第六章相关分析与线性回归分析

合集下载

线性相关分析和线性回归

线性相关分析和线性回归

相关关系从单变量从发,在一个样本数据中想知道某一指标在样本中的离散程度用方差(样本偏离均值的平均距离的平方数,也叫总变差)或者标准差(样本偏离均值的平均距离)表示。

两个变量的时候,这两个变量在样本中的离散程度用协方差(类比于方差)表示。

协方差表示的是总变差,描述的是两个变量的总体误差(总体误差的期望)。

协方差:协方差:cov(X,Y)=E[(X−E[X])(Y−E[Y])]数据点的协方差:2数据点的协方差:(x1−ux)(y1−uy)+(x2−ux)(y2−uy)2如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值(用上图公式表示的是每一个点与均值的误差值都是正数);如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值(用上图公式表示的是每一个点与均值的误差值都是负数)。

协方差为正值,表示两个变量正相关;协方差为负值,表示两个变量负相关;协方差为0则表示不相关(每一个点与均值的误差值有正有负)。

相关系数协方差的数值可以衡量两个变量的关系,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。

(举个向量的栗子,两个向量的夹角大小表示相关关系,但是两向量的长度不影响夹角的大小,协方差的计算类似于计算向量的距离,向量的距离也可以表示向量之间的关系,但是会受到向量长度的影响)。

因此,相关关系需要去掉量纲的影响,使用协方差同时除以X 和Y的标准差,这就是相关系数(皮尔逊相关系数)相关系数:相关系数r:cov(X,Y)σxσy相关系数r的取值范围是[-1,1],正值表示正相关,负值表示负相关。

当相关系r>0.6时,可以认为两个变量之前强相关,0.3<=r<=0.6时,可以认为是中等相关,当r<0.3时认为弱相关,r=0时表示不相关。

第六章相关及回归分析方式

第六章相关及回归分析方式

第六章 相关与回归分析方式第一部份 习题一、单项选择题1.单位产品本钱与其产量的相关;单位产品本钱与单位产品原材料消耗量的相关 ( )。

A.前者是正相关,后者是负相关 B.前者是负相关,后者是正相关2.样本相关系数r 的取值范围( )。

∞<r <+∞≤r ≤1 C. -l <r <1 D. 0≤r ≤101y x ββ=+上,那么x 与y 之间的相关系数( )。

A.r =0B.r =1C.r =-1D.|r|=14.相关分析与回归分析,在是不是需要确信自变量和因变量的问题上( )。

A.前者无需确信,后者需要确信 B.前者需要确信,后者无需确信5.直线相关系数的绝对值接近1时,说明两变量相关关系的紧密程度是( )。

6.年劳动生产率x(千元)和工人工资y(元)之间的回归方程为y=10+70x ,这意味着年劳动生产率每提高1千元时,工人工资平均( )。

7.下面的几个式子中,错误的选项是( )。

8.以下关系中,属于正相关关系的有( )。

9.直线相关分析与直线回归分析的联系表现为( )。

10.进行相关分析,要求相关的两个变量( )。

A.都是随机的B.都不是随机的11.相关关系的要紧特点是( )。

B.某一现象的标志与另外的标志之间存在着必然的关系,但它们不是确信的关系12.相关分析是研究( )。

13.现象之间彼此依存关系的程度越低,那么相关系数( )。

01y x ββ=+中,假设10β<,那么x 与y 之间的相关系数( )。

A. r=0B. r=1C. 0<r <1D. —l <r <0 15.当相关系数r=0时,说明( )。

A.现象之间完全无关B.相关程度较小16.已知x 与y 两变量间存在线性相关关系,且210,8,7,100xy xy n σσσ===-=,那么x 与y 之间存在着( )。

17.计算估量标准误差的依据是( )。

A.因变量的数列B.因变量的总变差18.两个变量间的相关关系称为( )。

第6章 相关与回归分析习题解答

第6章 相关与回归分析习题解答

第六章 相关与回归分析思考与练习一、判断题1.产品的单位成本随着产量增加而下降,这种现象属于函数关系。

答:错。

应是相关关系。

单位成本与产量间不存在确定的数值对应关系。

2.相关系数为0表明两个变量之间不存在任何关系。

答:.错。

相关系数为零,只表明两个变量之间不存在线性关系,并不意味着两者间不存在其他类型的关系。

3.单纯依靠相关与回归分析,无法判断事物之间存在的因果关系。

答:对,因果关系的判断还有赖于实质性科学的理论分析。

4.圆的直径越大,其周长也越大,两者之间的关系属于正相关关系。

答:错。

两者是精确的函数关系。

5.总体回归函数中的回归系数是常数,样本回归函数中的回归系数的估计量是随机变量。

答:对。

6.当抽取的样本不同时,对同一总体回归模型估计的结果也有所不同。

答:对。

因为,估计量属于随机变量,抽取的样本不同,具体的观察值也不同,尽管使用的公式相同,估计的结果仍然不一样。

二、选择题1.变量之间的关系按相关程度分可分为:b 、c 、da.正相关;b. 不相关;c. 完全相关;d.不完全相关; 2.复相关系数的取值区间为:aa. 10≤≤R ;b.11≤≤-R ;c.1≤≤∞-R ;d.∞≤≤-R 1 3.修正自由度的决定系数a 、b 、da.22R R ≤; b.有时小于0 ; c. 102≤≤R ;d.比2R 更适合作为衡量回归方程拟合程度的指标 4.回归预测误差的大小与下列因素有关:a 、b 、c 、da 样本容量;b 自变量预测值与自变量样本平均数的离差c 自变量预测误差;d 随机误差项的方差三、问答题1.请举一实例说明什么是单相关和偏相关?以及它们之间的差别。

答:例如夏季冷饮店冰激凌与汽水的消费量,简单地就两者之间的相关关系进行考察,就是一种单相关,考察的结果很可能存在正相关关系,即冰激凌消费越多,汽水消费也越多。

然而,如果我们仔细观察,可以发现一般来说,消费者会在两者中选择一种消费,也就是两者之间事实上应该是负相关。

相关分析及回归分析的异同

相关分析及回归分析的异同

问:请详细说明相关分析与回归分析的相同与不同的地方相关分析与回归分析都是研究变量彼此关系的分析方式,相关分析是回归分析的基础,而回归分析则是熟悉变量之间相关程度的具体形式。

下面分为三个部份详细描述两种分析方式的异同:第一部份:相关分析一、相关的含义与种类(一)相关的含义相关是指自然与社会现象等客观现象数量关系的一种表现。

相关关系是指现象之间确实存在的必然的联系,但数量关系表现为不严格彼此依存关系。

即对一个变量或几个变量定必然值时,另一变量值表现为在必然范围内随机波动,具有非肯定性。

如:产品销售收入与广告费用之间的关系。

(二)相关的种类1. 按照自变量的多少划分,可分为单相关和复相关2. 按照有关关系的方向划分,可分为正相关和负相关3. 按照变量间彼此关系的表现形式划分,线性相关和非线性相关4.按照有关关系的程度划分,可分为不相关、完全相关和不完全相关二、相关分析的意义与内容(一)相关分析的意义相关分析是研究变量之间关系的紧密程度,并用相关系数或指数来表示。

其目的是揭露现象之间是不是存在相关关系,肯定相关关系的表现形式和肯定现象变量间相关关系的密切程度和方向。

(二)相关分析的内容1. 明确客观事物之间是不是存在相关关系2. 肯定相关关系的性质、方向与密切程度三、直线相关的测定(一)相关表与相关图1. 相关表在定性判断的基础上,把具有相关关系的两个量的具体数值依照必然顺序平行排列在一张表上,以观察它们之间的彼此关系,这种表就称为相关表。

2. 相关图把相关表上一一对应的具体数值在直角坐标系顶用点标出来而形成的散点图则称为相关图。

利用相关图和相关表,可以更直观、更形象地表现变量之间的彼此关系。

(二)相关系数1. 相关系数的含义与计算相关系数是直线相关条件下说明两个变量之间相关关系密切程度的统计分析指标。

相关系数的理论公式为:y x xy r δδδ2= (1)xy 2δ 协方差 x δ x 的标准差 y δ y 的标准差(2)xy 2δ 协方差对相关系数r 的影响,决定:⎩⎨⎧<>数值的大小正、负)或r r r (00简化式()()2222∑∑∑∑∑∑∑-⋅--=y y n x x n y x xy n r变形:分子分母同时除以2n 得 r =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⨯-∑∑∑∑∑∑∑2222n y n y n x n x n y n x n xy =()[]()[]2222y y x xy x xy -*-⨯-=y x y x xy δδ-⨯-nx x x ∑-=2)(δ=()[]n x x x x ∑+⋅-222=()222x n x x n x +⋅⋅-∑∑ =()22x x -2. 相关系数的性质(1)r取值范围:r≤1 -1≤r≤1(2)r=1 r=±1 表明x与y之间存在着肯定的函数关系。

第六章相关与回归分析

第六章相关与回归分析
3. 有总体相关系数与样本相关系数之分:
• 总体相关系数ρ——根据总体数据计算的,
• 样本相关系数 r ——根据样本数据计算的。
6 - 12


相关关系的计算பைடு நூலகம்式

rSxy
(xx)y (y)
SxSy
(xx)2 (yy)2
或化简为
r
nx yxy
nx2x2 ny2y2
6 - 13


相关系数取值及其意义
相关图——也称为散点图。一对数据对应坐标图 上一个点,将成对的观察数据表现为坐标图 的散点而形成的图。
编制相关表、图的意义——有助于分析者判断 相关的有无、方向、形态、密切程度。
6 - 10


相关关系的图示

完全正线性相关
正线性相关
完全负线性相关
负线性相关
非线性相关
不相关
2. 一元线性(总体)回归方程的形式如下:
3.
E( y ) = α + b x
▪ 方程的图示是一条直线,因此也称为直线回归方程
▪ α 是回归直线在 y 轴上的截距,是当 x=0 时 y 的期 望值,是回归直线是起始值;
▪ b 是直线的斜率,表示当 x 每变动一个单位时,y
的平均变动值。
6 - 22

6 - 11

计 学
(二)相关系数和判定系数
1. 都是对变量之间关系密切程度的度量; 2. 判定系数=相关系数的平方; 3. 不同类型的相关,相关系数的计算方法也不同.
对两个变量之间线性相关程度的度量称为简单相 关系数(也称直线相关系数),常简称相关系数.
此外还有复相关系数、非线性相关系数、偏相关系 数

第六章-相关与回归

第六章-相关与回归
(1)r 为无单位的相对数值,可直接用于不同资料
间相关程度的比较。
(2)1≤r≤1,0≤|r|≤1。 |r|越接近于1,说明两变量的相关程度越强; |r|越接近于0,两变量的相关程度越差。
(3)r=0表示x与y无相关, r<0表示负相关, r>0表示正相关, |r|=1为完全相关。
二、样本相关系数的计算
(x1,y1),(x2,y2),…,(xn,yn)。
前面已经指出,要研究两种变量间的关系,最简单的方 法是把一系列观测数据在坐标中用散点图表示,如果散点 大致分布在一条直线附件,就可以判断两者为直线回归关 系。这种关系可用直线回归方程表示。则总体直线回归方 程为:
yi xi i (i=1,2,…,n) i服 N 0 从 ,2,且相互独
相关变量间的关系一般分为两种: 一种是平行关系,是研究变量间关系的强弱程度,此
时我们不关心在它们之间是谁影响了谁,谁是因,谁是果, 变量间的地位是平等的。如黄牛的体长和胸围之间的关系, 猪的背膘厚度和眼肌面积之间的关系等都属于平行关系。
另一种是因果关系,即一个变量的变化受另一个或几 个变量的影响。如仔猪的生长速度受遗传特性、营养水平、 饲养管理条件等因素的影响,子代的体高受亲本体高的影 响。
N 1N 1 (XX X)Y ( Y Y)
(XX)Y (Y) (XX)2 (YY)2
r SP xy
xy(x)n(y)
SSxSSy
x2(nx)2y2(ny)2
其中:
SPxy— 变量x和变量y的离均差乘积和简称乘积和 SSx — 变量x 的离均差平方和 SSy — 变量y 的离均差平方和
相关系数r 的特点:
变量。
例如,进行药物疗效试验 时,应用不同的剂量 (x),分析疗效(y)如 何受到药物剂量的影响及 其变化规律。这里规定的

06第六章 相关与回归分析

06第六章 相关与回归分析

3 r — 只是对线性相关关系的 度量 。
2014-3-30
第六章 相关与回归分析
17
2.2 相关系数的特征及判别标准
2. 相关关系密切程度的划分 — 无直线相关; 1 r 0 . 3 2 0 . 3 r 0 . 5 — 低度相关; 3 0 . 5 r 0 . 8 — 显著相关 — 高度相关 4 r 0 . 8
2
y y
0.1017 0.00937 0.0827 0.0677 -0.0143 0.0207 -0.0373 -0.0913 -0.0763 -0.1453
y y x x y y
2
0.01034289 0.00877969 0.00651249 0.00458329 0.00020449 0.00042849 0.00139129 0.00833567 0.00582169 0.02111209
ˆ yi
x n ,y n
残差平方和
Q x1 ,y1
0
2014-3-30
y
i
ˆ yi
2
2 ˆ ˆ yi yˆ y !!! β0 β2 xi i i — 1最小的直线


x
第六章 相关与回归分析
29
3.2 一元线性回归模型的参数估计
最小二(平方)乘法:
别 自、因变量—随机变量 因变量是随机变量
2014-3-30
第六章 相关与回归分析
12
1.5 相关分析与回归分析的关系
注意:
1. 进行相关和回归分析时要坚持定性分
析和定量分析相结合的原则,在定性 分析的基础上开展定量分析。
2. 只有当变量间存在高度相关时,才进

第六章相关与回归分析

第六章相关与回归分析

80 可支配收
60

18 25 45 60 62 75 88 92 99 98
40
20
0
0
20
40
60
80
可支配收入
2019/8/7
10
如图四个散点图中,适合用线性回归模型拟合其中两个变量 的是( )
A.①② B.①③ C.②③ D.③④
任务二 进行相关分析
2.1 相关关系的测定 2.2 相关系数 2.3 相关系数的特点
2.1 相关关系的测定 P189
1. 单相关系数的定义 X 、Y 的协方差
总体 相关系数:

CovX ,Y VarX VarY
样本
r
X

的标准n1差
x x Yy的 标y 准差
相关系数:
1
n

xx
2

1 n

y y
2
2019/8/7
13
2.2 相关系数 P222
120
100
80
60
300
400
500
600
700
800
2019/8/7
人均 收入
900
5
1.2 相关关系的种类 P188
分类标志
类别
相关程度 完全相关 不完全相关 不相关
相关方向 正相关 负相关
相关形式 线性相关 非线性相关
变量多少 单相关 复相关 偏相关
2019/8/7
6
1.3 相关分析和回归分析 P189 相关分析 — 用一个指标来表明现象间相
互依存关系的密切程度。
相关系数 r
r
较大 — 现象间依存关系强

相关系数与线性回归分析

相关系数与线性回归分析

相关系数与线性回归分析相关系数和线性回归分析是统计学中常用的方法,用于研究变量之间的关系和进行预测分析。

本文将介绍相关系数和线性回归分析的概念、计算方法和应用场景。

一、相关系数相关系数是用来衡量两个变量之间的相关性强弱的统计指标。

它的取值范围是-1到1之间,值越接近于1或-1,表示两个变量之间的相关性越强;值越接近于0,则表示两个变量之间的相关性越弱。

计算相关系数的方法有多种,常见的是皮尔逊相关系数。

它可以通过协方差和两个变量的标准差来计算。

具体公式如下:r = Cov(X,Y) / (σX *σY)其中,r表示相关系数,Cov(X,Y)表示变量X和Y的协方差,σX和σY分别表示变量X和Y的标准差。

相关系数的应用非常广泛。

例如,在金融领域,相关系数可以用来研究股票之间的关联程度,有助于投资者进行风险分析和资产配置;在医学领域,相关系数可以用来研究疾病因素之间的关系,帮助医生进行诊断和治疗决策。

二、线性回归分析线性回归分析是一种用来研究自变量与因变量之间关系的统计方法。

它通过建立一个线性方程,来描述自变量对因变量的影响程度和方向。

线性回归模型可以通过最小二乘法来估计模型参数。

最小二乘法的基本思想是通过使模型预测值与实际观测值的残差平方和最小化来确定模型参数。

具体公式如下:Y = β0 + β1*X + ε其中,Y表示因变量,X表示自变量,β0和β1表示模型的参数,ε表示误差项。

线性回归分析常用于预测和解释变量之间的关系。

例如,在市场营销中,可以通过线性回归分析来预测产品销售量与价格、广告投入等因素的关系;在经济学中,可以利用线性回归模型来研究GDP与就业率、通货膨胀率等经济指标之间的关系。

三、相关系数与线性回归分析的关系相关系数和线性回归分析常常一起使用,因为它们有着密切的关联。

相关系数可以用来衡量两个变量之间的相关性强弱,而线性回归分析则可以进一步分析两个变量之间的因果关系。

在线性回归分析中,相关系数经常作为检验模型是否适用的依据之一。

第6讲相关分析与回归分析

第6讲相关分析与回归分析
2019数学建模培训
第6讲 相关分析与回归分析
一、引 言
在很多研究领域中,往往需要研 究事物间的关系。如收入与受教育程 度,子女身高与父母身高,商品销售 额与广告费用支出,农作物产量与施 肥量,上述两者间有关系吗?如果有 关系,又是怎么样的关系呢?如何来 度量这种关系的强弱?
解决上述问题的统计方法是相关
由于相关系数是用样本计算得到 的,带有一定的随机性,所以用样本 相关性估计总体相关性的可信度需要 检验。
SPPS可以自动进行检验,并分
2020/4/8
15
别用“*”,“**”标注显著性水平0.05, 0.01下的显著相关。 (2) Spearman和Kendall’s相关系数
Pearson相关系数属参数统计分 析中的矩相关系数,有一定的局限性: 当正态分布假设不成立时,检验结果 不可信;只能度量线性相关性,不能 描述非线性相关性。
下列不属于相关关系的是( )。 A. 产品成本与生产数量 B. 球的表面积与体积 C. 家庭的支出与收入 D. 人的年龄与体重 下列关系是线性相关的是( )。
2020/4/8
10
A. 人的身高与视力 B. 圆心角大小与所对弧长 C. 收入水平与纳税水平 D. 父母平均身高与儿子身高 相关分析主要研究变量间是否相 关及相关的密切程度与方向。 相关分析中最常用的是简单相关 分析,即两个变量间的相关性。
2020/4/8
38
y 3 3 .7 3 0 .5 1 6 x 即父辈身高每增加或减少一个单位, 其子辈身高仅增加或减少半个单位, 也即子代的身高有回到同龄人平均身 高的趋势。
Galton称这种现象为“回归”。 为了纪念Galton,后人将研究两变量 间统计关系的方法称为回归分析。

spss统计分析及应用教程-第6章 相关和回归分析课件PPT

spss统计分析及应用教程-第6章 相关和回归分析课件PPT

实验二 偏相关分析
❖ 实验目的
准确理解偏相关分析的方法原理和使用前提; 熟练掌握偏相关分析的SPSS操作; 了解偏相关分析在中介变量运用方法。
实验二 偏相关分析
❖ 准备知识
偏相关分析的概念
在多元相关分析中,由于其他变量的影响,Pearson相关系数 只是从表面上反映两个变量相关性,相关系数不能真正反映两 个变量间的线性相关程度,甚至会给出相关的假想。因此,在 有些场合中,简单的Pearson相关系数并不是测量相关关系的 本质性统计量。当其他变量控制后,给定的任意两个变量之间 的相关系数叫做偏相关系数。偏相关系数才是真正反映两个变 量相关关系的统计量。
(3)点击“选项”按钮,见图,选择 零阶相关系数(也就是两两简单相关系 数,可以用与偏相关系数比较)。点击 “继续”按钮回到主分析框。点击“确 定”按钮。
❖ 实验结果
描述性统计分析
偏相关分析
实验三 简单线性回归分析
❖ 实验目的
准确理解简单线性回归分析的方法原理; 熟练掌握简单线性回归分析的SPSS操作与分析; 了解相关性与回归分析之间关系; 培养运用简单线性回归分析解决实际问题的能力。
实验二 偏相关分析
❖ 实验步骤
(1)在SPSSl7.0中打开数据文件6-2.sav,通过选择“文件— 打开”命令将数据调入SPSSl7.0的工作文件窗口 。
❖ 旅游投资数据文件
(2)从菜单上依次选择“分析-相关-偏相关”命令,打开其 对话框,如图所示。选择“商业投资”与“经济增长”作为相 关分析变量,送入变量框中;选择“游客增长率”作为控制变 量,用箭头送入右边的控制框中。
实验一 相关分析
❖ 实验内容
❖ 某大学一年级12名女生的胸围(cm)、肺活量(L)身 高(m),数据见表6-1-1。试分析胸围与肺活量两个变 量之间相关关系。

第六章spss相关分析和回归分析

第六章spss相关分析和回归分析

第六章SPSS相关分析和回归分析第六章SPSS相关分析与回归分析6.1相关分析和回归分析概述客观事物之间的关系大致可归纳为两大类,即,函数关系:指两事物之间的一种一一对应的关系,如商品的销售额和销售量之间的关系。

,相关关系(统计关系):指两事物之间的一种非一一对应的关系,例如家庭收入和支出、子女身高和父母身高之间的关系等。

相关关系乂分为线性相关和非线性相关。

相关分析和回归分析都是分析客观事物之间相关关系的数量分析方法。

6. 2相关分析相关分析通过图形和数值两种方式,有效地揭示事物之间相关关系的强弱程度和形式。

6.2. 1散点图它将数据以点的的形式画在直角坐标系上,通过观察散点图能够直观的发现变量间的相关关系及他们的强弱程度和方向。

6.2.2相关系数利用相关系数进行变量间线性关系的分析通常需要完成以下两个步骤:第一,计算样本相关系数r;,+1之间,相关系数r的取值在-1,R>0表示两变量存在正的线性相关关系;r〈0表示两变量存在负的线性相关关系,R,1表示两变量存在完全正相关;r, -1表示两变量存在完全负相关;r, 0表示两变量不相关,|r|>0.8表示两变量有较强的线性关系;r <0.3表示两变量之间的线性关系较弱第二,对样本来自的两总体是否存在显著的线性关系进行推断。

对不同类型的变量应采用不同的相关系数来度量,常用的相关系数主要有Pearson 简单,相关系数、Spearman等级相关系数和Kendall相关系数等。

6. 2. 2. 1 Pearson简单相关系数(适用于两个变量都是数值型的数据)(,)(,)yy, ixxi,r 22(,), (,) yy,, ixxiPearson简单相关系数的检验统计量为:rn, 22t,6. 2. 2. 2 Spearman等级相关系数Spearman等级相关系数用来度量定序变量间的线性相关关系,设计思想与Pearson 简1, r(,)xyii单相关系数相同,只是数据为非定距的,故计算时并不直接采用原始数据,而是利(,)xy(,)UViiii用数据的秩,用两变量的秩代替代入Pearson简单相关系数计算公式中,于是xyii其中的和的取值范禺被限制在1和n之间,且可被简化为:2nn6D, i22,,,,,其中rDUV1 (),, iii,, 2, nn(l)iillnn22DUV,, (),, iii,, llii,如果两变量的正相关性较强,它们秩的变化具有同步性,于是的值较小,r趋向于1;nn22DUV,, (),, iii,, Uii,如果两变量的正相关性较弱,它们秩的变化不具有同步性,于是的值较大,r趋向于0;,在小样本下,在零假设成立时,Spearman等级相关系数服从Spearman分布; 在大样本下,Spearman等级相关系数的检验统计量为Z统计•量,定义为:Zrn,, 1Z统计量近似服从标准正态分布。

相关分析与回归分析

相关分析与回归分析

相关分析和回归分析一、相关分析(一)相关的概念两个变量之间不精确、不稳定的变化关系称为相关关系。

两个变量之间的变化关系,既表现在变化方向上,又表现在密切程度上。

(二)相关的种类1、从变化方向上划分正相关:一个变量增大,另一个变量对应值也随之增大;或另一个变量值减小,另一个变量对应值也随之减小,两列变量变化方向相同。

负相关:一个变量增大,另一个变量对应值也随之减少;或一个变量值减小,另一个变量对应值也随之增大,两列变量变化方向相反。

零相关:两变量值的变化方向无规律。

2、从变量相互关系的程度上划分无论两个变量的变化方向是否一致,凡密切程度高的称为强相关或高度相关;密切程度一般的称为中度相关;密切程度弱的称为弱相关或低度相关。

(三)相关散布图它是表示两种事物之间的相关性及联系的模式。

以直角坐标的横轴表示x列变量,纵轴表示y列变量,在相关的两变量对应值的垂直相交处画点,构成相关散布图。

相关散布图的用途: 1、判断相关是否直线式2、判断相关密切程度高低3、判断相关变化方向(四)相关系数用来描述两个变量相互之间变化方向及密切程度的数字特征量称为相关系数。

一般用r 表示。

注:(1)相关系数的数值范围是1r 0≤≤。

(2)从r 的正负以及绝对值的大小,可以表明两个变量之间变化的方向及密切程度。

“+”、“—”号表示变化方向(“+”号表示图5-3(a ) 高度相关图5-3b 低度相关图5-4(a ) 正相关图5-4(b ) 负相关图5-2(a) 曲线相关图5-2(b) 直线相关变化方向一致,即正相关;“—”号表示变化方向相反,即负相关)r 的绝对值表示两变量之间的密切程度(即强度)。

绝对值越接近1,表示两个变量之间关系越密切;越接近0,表示两个变量之间关系越不密切。

(3)相关系数只能描述两个变量之间的变化方向及密切程度,并不能揭示两者之间的内在本质联系。

另外若两变量相关系数为0,只能表示两变量间没有线性关系,也可能存在曲线关系,即r=0,并不意味着两变量是独立的。

相关系数与线性回归分析

相关系数与线性回归分析

相关系数与线性回归分析数据分析是现代社会中不可或缺的一部分,它帮助我们了解事物之间的相互关系。

在数据分析中,相关系数与线性回归分析是常用的统计工具,它们可以揭示变量之间的关联和预测未来的趋势。

本文将以深入浅出的方式介绍相关系数与线性回归分析的原理、应用和局限性。

相关系数是用来衡量两个变量之间的统计依赖性的指标。

它的取值范围从-1到1,其中0表示没有线性关系,1表示完全正相关,-1表示完全负相关。

常用的相关系数有皮尔逊相关系数和斯皮尔曼等级相关系数。

皮尔逊相关系数是用来衡量两个连续变量之间线性关系的强弱的指标。

它的计算公式为cov(X,Y)/(σX σY),其中cov(X,Y)代表X和Y的协方差,σX和σY分别代表X和Y的标准差。

如果相关系数接近于1,则表示两个变量之间存在强正相关关系;如果接近于-1,则表示存在强负相关关系;如果接近于0,则表示两个变量之间没有线性关系。

斯皮尔曼等级相关系数是用来衡量两个有序变量之间的相关性的指标。

它通过将每个变量的原始值转换为等级值,并计算等级之间的差异来确定相关性。

斯皮尔曼等级相关系数的取值范围与皮尔逊相关系数相同,但它不要求变量之间呈现线性关系。

相关系数的应用非常广泛。

在金融领域中,相关系数可以用来衡量不同证券之间的关联性,帮助投资者构建更稳健的投资组合。

在医学研究中,相关系数可以用来分析不同变量对疾病风险的影响,为医生提供指导性建议。

在社会科学中,相关系数可以帮助研究者了解不同因素对人们态度和行为的影响,从而改善政策和社会管理的决策。

除了相关系数,线性回归分析也是一种常用的统计方法。

线性回归分析通过拟合一条直线来描述两个变量之间的关系,它的基本形式为Y = β0 + β1X + ε,其中Y表示因变量,X表示自变量,β0和β1表示回归系数,ε表示误差项。

线性回归分析的目标是找到最佳拟合线,使得回归系数能够准确地预测Y的变化。

线性回归分析的应用广泛。

在市场营销中,线性回归分析可以帮助企业了解消费者购买意愿与价格、促销活动等因素之间的关系,从而制定更有效的营销策略。

第六章相关分析与回归分析

第六章相关分析与回归分析

+
-
x+x0
+yy0
+


0
x
x
第六章 相关分析与回归分析
STAT
coxv,y()0则r>0,说明x和y之间为正线性
相关;
coxv,y()0则r<0,说明x和y之间为负线性
相关;
coxv,y()0则r=0,说明x和y之间不存在线
性相关。
第六章 相关分析与回归分析
2、标准差 x 和 y 的作用
第六章 相关分222470, 64098 y26383 .48 , 7 5x7y1114.448633 STAT
r
nxyxy
nx2(x)2 ny2(y)2

1011144.486133371.785276.127
三、相关表和相关图
STAT
相关表
将某一变量x按其数值大小顺序排 列,然后再将与其相关的另一个变量y 对应值平行排列,观察x由小到大变化 时,y的变化情况。
第六章 相关分析与回归分析
八个同类工业企业的月产量与生产费用
企业编号
1 2 3 4 5 6 7 8
月产量(千吨)X
1.2 2.0 3.1 3.8 5.0 6.1 7.2 8.0
联系
STAT
(1)有函数关系的变量间,由于有测 量误差及各种随机因素的干扰,可表 现为相关关系;
(2)对具有相关关系的变量有深刻了 解之后,相关关系有可能转化为或借 助函数关系来描述。
第六章 相关分析与回归分析
• 例:判断下列关系是什么关系? • 1)物体体积随温度升高而膨胀,随压力加大而STAT
第六章 相关分析与回归分析
正相关
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



也称为线性相关系数(linear correlation coefficient)
或 称 为 Pearson 相 关 系 数 (Pearson’s correlation coefficient)
相关系数 (计算公式)
样本相关系数的计算公式
r
( x x )( y y ) (x x) ( y y)
相关系数的显著性检验
相关系数的显著性检验 ( r 的抽样分布)
1. r 的抽样分布随总体相关系数和样本容量的大小而变化
• 当样本数据来自正态总体时,随着n的增大,r 的 抽样分布趋于正态分布,尤其是在总体相关系数 很小或接近0时,趋于正态分布的趋势非常明显。 而当 远离 0 时,除非 n 非常大,否则 r 的抽样分布 呈现一定的偏态
1. 变量间关系不能用函数关系精 确表达 y 一个变量的取值不能由另一个 变量唯一确定 当变量 x 取某个值时,变量 y 的 取值可能有几个 各观测点分布在直线周围
2.
3. 4.



x
相关关系 (几个例子)

父亲身高y与子女身高x之间的关系 收入水平y与受教育程度x之间的关系
SPSS软件使用说明
选项为Analyze-Correlate-Bivariate
相关系数的显著性检验 (需要注意的问题)
1. 即使统计检验表明相关系数在统计上是显著的,并不一 定意味着两个变量之间就存在重要的相关性 因为在大样本的情况下,几乎总是导致相关系数显著
2.

比如,r=0.1,在大样本的情况下,也可能使得r通 过检验,但实际上,一个变量取值的差异能由另一 个变量的取值来解释的比例只有10%,这实际上很 难说明两个变量之间就有实际意义上的显著关系
相关系数的显著性检验 (例题分析)
各相关系数检验的统计量相来自系数的显著性检验 (需要注意的问题)
1. 即使统计检验表明相关系数在统计上是显著的,并不一 定意味着两个变量之间就存在重要的相关性 因为在大样本的情况下,几乎总是导致相关系数显著
2.

比如,r=0.1,在大样本的情况下,也可能使得r通 过检验,但实际上,一个变量取值的差异能由另一 个变量的取值来解释的比例只有10%,这实际上很 难说明两个变量之间就有实际意义上的显著关系
不良贷款
10
10 8 6 4 2 0 0 50 100 150 200 固定资产投资额
不良贷款与贷款项目个数的散点图
不良贷款与固定资产投资额的散点图
散点图 (5个变量的散点图矩阵)
散点图 (5个变量的散点图矩阵)
不良贷款
贷款余额
累计应收贷款
贷款项目个数
固定自产投资
SPSS软件使用说明
选项为Graphs-Scatter
如果样本数据不是来源与正态分布,该如 何?
Spearman秩相关系数
Pearson线性相关系数必须假设数据是成对地从
正态分布中取得的,并且数据至少在逻辑范畴内必 须是等间距的数据。如果这两条件不符合,一种可
能就是采用Spearman秩相关系数来代替Pearson线
性相关系数。Spearman秩相关系数是一个非参数







x
3.
函数关系 (几个例子)

某种商品的销售额 y 与销售量 x 之间的关系可表示为
y = px (p 为单价)

圆的面积S与半径R之间的关系可表示为
S=R2

企业的原材料消耗额 y 与产量 x1 、单位产量消耗 x2 、原材料价格x3之间的关系可表示为
y = x1 x2 x3
相关关系 (correlation)
25 2 t 0.8436 7.5344 2 1 0.8436
3. 根 据 显 著 性 水 平 = 0.05 , 查 t 分 布 表 得 t(n2)=2.069 由于 t=7.5344>t(25-2)=2.069 ,拒绝 H0 ,不良贷 款与贷款余额之间存在着显著的正线性相关关系
• • 变量之间是否存在关系? 如果存在关系,它们之间是什么样的关系?


变量之间的关系强度如何?
样本所反映的变量之间的关系能否代表总体变量之间的关系?
2.
为解决这些问题,在进行相关分析时,对总体有以下两 个主要假定
• • 两个变量之间是线性关系 两个变量都是随机变量
散点图 (scatter diagram)
散点图 (不良贷款对其他变量的散点图)
14 12
14 12
不良贷款
不良贷款
10 8 6 4 2 0 0 100 200 300 400 贷款余额 不良贷款与贷款余额的散点图
14 12
10 8 6 4 2 0 0 10 20 30 累计应收贷款 不良贷款与累计应收贷款的散点图
14 12
不良贷款
8 6 4 2 0 0 10 20 30 40 贷款项目个数
计算公式
r12 , 3
r12 r13 r23 2 2 ( 1 r13 )( 1 r23 )
衡量偏相关程度用偏相关系数表示:
ryx
1
x2
为 1 阶偏相关系数,即清除了X2 的影响后 Y 与 X1
之间的相关系数,
ryx ryx
1
x 2 x3
为 2 阶偏相关系数,即清除了X2与 X3的影响后
暑假期间双胞胎兄弟大明和小明参加勤工俭学, 大明在超级市场帮助卖冷饮,小明在游泳池收门票。
2.
当为较大的正值时,r 呈现左偏分布;当为较小的负 值时,r 呈现右偏分布。只有当接近于0,而样本容量 n很大时,才能认为r是接近于正态分布的随机变量
相关系数的显著性检验 (检验的步骤)
1. 2. 3. 4. 检验两个变量之间是否存在线性相关关系 等价于对回归系数 1的检验 采用R.A.Fisher提出的 t 检验(假设数据是成对地从正态 分布中取得的) 检验的步骤为 • 提出假设:H0: ;H1: 0 计算检验的统计量: n2
性质(与分布无关)的秩统计参数,由Spearman
在1904年提出.
Spearman秩相关系数
假设原始的数据xi,yi已经按从大到小的顺序排列,记x’i,y’i 为原xi,yi在排列后数据所在的位臵,则x’i,y’i称为变量x’i, y’i的秩次,则di=x’i-y’i为xi,yi的秩次之差。
取值介于-1~1之间
相关关系的描述与测度 (相关系数)
相关系数 (correlation coefficient)
1. 2. 3. 4. 度量变量之间关系强度的一个统计量 对两个变量之间线性相关强度的度量称为简单相关系数 若相关系数是根据总体全部数据计算的,称为总体相关 系数,记为 若相关系数是根据样本数据计算的,则称为样本相关系 数,简称为相关系数,记为 r
性质4:仅仅是x与y之间线性关系的一个度量,它不能用 于 描 述 非 线 性 关 系 。 这 意 味 着 , r=0 只 表 示 两 个 变 量之间不存在线性相关关系,并不说明变量之间没 有任何关系
性 质 5 : r 虽然是两个变量之间线性关系的一个度量 ,却 不 一定意味着x与y一定有因果关系
相关系数的经验解释

粮食单位面积产量 y与施肥量 x1 、降雨量 x2 、温度 x3之间的关系
商品的消费量y与居民收入x之间的关系 商品销售额y与广告费支出x之间的关系

相关关系 (类型)
相关关系
线性相关
非线性相关
完全相关
不相关
正相关
负相关
正相关
负相关
相关关系的描述与测度 (散点图)
相关分析及其假定
1. 相关分析要解决的问题
t r 1 r
2
~ t ( n 2)

确定显著性水平,并作出决策 • 若t>t,拒绝H0 • 若t<t,不拒绝H0
相关系数的显著性检验 (例题分析)
对不良贷款与贷款余额之间的相关系数进行显著性检验 (0.05) 1. 提出假设:H0: ;H1: 0 2. 计算检验的统计量
为 (k-1) 阶偏相关系数,即清除了 X2 … X3 的影响
Y 与 X1 之间的相关系数,
1
x 2 … xk
后 Y 与 X1 之间的相关系数, ry1 ry 2 r12 ry1 2 2 1 ry22 1 r12 ry1 2 ry3 2 r13 2 ry1 23 2 1 ry23 2 1 r13 2
第六章 相关分析与回归分析
1、一元相关分析 2、多元相关分析 3、一元线性回归分析 4、多元线性回归分析
第一节 一元相关分析
一、变量之间的两类关系
• 确定性关系(函数关系); • 非确定性关系(相关关系);
函数关系
1. 2. 是一一对应的确定关系 设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完全依 赖于 x ,当变量 x 取某个数值 时, y 依确定的关系取相应的 值,则称 y 是 x 的函数,记为 y = f (x),其中 x 称为自变量, y 称为因变量 各观测点落在一条线上 y











非线性相关
完全正线性相关
完全负线性相关



负线性相关

不相关
正线性相关
散点图 (例题分析)
【例】一家大型商业银行在多个地区设有分行,其业务主要 是进行基础设施建设、国家重点项目建设、固定资产投 资等项目的贷款。近年来,该银行的贷款额平稳增长, 但不良贷款额也有较大比例的增长,这给银行业务的发 展带来较大压力。为弄清不良贷款形成的原因,管理者 希望利用银行业务的有关数据进行定量分析,以便找出 控制不良贷款的办法。下面是该银行所属的 25 家分行 2002年的有关业务数据
相关文档
最新文档