《概率论与数理统计》第一章知识小结

合集下载

概率论与数理统计知识点总结!-知识归纳整理

概率论与数理统计知识点总结!-知识归纳整理

《概率论与数理统计》 第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“罗列组合”的想法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。

求:P(A)=?Ω所含样本点数:n n n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n n n A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。

(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅836424)(1==∴A PA 2所含样本点数:363423=⋅⋅C1696436)(2==∴A PA 3所含样本点数:4433=⋅C161644)(3==∴A P注:由概率定义得出的几个性质:知识归纳整理1、0<P (A )<12、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则 P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:nnAA A A A A ⋂⋂⋂=⋃⋃⋃ (2)121nnAA A A A A ⋃⋃⋃=⋂⋂⋂ (2)121§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0)∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。

概率论与数理统计数学第一章复习

概率论与数理统计数学第一章复习

概率论与数理统计数学第一章复习第一章概率论的基本概念一、随机试验概率论中将满足下列三个特点的实验称为随机试验,通常用E或E1,E2…来表示,这三个特点是:1.试验可在相同的条件下重复进行;2.每次试验的可能结果不止一个,但所有的结果是明确可知的;3.进行一次试验之前不能确定哪一个结果会出现。

二、样本空间随机试验E的所有可能结果组成的集合称为E的样本空间,记做S。

样本空间的元素,即E的每个结果,称为样本点。

三、随机事件1.试验E的样本空间S的子集,即试验满足某些条件的可能结果称为E的随机事件。

在每次试验中,当且仅当事件中的一个样本点出现时,称这个事件发生。

2.由一个样本点组成的单点集称为基本事件,由多于一个样本点组成的集合称复合事件。

3.E和空集?都是E的子集,它们分别称为必然事件和不可能事件。

四、事件间的关系1.若BA?,则称事件B包含事件A,这指的是事件A发生必导致事件B 发生。

若BB?,即A=B,则称事件A与事件B相等。

A?且A2.事件BA ={x | x∈A或x∈B}称为事件A与事件B的和事件。

当且仅当A,B中至少有一个发生时,事件BA 发生。

3.事件BA ={x | x∈A且x∈B}称为事件A与事件B的积事件。

当且仅当A,B同时发生时,事件BA 也记作AB。

A 发生。

B4.事件A—B=={x | x∈A且x?B}称为事件A与事件B的差事件。

当且仅当A发生,B不发生时事件A—B发生。

5.若BA =?,则称事件A与事件B是互不相容的,或互斥的。

这指的是事件A与事件B不能同时发生。

基本事件是两两互不相容的。

6.若BA =?,则称事件A与事件B互为逆事件。

又称事件A与事件B互为A =S且B对立事件。

这指的是对每次试验而言,事件A、B中必有一个发生,且仅有一个发生。

A 的对立事件记作A,A=S-A。

五、事件的运算1.交换律:A∪B=B∪A,A∩B=B∩A2.结合律:(A∪B)∪C =A∪(B∪C),(A∩B)∩C =A∩(B∩C)=ABC3.分配律:A(B∪C)=AB∪AC, A∪(BC)=(A∪B)(A∪C)4.德摩根律:A B=A B, AB=A∪B5.吸收律:A∩(A∪B)=A, A∪(A∩B)=A6.双重否定律:A=A7.排中律:A∪A=Ω,A∩A=?8.差积转换律:A-B=A B六、频率1.在相同的条件下进行的n次试验中,事件A发生的次数n A称为事件A发生的频数,比值nA /n称为事件A 发生的频率,并记成fn(A)。

《概率论与数理统计》第一章知识小结

《概率论与数理统计》第一章知识小结

附加知识: 排列组合知识小结: 一、计数原理1.加法原理:分类计数。

2.乘法原理:分步计数。

二、排列组合1.排列数(与顺序有关):)(),1()2)(1(n m m n n n n A m n ≤+---= !n A nn =,n A A n n==10,1 如:25203456757=⨯⨯⨯⨯=A ,12012345!5=⨯⨯⨯⨯= 2.组合数(与顺序无关):!m A C mn m n=,mn n m n C C -=如:3512344567!44747=⨯⨯⨯⨯⨯⨯==A C ,2112672757757=⨯⨯===-C C C3.例题:(1)从1,2,3,4,5这五个数字中,任取3个数字,组成一个没有重复的3位数,共有___6034535=⨯⨯=A ____种取法。

(2)从0,1,2,3,4这五个数字中,任取3个数字,组成一个没有重复的3位数,共有___483442414=⨯⨯=A A ____种取法。

(3)有5名同学照毕业照,共有__1201234555=⨯⨯⨯⨯=A _种排法。

(4)有5名同学照毕业照,其中有两人要排在一起,那么共有_48)1234()12(4422=⨯⨯⨯⨯⨯=A A ___种排法。

(5)袋子里有8个球,从中任意取出3个,共有___38C ____种取法。

(6)袋子里有8个球,5个白球,3个红球。

从中任意取出3个,取到2个白球1个红球的方法有___1325C C ____种。

3887656321C ⨯⨯==⨯⨯第一章、基础知识小结一、随机事件的关系与运算 1.事件的包含设A ,B 为两个事件,若A 发生必然导致B 发生,则称事件B 包含于A ,记作B A ⊂。

2.和事件事件“A,B 中至少有一个发生”为事件A 与B 的和事件,记作B A 或B A +。

性质:(1)B A B B A A ⊂⊂, ;(2)若B A ⊂,则B B A =3.积事件:事件A,B 同时发生,为事件A 与事件B 的积事件,记作B A 或AB 。

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。

概率论与数理统计1~6章总结

概率论与数理统计1~6章总结

A (BC) (A B)(A C)
摩根律 AB A B A B A B
2.随机事件的概率 ①概率和频率 概率的定义:若对随机试验 E 所对应的样本空间 中的每一事件 A,均赋予一实数 P(A), 集合函数 P(A)满足条件:
(1) P(A) ≥0;
(2) P()=1;
(3) 可列可加性:设 A1,A2,…, 是一列两两互不相容的事件,即 AiAj=,(ij), i , j=1, 2, …,
离散型随机变量 随机变量 非离散型奇异型连(续混型合型)
2.离散型随机变量
若随机变量 X 取值 x1, x2, …, xn, … 且取这些值的概率依次为 p1, p2, …, pn, …, 则称 X 为离散型 随机变量,而称
n!
n1!....nm !
eg: 30 名学生中有 3 名运动员,将这 30 名学生平均分成 3 组,求: (1)每组有一名运动员的概率; (2)3 名运动员集中在一个组的概率。 解:设 A:每组有一名运动员;B: 3 名运动员集中在一组
N (S)
C C C 10 10 10 30 20 10
Hale Waihona Puke 10!成互斥事件(互不相容事件):事件 A 与事件 B 互斥——AB=Φ;事件 A 与事件 B 不能同时发
生,两个事件没有公共的样本点
对立事件:事件 A 不发生,由所有不属于 A 的样本点组成,记作 A or Ac
差事件:差事件 A-B 发生 ——事件 A 发生且事件 B 不发生;由属于事件 A 但不属于事件 B
P(A)具有如下性质 (1) 0 P(A) 1; (2) P()=1; P( )=0 (3) AB=,则 P( A B )= P(A) +P(B) 抽球问题 设盒中有 N 个球,其中有 M 个白球,现从中任抽 n 个球,则这 n 个球中恰有 k 个白球的概 率是

概率论与数理统计各章重点知识整理

概率论与数理统计各章重点知识整理

概率论与数理统计各章重点知识整理 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,.六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1)(3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度.2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f . (3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律.同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛),}{},{jji j j i p p y Y P y Y x X P ∙=====,}{},{∙=====i j i i j i p p x X P y Y x X P函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w+---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)

(完整版)概率论与数理统计知识点总结(免费超详细版)

(完整版)概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计复习资料知识点总结

概率论与数理统计复习资料知识点总结

《概率论与数理统计》第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

概率论与数理统计第一章教案-知识归纳整理

概率论与数理统计第一章教案-知识归纳整理

教 师 备 课 纸1第一节 随机事件一、随机现象在自然界和人类社会日子中普遍存在着两类现象:一类是在一定条件下必然闪现的现象,称为确定性现象。

例如:(1) 一物体从高度为h (米)处垂直下落,则经过t (秒)后必然落到地面,且当高度h 一定时,可由公式221gt h =得到,g h t /2=(秒)。

(2) 异性电荷相互吸引,同性电荷相互排斥。

…另一类则是在一定条件下我们事先无法准确预知其结果的现象,称为随机现象。

例如:(1) 在相同条件下抛掷同一枚硬币,我们无法事先预知将闪现正面还是反面。

(2) 未来某日某种股票的价格是多少。

…概率论算是以数量化想法来研究随机现象及其规律性的一门数学学科。

二、 随机试验为了对随机现象的统计规律性举行研究,就需要对随机现象举行重复观察, 我们把对随机现象的观察称为随机试验,并简称为试验,记为E 。

例如,观察某射手对固定目标举行射击; 抛一枚硬币三次,观察闪现正面的次数;记录某市120急救电话一昼夜接到的呼叫次数等均为随机试验。

随机试验具有下列特点:(1) 可重复性;试验可以在相同的条件下重复举行; (2) 可观察性;试验结果可观察,所有可能的结果是明确的; (3) 不确定性: 每次试验闪现的结果事先不能准确预知。

三、样本空间虽然一具随机试验将要闪现的结果是不确定的, 但其所有可能结果是明确的, 我们把随机试验的每一种可能的结果称为一具样本点, 记为e (或ω);它们的全体称为样本空间, 记为S (或Ω).知识归纳整理教 师 备 课 纸2反面. 样本空间为S ={正面,反面}或==121}(,{e e e S 正面,=2e 反面)。

(2) 在将一枚硬币抛掷三次,观察正面H 、反面T 闪现事情的试验中,有8个样本点,样本空间:=S },,,,,,,{TTT TTH THT HTT THH HTH HHT HHH 。

(3) 在抛掷一枚骰子,观察其闪现的点数的试验中,有6个样本点:1点,2点,3点,4点,5点,6点,样本空间可简记为=S {1,2,3,4,5,6}。

概率论与数理统计第一章小结

概率论与数理统计第一章小结

1第一章随机事件及其概率一、几种概率1、统计概率2、古典概率NM A P =)(3、几何概率试验的总的几何度量所占的几何度量随机事件)(A A P =4、条件概率)()()|(B P AB P B A P =5、贝努利概率),1,0( )(n m q p C m P m n m mn n ==−2二、事件的关系及其概率)()( .1B P A P B A ≤⊂112. ()()()() ()i i i i AB P A B P A P B P A P A ϕ∞∞====+=∑∑∪(概率的可加性)3. ()()1AB A B P A B ϕ==Ω+=∪)()()(B P A P AB P =⇔4、事件A 与B 是相互独立3三、概率的公式1、加法公式)()()()(AB P B P A P B A P −+=∪2、乘法公式)|()()|()()(B A P B P A B P A P AB P ==3、全概率公式∑==ni i i B A P B P A P 1)|()()(4、贝叶斯公式∑==n i ii i i B A P B P B A P B P 1)|()()|()()()()|(A P AB P A B P i i =4从一副不含大小王的扑克牌中任取一张,记A ={抽到K }, B ={抽到的牌是黑色的}可见, P (AB )=P (A )P (B )P (A )=4/52=1/13,说明事件A 、B 独立.问事件A 、B 是否独立?解:P (AB )=2/52=1/26P (B )=26/52=1/2)()()(B P A P AB P =⇔一、事件A 与B 是相互独立5请问:如图的两个事件是独立的吗?即: 若A 、B 互斥,且P (A )>0, P (B )>0,则A 与B 不独立.反之,若A 与B 独立,且P (A )>0,P (B )>0,则A 、B 不互斥.而P (A ) ≠0, P (B ) ≠0故A 、B 不独立P (AB )=0P (AB ) ≠P (A )P (B )即A B 二、独立与互斥的关系6Ω问:能否在样本空间中找两个事件,它们既相互独立又互斥?这两个事件就是A 和φP ( A) =P ( )P (A)=0φφ与A 独立且互斥φA φφ=不难发现,与任何事件都独立.φΩ前面我们看到独立与互斥的区别和联系.设A、B为互斥事件,且P(A)>0,P(B)>0,下面四个结论中,正确的是:1. P(B|A)>02. P(A|B)=P(A)3. P(A|B)=04. P(AB)=P(A)P(B)设A、B为独立事件,且P(A)>0,P(B)>0,下面四个结论中,正确的是:1. P(B|A)>02. P(A|B)=P(A)3. P(A|B)=04. P(AB)=P(A)P(B)7三、多个事件的独立性将两事件独立的定义推广到三个事件:对于三个事件A、B、C,若P(AB)= P(A)P(B) 四个等式同时P(AC)= P(A)P(C) 成立,则称事件P(BC)= P(B)P(C) A、B、C相互P(ABC)= P(A)P(B)P(C) 独立.89推广到n 个事件的独立性定义,可类似写出:包含等式总数为:1201)11(32−−=⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−+=⎟⎟⎠⎞⎜⎜⎝⎛++⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛n n n n n n n n n ≤≤≤设A 1,A 2, …,A n 是n 个事件,如果对任意k(1<k n ),任意1i 1<i 2< …<i k n ,具有等式则称A 1,A 2, …,A n 为相互独立的事件.)()()()(2121k k i i i i i i A P A P A P A A A P =10例:同时抛掷两个均匀的正四面体,每一面标有号码1,2,3,4。

《概率论与数理统计》第一章知识小结

《概率论与数理统计》第一章知识小结

附加知识:排列组合知识小结:一、计数原理1•加法原理:分类计数。

2•乘法原理:分步计数。

二、排列组合1 •排列数(与顺序有关):A"' = n(ti—1)(/1 —2)…(“—m + l),(/n M ii)A:二〃!,=女口:4^ = 7x6x5x4x3=2520, 5!= 5x 4x 3x2x 1= 1202•组合数(与顺序无关):如:C4=< = 7x6x5x4 = 3 C S=C;.5= C;=Z X6=214! 4x3x2xl 2x13•例题:(1)从1, 2, 3, 4, 5这五个数字中,任取3个数字,组成一个没有重复的3位数,共有_^ = 5x4x3 = 60_种取法。

(2)从0, 1, 2, 3, 4这五个数字中,任取3个数字,组成一个没有重复的3位数,共有_AX = 4x4x3 = 48_种取法。

(3)有5名同学照毕业照,共有_^ = 5x4x3x2xl=120—种排法。

(4)有5名同学照毕业照,其中有两人要排在一起,那么共有—A2^ = (2xl)x(4x 3x2x1)= 48 种排法。

(5)袋子里有8个球,从中任意取出3个,共有_C;—种取法。

(6)袋子里有8个球,5个白球,3个红球。

从中任意取岀3个,取到2个白球1个红球的方法有_ __________ 种。

8x7x63x2x1第一章、基础知识小结一、随机事件的关系与运算1•事件的包含设A, B为两个事件,若A发生必然导致B发生,则称事件B 包含于A,记作Bu4。

2.和事件事件=A,B中至少有一个发生“为事件A与B的和事件,记作AUB 或A+B。

性质:(1) AuAUBEuAUE;(2)若Ac B,则AUB = B3•积事件:事件A,B同时发生,为事件A与事件B的积事件,记作AQB 或AB。

性质:(1)AB CZ A9AB CZ B;(2)若AuB,则AB= A4•差事件:書件A发生而B不发生为事件A与B事件的差事件,记作A-B(AB)O性质:(1) A—BuA;(2)若AuB,则A—B = 05•互不相容事件:若事件A与事件B不能同时发生,即AB = <P,则称事件A与事件B是互不相容的两个事件,简称A与B互不相容(或互斥)。

《概率论与数理统计》复习-知识归纳整理

《概率论与数理统计》复习-知识归纳整理

《概率论与数理统计》复习大纲第一章 随机事件与概率基本概念随机试验E----指试验可在相同条件下重复举行,试验的结果具有多种可能性(每次试验有且仅有一个结果闪现,且事先知道试验可能闪现的一切结果,但不能预知每次试验确实切结果。

样本点ω ---随机试验E的每一具可能闪现的结果样本空间Ω----随机试验E的样本点的全体随机事件-----由样本空间中的若干个样本点组成的集合,即随机事件是样本空间的一具子集。

必然事件---每次试验中必然发生的事件。

不可能事件∅--每次试验中一定不发生的事件。

事件之间的关系包含A⊂B相等A=B对立事件,也称A的逆事件互斥事件AB=∅也称不相容事件A,B相互独立P(AB)=P(A)P(B)例1事件A,B互为对立事件等价于( D )A、A,B互不相容B、A,B相互独立C、A∪B=ΩD、A,B构成对样本空间的一具剖分例2设P(A)=0,B为任一事件,则(C )A、A=∅B、A⊂BC、A与B相互独立D、A与B互不相容事件之间的运算事件的交AB或A ∩B 例1设事件A、B满足A B¯=∅,由此推导不出(D)A、A⊂BB、A¯⊃B¯C、A B=BD、A B=B例2若事件B与A满足B – A=B,则一定有(B)A、A=∅B、AB=∅C、AB¯=∅D、B=A¯事件的并A∪B事件的差A-B 注意:A-B= A B= A-AB = (A∪B)-BA1,A2,…,An构成Ω的一具完备事件组(或分斥)−−指A1,A2,…,An两两互不相容,且∪i=1nAi=Ω运算法则交换律A∪B=B∪A A∩B=B∩A结合律(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C)分配律(A∪B)∩C=(AC)∪(BC) (A∩B)∪C=(A∪C)∩(B∪C) 对偶律A∪B=A∩B A∩B=A∪B文氏图事件与集合论的对应关系表记号概率论集合论Ω样本空间,必然事件全集∅不可能事件空集ω基本事件元素A 事件全集中的一具子集A A的对立事件A的补集A⊂B 事件A发生导致事件B发生A是B的子集A=B 事件A与事件B相等A与B相等A∪B 事件A与事件B至少有一具发生A与B的并集AB 事件A与事件B并且发生A与B的交集知识归纳整理A-B事件A 发生但事件B 不发生A 与B 的差集 AB=∅ 事件A 与事件B 互不相容(互斥) A 与B 没有相同的元素古典概型 古典概型的前提是Ω={ω1,ω2, ω3,…, ωn ,}, n 为有限正整数,且每个样本点ωi 出现的可能性相等。

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结

第一章概率论的基本概念第五章ﻩ大数定律及中心极限定理伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,Xn,…相互独立并服从同一分布,且E(X k)=μ,D(Xk)=σ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(Xk)=σ k2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤xp.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,Xn是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.~近似的min Q1 M Q3 max第七章ﻩ参数估计正态总体均值、方差的置信区间与单侧置信限(置信水平为)1122。

《概率论与数理统计》第一章知识点

《概率论与数理统计》第一章知识点

第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。

2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。

二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。

(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。

2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。

1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。

2.基本事件:试验的每一可能的结果称为基本事件。

一个样本点w 组成的单点集{w}就是随机试验的基本事件。

3.必然事件:每次实验中必然发生的事件称为必然事件。

用Ω表示。

样本空间是必然事件。

4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。

1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。

2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。

3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。

4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。

5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。

概率论第一章总结

概率论第一章总结

概率论与数理统计第一章总结1.随机事件在试验的结果中,可能发生也可能不发生的事件成为随机事件,通常用字母A ,B ,C 等表示。

在每次试验的结果中,如果某事件一定发生,则称为必然事件。

相反,如果某事件一定不发生,则称为不可能事件。

2.样本空间随机试验的每一个可能的结果称为样本点,所有样本点组成的集合称为样本空间。

任一随机事件A 都是样本空间的一个子集,必然事件A 就等于样本空间,不可能事件是不包含任何样本点的空集,基本事件就是仅包含单个样本点的子集。

3.事件的关系及运算(1)事件的包含与相等: (2)事件的和(或并): (3)事件的积(或交): (4)事件的差: (5)互不相容事件: (6)对立事件: (7)事件满足以下运算规律:交换律,结合律,分配率,德摩根定律4.随机事件的频率与概率的定义及性质设随机事件A 在n 次试验中发生了a 次,则a/n 称为随机事件A 发生的频率。

概率的公理化定义:(1) 非负性(2) 规范性(3) 有限可加性(4) 可列可加性概率的重要性质:(1) (2)P (Φ)=0(3)若A 、B 互斥, 则P (A +B )=P (A )+P (B )(4)A ⊂ B ,则 P (B -A )=P (B )-P (A )(5)加法公式:P (A +B )=P (A )+P (B )-P(AB )5.古典概型两个特征:有限性,等可能性。

设在古典概型中,试验的基本事件的总数为N ,随机事件A 包含其中的M 个基本事件,则随机事件A 的概率为:P (A )=M/N(生日模型,抽签模型,分配模型)6. 几何概型两个特征:无限性,等可能性。

(蒙特卡罗法)7. 条件概率与乘法公式A B 或B A⊂⊃ A B A B或+ AB A B 或A B-ΦAB = A A 与()1()P A P A =-条件概率若P(B)>0,乘法公式:P (AB )=P (B )P (A |B )P (A 1A 2…An )= P (A 1) P (A 2|A 1) P (A3| A 1A 2) P (A 4| A 1A 2A 3) …P (An | A 1A 2…An -1)(波利亚罐模型)8. 全概率公式与贝叶斯公式(1) 全概率公式:(全概率公式用来求较复杂事件的概率.)(敏感性问题调查)(2) 贝叶斯公式:(贝叶斯公式用来求后验概率)9.随机事件的独立性两两独立与相互独立的关系:相互独立一定两两独立,两两独立不一定相互独立多个事件相互独立的必要条件:10.伯努利概型若在试验E 的样本空间S 只有两个基本事件 且每次试验中 我们称这只有两个对立的试验结果的试验为伯努里试验。

考研数学(三)概率论与数理统计第一章复习重点总结

考研数学(三)概率论与数理统计第一章复习重点总结

2018考研数学(三):概率论与数理统计第一章复习重点总结一、第一章随机事件与概率1.重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式。

2.难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算。

3.常考题型事件、概率与独立性是本章给出的概率论中最基本、最重要的三个概念。

事件关系及其运算是本章的重点和难点,概率计算是本章的重点。

注意事件与概率之间的关系。

本章主要考查随机事件的关系和运算,概率的性质、条件概率和五大公式,注意事件的独立性。

近几年单独考查本章的试题相对较少,但是大多数考题中将本章的内容作为基本知识点来考查。

相当一部分考生对本章中的古典概型感到困难。

大纲只要求对古典概率和几何概率会计算一般难度的题型就可以。

考生不必可以去做这方面的难题,因为古典型概率和几何型概率毕竟不是重点。

应该将本章重点中的有关基本概念、基本理论和基本方法彻底理解和熟练掌握。

【评注】本题是典型的根据全概率公式及条件概率的解题的题型,这类题型一直都是考查的重点。

三、注意事项与线性代数一样,概率也比高数容易,花同样的时间复习概率也更为划算。

但与线代一样,概率也常常被忽视,有时甚至被忽略。

一般的数学考研参考书是按高数、线代、概率的顺序安排的,概率被放在最后,复习完高数和线代以后有可能时间所剩无多;而且因为前两部分分别占60%和20的分值,复习完以后多少会有点满足心理;这些因素都可能影响到概率的复习。

概率这门课如果有难点就应该是“记忆量大”。

在高数部分,公式、定理和性质虽然有很多,但其中相当大一部分都比较简单,还有很多可以借助理解来记忆;在线代部分,需要记忆的公式定理少,而需要通过推导相互联系来理解记忆的多,所以记忆量也不构成难点;但是在概率中,由大量的概念、公式、性质和定理需要记清楚,而且若靠推导来记这些点的话,不但难度大耗时多而且没有更多的用处(因为概率部分考试时对公式定理的内在推导过程及联系并没有什么要求,一般不会在更深的层次上出题)。

概率论与数理统计知识总结之第一章

概率论与数理统计知识总结之第一章
P(A)>0,P(Bi)0(i=1,2,a,n),则
n
P(Bi|A)=P(A|BJP(Bi)/、P(A|Bj)P(Bj)
1
先验概率:
根据以往数据分析得到的概率
后验概率:
在得到信息之后再重新加以修正的概率
设代B,C为事件,则有
交换律:
A B=B A; A ' B=B * A.
结合律:
A (B C)= (A B) C;
A' (B ~C) =(A一B厂C.
分配律:
A (B一C) =(A B厂(A C);
A一(B C)=(A一B) (A一C).
德摩根律:
A一B = A「B;
A B = A _ B.
频率与概率
生、B不发生时事件A-B发生
5.若^8=,则称事件A与B是互不相容的,或互斥的。这指的是事件A与
事件B不能同时发生。基本事件是两两互不相容的。
6.若A一B=S且^8=,则称事件A与事件B互为逆事件。又称事件A与事件B互为对立事件。这指的是对每次试验而言,事件A,B中必有一个发性质:
1.非负性:P(B| A) M)
2.规范性:对于必然事件S,有P(S|A)=1
3.可列可加性:设B,B2,••是两两互不相容的事件,则有
P(UBiI 2、P(Bi|A)
i4
对于任意事件B,C,有
P(BUC|A)=P(B|A)+P(C|A)-P(BC|A)
乘法定理:
设P(A)>0,则有P(AB)=P(B|A)P(A)
P(A -A2-…一An)=P(A1) + P(A2)+…+P(An)
3.设A,B是两个事件,若A B,则有
P(B-A)=P(B)-P(A),P(B) >P(A)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附加知识: 排列组合知识小结: 一、计数原理
1.加法原理:分类计数。

2.乘法原理:分步计数。

二、排列组合
1.排列数(与顺序有关):
)(),1()2)(1(n m m n n n n A m n ≤+---=Λ !n A n
n =,n A A n n
==10,1 如:25203456757=⨯⨯⨯⨯=A ,12012345!5=⨯⨯⨯⨯= 2.组合数(与顺序无关):
!m A C m
n m n
=,m
n n m n C C -=
如:3512344567!447
4
7
=⨯⨯⨯⨯⨯⨯==A C ,211
2672757757=⨯⨯===-C C C
3.例题:(1)从1,2,3,4,5这五个数字中,任取3个数字,组成一个没有重复的3位数,共有___6034535=⨯⨯=A ____种取法。

(2)从0,1,2,3,4这五个数字中,任取3个数字,组成一个没
有重复的3位数,共有___483442
414
=⨯⨯=A A ____种取法。

(3)有5名同学照毕业照,共有__1201234555=⨯⨯⨯⨯=A _种排法。

(4)有5名同学照毕业照,其中有两人要排在一起,那么共有
_48)1234()12(4422=⨯⨯⨯⨯⨯=A A ___种排法。

(5)袋子里有8个球,从中任意取出3个,共有___38C ____种取法。

(6)袋子里有8个球,5个白球,3个红球。

从中任意取出3个,
取到2个白球1个红球的方法有___1
325C C ____种。

38876
56321
C ⨯⨯=
=⨯⨯
第一章、基础知识小结
一、随机事件的关系与运算 1.事件的包含
设A ,B 为两个事件,若A 发生必然导致B 发生,则称事件B 包含于A ,记作B A ⊂。

2.和事件
事件“A,B 中至少有一个发生”为事件A 与B 的和事件,记作B A Y 或B A +。

性质:(1)B A B B A A Y Y ⊂⊂
, ;
(2)若B A ⊂,则B B A =Y
3.积事件:事件A,B 同时发生,为事件A 与事件B 的积事件,记作B A I 或AB 。

性质:(1),AB A AB B ⊂⊂; (2)若B A ⊂,则A AB =
4.差事件:事件A 发生而B 不发生为事件A 与B 事件的差事件,记作()A B AB -。

性质:(1)A B A ⊂-; (2)若B A ⊂,则φ=-B A 5.互不相容事件:若事件A 与事件B 不能同时发生,即AB Φ=,则称事件A 与事件B 是互不相容的两个事件,简称A 与B 互不相容(或互斥)。

6.对立事件:称事件A 不发生为事件A 的对立事件,记作A 。

性质:(1)A A =; (2)Ω==Ωφφ,; (3)AB A B A B A -==- 设事件A,B ,若AB=Φ,A+B=Ω,则称A 与B 相互对立.记作。

7.事件的运算律
(1)交换律:BA AB A B B A ==,Y Y (2)结合律:C B A C B A Y Y Y Y )()(=
C B A C B A I I I I )()(=
(3)分配律:)()()(C A B A C B A Y I Y I Y =
)()()(C A B A C B A I Y I Y I =
(4)对偶律:B A AB B A B A Y Y ==,。

二、古典概率: 基本事件总数
所包含的基本事件数A n r A P ==)( 三、有关概率的公式
1.1)(,0)(,1)(0=Ω=≤≤P P A P φ
2.对立事件的概率:)(1)(A P A P -=
3.和事件的概率:)()()()(AB P B P A P B A P -+=+ 若φ=AB ,则)()()(B P A P B A P +=
+
4.差事件的概率:)()()(AB P A P B A P -=- 若
,则)()()(B P A P B A P -=-
5.积事件的概率:)|()()|()()(B A P B P A B P A P AB P == 若A 与B 相互独立,则)()()(B P A P AB P =
6.条件事件的概率:()
(|)()
P AB P B A P A =
()
(|)()
P AB P A B P B =
7.全概率事件概率:
12,,,n A A A L 是样本空间E 上的一个划分,则
121122()()
()()
()(|)()(|)()(|)
n n n P B P A B P A B P A B P A P B A P A P B A P A P B A =+++=+++L L
)|()()|()()()()(A B P A P A B P A P B A P AB P B P +=+=
8.贝叶斯公式: )
()
|()()()()|(B P A B P A P B P B A P B A P i i i i ==
重贝努利事件概率:()(1),0,1,2,3,,k k
n k n n
P k C p p k n -=-=L
本章练习
1.设A,B 为随机事件,则事件“A ,B 至少有一个发生”可表示为 B.AB C.A B U
D.A B U
2.甲,乙两人向同一目标射击,A 表示“甲命中目标”,B 表示“乙命中
目标”,C 表示“命中目标”,则C=( ) ∪B
3.甲、乙两个气象台独立地进行天气预报,它们预报准确的概率分别是和,则在一次预报中两个气象台都预报准确的概率是________.
4.从0,1,2,3,4五个数字中不放回地取3次数,每次任取一个,则第三次取到0的概率为________.
5.设A ,B 是随机事件,7.0)(=A P ,()0.2P AB = ,则()P A B -=( )
A.0.1
设A ,B 是随机事件,
P(A)=,P(B)=,P(A ∪B)=,则P(AB)= . P(A ∪B)=P(A)+P(B)-P(AB)=+(AB)=
7.设随机事件A 与B 相互独立,且()0,(|)0.6P B P A B >=,则()P A =______.
8.设随机事件A 与B 相互独立,且2.0)|(=B A P ,则)(A P =________.
9.甲、乙两人从装有6个白球4个黑球的盒子中取球,甲先从中任取一个球,不放回,而后乙再从盒中任取两个球,求:(1)甲取到黑球的概率;(2)乙取到的都是黑球的概率.
解:用A 表示“甲先取到一个黑球”,用B 表示“乙后取到两个黑球”,则
(1) 甲取到黑球的概率:
(2) 由题意得:
10.设某人群中患某种疾病的比例为20%.对该人群进行一种测试,若患病则测试结果一定为阳性;而未患病者中也有5%的测试结果呈阳性. 求:(1)测试结果呈阳性的概率;(2)在测试结果呈阳性时,真正患病的概率。

解:设A 表示“某人患某种疾病”,B 表示“测试结果为阳性”
11.()有甲、乙两盒,甲盒装有4个白球1个黑球,乙盒装有3个白球2个黑球.从甲盒中任取1个球,放入乙盒中,再从乙盒中任取2个球.(1)求从乙盒中取出的是2个黑球的概率;(2)己知从乙盒中取出的是2个黑球,问从甲盒中取出的是白球的概率.
解:设A表示“从甲盒中任取1个球是黑球”,B表示“从乙盒中取出的2个球是黑球”,则。

相关文档
最新文档