压波形相同;在tωπ=时,电源电压过零,因电阻性负载,电流也为零,VT1自然关断。
单相交流调压电路实验总结
单相交流调压电路实验总结1. 实验目的本实验旨在通过搭建单相交流调压电路,研究和了解调压原理,探究电压调节器的工作原理,掌握电压调节器的设计和使用方法。
2. 实验原理单相交流调压电路是一种能够将输入的交流电源电压调节到特定输出电压的电路。
通过调整器件的导通角度来改变直流电压的大小,从而实现对交流电源进行调节。
常见的调压器有可控硅调压器和晶闸管调压器。
本实验以晶闸管调压器为例,其主要由变压器、调压变压器、晶闸管、负载等组成。
通过改变触发信号的时刻,来控制晶闸管的导通和截断,从而改变输出电压的大小。
3. 实验步骤与结果3.1 实验步骤1.搭建单相交流调压电路,连接变压器、调压变压器、晶闸管和负载。
2.接通电源,调节输出电压调节器的电位器,观察输出电压的变化。
3.改变触发信号的时刻,观察输出电压的变化。
3.2 实验结果根据实验步骤进行实验后,观察到输出电压随着调节器电位器的调节而改变,同时观察到改变触发信号的时刻会对输出电压产生影响。
4. 重要观点与关键发现•晶闸管调压电路可以实现对交流电源电压的调节。
•调压电路主要由变压器、调压变压器、晶闸管和负载等组成。
•通过改变导通角度来控制晶闸管的导通和截断,从而调节输出电压的大小。
•输出电压的大小和触发信号的时刻密切相关。
5. 进一步思考1.通过实验可以发现,调压电路可以实现对交流电源电压的调节。
然而,在实际应用中,还需要考虑电流、功率等因素。
如何在保证电压稳定的前提下,实现对电流和功率的控制,是一个值得研究的问题。
2.实验中使用的是晶闸管调压器,还有其他类型的调压器,如可控硅调压器等。
不同类型的调压器具有不同的特点和适用范围,可以进行更深入的研究和比较。
3.在实验过程中,可能会遇到一些问题,如晶闸管发热、功率损耗等。
如何在设计和使用调压器时解决这些问题,可以进行进一步的探索和优化。
4.在实际应用中,调压器多用于电力系统中,如电网调压、高压输电线路调压等。
如何在复杂的电网环境下实现稳定的调压效果,是一个具有挑战性的问题,值得深入研究。
单相交流电路的研究实验报告
单相交流电路的研究实验报告单相交流电路的研究实验报告引言:单相交流电路是电力系统中最基本的电路之一,广泛应用于家庭、工业和商业领域。
为了深入了解单相交流电路的特性和性能,我们进行了一系列的实验研究。
本实验报告将介绍实验的目的、实验装置、实验步骤以及实验结果和分析。
一、实验目的本实验旨在通过实际操作和测量,研究单相交流电路的特性和性能,包括电压、电流、功率等参数的测量和分析。
二、实验装置1. 电源:使用交流电源提供电压源。
2. 变压器:将高电压转换为适用于实验的低电压。
3. 电阻箱:用于调节电路中的电阻值。
4. 电流表和电压表:用于测量电流和电压。
5. 示波器:用于观察电路中的电压和电流波形。
三、实验步骤1. 搭建单相交流电路:根据实验要求,将电源、变压器、电阻箱、电流表和电压表按照电路图连接起来。
2. 测量电压和电流:打开电源,调节变压器和电阻箱的参数,分别测量电路中的电压和电流值。
3. 记录数据:将测量到的电压和电流值记录下来,并绘制电压和电流的波形图。
4. 计算功率:根据测量到的电压和电流值,计算电路中的功率值。
5. 分析结果:根据实验数据和计算结果,分析单相交流电路的特性和性能。
四、实验结果与分析通过实验测量和计算,我们得到了一系列的实验结果。
首先,我们观察到电压和电流的波形图呈正弦波形,符合单相交流电路的特点。
其次,我们发现电路中的电压和电流存在一定的相位差,这是由于电路中的电感和电容等元件引起的。
此外,我们计算得到的功率值表明,单相交流电路在不同负载下的功率变化较大,这与负载的阻抗有关。
根据实验结果,我们可以得出以下结论:单相交流电路的特性和性能受到电阻、电感和电容等元件的影响。
电路中的电压和电流呈正弦波形,且存在一定的相位差。
在不同负载下,电路的功率表现出不同的特点。
五、实验总结通过本次实验,我们深入了解了单相交流电路的特性和性能。
通过实际操作和测量,我们得到了电压、电流和功率等参数的实验结果,并对其进行了分析。
单相交流调压电路实验
实验一 单相交流调压电路实验一.实验目的:1.加深理解单相交流调压电路的工作原理;2.加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。
二.实验内容:1.单相调压电路带电阻性负载实验;2.单相交流调压电路带电阻电感性负载实验。
三.实验过程:1、电阻性负载实验:按图1-1接好线路(蓝色为电源电压波形,黄色为负载电压波形,红色为负载电流波形)晶闸管脉冲触发角度: 绘制波形:结论: 2、带电阻电感性负载实验:按图1-2接好线路分别取脉冲触发角大于,等于和小于功率因数角φ三种情况。
当选R1和L 时,φ=48o 当选R2和L 时,φ=20o 当选R3和L 时,φ=18o图1-1图1-2绘制波形:结论:实验二功率场效应晶体管(MOSFET)特性与驱动电路研究一.实验目的:1.熟悉MOSFET主要参数的测量方法;2.掌握MOSFET对驱动电路的要求;3.掌握一个实用驱动电路的工作原理与调试方法。
二.实验内容:1.MOSFET静态特性及主要参数测试:=GS(th)跨导gm=绘制转移特性曲线(2=on绘制输出特征曲线2.驱动电路研究:(1)快速光耦输入、输出延时时间测试;波形记录:延迟时间(2)驱动电路的输入、输出延时时间的测试; 波形记录:延迟时间3.动态特性测试:(1)电阻负载MOSFET开关特性测试;波形记录:开关时间:(2)电阻、电感负载MOSFET开关特性测试;波形记录:开关时间:(3)RCD缓冲电路对MOSFET开关特性的影响测试;波形记录:开关时间:(4)栅极反压电路对MOSFET开关特性的影响测试;波形记录:开关时间:(5)不同栅极电阻对MOSFET开关特性的影响测试。
波形记录:开关时间:实验三绝缘栅双极型晶体管(IGBT)特性与驱动电路研究一.实验目的:1.熟悉IGBT主要参数的测量方法;2.掌握混合集成驱动电路EXB840的工作原理与调试方法。
二.实验内容:1.MOSFET静态特性及主要参数测量:(1)开启阀值电压V ge(th)测量;=ge(th跨导gm=(3)导通电阻R on的测量。
单相交流调压电路仿真实验报告
单相交流调压电路仿真实验报告一、实验目的本实验旨在通过仿真模拟,深入理解单相交流调压电路的工作原理和性能特点,掌握其电压调节原理和操作方法,提高对电力电子技术的理解和应用能力。
二、实验原理单相交流调压电路是通过控制开关器件的通断,调节输入交流电压的幅值和相位,以达到调节输出电压的目的。
根据控制方式的不同,单相交流调压电路可以分为斩波调压和相控调压两种。
本实验采用斩波调压方式。
斩波调压是通过控制开关器件的通断时间,调节输出电压的幅值。
当开关器件导通时,输出电压为输入电压;当开关器件关断时,输出电压为0。
通过调节开关器件的通断时间,可以改变输出电压的平均值,从而实现调节输出电压幅值的目的。
三、实验设备本实验使用MATLAB/Simulink软件进行仿真模拟,实验设备包括计算机、MATLAB/Simulink软件、电源模块、电阻器、电感器和开关器件等。
四、实验步骤1. 打开MATLAB/Simulink软件,新建一个仿真模型;2. 搭建单相交流调压电路的仿真模型,包括电源模块、电阻器、电感器、开关器件等;3. 设置仿真参数,如仿真时间、采样时间等;4. 启动仿真,观察并记录仿真结果;5. 分析仿真结果,包括输出电压的波形、相位、幅值等;6. 调整开关器件的通断时间,观察输出电压的变化,并分析斩波调压原理;7. 整理实验数据和波形,撰写实验报告。
五、实验结果与分析通过仿真模拟,我们得到了单相交流调压电路在不同开关器件通断时间下的输出电压波形。
从实验结果可以看出,当开关器件导通时间越长,输出电压的幅值就越高;当开关器件关断时间越长,输出电压的幅值就越低。
这个结果表明斩波调压原理是可行的。
此外,我们还观察了输出电压的相位变化。
当开关器件导通时,输出电压与输入电压同相位;当开关器件关断时,输出电压为0。
这说明斩波调压方式不会改变输出电压的相位。
六、结论与总结通过本次单相交流调压电路的仿真实验,我们深入了解了斩波调压电路的工作原理和性能特点,掌握了其电压调节方法和操作技巧。
单相交流调压电路(电阻负载)
实验一:单相交流调压电路(电阻负载)一、 实验容对单相交流调压电路的原理能够理解,并能够通过MATLAB 仿真得出当α为不同角度时的仿真波形。
最后通过分析仿真波形来了解单相交流调压电路(电阻负载)的工作情况。
电路模型由交流电源、反并联的两个晶闸管、触发模块、电阻负载组成。
单相交流调压电路(电阻负载)如图1-1所示。
我所要分析的问题是α为不同值时,输出电压及电流的波形变化。
图1-1二、 实验原理图1-1为纯电阻负载的单相调压电路。
图中晶闸管VT1和VT2反并联连接与负载电阻R 串联接到交流电源U 2上。
当电源电压正半周开始时出发VT1,负半周开始时触发VT2,形同一个无触点开关,允许频繁操作,因为无电弧,寿命特长。
在交流电源的正半周αω=t 时,触发导通VT1,导通角为1θ= απ-;在负半周αω=t +π时,触发导通VT2,导通角为2θ= απ-。
负载端电压U 为下图所示斜线波形。
这时负载电压U 为正弦波的一部分,宽度为(απ-),若正负半周以同样的移相角α触发VT1和VT2,则负载电压U 的宽度会发生变化,那么负载电压有效值也将随α角而改变,从而实现交流调压。
三、 实验步骤在MATLAB 新建一个Model ,命名为zuxingfuzai ,同时模型建立如下图所示图1-2 电阻负载的电路建模图四、仿真结果仿真参数:选择ode23tb算法,将相对误差设置为1e-3,开始仿真时间设置为0,停止仿真时间设置为0.06,其他的选项为默认设置。
模型参数设置参数设置为频率(Frequency)为50Hz,电压幅值100V,“measurements”测量选“V oltage” 其他为默认设置,如图所示触发信号uG1参数设置:幅值(Amplitude)电压为12V;周期(Period)为0.02s;占空比(Pulse Width)为40%;时相延迟(Phase delay)为(α*0.02/360)其他为默认设置,如图所示。
单相 buck 型交流调压电路
单相 buck 型交流调压电路
单相buck型交流调压电路是一种常见的电路拓扑结构,用于将交流电压降低到所需的水平。
它通常由一个开关元件(如MOSFET)和一个电感器组成。
当输入交流电压施加到电路上时,开关元件周期性地开关,从而使电感储能并将电压降低。
以下是对单相buck型交流调压电路的多个角度的分析:
1. 原理,单相buck型交流调压电路基于脉宽调制(PWM)原理工作。
通过控制开关元件的导通时间,可以调节输出电压的大小。
当开关元件导通时,电感储能,而当开关元件关断时,储能电感释放能量,从而降低输出电压。
2. 优点,单相buck型交流调压电路具有简单、高效、成本低的特点。
它可以有效地降低输入电压,适用于许多电子设备和应用场合。
3. 缺点,然而,单相buck型交流调压电路的输出电压受输入电压波动的影响较大,稳压能力相对较弱。
此外,开关元件的损耗也会影响电路的效率。
4. 应用,单相buck型交流调压电路广泛应用于各种电源供电
系统、电动汽车充电桩、LED照明等领域,以及需要对交流电压进
行调节的场合。
5. 设计考虑,在设计单相buck型交流调压电路时,需要考虑
输入电压范围、输出电压稳定性、开关元件的选型和散热设计等因素,以确保电路的性能和稳定性。
总的来说,单相buck型交流调压电路是一种常见且实用的电路
拓扑结构,通过合理的设计和控制可以实现对交流电压的有效调节,满足各种电子设备和系统的需求。
单相和三相交流调压电路实验
实验三单相和三相交流调压电路实验一、实验目的(1).加深理解交流调压电路的工作原理。
(2).加深理解单相交流调压感性负载时对移相范围要求。
(2).加深理解三相交流调压阻性负载时的工作情况。
二、实验设备及仪器(1).计算机(2).MATLAB软件三、注意事项(1)在单相电阻电感负载时,当α<ϕ时,若脉冲宽度不够会使负载电流出现直流分量。
(2)三相电路中,触发脉冲要选择双脉冲。
(3)仿真时间不宜太长,一般几个电源周期即可(4)晶闸管器件选择“普通晶闸管”,而不是详细模型的晶闸管。
(5)电气仿真时,一定要有“powergui”模块在仿真界面中才可以仿真成功。
四、实验步骤(1) 单相交流调压器带电阻性负载电路原理图如下图所示图1交流调压电路电阻性负载原理图基本参数为:交流电源:220V,50Hz电阻负载:10欧姆α=,120°,150°时负载侧电压、电流要求:搭建仿真电路,分别输出60波形及电源侧电压波形,并显示负载电压的有效值。
记录波形并分析触发角的移相范围。
步骤1:搭建主电路(a)搭建如图2所示主电路仿真中模型的提取路径是:交流电源:simpowersystem\Electrical sources\AC Voltage Source晶闸管: simpowersystem\Power Electronics\thyristor电阻: simpowersystem\Elements\series RLC Branch(b)设置参数根据已知条件设置电源和负载参数,晶闸管可用默认参数。
图2电阻负载主电路部分步骤二:搭建触发电路(a)触发电路利用脉冲发生器实现,如图3所示图3 脉冲触发电路触发脉冲提取路径为: simulink\Sources\Pulse Genetator(b)设置参数脉冲类型:Time based时间:Use simulation time脉冲幅值:1.0脉冲宽度:5脉冲周期:(自己思考)脉冲延时:(单位:秒;触发角不同,延时不同。
基于电路原理的单相交流异步电动机调压调速器特性分析
基于电路原理的单相交流异步电动机调压调速器特性分析单相异步电动机,因其结构装简单,经济性能好,坚固耐用,维护量少,适宜恶劣环境优点而等到广泛应用。
其各种调压调速器结构简单,操作方便,常用于单相电动机的调速。
利用电路原理分析各种调压调速器工作原理与电气特性,有利于单相异步电动机调速器的选择与使用。
标签:调速器;特性分析;选用单相异步电动机,因其结构装简单,经济性能好,坚固耐用,维护量少,适宜恶劣环境优点。
广泛用于小于1KW或只有单相电源的各种场合。
如家用電器、医疗设备、电动工具等领域。
但存在启动转矩小,启动电流大等缺点。
单相异步电动机常用调速方法有变极调速、抽头调速和调压调速等。
单相异步电动机负荷通常负载转矩不是恒数,而是随转速增加而增大。
即M∝n2(a>1)。
通过调节单相异步电动机电源电压,从而改变电动机输出转矩,进而改变电动机转速。
但该方法改变了电动机的转差率和转矩特性,稳速性能差,调速范围为电动机额定转速的70%~100%。
单相异步电动机调压调速的方法,可用串联电阻降压,电抗器和自耦变压器降压,串联电容降压,晶闸管相位控制降压等方法实现。
1.串联电阻分压调速电路特性由电路理论可知,电路阻抗Z=R+jX,当X>0时,电路性质为感性电路,单相异步电动机为感性负载。
功率因素cosФ=R/|Z|较低。
当交流电路功率因素低时,电路线压降损失和功率损失较大;同时,电源利用效率也较低。
如使用串联电阻分压调节单相异步电动机转速时,利用串联电阻分压原理,改变电动机运行绕组上工作电压,达到调压调速的功能。
串入调速器电阻时,单相异步电动机运行绕组上工作电压会降低,电动机转速降低。
但电路电阻分量会增大,电路功率因素会提高。
由于电阻同时也是耗能元件,导致电路能耗增加。
所以,电阻串联分压调速,虽然电路简单,电路成本低,但是却并不常用。
2.串联电抗器分压调速电路特性传统电抗器结构是由电感线圈和铁芯组成,电感线圈有抽头。
单相交流调压电路实验报告
单相交流调压电路实验报告单相交流调压电路实验报告引言:在现代电力系统中,交流电压的调整和稳定对于各种电气设备的正常运行至关重要。
为了实现对交流电压的调节,单相交流调压电路应运而生。
本文将介绍一次单相交流调压电路的实验过程和结果。
实验目的:本次实验的目的是通过搭建单相交流调压电路,掌握调压电路的工作原理和调压效果,并通过实验数据分析,对调压电路的性能进行评估。
实验装置:1. 交流电源:提供实验所需的交流电源,频率为50Hz,电压为220V。
2. 变压器:将输入的220V交流电压转换为所需的输出电压。
3. 整流电路:将交流电压转换为直流电压。
4. 滤波电路:对整流后的直流电压进行滤波处理,使其更加稳定。
5. 调压电路:通过调节电路中的元件,实现对输出电压的调节。
实验步骤:1. 按照实验装置的接线图,将交流电源、变压器、整流电路、滤波电路和调压电路依次连接。
2. 打开交流电源,调节变压器的输出电压,使其达到所需的实验电压。
3. 通过示波器观察输出电压的波形,并记录下波形的峰值、峰-峰值和有效值。
4. 调节调压电路中的元件,观察输出电压的变化,并记录下调节前后的输出电压值。
5. 重复步骤4,记录不同调节状态下的输出电压值,以评估调压电路的性能。
实验结果:通过实验,我们得到了以下结果:1. 输出电压的波形为直流电压,具有较小的纹波。
2. 调节电路中的元件可以实现对输出电压的连续调节,并且调节范围较大。
3. 调节电路的调压效果良好,输出电压的稳定性较高。
实验分析:根据实验结果,我们可以得出以下分析:1. 变压器的作用是将输入的220V交流电压转换为所需的输出电压。
通过调节变压器的输出电压,可以实现对输出电压的初步调节。
2. 整流电路的作用是将交流电压转换为直流电压。
通过整流电路的滤波处理,可以使输出电压的纹波较小。
3. 调压电路的作用是通过调节电路中的元件,实现对输出电压的进一步调节。
通过实验数据的记录和分析,我们可以评估调压电路的性能,并对其进行优化和改进。
单相交流调压电路实验
114实验五 单相交流调压电路实验一、实验目的熟悉用双向可控硅组成的交流调压电路的结构与工作原理。
二、实验所需挂件及附件三、实验线路及原理将一种形式的交流电变成另一种形式的交流电,可以通过改变电压、电流、频率和相位等参数。
只改变相位而不改变交流电频率的控制,在交流电力控制中称为交流调压。
单相交流调压的典型电路如图1所示。
图1单相交流调压电路本实验采用双向可控硅BCR (Z0409MF )取代由两个单向可控硅SCR 反并联的结构形式,并利用RC 充放电电路和双向触发二极管DB3的特点,在每半个周波内,通过对双向可控硅的通断进行移相触发控制,可以方便地调节输出电压的有效值。
由图2可见,正负半周控制角α的起始时刻均为电源电压的过零时刻,且正负半周的控制角相等,可见负载两端的电压波形只是电源电压波形的一部份。
在电阻性负载下,负载电流和负载电压的波形相同,α角的移相范围为0≤α≤π, α=0时,相当于可控硅一直导通,输入电压为最大值,U0=U i灯最亮;随着α的增大,U0逐渐降低,灯的亮度也由亮变暗,直至α=π时,U0=0,灯熄灭。
此外α=0时,功率因数cosφ=1,随着α的增大,输入电流滞后于电压且发生畸变,cosφ也逐渐降低,且对电网电压电流造成谐波污染。
交流调压电路已广泛用于调光控制,异步电动机的软起动和调速控制。
和整流电路一样,交流调压电路的工作情况也和负载的性质有很大的关系,在阻感负载时,若负载上电压电流的相位差为φ,则移相范围为φ≤α≤π,详细分析从略。
图2单相交流调压电路波形图四、实验内容交流调压电路的测试。
115五、思考题双向晶闸管与两个单向晶闸管反并联的不同点?控制方式有什么不同?六、实验方法将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK22的“Ui”电源输入端,按下“启动”按钮。
接入220V,15W的灯泡负载,打开交流调压电路的电源开关。
实验三·单相交流调压电路
实验(三):单相交流调压电路实验一、实验目的(1)加深理解单相交流调压电路的工作原理。
(2)加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。
二、预习内容要点(1) 熟悉实验电路(包括主电路、触发控制电路)。
(2) 按实验电路要求matlab仿真,用示波器观察移相控制信号α的情况。
(3) 主电路接电阻负载,用示波器观察不同α角时输出电压和晶闸管两端的电压波形,并用电压表测出输出电压的有效值。
为使读数便利,可取α为30°、60°、90°进行观察和分析(4) 主电路改接电阻电感负载,在不同控制角α和不同负载阻抗角θ情况下用示波器观察和记录负载电压和电流的波形。
(5) 特别注意观察上述α<θ情况下出现较大的直流分量,此时L 固定,加大R直至消除直流分量。
三、实验仿真模型图1.1 单相交流调压阻感性电路四、实验内容及步骤1.对单相交流调压带电阻性负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。
(1)器件的查找以下器件均是在MATLAB R2017b环境下查找的,其他版本类似。
有些常用的器件比如示波器、脉冲信号等可以在库下的Sinks、Sources中查找;其他一些器件可以搜索查找(3)参数设置1.双击交流电源把电压设置为220V,频率为50Hz;2.双击脉冲把周期设为0.02s,占空比设为80%,延迟角设为30度,60度,,90度,由于属性里的单位为秒,故把其转换为秒即,(30/360)*0.02;3.双击负载把电阻设为10Ω;4.双击示波器把Number of axes设为6;仿真波形及分析当α=30°时,当α=60°时,当α=90°时,2.对单相交流调压电路带阻感性负载的运行情况进行仿真并记录分析改变脉冲延迟角时的波形(至少3组)。
参数设置双击负载把电阻设为10Ω;电感为0.01H;其余参数不变。
当α=30°时,当α=60°时,当α=90°时,五、实验总结1、在交流调压电路中,当负载为阻性时,输出电压的有效值随相控角增大而减小。
单相交流调压电路的性能研究
实验报告课程名称:实验项目:实验地点:专业班级:学号:学生姓名:指导教师:年月日一、实验目的和要求(必填)目的:熟悉单相交流调压电路的工作原理,分析在电阻负载和电阻电感负载时不同的输出电压和电流的波形及相控特性。
明确交流调压电路在电阻电感负载时其控制角应限制在≦α≦α的范围内。
二、实验内容和原理(必填)1、单相交流调压电路(电阻性负载)2、单相交流调压电路(阻感形负载)。
3、主电路由反并联的两个晶闸管组成,触发电路由脉冲同步触发电路构成。
Matlab仿真原理图和脉冲同步触发电路如下所示。
脉冲同步触发电路仿真原理图参数设置:三相电源电压设置为220V,频率设为50Hz。
只要有适当的触发信号,便可以使晶闸管变换器在对应的时刻导通。
设置同步电压的频率跟脉冲宽度分别为50Hz和20%,,通过设置输入信号给它的常数模块参数便可以得到不同的触发角a,从而产生给出触发脉冲。
选择算法为ode23tb,stop time 设为0.3。
1.电阻负载仿真设置电路负载为纯电阻性,R=20Ω。
以下是分别在a=0 度,45 度,90度时的仿真结果。
2.阻感负载仿真设置电路负载为阻感性,R=20Ω,L=0.4H。
(这里再加有关六脉冲同步触发电路PWM发生器的描述)三、主要仪器设备模块(必填)1、Matlab7.01\Simulink软件2、SimPowerSystems3、整流桥模块,IGBT/DIODE仿真模块4、电阻、电感元件()。
5、Multimeter测量模块。
6、Scope测量模块。
四、操作方法与实验步骤(可选)1、按(二)中原理图建立Matlab仿真模型2、增加测试仪器模块用来观察波形。
3、按阻性负载、阻感负载,分别以a=0度,45度, 90度进行仿真,记录波形。
五、实验数据记录和处理(可选)R=20Ω a=0 度R=20Ω,45度R=20Ω 90度R=20Ω,L=0.4H 0度R=20Ω,L=0.4H 45度R=20Ω,L=0.4H 90度图 6 图7图8 图9由仿真图结合理论分析可知,上述波型图是正确的。
7单相交流调压电路实验报告
实验报告课程名称:现代电力电子技术实验项目:单相交流调压电路实验实验时间:实验班级:总份数:指导教师:朱鹰屏自动化学院电力电子实验室二〇〇年月日广东技术师范学院实验报告学院:自动化学院专业:电气工程及其自动化班级:成绩:姓名:学号:组别:组员:实验地点:电力电子实验室实验日期:指导教师签名:实验(七)项目名称:单相交流调压电路实验1.实验目的和要求(1)加深理解单相交流调压电路的工作原理。
(2)加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。
(3)了解KC05晶闸管移相触发器的原理和应用。
2.实验原理三、实验线路及原理本实验采用KCO5晶闸管集成移相触发器。
该触发器适用于双向晶闸管或两个反向并联晶闸管电路的交流相位控制,具有锯齿波线性好、移相范围宽、控制方式简单、易于集中控制、有失交保护、输出电流大等优点。
单相晶闸管交流调压器的主电路由两个反向并联的晶闸管组成,如图3-15所示。
图中电阻R用D42三相可调电阻,将两个900Ω接成并联接法,晶闸管则利用DJK02上的反桥元件,交流电压、电流表由DJK01控制屏上得到,电抗器L d从DJK02上得到,用700mH。
图 3-15 单相交流调压主电路原理图3.主要仪器设备1.电路调试主电路放大电路:(1)KC05集成移相触发电路的调试。
(2)单相交流调压电路带电阻性负载。
(3)单相交流调压电路带电阻电感性负载。
(l)KCO5集成晶闸管移相触发电路调试将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V ,用两根导线将200V 交流电压接到DJK03的“外接220V ”端,按下“启动”按钮,打开DJK03电源开关,用示波器观察“1”~“5”端及脉冲输出的波形。
调节电位器RP1,观察锯齿波斜率是否变化,调节RP2,观察输出脉冲的移相范围如何变化,移相能否达到170°,记录上述过程中观察到的各点电压波形。
(2)单相交流调压带电阻性负载将DJKO2面板上的两个晶闸管反向并联而构成交流调压器,将触发器的输出脉冲端“G1”、“K1”、“G2”和“K2”分别接至主电路相应晶闸管的门极和阴极。
交流调压实验报告总结(3篇)
第1篇一、实验背景随着社会经济的发展,电力电子技术在工业、民用和科研领域得到了广泛的应用。
交流调压技术作为电力电子技术的重要组成部分,在电力系统的运行、控制和保护等方面发挥着至关重要的作用。
为了加深对交流调压技术的理解和掌握,我们进行了交流调压实验,以下是对实验的总结。
二、实验目的1. 理解交流调压电路的工作原理,掌握交流调压电路的设计方法。
2. 熟悉交流调压电路的实验步骤,掌握实验操作技能。
3. 分析交流调压电路在不同负载条件下的工作特性,提高实验分析能力。
三、实验原理交流调压电路通过控制晶闸管的导通角,实现对交流电压的调节。
实验中,我们主要研究了单相和三相交流调压电路。
1. 单相交流调压电路:采用双向晶闸管或两个反向并联的晶闸管,通过控制晶闸管的导通角来调节交流电压。
2. 三相交流调压电路:采用三相晶闸管,通过控制三相晶闸管的导通角来调节交流电压。
四、实验步骤1. 单相交流调压电路实验:(1)搭建实验电路,包括晶闸管、电阻、电容等元件。
(2)接入电源,调节晶闸管的导通角,观察电压调节效果。
(3)改变负载,分析交流调压电路在不同负载条件下的工作特性。
2. 三相交流调压电路实验:(1)搭建实验电路,包括三相晶闸管、电阻、电容等元件。
(2)接入电源,调节三相晶闸管的导通角,观察电压调节效果。
(3)改变负载,分析交流调压电路在不同负载条件下的工作特性。
五、实验结果与分析1. 单相交流调压电路实验结果:(1)实验结果表明,通过调节晶闸管的导通角,可以实现交流电压的调节。
(2)当负载变化时,交流调压电路的工作特性有所变化,如导通角增大,电压调节范围减小。
2. 三相交流调压电路实验结果:(1)实验结果表明,通过调节三相晶闸管的导通角,可以实现三相交流电压的调节。
(2)当负载变化时,三相交流调压电路的工作特性有所变化,如导通角增大,电压调节范围减小。
六、实验结论1. 交流调压电路通过控制晶闸管的导通角,实现对交流电压的调节。
单相交流调压电路实验心得
单相交流调压电路实验心得
在本次单相交流调压电路实验中,我深刻体会到了电路理论在实际应用中的重要性。
通过实验,我不仅加深了对单相交流调压电路工作原理的理解,还掌握了一些实用的实验技能。
实验开始前,我们先对单相交流调压电路的相关理论知识进行了学习,包括电路的组成部分、工作原理以及调压的实现方法等。
在实验过程中,我按照实验指导书的步骤进行操作,认真观察和记录实验现象,通过改变电阻值和控制信号,观察负载电压的变化,进一步理解了交流调压的工作原理。
通过本次实验,我还学会了如何使用示波器、万用表等仪器来测量和分析电路的性能。
这些实验技能将对我今后的学习和工作产生积极的影响。
这次实验让我对单相交流调压电路有了更深入的理解,也提高了我的实验技能和解决问题的能力。
我明白了理论知识与实践操作相结合的重要性,只有通过实际操作,才能真正理解和掌握所学的知识。
在今后的学习中,我将更加注重实践,不断提高自己的综合能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单相交流调压电路的性能研究
摘要:随着用电设备种类的增加、功能的多样化,它们对电源的要求也就各不相同,普通的市交流电已经不能满足这些要求。
因此,就需要对市交流电压进行调整以获取需要的电压。
目前,较为常用的交流调压技术手段除了老式的电感式调压器外,主要就是采用晶闸管交流调压装置。
交流调压电路是一个带有双向晶闸管的单相交流调压电路,其功能与一般的单相交流调压电路类似,但是它的控制电路与其他电路的控制电路相比起来要简单的多,更容易控制,故使用起来更加方便。
关键词:交流调压电路;单相交流调压电路;单相交流调压电路的谐波分析
0.前言
交流调压电路广泛应用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软启动,也用于异步电动机调速。
在电力系统中,这种电路还常用于对无功功率的连续调节。
此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。
交流调压电路可分为单相交流调压电路和三相交流调压电路。
前者是后者的基础,所以对单相交流调压电路的性能研究十分重要。
1.交流调压电路
把两个晶闸管反并联后串联在交流电路中,通过对晶闸管的控制就可以控制交流输出,这种不改变交流电的频率电路称为交流电力控制电路。
在每半个周波那通过对晶闸管开通相位的控制,可以方便地调节输出电压的有效值,这中电路称为交流调压电路。
交流调压电路分为单相交流调压电路和三相交流调压电路。
2.单相交流调压电路
2.1单相交流调压电路的电路图
图1 单相交流调压电路图
2.2电阻负载
图2 电阻负载单相交流调压电路及其波形
在上图中晶闸管VT1 VT2 也可以用双向晶闸管代替。
在电源U 的正半周内,晶闸管V 承受正向电压,当ωt=α时触发V 使其导通则负载上得到缺α角的正弦半波电压,当电源电压过0时,V 管电流下降为0而关断,在电源电压U 的负半周,V 晶闸管承受正向电压,当ωt=α+π时,触发V 使其导通,则负载上得到缺α角的正弦负半波电压,改变α角大小,就改变了输出电压有效值大小。
负载电压电压有效值为 ()
()π
α
παπωωππα
-+
==
⎰
2sin 21d sin 21
1
2
1o U t t U U 负载电流有效值
π
α
παπ-+==
2sin 21R
U
R U I o o
晶闸管电流有效值 ())22sin 1(21sin 22112
1π
α
παωωππ
α+-=⎪⎪⎭
⎫ ⎝⎛=
⎰R U t d R t U I T
电路功率因数 π
απαπλ-+====
2sin 211
o
o 1o o U U I U I U S P
由图和公式可以看出α移项范围从0到π,α=0时,相当于晶闸管一直接通,输出电
压为最大值,U o =U I ,随着α的增大,U o 降低,直到α=π时,U o =0,此外,α=0时,功率因数λ=1,随着α的增大,输入电流落后于电压并且发生畸变,λ也随之降低。
2.3阻感负载
图3 阻感负载单相交流调压电路及其波形
交流调压器在电感性负载下工作和整流器在电感性负载下工作类似,电流的波形也滞后于电压的波形。
因此电压过零为负值后,还要经过一个延滞角,电流才会降到零,所以已经导通的晶闸管也要经过一个延迟角才会关断。
延滞角的大小与控制角α、负载功率因数角ϕ都有关系。
图3为单相交流调压器在电感性负载时的电路和电压、电流的波形。
图中θ为晶闸管的导通角,虚线所示的电流i L0为α=ϕ时的负载电流,其滞后于电压的相角即为功率因数。
下面分析θ、α、ϕ间的关系并求负载电流的表达式。
设负载的阻抗角为 , 稳态时α 的移相范围应为ϕ≤α≤π。
在ωt=α时刻开通晶闸管VT1,可求得导通角θ ,即
以ϕ为参变量,利用式上式可以把α和θ的关系用图4的一簇曲线来表示
图4 单相交流调压电路以ϕ为参变量的α和θ的关系线
3.单相交流调压电路的谐波分析
由图2和图3可以看出,负载电压和负载电流均不是正弦波,含有大量谐波。
下面以电
)/(tg 1R L ωϕ-=
阻负载为例,对负载电压进行谐波分析。
由于波形正负半波对称,所以不含直流分量和偶次谐波,用傅立叶级数表示如下
∑∞
=+=
,5,3,1o )sin cos ()(n n n
t n b t n a
t u ωωω
上式中
)12(cos 221
1-=
απU a
[])(22sin 221
1απαπ-+=
U b
[][]⎭⎬
⎫⎩⎨⎧-----++=
1)1cos(11
1)1cos(1121ααπn n n n U a n (n =3,5,7,…) ⎥⎦⎤
⎢⎣⎡---++=
ααπ)1sin(11)1sin(1121n n n n U b n
(n =3,5,7,…)
基波和各次谐波有效值 2
2on 21n
n b a U +=
(n =1,3,5,7,…)
负载电流基波和各次谐波有效值
R
U I /on on =
4.单相交流调压电路的仿真模型
图5 电阻性负载的交流调压电路
4.1参数设置
交流峰值电压为100V 、初相位为0、频率为50Hz 。
晶闸管参数设置:Ron=0.001Ω,Lon=0H,Vf=0,Rs=20Ω,Cs =4e-6F,RC 缓冲电路Lon=0.01H 。
负载RLC 分支,电阻性负载时,R =2Ω,L =0H,C=inf 。
脉冲发生器:Pulse Generator1和Pulse Generator 模块中的脉冲
周期为0.02s,脉冲宽度设置为脉宽的10%,脉冲高度为12,脉冲移相角通过“相位角延迟”对话框设置。
4.2单相交流调压器电路的仿真结果
控制方法:相位控制。
它是使晶闸管在电源电压每一周期中,在选定的时刻将负载与电源接通,改变选定的时刻以达到调压的目的。
图6 控制角为00时的电阻性负载电流电压和脉冲波形
图7 控制角为600时的电阻性负载电流电压和脉冲波形
图8 控制角为1200时的电阻性负载电流电压和脉冲波形
图9 控制角为1800时的电阻性负载电流电压和脉冲波形
从波形可看出,随着开通角α的增大,负载电压逐渐降低,α的移相范围为0≤α≤π。
5.结束语
由上述研究可知单相交流调压可归纳为以下三点:①带电阻性负载时,负载电流波形与单相桥式可控整流交流侧电流波形一致,改变控制角α可以改变负载电压有效值。
②带电感
性负载时,不能用窄脉冲触发,否则当α<φ时会发生有一个晶闸管无法导通的现象,电流出现很大的直流分量。
③带电感性负载时,α的移相范围为φ-180,带电阻性负载时移相范围为0 -180。
改变反并联晶闸管的控制角,就可方便地实现交流调压。
当带电感性负载时,必须防止由于控制角小于阻抗角造成的输出交流电压中出现直流分量的情况。
交流-交流变流电路,即把一种形式的交流变成另一种形式的交流电路。
在交流-交流电路中,只改变电压、电流或对电路的通断进行控制,而不改变频率的电路称为交流电力控制电路。
而单相交流调压电路又是其基础电路,所以我们通过对上述单相交流调压电路的性能研究可以更好的掌握其工作原理,从而为我们解决日常生活中遇到的问题提供了方便。
[参考文献]
[1]王兆安,刘进军.电力电子技术.机械工业出版社,2009
[2]王成安.电子技术基本技能综合训练.人民邮电出版社,2005
[3]杨欣,莱.诺克斯,王玉凤,刘湘黔.电子设计从零开始.清华大学出版社,2010
[4]华成英,童诗白.模拟电子技术基础.高等教育出版社,2006
[5]王其红.电工基础教程.电子工业出版社,2007。