数学必修三综合测试题(含答案)
2019版高中人版A版数学必修三练习:综合检测试题 含答案
综合检测试题(时间:120分钟满分:150分)一、选择题(每小题5分,共60分)1。
下列说法正确的是( C )①必然事件的概率等于1;②互斥事件一定是对立事件;③球的体积与半径的关系是正相关;④汽车的重量和百公里耗油量成正相关.(A)①②(B)①③(C)①④(D)③④解析:互斥事件不一定是对立事件,②错;③中球的体积与半径是函数关系,不是正相关关系,③错;①④正确,选C.2.要从165名学生中抽取15人进行视力检查,现采用分层抽样法进行抽取,若这165名学生中,高中生为66人,则高中生中被抽取参加视力检查的人数为( B )(A)5 (B)6 (C)7 (D)8解析:165名学生中,高中生为66人,则高中生中被抽取参加视力检查的人数为66×=6,故选B。
3.某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,现用分层抽样抽取30人,则各职称人数分别为( B )(A)5,10,15 (B)3,9,18(C)3,10,17 (D)5,9,16解析:单位职工总数是150,所以应当按照1∶5的比例来抽取。
所以各职称人数分别为3,9,18.选B。
4.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,则抽得的第1张卡片上的数大于第2张卡片上的数的概率为( D )(A)(B)(C)(D)解析:如表所示,表中的点横坐标表示第一次取到的数,纵坐标表示第二次取到的数.123451(1,1)(1,2)(1,3)(1,4)(1,5)2(2,1)(2,2)(2,3)(2,4)(2,5)3(3,1)(3,2)(3,3)(3,4)(3,5)4(4,1)(4,2)(4,3)(4,4)(4,5)5(5,1)(5,2)(5,3)(5,4)(5,5)总计有25种情况,满足条件的有10种,所以所求概率为=。
故选D.5.设某中学的高中女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,3,…,n),用最小二乘法近似得到回归直线方程为=0。
数学必修三全册试卷及答案
第I 卷(选择题)一、单选题(60分)1.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为116, 124, 118, 122, 120,五名女生的成绩分别为118, 123, 123, 118, 123,下列说法一定正确的是(B )A . 这种抽样方法是一种分层抽样B . 这五名男生成绩的方差大于这五名女生成绩的方差C .这种抽样方法是一种系统抽样D . 该班级男生成绩的平均数小于该班女生成绩的平均数2.掷两枚均匀的骰子,已知点数不同,则至少有一个是3点的概率为( C )A .B .C .D . 3.如图,矩形ABCD 中点E 位边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE 内部的概率等于( D )A .41B .31C . 32D . 21 4.某杂志社对一个月内每天收到的稿件数量进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数分别是( D )1031853141A . 47,45B . 45,47C . 46,46D . 46,455. 在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是( B ) A.112 B. 310 C.15 D.1106.高三毕业时,甲、乙、丙、丁四位同学站成一排照相留念,则甲丙相邻的概率为( A )A .B .C .D . 7.将输入如下图所示的程序框图得结果( A )A .2006B .C .0D .8.98和63的最大公约数为( B )A.6 B.7 C.8 D.99.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为k:5:3,现用分层抽样方法抽出一个容量为120的样本,已知A 种型号产品共抽取了24件,则C 种型号产品抽取的件数为( B )121323142005x =20052005-A.24B.36C.30D.4010.光明中学有老教师25人,中年教师35人,青年教师45人,用分层抽样的方法抽取21人进行身体状况问卷调查,则抽到的中年教师人数为( C )A.9B.8C.7D.611.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( B ) A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,3212.已知一个样本中的数据为1,2,3,4,5,则该样本的标准差为( C )A.1B.C.D.2二、填空题(20分)13.一个路口的红绿灯,红灯的时间是30秒,黄灯的时间是5秒,绿灯的时间是40秒,当你到达路口时遇见红灯的概率是 0.4 .14.如图是一容量为100的样本的频率分布直方图.则由图可知样本数据的中位数大约是__13_____.15.数据x1,x 2,…,x8平均数为6,标准差为2,则数据2x1−6,2x2−6,…,2x8−6的方差为____16____.16.某住宅小区有居民2万人,分別为本地人和外来人,从中随机抽取200人,调査居民是否使用共享单车作为交通工具,调查的结果如表所示,则该小区居民交通工具为共享单车的人数为____9500______.第II卷(非选择题)三、解答题(70分)17.(10分)甲乙两台机床同时生产一种零件,10天中,两台机床每天生产的次品数分别是:甲 0 1 0 2 2 0 3 1 2 4乙 2 3 1 1 0 2 1 1 0 1(1)求这两组数据的平均数和标准差 1.5 1.2 1.26 0.93(2)判断一下那台机床的性能较好,并说明理由。
(人教b版)数学必修三练习:第2章综合测试题(含答案)
第二章综合测试题时间120分钟,满分150分。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列哪种工作不能使用抽样方法进行( ) A .测定一批炮弹的射程B .测定海洋某一水域的某种微生物的含量C .高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D .检测某学校全体高三学生的身高和体重的情况 [答案] D[解析] 抽样是为了用总体中的部分个体(即样本)来估计总体的情况,选项A 、B 、C 都是从总体中抽取部分个体进行检验,选项D 是检测全体学生的身体状况,所以,要对全体学生的身体都进行检验,而不能采取抽样的方法.故选D.2.高一·一班李明同学进行一项研究,他想得到全班同学的臂长数据,他应选择的最恰当的数据收集方法是( )A .做试验B .查阅资料C .设计调查问卷D .一一询问[答案] A[解析] 全班人数不是很多,所以做试验最恰当.3.设有一个回归方程为y ^=2-2.5x ,变量x 增加一个单位时,变量y ( ) A .平均增加1.5个单位 B .平均增加2个单位 C .平均减少2.5个单位 D .平均减少2个单位 [答案] C[解析] 因为随变量x 增大,y 减小,x 、y 是负相关的,且b ^=-2.5,故选C. 4.某林场有树苗30 000棵,其中松树苗4 000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( )A .30B .25C .20D .15[答案] C[解析] 松树苗与树苗总数比为4 000=,要抽取容量为150的样本,设抽取松树苗的棵数为x ,则x=2,解得x =20.5.一个单位有职工160人,其中业务人员96人,管理人员40人,后勤服务人员24人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,按下述三种方法抽取:①将160人从1至160编上号,然后用白纸做成1~160号的签160个放入箱内拌匀,然后从中抽取20个签,与签号相同的20个人被选出;②将160人从1至160编上号,按编号顺序分成20组,每组8人,即1~8号,9~16号,…,153~160号.先从第1组中用抽签方法抽出k 号(1≤k ≤8),其余组的(k +8n )号(n =1,2,…,19)亦被抽出,如此抽取20人;③按=的比例,从业务人员中抽取12人,从管理人员中抽取5人,从后勤人员中抽取3人,都用随机数表法从各类人员中抽取所需的人数,他们合在一起恰好抽到20人.上述三种抽样方法,按简单随机抽样、分层抽样、系统抽样的顺序是( ) A .①、②、③ B .②、①、③ C .①、③、② D .③、①、②[答案] C[解析] ①是简单随机抽样;②是系统抽样;③是分层抽样,故选C.6.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( )A .65B .65C . 2D .2[答案] D[解析] ∵a +0+1+2+35=1,∴a =-1,故S 2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.7.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92[答案] A[解析] 将这组数据从小到大排列,得87,89,90,91,92,93,94,96.故平均数x -=87+89+90+91+92+93+94+968=91.5,中位数为91+922=91.5,故选A.8.对变量x ,y 有观测数据理据(x i ,y i )(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 [答案] C[解析] 本题主要考查了变量的相关知识,考查学生分析问题和解决问题的能力.由散点图可以判断变量x 与y 负相关,u 与v 正相关.9.已知样本容量为30,在样本频率分布直方图中,各小长方形的高的比从左到右依次为,则第2组的频率和频数分别是( )A .0.4,12B .0.6,16C .0.4,16D .0.6,12[答案] A[解析] 因为各小长方形的高的比从左到右依次为,所以第2组的频率为0.4,频数为30×0.4=12.10.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高y (单位:cm)对年龄x (单位:岁)的回归直线方程y =73.93+7.19x ,用此方程预测儿子10岁时的身高,有关叙述正确的是( )A .身高一定为145.83 cmB .身高大于145.83 cmC .身高小于145.83 cmD .身高在145.83 cm 左右[答案] D[解析] 用回归直线方程预测的不是准确值,而是估计值.当x =10时,y =145.83,只能说身高在145.83 cm 左右.11.设矩形的长为a ,宽为b ,其比满足b a =5-12≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中,下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )A .甲批次的总体平均数与标准值更接近B .乙批次的总体平均数与标准值更接近C .两个批次总体平均数与标准值接近程度相同D .两个批次总体平均数与标准值接近程度不能确定 [答案] A[解析] 本小题主要考查学生的知识迁移能力和统计的有关知识. x -甲=0.598+0.625+0.628+0.595+0.6395=0.617,x -乙=0.618+0.613+0.592+0.622+0.6205=0.613,故选A.12.某示范农场的鱼塘放养鱼苗8万条,根所这几年的经验知道,鱼苗的成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼2.5 kg ,第二网捞出25条,称得平均每条鱼2.2 kg ,第三网捞出35条,称得平均每条鱼2.8 kg ,试估计鱼塘中鱼的总质量约为( )A .192 280 kgB .202 280 kgC .182 280 kgD .172 280 kg[答案] A[解析] 平均每条鱼的质量为x -=40×2.5+25×2.2+35×2.840+25+35=2.53(kg),所以估计这时鱼塘中鱼的总质量约为80000×95%×2.53=192 280(kg).二、填空题(本大题共4小题,每小题4分,共16分.把答案填写在题中的横线上.) 13.一支田径队有男女运动员98人,其中男运动员有56人.按男、女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是________.[答案] 12[解析] ∵2898=27,即每7人抽取2人,又知女运动员人数为98-56=42,∴应抽取女运动员人数为42×27=12(人).分层抽样中抓住“抽样比”是解决问题的关键.14.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数.则这10天甲、乙两人日加工零件的平均数分别为________和________.[答案] 24 23[解析] x -甲=110(10×2+20×5+30×3+17+6+7)=24,x -乙=110(10×3+20×4+30×3+17+11+2)=23.15.如图所示,在某路段检测点,对180辆汽车的车速进行检测,检测结果表示为如下频率分布直方图,则车速不小于90km/h 的汽车约有________辆.[答案] 54[解析] 频率=频率组距×组距=(0.02+0.01)×10=0.3,频数=频率×样本总数=180×0.3=54.16.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:[答案] 25[解析] x 甲=6+7+7+8+75=7,x 乙=6+7+6+7+95=7.∴s 2甲=(6-7)2+(7-7)2+(7-7)2+(8-7)2+(7-7)25=25,s 2乙=(7-6)2+(7-7)2+(7-6)2+(7-7)2+(7-9)25=65,则两组数据的方差中较小的一个为s 2甲=25.三、解答题(本大题共6个小题,共75分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)下面的抽样方法是简单随机抽样吗?为什么? (1)某班有40名同学,指定个子最高的5名同学参加学校组织的篮球赛;(2)一儿童从玩具箱中的20件玩具中随意拿出一件来玩,玩后放回,再拿一件,连续玩了5件;(3)从200个灯泡中逐个抽取20个进行质量检查. [解析] (1)不是简单随机抽样,因为这不是等可能抽样. (2)不是简单随机抽样,因为它是有放回的抽样.(3)是简单随机抽样,因为它满足简单随机抽样的几个特点.18.(本题满分12分)已知某班4个小组的人数分别为10,10,x,8,这组数据的中位数与平均数相等,求这组数据的中位数.[解析] 该组数据的平均数为14(28+x ),中位数一定是其中两个数的平均数,因为x 不知是多少,所以要分几种情况讨论.(1)当x ≤8时,原数据按从小到大的顺序为x,8,10,10,其中位数为12(10+8)=9.若14(x +28)=9,则x =8,此时中位数为9.(2)当8<x ≤10时,原数据按从小到大顺序排列为8,x,10,10,其中位数为12(x +10),若14(x +28)=12(x +10),则x =8,而8不在8<x ≤10的范围内,∴舍去.(3)当x >10时,原数据为8,10,10,x ,其中位数为12(10+10)=10.若14(x +28)=10,则x =12,∴此时中位数为10. 综上所述,这组数据的中位数为9或10.19.(本题满分12分)一箱方便面共有50包,从中用随机抽样方法抽取了10包称量其重量(单位:g)结果为:60.5 61 60 60 61.5 59.5 59.5 58 60 60(1)指出总体、个体、样本、样本容量; (2)指出样本数据的众数、中位数、平均数; (3)求样本数据的方差.[解析] (1)总体是这50包方便面所有的包重,个体是这一箱方便面中每一包的包重,样本是抽取的10包的包重,样本容量为10.(2)这组样本数据的众数是60,中位数为60,样本平均数x -=110×(60.5+61+60+60+61.5+59.5+59.5+58+60+60)=60.(3)样本数据的方差为 s 2=110[(60.5-60)2+(61-60)2+(60-60)2+(60-60)2+(61.5-60)2+(59.5-60)2+(59.5-60)2+(58-60)2+(60-60)2+(60-60)2]=0.8.20.(本题满分12分)对划艇动员甲、乙二人在相同的条件下进行了6次测试,测得他们最大速度(m/s)的数据如下:甲:27,38,30,37,35,31; 乙:33,29,38,34,28,36.根据以上数据,试判断他们谁更优秀.[解析] x -甲=16(27+38+30+37+35+31)=1986=33,s 2甲=16[(27-33)2+(38-33)2+…+(31-33)2] =16×94≈15.7; x -乙=16(33+29+38+34+28+36)=1986=33,s 2乙=16[(33-33)2+(29-33)2+…+(36-33)2] =16×76≈12.7. ∴x -甲=x -乙,s 2甲>s 2乙.说明甲、乙二人的最大速度的平均值相同,但乙比甲更稳定,故乙比甲更优秀.21.(本题满分12分)有一容量为50的样本,数据的分组以及各组的频数如下: [12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5),4.(1)列出样本的频率分布表; (2)画出频率分布直方图;(3)根据频率分布直方图估计,数据落在[15.5,24.5)内的可能性约是多少? [解析] (1)频率分布表为:(2)(3)数据落在[15.5,24.5)内的可能性为:8+9+1150=0.56.22.(本题满分14分)某个体服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这种服装件数x 之间的一组数据关系如表所示:已知:∑i =17x 2i =280,∑i =17y 2i =45 309,∑i =17x i y i =3 487.(1)求x -、y -; (2)画出散点图;(3)求纯利y 与每天销售件数x 之间的回归直线方程; (4)若该周内某天销售服装20件,估计可获纯利多少元.[解析] (1)x -=3+4+5+6+7+8+97=6,y -=66+69+73+81+89+90+917≈79.86.(2)散点图如图所示(3)由散点图知,y 与x 有线性相关关系,设回归直线方程为y ^=b ^x +a ^.∵∑i =17x 2i =280,∑i =17y 2i =45 309,∑i =17x i y i =3 487,x -=6,y -=5597,∴b ^=3487-7×6×5597280-7×36=13328=4.75,a ^=5597-6×4.75≈51.36,∴回归直线方程为y ^=4.75x +51.36.(4)当x =20时,y ^=4.75×20+51.36≈146.因此本周内某天的销售为20件时,估计这天的纯收入大约为146元.。
高中数学人教A版必修3综合测试题及答案 9
必修3综合模块测试(人教A 版必修3)卷 Ⅰ(选择题,共60分)一、选择题:本大题共12小题,在下列每小题给出的四个结论中有且只有一个是正确的,请把正确的结论填涂在答题卡上.每小题5分,共60分 1.下列给出的赋值语句中正确的是:( )A.x+3=y-2B.d=d+2C.0=xD.x-y=5 2.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) A.顺序结构 B.条件结构和循环结构 C.顺序结构和条件结构 D.没有任何结构 3. 将389化成四进位制数的末位是 A 、0 B 、1 C 、2 D 、34. 当3a =时,右边的程序段输出的结果是 A 、9 B 、3 C 、10 D 、65.下面程序框图的基本结构中,当型循环结构指的是A B C D6.右面框图表示计算1×3×5×7×…×99的算法 在空白框中应填入A .2i i =+B .21i i =-C .21i i =+D .1i i =+7. 一个单位有职工160人,其中有业务员104人,管理人员32人,后勤服务人员24人,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,则在20人的样本中应抽取管理人员人数为 ( )A. 3B. 4C. 5D. 68.一个容量为20的样本数据,分组后组距为10,区间与频数分布如下:(]10,20,2; (]20,30,3; (]30,40,4; (]40,50,5;(]50,60,4; (]60,70,2. 则样本在(],50-∞上的频率为 ( )A.120 B. 14 C.12 D.7109.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是( ) A. 对立事件B. 互斥但不对立事件C. 不可能事件D. 以上都不对10. 从区间()0,1内任取两个数,则这两个数的和小于56的概率是A 、35B 、45C 、1625D 、257211.如图,在正方形中撒一粒豆子,则豆子落在正方形内切圆内部的概率为A .4πB .44π-C .41π-D .4π12.同时上抛三枚硬币,落地后,三枚硬币图案两正一反的概率是A .34 B .14 C .38 D .12二、填空题(每小题4分,共16分)13. 某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做 牙齿健康检查。
数学必修三全册试卷及答案
第I 卷(选择题)一、单选题(60分)1.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为116, 124, 118, 122, 120,五名女生的成绩分别为118, 123, 123, 118, 123,下列说法一定正确的是(B )A . 这种抽样方法是一种分层抽样B . 这五名男生成绩的方差大于这五名女生成绩的方差C .这种抽样方法是一种系统抽样D . 该班级男生成绩的平均数小于该班女生成绩的平均数2.掷两枚均匀的骰子,已知点数不同,则至少有一个是3点的概率为( C )A .B .C .D . 3.如图,矩形ABCD 中点E 位边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自ABE 内部的概率等于( D )A .41B .31C . 32D . 21 4.某杂志社对一个月内每天收到的稿件数量进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数分别是( D )1031853141A . 47,45B . 45,47C . 46,46D . 46,455. 在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和为3或6的概率是( B ) A.112 B. 310 C.15 D.1106.高三毕业时,甲、乙、丙、丁四位同学站成一排照相留念,则甲丙相邻的概率为( A )A .B .C .D . 7.将输入如下图所示的程序框图得结果( A )A .2006B .C .0D .8.98和63的最大公约数为( B )A.6 B.7 C.8 D.99.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为k:5:3,现用分层抽样方法抽出一个容量为120的样本,已知A 种型号产品共抽取了24件,则C 种型号产品抽取的件数为( B )121323142005x =20052005-A.24B.36C.30D.4010.光明中学有老教师25人,中年教师35人,青年教师45人,用分层抽样的方法抽取21人进行身体状况问卷调查,则抽到的中年教师人数为( C )A.9B.8C.7D.611.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( B ) A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,3212.已知一个样本中的数据为1,2,3,4,5,则该样本的标准差为( C )A.1B.C.D.2二、填空题(20分)13.一个路口的红绿灯,红灯的时间是30秒,黄灯的时间是5秒,绿灯的时间是40秒,当你到达路口时遇见红灯的概率是 0.4 .14.如图是一容量为100的样本的频率分布直方图.则由图可知样本数据的中位数大约是__13_____.15.数据x 1,x 2,…,x 8平均数为6,标准差为2,则数据2x 1−6,2x 2−6,…,2x 8−6的方差为____16____.16.某住宅小区有居民2万人,分別为本地人和外来人,从中随机抽取200人,调査居民是否使用共享单车作为交通工具,调查的结果如表所示,则该小区居民交通工具为共享单车的人数为____9500______.第II 卷(非选择题)三、解答题(70分)17. (10分)甲乙两台机床同时生产一种零件,10天中,两台机床每天生产的次品数分别是:甲 0 1 0 2 2 0 3 1 2 4乙 2 3 1 1 0 2 1 1 0 1(1)求这两组数据的平均数和标准差 1.5 1.2 1.26 0.93(2)判断一下那台机床的性能较好,并说明理由。
高中数学人教A版必修3综合测试题及答案 4
必修3综合模块测试(人教A 版必修3)时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.分层抽样又称为类型抽样,即将相似的个体归入一类(层),然后每层各抽若干个个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行( )A .每层等可能抽样B .每层不等可能抽样C .所有层用同一抽样比等可能抽样D .所有层抽同样多个体,每层都是等可能抽样 [答案] C[解析] 由分层抽样的定义可知,选C . 2.下列说法正确的有( )①随机事件A 的概率是频率的稳定性,频率是概率的近似值. ②一次试验中不同的基本事件不可能同时发生. ③任意事件A 发生的概率P(A)总满足0<P(A)<1. ④若事件A 的概率为0,则A 是不可能事件. A .0个 B .1个 C .2个 D .3个 [答案] C[解析] 不可能事件的概率为0,但概率为0的事件不一定是不可能事件,如几何概型中“单点”的长度、面积、体积都是0,但不是不可能事件,∴④不对;抛掷一枚骰子出现1点和出现2点是不同的基本事件,在同一次试验中,不可能同时发生,故②正确;任意事件A 发生的概率P (A )满足0≤P (A )≤1,∴③错误;又①正确.∴选C.3.如图是计算12+14+16+…+120的值的一个程序框图,其中在判断框中应填入的条件是( )A .i <10B .i>10C .i <20D .i >20[答案] B[解析] 最后一次执行循环体时i 的值为10,又条件不满足时执行循环体,∴i =11>10时跳出循环.4.一组数据的方差为s 2,将这组数据中的每一个数都乘以2所得到的一组新数据的方差为( )[答案] C5.在100个零件中,有一级品20个、二级品30个、三级品50个,从中抽取20个作为样本.①将零件编号为00,01,…,99,抽签取出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个; ③采用分层抽样法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.对于上述问题,下面说法正确的是( )A .不论采用哪一种抽样方法,这100个零件中每一个被抽到的概率都是15B .①②两种抽样方法,这100个零件中每一个被抽到的概率为15,③并非如此C .①③两种抽样方法,这100个零件中每一个被抽到的概率为15,②并非如此D .采用不同的抽样方法,这100个零件中每一个零件被抽到的概率是各不相同的 [答案] A [解析] 由于随机抽样、系统抽样、分层抽样的共同特点是:每个个体被抽到的概率都相等,所以无论采用哪种抽样方法,这100个零件中每个零件被抽到的概率都是15.6.用秦九韶算法求多项式f(x)=0.5x 5+4x 4-3x 2+x -1当x =3的值时,先算的是( ) A .3×3=9 B .0.5×35=121.5 C .0.5×3+4=5.5 D .(0.5×3+4)×3=16.5 [答案] C [解析] 按递推方法,从里到外先算0.5x +4的值. 7.有2个人从一座10层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一层离开是等可能的,则2个人在不同层离开的概率为( )A.19B.29C.49D.89 [答案] D[解析] 设2个人分别在x 层,y 层离开,则记为(x ,y )基本事件构成集合Ω={(2,2),(2,3),(2,4)…(2,10)(3,2),(3,3),(3,4)…(3,10) ⋮(10,2),(10,3),(10,4)…(10,10)},所以除了(2,2),(3,3),(4,4),…,(10,10)以外,都是2个人在不同层离开,故所求概率P =9×9-99×9=89.解法2:其中一个人在某一层离开,考虑另一个人,也在这一层离开的概率为19,故不在这一层离开的概率为89.8.下列程序计算的数学式是( )[答案] C[解析] 本题是一个递推累加问题,由T =T*i 经过循环依次得到1!,2!,3!,…,n !,由s =s +1/T 实现累加.故选C .[答案] C10.下面一段程序的目的是( )[答案] B[解析] 程序中,当m ≠n 时总是用较大的数减去较小的数,直到相等时跳出循环,显然是“更相减损术”.11.在所有两位数(10~99)中任取一个数,则这个数能被2或3整除的概率是( ) A.56 B.45 C.23 D.12 [答案] C12.运行如图的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素α,则函数y =x α x ∈[0,+∞)是增函数的概率为( )A.37 B.45 C.35D.34[答案] C[解析] 当x 依次取值-3,-2,-1,0,1,2,3时,对应的y 的值依次为:3,0,-1,0,3,8,15, ∴集合A ={-1,0,3,8,15},∵α∈A ,∴使y =x α在x ∈[0,+∞)上为增函数的α的值为3,8,15,故所求概率P =35.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.已知直线l过点(-1,0),l与圆C:(x-1)2+y2=3相交于A、B两点,则弦长|AB|≥2的概率为________.[答案]3 3[解析]设直线方程为y=k(x+1),代入(x-1)2+y2=3中得,(k2+1)x2+2(k2-1)x+k2-1=0,∵l与⊙C相交于A、B两点,∴Δ=4(k2-1)2-4(k2+1)(k2-2)>0,∴k2<3,∴-3 <k<3,又当弦长|AB|≥2时,∵圆半径r=3,∴圆心到直线的距离d≤2,即|2k|1+k2≤2,∴k2≤1,∴-1≤k≤1.由几何概型知,事件M:“直线l与圆C相交弦长|AB|≥2”的概率P(M)=1-(-1) 3-(-3)=33.14.把七进制数305(7)化为五进制数,则305(7)=______(5).[答案]1102[解析]∵305(7)=3×72+5=152,又152=30×5+2,30=6×5+0,6=1×5+1,1=0×5+1,∴152=1102(5),即305(7)=1102(5).15.若以连续掷两次骰子得到的点数m,n作为点P的坐标,则点P落在圆x2+y2=16外的概率是________.[答案]7 9[解析]基本事件组成集合Ω={(m,n)|1≤m≤6,1≤n≤6,m,n∈N}中共36个元素.事件A=“点P(m,n)落在圆x2+y2=16外”的对立事件中含有基本事件(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个,∴P(A)=1-836=7 9.16.在半径为1的圆周上有一定点A,以A为端点任作一弦,另一端点在圆周上等可能的选取,则弦长超过1的概率为________.[答案]2 3[解析]如图,作半径为1的圆的内接正六边形ABCDEF,则其边长为AB=AF=1,当另一端点落在上时,弦长小于1,当另一端点落在上时,弦长大于1,由几何概型定义可知,概率P=23.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)(08·广东文)某初级中学共有学生2000名,各年级男、女生人数如下表:初一年级初二年级初三年级女生373x y男生377370z(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?(3)已知y≥245,z≥245,求初三年级中女生比男生多的概率.[解析](1)∵x2000=0.19,∴x=380.(2)初三年级人数为y+z=2000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:482000×500=12名.(3)设初三年级女生比男生多的事件为A,初三年级女生、男生数记为(y,z),由(2)知y+z=500,且y、z∈N,基本事件有:(245,255)、(246,254)、(247,253),…,(255,245)共11个,事件A包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245)共5个,∴P(A)=511.18.(本题满分12分)某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.[分析]对于(1)可利用各组的频率和等于1,从而可求第四小组的频率;而(2)则是利用组中值求平均分;(3)利用古典概型的概率公式可求其概率.[解析](1)因为各组的频率和等于1,故第四组的频率:f4=1-(0.025+0.015×2+0.01+0.005)×10=0.03.其频率分布直方图如图所示.(2)依题意,60分及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.030+0.025+0.005)×10=0.75.所以,估计这次考试的合格率是75%. 利用组中值估算这次考试的平均分,可得: 45·f 1+55·f 2+65·f 3+75·f 4+85·f 5+95·f 6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71. 所以估计这次考试的平均分是71分.(3)[40,50)与[90.100]的人数分别是6和3,所以从成绩是[40,50)与[90,100]的学生中选两人,将[40,50]分数段的6人编号为A 1,A 2,…A 6,将[90,100]分数段的3人编号为B 1,B 2,B 3,从中任取两人,则基本事件构成集合Ω={(A 1,A 2),(A 1,A 3)…(A 1,A 6),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 3),(A 2,A 4),…,(B 2,B 3)}共有36个,其中,在同一分数段内的事件所含基本事件为(A 1,A 2),(A 1,A 3)…(A 1,A 6),(A 2,A 3)…(A 5,A 6),(B 1,B 2),(B 1,B 3),(B 2,B 3)共18个,故概率P =1836=12.19.(本题满分12分)有人提出如下的圆周率的近似算法:在右图的单位正方形内均匀地取n 个点P i (x i ,y i )(i ∈{1,2,…,n }),然后统计出以x i 、y i 、1为边长的三角形中锐角三角形的个数m ,则当n 充分大时,π≈4(n -m )n,试分析这种算法是否正确.[解析] 根据题中提出的算法, 有0<x i <1,0<y i <1,所以以x i ,y i,1为边长的三角形中,长为1的边所对的角A 为最大角,当且仅当0°<A <90°时,以x i ,y i,1为边长的三角形为锐角三角形,x 2i +y 2i >1,此时点P 在以O 为圆心,1为半径的圆的外部,即图中阴影部分.所以在图中的单位正方形内任意取一点P i ,满足以x i ,y i,1为边长的三角形为锐角三角形的概率为P =阴影部分的面积/单位正方形的面积=1-π4,当n 充分大时,m n ≈P =1-π4,∴π≈4⎝⎛⎭⎫1-m n =4(n -m )n ,所以题中给出的圆周率的近似算法是正确的.20.(本题满分12分)编写程序求1~1000的所有不能被3整除的整数之和. [解析] S =0 i =1WHILE i <=1000r =i MOD 3IF r <>0 THEN S =S +i END IF i =i +1 WEND PRINT S END21.(本题满分12分)一次掷两粒骰子,得到的点数为m 和n ,求关于x 的方程x 2+(m +n )x +4=0有实数根的概率.[解析] 基本事件共36个,∵方程有实根,∴Δ=(m +n )2-16≥0, 又∵m ,n ∈N ,∴m +n ≥4,其对立事件是m +n <4,其中有(1,1),(1,2),(2,1)共3个基本事件,∴所求概率为P =1-336=1112.22.(本题满分14分)某化工厂的原料中含有两种有效成份A 和B .测得原料中A 和B 的i 1 2 3 4 5 6 7 8 9 10 x i :A (%) 24 15 23 19 16 11 20 16 17 13 y i :B (%) 67 54 72 64 39 22 58 43 46 34 (1)作出散点图;(2)求出回归直线方程:y ^=ax +b ;(3)计算回归直线y ^=ax +b 对应的Q =∑i =110[y i -(ax i +b )]2,并和另一条直线y ^=a ′x +b ′(a ′=2a ,b ′=2b )对应的Q ′=∑i =110[y i -(a ′x i +b ′)]2比较大小.(可使用计算器)[解析] (1)散点图见下图(2)把数据代入公式,计算可知,x -=17.4,y -=49.9,∑i =110x 2i =3182,∑i =110x i y i =9228,b =∑i =110x i y i -10x -y-∑i =110x 2i -10x-2=9228-8682.63182-3027.6≈3.5324,a =y --b x -≈-11.5635,回归线方程为y ^=3.5324x -11.5635.(3)经计算:Q =∑i =110[y i -(ax i +b )]2=353.8593,Q ′=∑i =110[y i -(2ax i +2b )]2=27175.6120,∴Q <Q ′.关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。
高中数学本册综合测试题(含解析)新人教B版必修3
本册综合测试题时间120分钟,满分150分。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列描述不是解决问题的算法的是( )A.从中山到北京先坐汽车,再坐火车B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、化系数为1C.方程x2-4x+3=0有两个不等的实根D.解不等式ax+3>0时,第一步移项,第二步讨论[答案] C[解析]因为算法是用来解决某一问题的程序或步骤,显然C不是,故选C.2.(2015·河南柘城四高高一月考)下列赋值语句正确的是( )A.S=a+1 B.a+1=SC.S-1=a D.S-a=1[答案] A[解析]赋值语句只能给某个变量赋值,不能给一个表达式赋值,故选A.3.(2015·湖北理,2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A.134石B.169石C.338石D.1 365石[答案] B[解析]设这批米内夹谷约为x石,则依题意有x1 534=28254,解得x≈169. 故本题正确答案为B.4.(2015·湖南津市一中高一月考)200辆汽车通过某一段公路时,时速的频率分布直方图如图所示,则时速在[50,70)的汽车大约有( )A.60辆B.80辆C .70辆D .140辆[答案] D[解析] 时速在[50,70)的汽车大约有200×10×(0.03+0.04)=140辆. 5.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是( ) A.16 B .13 C.12 D .23[答案] B[解析] 由条件可知,落在[31.5,43.5)内的数据有12+7+3=22(个),故所求的概率为2266=13. 6.将容量为100的样本数据,按从小到大的顺序分为8个组,如下表:A .0.14B .114 C.0.03 D .314[答案] A[解析] 第三组的频数为14,∴频率为14100=0.14.7.(2015·山东威海一中高一期末测试)如图程序框图输出的结果为( )A.511B .513 C.49 D .613[答案] A[解析] 循环一次,S =0+11×3=13,k =3; 循环二次,S =13+13×5=25,k =5;循环三次,S =25+15×7=37,k =7;循环四次,S =37+17×9=49,k =9;循环五次,S =49+19×11=511,k =11,循环结束,输出S 的值是511.8.某校在“创新素质实践行”活动中,组织学生进行社会调查,并对学生的调查报告进行了评比,如图是将某年级60篇学生调查报告的成绩进行整理,分成5组画出的频率分布条形图.已知从左往右4个小组的频率分别是0.05,0.15,0.35,0.30,那么在这次评比中被评为优秀的调查报告有(分数大于等于80分为优秀,且分数为整数)( )A .18篇B .24篇C.25篇 D .27篇[答案] D[解析] 由频率分布条形图知从左往右第5个小组的频率为0.15故优秀数为60×(0.3+0.15)=27.9.如图,圆C 内切于扇形AOB ,∠AOB =π3,若在扇形AOB 内任取一点,则该点在圆C内的概率为()A.16 B .13 C.23 D .34[答案] C[解析] 设圆O 的半径为1,圆C 的半径为r ,如图所示,∵∠COB =π6,∴OC =2r ,所以2r +r =1,所以r =13,∴S 圆C =π9,又S 扇形OAB =12×π3×1=π6,所以所求概率P =π9π6=23,故选C.10.如图是某次拉丁舞比赛七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1、a 2,则a 1、a 2的大小关系是( )甲 乙0 7 9 545 5 18 4 4 6 4 7m93A.a 1>a 2B .a 2>a 1C .a 1=a 2D .无法确定[答案] B[解析] 去掉一个最高分和一个最低分后,甲、乙都有5组数据,此时甲、乙得分的平均数分别为a 1=1+4+5×35+80=84,a 2=6+7+4×35+80=85,所以a 2>a 1.11.某人从甲地去乙地共走了500 m ,途经一条宽为x m 的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里就能找到.已知该物品能被找到的概率为2425,则河宽为( )A .80 mB .20 mC .40 mD .50 m[答案] B[解析] 这是一个与长度有关的几何概型,根据题意物品能找到的概率为500-x 500=2425,解得x =20,故选B.12.一个袋内装有大小相同的6个白球和5个黑球,从中随意抽取2个球,抽到白球、黑球各1个的概率为( )A.611 B .15 C.211D .110 [答案] A[解析] 将6个白球编号为白1、白2、白3、白4、白5、白6,5个黑球编号为黑1、黑2、黑3、黑4、黑5.从中任取两球都是白球有基本事件15种,都是黑球有基本事件10种,一白一黑有基本事件30种,故基本事件共有15+10+30=55种,设事件A ={抽到白球、黑球各一个},则P (A )=3055=611,故选A.二、填空题(本大题共4小题,每小题4分,共16分.把答案填写在题中的横线上.) 13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为________.[答案]120[解析] 简单随机抽样是等概率抽样,即每个个体在某次被抽到的概率为1N(N 指总体容量),每个个体在整个抽样过程中被抽到的概率为nN(n 指样本容量).14.下列程序运行的结果是________.S =1;i =1;while i<10 S =S*i ; i =i +2;end,;[答案] 1 890[解析] 程序是计算2S 的值,而S =1×3×5×7×9=945,∴2S =1 890. 15.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:如上图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填________,输出的s =________.(注:框图中的赋值符号“=”也可以写成“←”或“:=”) [答案] i ≤6,a 1+a 2+…+a 6[解析]考查读表识图能力和程序框图.因为是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,所以图中判断框应填i ≤6,输出的s =a 1+a 2+…+a 6.16.下表是某厂1~4月份用水量(单位:百吨)的一组数据:由其散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是y ^=-0.7x +a ^,则a ^=______.[答案] 5.25[解析] x -=1+2+3+44=52,y -=4.5+4+3+2.54=72.由线性回归方程知a ^=y --(-0.7)·x -=72+710·52=5.25.三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 17.(本题满分12分)某中学高中三年级男子体育训练小组2011年5月测试的50 m 跑的成绩(单位:s)如下:6.4、6.5、7.0、6.8、7.1、7.3、6.9、7.4、7.5,设计一个算法,从这些成绩中搜索出小于6.8 s 的成绩,并画出程序框图.[解析] 算法步骤如下: S1 i =1;S2 输入一个数据a ;S3 如果a <6.8,则输出a ,否则,执行S4; S4 i =i +1;S5 如果i >9,则结束算法,否则执行S2. 程序框图如图:18.(本题满分12分)(2015·河北邯郸市高一期末测试)甲、乙两同学的6次考试成绩分别为:(1)(2)计算甲、乙两同学考试成绩的方差,并对甲、乙两同学的考试成绩做出合理评价. [解析] (1)甲、乙两位同学六次考试成绩的茎叶图如图所示.(2)x 甲=99+6=94,x 乙=89+93+90+89+92+906=90.5,s 2甲=16[(99-94)2+(89-94)2+(97-94)2+(85-94)2+(95-94)2+(99-94)2]=2723,s 2乙=16[(89-90.5)2+(93-90.5)2+(90-90.5)2+(89-90.5)2+(92-90.5)2+(90-90.5)2]=1312.故甲同学的平均水平要高于乙同学,但是甲同学的方差比乙同学的方差大,说明甲同学的发挥没有乙同学稳定.19.(本题满分12分)(2015·河南南阳市第一期末测试)一个包装箱内有6件产品,其中4件正品,2件次品,现随机抽出2件产品,求:(1)恰好有一件次品的概率; (2)都是正品的概率; (3)抽到次品的概率.[解析] 记4件正品分别为A 、B 、C 、D,2件次品分别为e 、f ,从6件产品中抽取2件,其包含的基本事件有(A ,B )、(A ,C )、(A ,D )、(A ,e )、(A ,f )、(B ,C )、(B ,D )、(B ,e )、(B ,f )、(C ,D )、(C ,e )、(C ,f )、(D ,e )、(D ,f )、(e ,f ),共有15种.(1)记“恰有1件次品”为事件M ,事件M 包含的基本事件有(A ,e )、(A ,f )、(B ,e )、(B ,f )、(C ,e )、(C ,f )、(D ,e )、(D ,f ),共有8个,∴P (M )=815.(2)记“都是正品”为事件N ,事件N 包含的基本事件有(A ,B )、(A ,C )、(A ,D )、(B ,C )、(B ,D )、(C ,D ),共有6个,∴P (N )=615=25.(3)记“抽到次品”为事件R ,事件R 的对立事件是事件N , ∴P (R )=1-25=35.20.(本题满分12分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如下表:(1)(2)估计纤度落在[1.38,1.50)中的概率及纤度小于1.40的概率是多少? [解析] (1)(2)纤度落在[1.38,1.50)中的概率均为0.30+0.29+0.10=0.69,纤度小于1.40的概率约为0.04+0.25+12×0.30=0.44.21.(本题满分12分)一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:(1)(2)如果y 与x 有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?[解析] (1)画出散点图,如图所示:(2)x -=12.5,y -=8.25,∑i =14x i y i =438,∑i =14x 2i =660,∴b ^=∑i =14x i y i -4x - y-∑i =14x 2i -4x -2=438-4×12.5×8.25660-4×12.52≈0.728 6, a ^=y --b ^x -≈8.25-0.728 6×12.5=-0.857 5.故回归直线方程为y ^=0.728 6x -0.857 5. (3)要使y ≤10,则0.728 6x -0.857 4≤10,x ≤14.901 9.故机器的转速应控制在14.9转/秒以下.22.(本题满分14分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.11 (1)确定x ,y 的值,并求顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过...2 min 的概率.(注:将频率视为概率)[解析] (1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9 (min). (2)记A 为事件“一位顾客一次购物的结算时间不超过2 min”,A 1,A 2,A 3分别表示事件“该顾客一次购物的结算时间为1 min”,“该顾客一次购物的结算时间为1.5 min”,“该顾客一次购物的结算时间为2 min”.将频率视为概率得P (A 1)=15100=320,P (A 2)=30100=310, P (A 3)=25100=14. 因为A =A 1∪A 2∪A 3,且A 1,A 2,A 3是互斥事件,所以P (A )=P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=320+310+14=710. 故一位顾客一次购物的结算时间不超过2 min 的概率为710.。
2019年人教版高中数学必修三综合测试题(含答案)
必修3综合模拟测试卷A(含答案)一、选择题:(本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、用冒泡排序算法对无序列数据进行从小到大排序,则最先沉到最右边的数是A、最大数B、最小数C、既不最大也不最小D、不确定2、甲、乙、丙三名同学站成一排,甲站在中间的概率是A、16B、12C、13D、233、某单位有老年人28 人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是A、6,12,18B、7,11,19C、6,13,17D、7,12,174、甲、乙两位同学都参加了由学校举办的篮球比赛,它们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是A、甲B、乙C、甲、乙相同D、不能确定5、从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是偶数的概率是A、16B、C、13D、6、如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为A 、34B 、38C 、14D 、187、阅读下列程序:输入x ;if x <0, then y :=32x π+;else if x >0, then y :=52x π-+;else y :=0; 输出 y .如果输入x =-2,则输出结果y 为A 、3+πB 、3-πC 、π-5D 、-π-5 8、一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8180,则此射手的命中率是 A 、31 B 、32 C 、41 D 、529、根据下面的基本语句可知,输出的结果T 为 i:=1; T:=1;For i:=1 to 10 do; Begin T:=T+1;End 输出T开始 S :=0 i :=3 i :=i +1S :=S +ii >5 输出S结束是 否A 、10B 、11C 、55D 、56 10、在如图所示的算法流程图中,输出S 的值为 A 、11 B 、12 C 、13 D 、15二、填空题:(本题共4小题,每小题5分,共20分,请把答案填写在答题纸上) 11、一个容量为20的样本数据,分组后,组距与频数如下:(]10,20,2;(]20,30, 3;(]30,40,4;(]40,50,5;(]50,60,4 ;(]60,70,2。
数学必修3试题及答案
数学必修3试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是方程\(2x^2 - 5x + 3 = 0\)的解?A. \(x = 1\)B. \(x = 2\)C. \(x = 3\)D. \(x = 4\)2. 函数\(f(x) = ax^2 + bx + c\)的图像是一个开口向上的抛物线,那么a的值应该是:A. 0B. 负数C. 正数D. 任意实数3. 已知\(\sin \alpha = \frac{3}{5}\),且\(\alpha\)为锐角,则\(\cos \alpha\)的值是:A. \(\frac{4}{5}\)B. \(\frac{3}{5}\)C. \(-\frac{4}{5}\)D. \(-\frac{3}{5}\)4. 集合\(A = \{1, 2, 3\}\),\(B = \{2, 3, 4\}\),则\(A \cap B\)等于:A. \(\{1, 2, 3\}\)B. \(\{2, 3\}\)C. \(\{1, 2, 3, 4\}\)D. \(\{4\}\)二、填空题(每题5分,共20分)1. 计算\(\sqrt{49}\)的值是______。
2. 已知\(\tan \theta = 2\),求\(\sin \theta\)的值。
3. 函数\(f(x) = x^3 - 3x^2 + 2\)的导数\(f'(x)\)是______。
4. 集合\(A = \{x | x > 1\}\),\(B = \{x | x < 4\}\),则\(A\cup B\)表示的集合是______。
三、解答题(每题10分,共60分)1. 解方程\(3x^2 - 5x - 2 = 0\)。
2. 已知\(\sin \alpha = \frac{1}{2}\),求\(\alpha\)的其余弦值。
3. 证明:如果\(a^2 + b^2 = c^2\),则\(a\)、\(b\)、\(c\)构成直角三角形。
最新高中数学人教A版必修3综合测试题(含答案解析) 5
必修3综合模块测试(人教A 版必修3)一、选择题(每小题各5分, 共60分)1.设x 是10021,,,x x x 地平均数,a 是4021,,,x x x 地平均数,b 是1004241,,,x x x 地平均数,则下列各式中正确地是( ) A.4060100a b x B. 6040100a b x C. x a b D. 2a bx2.在样本地频率分布直方图中,共有5个长方形,若正中间一个小长方形地面积等于其它4个小长方形地面积和地14,且样本容量为100,则正中间地一组地频数为()A.80 B.0.8 C.20 D.0.23.某大学自主招生面试环节中,七位评委为考生A打出地分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为85,复核员在复核时,发现有一个数字(茎叶图中地x)无法看清,若统计员计算无误,则数字x应该是()A.5 B.6 C.7 D.94. 下列各数中与1010相等地数是())4(A.76 B.)8(103)9(C .)3(2111D .)2(1000100 5. 某算法地程序框如图所示,若输出结果为12,则输入地实数x 地值是 ( )A .32B .52 D .4 6. 在长为10地线段AB 上任取一点P ,并以线段AP 为一条边作正方形,这个正方形地面积属于区间]81,36[地概率为( )A.209 B.15 C.310 D.257. 从高一(9)班54名学生中选出5名学生参加学生代表大会,若采用下面地方法选取:先用简单随机抽样从54人中剔除4人,剩下地50人再按系统抽样地方法抽取5人,则这54人中,每人入选地概率()A.都相等,且等于1 B.都相等,10且等于554C.均不相等 D.不全相等8.把标号为1,2,3,4地四个小球随机地分发给甲、乙、丙、丁四个人,每人分得一个。
事件“甲分得1号球”与事件“乙分得1号球”是()A.互斥但非对立事件 B. 对立事件 C.相互独立事件 D. 以上都不对9.袋中有大小相同地黄、红、白球各一个,每次从中任取一个,有放回地取3次,则下列事件:⑴颜色全同;⑵颜色不全同;⑶颜色全不同; ⑷无红球。
最新人教版高中数学必修三模块综合测试卷(附解析)
最新人教版高中数学必修三模块综合测试卷(附解析)最新人教版高中数学必修三模块综合测试卷班级:____ 姓名:____ 考号:____ 分数:____本试卷满分150分,考试时间120分钟。
一、选择题:本大题共12题,每题5分,共60分。
在下列各题的四个选项中,只有一个选项是符合题目要求的。
1.下列选项中,正确的赋值语句是()A.A=x2-1=(x-1)(x+1)B.55=AC.A=A*A+A-3D.4=2×2-3=1答案:C解析:赋值语句的表达式“变量=表达式”,因此C正确。
2.用秦九韶算法求n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0,当x=x时,求f(x)需要算乘方、乘法、加法的次数分别为()A.n,2n,nB.n。
n+1,nC.0,2n,nD.n,n,n答案:D3.在20袋牛奶中,有3袋已过了保质期,从中任取一袋,取到已过保质期的牛奶的概率为()A.10/173B.20/173C.37/173D.10/20答案:C4.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生()A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人答案:B解析:根据题意,由于分层抽样的方法适合于差异比较明显的个体,而甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,即可知90∶=1∶120,则可知应在这三校分别抽取学生3600×120=30,5400×120=45,1800×120=15,故答案为B。
5.已知一个样本x1,y5,其中x,y是方程组x+y=4。
2x+2y=10。
解,则这个样本的标准差是()A.5B.2C.3D.2/11答案:D解析:由方程组得x=3或x=1,因此这个样本为1,1,3,5.平均数为(1+1+3+5)/4=2.5,标准差为√[(2.5-1)²+(2.5-1)²+(2.5-3)²+(2.5-5)²]/4=2/11.88+93+93+88+93=455,平均成绩为91.五名男生的成绩方差为s1= (16+16+4+4+0)/5=8,五名女生的成绩方差为s2= (9+4+4+9+4)/5=6.显然,五名男生的成绩方差大于五名女生的成绩方差。
高中数学必修三综合测试题(全册含答案)
高中数学必修三综合测试题(第一章至第三章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某工厂的一、二、三车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a,b,c,且2b=a+c,则二车间生产的产品数为( )A.800B.1000C.1200D.15002.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是( )A.对立事件B.不可能事件C.互斥但不对立事件D.不是互斥事件3.执行如图所示的程序框图,输出的S值为( )A.1B.3C.7D.15【补偿训练】如图所示程序运行的结果为.t=1i=2WHILE i<=5t=t﹡ii=i+1WENDPRINT tEND4.从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示:若某高校A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为( )A.10B.20C.8D.165.在3张奖券中有一、二等奖各1张,另一张无奖,甲、乙两人各抽取1张,两人都中奖的概率是( )A. B. C. D.6.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )分数 5 4 3 2 1人数20 10 30 30 10A. B.3 C. D.7.某校为了了解学生的身体素质情况,对初三(2)班的50名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的条形图,已知从左至右前4个小组的频率分别为0.02,0.1,0.12,0.46.下列说法中:①学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5)内;③学生成绩的中位数在第四小组(22.5~26.5)范围内.其中正确的说法有( )A.0个B.1个C.2个D.3个8.扇形AOB的半径为1,圆心角为90°.点C,D,E将弧AB等分成四份.连接OC,OD,OE,从图中所有的扇形中随机取出一个,面积恰为的概率是( )A. B. C. D.x在(0,+∞)内为增函数且g(x)=在(0,+∞) 9.设a∈[0,10)且a≠1,则函数f(x)=loga内也为增函数的概率为( )A. B. C. D.10.从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:身高x/cm 160 165 170 175 180体重y/kg 63 66 70 72 74根据上表可得回归方程ˆy=0.56x+ˆa,据此模型预报身高为172cm的高三男生的体重为( )A.70.09B.70.12C.70.55D.71.05【补偿训练】已知x与y之间的几组数据如下表:x 1 2 3 4 5 6y 0 2 1 3 3 4假设根据上表数据所得回归方程为ˆy=ˆb x+ˆa,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是( )A.ˆb>b′,ˆa>a′B.ˆb>b′,ˆa<a′C.ˆb<b′,ˆa>a′D.ˆb<b′,ˆa<a′11.如图所示,在半径为1的半圆内,放置一个边长为的正方形ABCD,向半圆内任投一点,则该点落在正方形内的概率是( )A. B. C. D.12.如图所示是用模拟方法估计圆周率π的程序框图,P表示估计结果,则图中空白框内应填入( )A.P=B.P=C.P=D.P=二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.将参加数学竞赛的1000名学生编号如下:0001,0002,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,从第一部分随机抽取一个号码为0015,则第40个号码为.14.有一根长为1米的细绳子,随机从中间将细绳剪断,则使两截的长度都大于米的概率为.【举一反三】题目中把“使两截的长度都大于米”改为“使两截之差的绝对值大于米”,那么概率应为多少?15.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示).16.甲、乙两个人玩一转盘游戏(转盘如图①,“C为弧AB的中点”),任意转动转盘一次,指针指向圆弧AC时甲胜,指向圆弧BC时乙胜.后来转盘损坏如图②,甲提议连接AD,取AD中点E,若任意转动转盘一次,指针指向线段AE时甲胜,指向线段ED时乙胜.然后继续游戏,你觉得此时游戏还公平吗?答案:,因为P甲P乙(填<,>或=).三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各随机选购一种型号的电脑,有关报价信息如图.(1)写出所有选购方案.(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?(直接写出结果即可)18.(12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)计算甲班的样本方差.(2)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.19.(12分)(2014·山东高考)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B,C各地区样品的数量.(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.20.(12分)(2015·全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图B地区用户满意度评分的频数分布表满意度[50,60) [60,70) [70,80) [80,90) [90,100] 评分分组频数 2 8 14 10 6(1)作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)(2)根据用户满意度评分,将用户的满意度评分分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区的用户的满意度等级为不满意的概率大,说明理由.21.(12分)(2015·全国卷Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi 和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(xi- )2(wi-)2(xi-)(yi-)(wi-)(yi-)46.6 563 6.8 289.8 1.6 1 469 108.8表中wi =,=wi.(1)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程.(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x根据(2)的结果回答下列问题:①年宣传费x=49时,年销售量及年利润的预报值是多少?②年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=-.22.(12分)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:(1)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组抽取了6人,请将其余各组抽取的人数填入下表.(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.高中数学必修三综合测试参考答案(第一至第三章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某工厂的一、二、三车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a,b,c,且2b=a+c,则二车间生产的产品数为( )A.800B.1000C.1200D.1500【解析】选C.因为2b=a+c,所以二车间抽取的产品数占抽取产品总数的三分之一,根据分层抽样的性质可知,二车间生产的产品数占总数的三分之一,即为3600×=1200.2.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是( )A.对立事件B.不可能事件C.互斥但不对立事件D.不是互斥事件【解析】选C.甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.3.(2014·北京高考)执行如图所示的程序框图,输出的S值为( )A.1B.3C.7D.15【解析】选C.k=0,S=0;S=0+20=1,k=1;S=1+21=3,k=2;S=3+22=7,k=3.退出循环,输出的S值为7.【补偿训练】如图所示程序运行的结果为.t=1i=2WHILE i<=5t=t﹡ii=i+1WENDPRINT tEND【解析】本程序计算的是t=1×2×3×4×5=120.答案:1204.从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示:若某高校A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为( ) A.10 B.20 C.8 D.16【解析】选B.视力在0.9以上的频率为(1+0.75+0.25)×0.2=0.4,故能报A专业的人数为0.4×50=20.5.(2014·浙江高考)在3张奖券中有一、二等奖各1张,另一张无奖,甲、乙两人各抽取1张,两人都中奖的概率是( )A. B. C. D.【解析】选B.设三张券分别用A,B,C代替,A一等奖;B二等奖;C无奖,甲、乙各抽一张共包括(A,B),(A,C),(B,A),(B,C),(C,A),(C,B)6种基本事件,其中甲、乙都中奖包括两种,P==,故选B.6.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )分数 5 4 3 2 1人数20 10 30 30 10A. B.3 C. D.【解析】选C.这组数据的平均数是:=3,方差=[20×(5-3)2+10×(4-3)2+30×(2-3)2+10×(1-3)2]=,则这100人成绩的标准差为=.7.某校为了了解学生的身体素质情况,对初三(2)班的50名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的条形图,已知从左至右前4个小组的频率分别为0.02,0.1,0.12,0.46.下列说法中:①学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5)内;③学生成绩的中位数在第四小组(22.5~26.5)范围内.其中正确的说法有( )A.0个B.1个C.2个D.3个【解析】选C.5个小组的频率之和为1,且前四个分别为0.02,0.1,0.12,0.46,故第五组的频率是1-(0.02+0.1+0.12+0.46)=0.3,学生的成绩≥27分的在第五组,总共有50名学生,故第五组共有50×0.3=15(人),故①正确;观察直方图:第四组人数最多,但学生成绩的众数不一定在第四小组(22.5~26.5)内,故②不正确;学生成绩的中位数是第25个数和第26个数的平均数,应该落在第四组,故③正确.8.扇形AOB的半径为1,圆心角为90°.点C,D,E将弧AB等分成四份.连接OC,OD,OE,从图中所有的扇形中随机取出一个,面积恰为的概率是( )A. B. C. D.【解题指南】本题考查扇形面积公式及古典概型概率.解题关键是求出面积为的扇形所对圆心角的度数.【解析】选A.据题意若扇形面积为,据扇形面积公式=×α×1⇒α=,即只需扇形圆心角为即可,列举可得这种情况共有3种,而整个基本事件个数共有10种,故其概率为.9.设a∈[0,10)且a≠1,则函数f(x)=logx在(0,+∞)内为增函数且g(x)=在(0,+∞)a内也为增函数的概率为( )A. B. C. D.【解析】选B.由条件知,a的所有可能取值为a∈[0,10)且a≠1,使函数f(x),g(x)在(0,+∞)内都为增函数的a的取值为所以1<a<2.由几何概型的概率公式知,P==.10.从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:身高x/cm 160 165 170 175 180体重y/kg 63 66 70 72 74根据上表可得回归方程ˆy=0.56x+ˆa,据此模型预报身高为172cm的高三男生的体重为( )A.70.09B.70.12C.70.55D.71.05【解析】选B.由表中数据得==170,==69.将(,)代入ˆy=0.56x+ˆa,所以69=0.56×170+ˆa,所以ˆa=-26.2,所以ˆy=0.56x-26.2.所以当x=172时,y=70.12.【补偿训练】已知x与y之间的几组数据如下表:x 1 2 3 4 5 6y 0 2 1 3 3 4假设根据上表数据所得回归方程为ˆy=ˆb x+ˆa,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是( )A.ˆb>b′,ˆa>a′B.ˆb>b′,ˆa<a′C.ˆb<b′,ˆa>a′D.ˆb<b′,ˆa<a′【解析】选C.画出散点图如图所示,根据散点图大致画出回归直线,再画出过(1,0)和(2,2)的直线,比较可知选C.11.如图所示,在半径为1的半圆内,放置一个边长为的正方形ABCD,向半圆内任投一点,则该点落在正方形内的概率是( )A. B. C. D.【解析】选D.由题设可知,该事件符合几何概型.正方形的面积为()2=,半圆的面积为×π=,故点落在正方形内的概率是=.12.如图所示是用模拟方法估计圆周率π的程序框图,P表示估计结果,则图中空白框内应填入( )A.P=B.P=C.P=D.P=【解题指南】首先读懂程序框图的意义,其中读懂+≤1是关键,然后转化为几何概型确定圆周率π的表达式,最后得出P的表达式.【解析】选D.采用几何概型法.因为x i,y i为0~1之间的随机数,构成以1为边长的正方形面,当+≤1时,点(x i,y i)均落在以原点为圆心,以1为半径且在第一象限的圆内,当+>1时对应点落在阴影部分中(如图所示).所以有=,Nπ=4M-Mπ,π(M+N)=4M,π=.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.将参加数学竞赛的1000名学生编号如下:0001,0002,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,从第一部分随机抽取一个号码为0015,则第40个号码为.【解题指南】本题考查系统抽样方法的应用.根据系统抽样方法的定义求解【解析】根据系统抽样方法的定义,得第40个号码对应15+39×20=795,即得第40个号码为0795.答案:079514.有一根长为1米的细绳子,随机从中间将细绳剪断,则使两截的长度都大于米的概率为.【解析】如图,将细绳八等分,C,D分别是第一个和最后一个等分点,则在线段CD的任意位置剪断此绳得到的两截细绳长度都大于米.由几何概型的概率计算公式可得,两截的长度都大于米的概率为P==.答案:【举一反三】题目中把“使两截的长度都大于米”改为“使两截之差的绝对值大于米”,那么概率应为多少?【解析】设其中一截为x米,则另一截为(1-x)米,则|x-(1-x)|=|2x-1|>,解得x>或x<,把1米的绳子四等分,则在AB或DE的任意位置剪断,都会使两截之差的绝对值大于米,故所求概率为=.15.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示).【解析】从中任意取出两个的所有基本事件有(1,2),(1,3),(1,4),…,(2,3),(2,4),…,(6,7)共21个.而这两个球编号之积为偶数的有(1,2),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(6,7)共15个.故所求的概率P==.答案:【一题多解】在21个基本事件中,两个球的编号之积为奇数的有(1,3),(1,5),(1,7),(3,5),(3,7),(5,7)共6个.所以P(编号之积为奇数)==,根据对立事件的概率可求得编号之积为偶数的概率为1-=. 答案:16.甲、乙两个人玩一转盘游戏(转盘如图①,“C为弧AB的中点”),任意转动转盘一次,指针指向圆弧AC时甲胜,指向圆弧BC时乙胜.后来转盘损坏如图②,甲提议连接AD,取AD中点E,若任意转动转盘一次,指针指向线段AE时甲胜,指向线段ED时乙胜.然后继续游戏,你觉得此时游戏还公平吗?答案:,因为P甲P乙(填<,>或=).【解析】连接OE,在直角三角形AOD中,∠AOE=,∠DOE=,若任意转动转盘一次,指针指向线段AE的概率是:÷=,指针指向线段ED的概率是:÷=,所以乙胜的概率大,即这个游戏不公平.答案:不公平<三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各随机选购一种型号的电脑,有关报价信息如图.(1)写出所有选购方案.(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?(直接写出结果即可)【解题指南】利用树状图确定所有选购方案,然后利用古典概型的概率公式进行求解.【解析】(1)画出树状图如图:则选购方案为:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E).(2)A型号电脑被选中的情形为(A,D),(A,E),即基本事件为2种,所以A型号电脑被选中的概率为P==.18.(12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)计算甲班的样本方差.(2)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.【解题指南】(1)先求出平均数,再代入方差公式即可;(2)写出所有基本事件,再统计基本事件的总数和所求事件包含的基本事件的个数,利用古典概型计算概率.【解析】(1)甲班的平均身高为=(158+162+163+168+168+170+171+179+179+182)=170,甲班的样本方差为s2=[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+ (179-170)2+(179-170)2+(182-170)2]=57.2.(2)设“身高为176cm的同学被抽中”的事件为A,用(x,y)表示从乙班10名同学中抽取两名身高不低于173cm的同学的身高,则所有的基本事件有(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173),共10个基本事件,而事件A含有(181,176),(179,176),(178,176),(176,173),共4个基本事件,故P(A)==.19.(12分)(2014·山东高考)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C数量50 150 100(1)求这6件样品中来自A,B,C各地区样品的数量.(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.【解题指南】(1)本题考查了分层抽样,利用比例求出这6件样品中来自A,B,C各地区样品的数量.(2)本题考查了古典概型,先将基本事件全部列出,再求这2件商品来自相同地区的概率. 【解析】(1)因为工作人员是按分层抽样抽取样品,所以各地区抽取样品比例为:A∶B∶C=50∶150∶100=1∶3∶2,所以各地区抽取样品数为:A:6×=1,B:6×=3,C:6×=2.(2)设各地区样品分别为:A,B1,B2,B3,C1,C2,设M=“这2件商品来自相同的地区”,基本事件空间Ω为:(A,B1),(A,B2),(A,B3),(A,C1),(A,C2),(B1,B2),(B1,B3),(B1,C1),(B1,C2),(B2,B3),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(C1,C2),共15个.样本事件空间为:(B1,B2),(B1,B3),(B2,B3),(C1,C2)所以这两件样品来自同一地区的概率为:P(M)=.20.(12分)(2015·全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图B地区用户满意度评分的频数分布表满意度[50,60) [60,70) [70,80) [80,90) [90,100]评分分组频数 2 8 14 10 6(1)作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)(2)根据用户满意度评分,将用户的满意度评分分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区的用户的满意度等级为不满意的概率大,说明理由.【解析】(1)通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.21.(12分)(2015·全国卷Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi 和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(xi- )2(wi-)2(xi-)(yi-)(wi-)(yi-)46.6 563 6.8 289.8 1.6 1 469 108.8表中wi =,=wi.(1)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程.(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x根据(2)的结果回答下列问题:①年宣传费x=49时,年销售量及年利润的预报值是多少?②年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=-.【解析】(1)由散点图的变化趋势可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=,先建立y关于w的线性回归方程.由于===68,ˆc=-=563-68×6.8=100.6,所以y关于w的线性回归方程为ˆy=100.6+68w,因此y关于x的回归方程为ˆy=100.6+68.(3)①由(2)知,当x=49时,年销售量y的预报值ˆy=100.6+68=576.6,年利润z的预报值ˆz=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z的预报值ˆz=0.2(100.6+68)-x=-x+13.6+20.12.所以当==6.8,即x=46.24时,ˆz取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.22.(12分)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:组别 A B C D E人数50 100 150 150 50(1)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组抽取了6人,请将其余各组抽取的人数填入下表.组别 A B C D E人数50 100 150 150 50抽取人数 6(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.【解析】(1)由题设知,分层抽样的抽取比例为6%,所以各组抽取的人数如表:组别 A B C D E人数50 100 150 150 50抽取人数 3 6 9 9 3(2)记从A组抽到的3个评委为a1,a2,a3,其中a1,a2支持1号歌手;从B组抽到的6个评委为b1,b2,b3,b4,b5,b6,其中b1,b2支持1号歌手.从{a1,a2,a3}和{b1,b2,b3,b4,b5,b6}中各抽取1人的所有结果为:由以上树状图知所有结果共18种,其中2人都支持1号歌手的有a1b1,a1b2,a2b1,a2b2共4种,故所求概率P==.。
(人教版B版)高中数学必修第三册 第七章综合测试试卷02及答案
第七章综合测试一、选择题1.函数()cos 2f x x =的最小正周期是( )A .4pB .2pC .pD .2p2.13sin6p的值为( )A .12B C D 3.要得到函数2sin 3y x p æö=+ç÷èø的图象,只需将函数2sin y x =的图象( )A .向左平移3p个单位B .向右平移3p个单位C .向左平移6p个单位D .向右平移6p个单位4.函数2sin ()cos x xf x x x+=+在[,]p p -的图像大致为( )A .B .C .D .5.下列函数中,以2p为周期且在区间,42p p æöç÷èø单调递增的是( )A .()cos 2f x x =B .()sin 2f x x =C .()cos f x x=D .()sin f x x=6.如图为2019年某市某天中6h 至14h 的温度变化曲线,其近似满足函数sin()0,0,2y A x b A p w j w j p æö=++ç÷èø>><<的半个周期的图象,则该天8h 的温度大约为( )A .16 ℃B .15 ℃C .14 ℃D .13 ℃7.已知曲线1:cos C y x =,22:sin 23C y x p æö=+ç÷èø,则下面结论正确的是( )A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移6p个单位长度,得到曲线2C B .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移12p个单位长度,得到曲线2C C .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移6p个单位长度,得到曲线2C D .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12p个单位长度,得到曲线2C8.已知sin 4p a æö-=ç÷èø7cos 225a =,则tan 2a=( )A .3B .3-C .3±D .4±9.已知函数22()cos sin f x x x =-,下列说法错误的是( )A .()cos 2f x x=B .函数()f x 的图象关于直线0x =对称C .()f x 的最小值正周期为p D .()f x 的对称中心为(),0,k k Zp Î10.在平面直角坐标系中,»AB ,»CD,»EF ,¼GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角a 以Ox 为始边,OP 为终边,若tan cos sin a a a <<,则P 所在的圆弧是()A .»AB B .»CDC .»EFD .¼GH11.已知函数()()()sin 0,0,f x A x A w j w j p =+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x 。
高中数学必修三全册练习题
本册综合素能检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列各项中最小的数是( ) A .111111(2) B .20106 C .1000(4) D .101(8)[答案] A[解析] 111111(2)=1×25+1×24+1×23+1×22+1×21+1×20=63,210(6)=2×62+1×61+0×60=78,1000(4)=1×43+0×42+0×41+0×40=64,101(8)=1×82+0×81+1×80=65,故最小的数为111111(2).2.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样和分层抽样抽取,则不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中先剔除1个个体,则n 的值为( )A .6B .12C .18D .3 [答案] A[解析] 由于要用分层抽样三层之比为123,因此,凡为6的整倍数,又样本容量增加1时需要删除1人,所以35n +1为整数,因此n =6,故选A.3.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色’’与“乙分得红色”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .不是互斥事件[答案] C[解析] 甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.4.在长为12 cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20 cm 2的概( )A.16B.13C.23D.45[答案] C[解析] 设AC =x cm ,则BC =(12-x )cm(0<x <12).面积S =x ·(12-x )>20,解得2<x <10,∴矩形面积大于20 cm 2的概率为10-212=23.故选C.5.某程序框图如图所示,现输入选项中的四个函数,则可以输出的是( )A .f (x )=|x |xB .f (x )=ln(x 2+1-x )C .f (x )=e x +e -xe x -e -xD .f (x )=x 21+x 4[答案] B[解析] 由框图知f (x )应满足:奇函数,有零点.A 中的函数不能输出,因为此函数没班级:_________姓名:_________学号:______-----------------------------密--------------------------------------封-----------------------------------线-------------------------------有零点;B 中函数可以输出;C 中函数不存在零点,故不能输出;D 中函数为偶函数,也不能输出,故选B.6.如图是某年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个).去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别a 1,a 2,则一定有( )A .a 1>a 2B .a 1<a 2C .a 1=a 2D .a 1,a 2的大小与m 的值有关 [答案] B[解析] 去掉一个最高分和一个最低分后,甲选手得分是81,85,85,84,85,则平均数是a 1=15(81+85+85+84+85)=84;乙选后得分是84,84,86,84,87,则平均数是a 2=15(84+84+86+84+87)=85>84,所以a 1<a 2.7.(2014·浙江)在3张奖卷中有一、二等奖各1张,另一张无奖,甲、乙两人各抽取1张,两人都中奖的概率是( )A.16B.13C.12D.23[答案] B[解析] 设三张卷分别用A ,B ,C 代替,A 一等奖;B 二等奖;C 无奖,甲、乙各抽一张共包括(A ,B ),(A ,C ),(B ,A ),(B ,C ),(C ,A ),(C ,B )6种基本事件,其中甲、乙都中奖包括两种,P =26=13,故选B.8.(2015·江苏卷)根据如图所示的伪代码,可知输出的结果S 为( )A .7B .5C .9D .11[答案] A[解析] 第一次循环:S =3,I =4;第二次循环:S =5,I =7;第三次循环:S =7,I=10;结束循环,输出S =7.9.如果数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则5x 1+2,5x 2+2,…,5x n +2的平均数和方差分别为( )A.x ,s 2 B .5x +2,s 2 C .5x +2,25s 2 D.x ,25s 2[答案] C[解析] 本题考查平均数与方差的计算公式.由平均数与方差的计算公式分析可得5x 1+2,5x 2+2,…,5x n +2的平均数为5x +2,方差为25s 2,故选C.10.(2015·广东佛山高三教学质量检测(一))某程序框图如下图所示,该程序运行后输出的S 的值是( )A .-3B .-12C.13 D .2[答案] A[解析] 该程序框图的运行过程是: S =2,i =1,i =1≤2 010成立, S =1+21-2=-3; i =1+1=2,i =2≤2 010成立, S =1+(-3)1-(-3)=-12;i =2+1=3,i =3≤2010成立, S =1+(-12)1-(-12)=13;i =3+1=4, i =4≤2 010成立; S =1+131-13=2;i =4+1=5, …….对于判断框内i 的值,n ∈N ,当i =4n +1时,S =2;当i =4n +2时,S =-3;当i =4n +3时,S =-12;当i =4n +4时,S =13.由于2 010=4×502+2,则S =-3.该程序框图中含有当型循环结构,判断框内的条件不成立时循环终止,即i =2 011时开始不成立,输出S =-3.11.(2015·石家庄模拟)从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:身高 x (cm) 160 165 170 175 180 体重y (kg)6366707274根据上表可得回归直线方程y ^=0.56x +a ^,据此模型预报身高为172 cm 的高三男生的体重为( )A .70.09B .70.12C .70.55D .71.05[答案] B[解析] 由表中数据得x =160+165+170+175+1805=170,y =63+66+70+72+745=69.将(x ,y )代入y ^=0.56x +a ^,∴69=0.56×170+a ^,∴a ^=-26.2,∴y ^=0.56x -26.2. ∴当x =172时,y =70.12,故选B.12.(2015·全国卷)根据下面给出的2004年至2003年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 [答案] D[解析] 由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.(2012·江苏高考卷)某学校高一、高二、高三年级的学生人数之比为334,现用分层抽样的方法从该校高中三个年极的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.[答案]15[解析]由已知,高二人数占总人数的310,所以抽取人数为310×50=15.14.102,238的最大公约数是________.[答案]34[解析]利用辗转相除法或更相减损术可得最大公约数是34.15.(2014·福建高考)如右图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.[答案]0.18[解析]由题意知,这是个几何概型问题,S阴影S正方形=1801000=0.18.∵S正方形=1,∴S阴影=0.18.16.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:队员12345 6三分球个数a1a2a3a4a5a6下图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填________,输出的s=________.[答案]i≤6?(i<7?)a1+a2+a3+a4+a5+a6[解析]由题意可知,程序框图是要统计6名队员投进的三分球的总数,由程序框图的循环逻辑知识可知,判断框应填i≤6?,输出的结果就是6名队员投进的三分球的总数,而6名队员投进的三分球数分别为a1,a2,a3,a4,a5,a6,故输出的s=a1+a2+…+a6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(2014·山东)海关对同时从A、B、C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C数量50150100(1)求这6件样品中来自A、B、C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.[解析](1)因为工作人员是按分层抽样抽取样品,所以各地区抽取样品的比例为:AB C=50150100=13 2各地区抽取的商品数分别别为A:6×16=1;B:6×36=3;C:6×26=2.(2)设各地商品分别为A、B1、B2、B3、C1、C2所以所含基本事件共有(A,B1),(A,B2),(A,B3),(A,C1),(A,C2),(B1,B2),(B1,B3),(B1,C1),(B1,C2),(B2,B3),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(C1,C2)15种不同情况,样本事件包括(B1,B2),(B1,B3),(B2,B3),(C1,C2)4种情况.所以,这两件商品来自同一地区的概率为P =415.18.(本小题满分12分)高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.[解析](1)因为分数在[50,60)之间的频数为2,频率为0.008×10=0.08,所以高一(1)班参加校生物竞赛的人数为20.08=25.分数在[80,90)之间的频数为25-2-7-10-2=4,频率为425=0.16,所以频率分布直方图中[80,90)间的矩形的高为0.1610=0.016.(2)设“至少有1人分数在[90,100]之间”为事件A,将[80,90)之间的4人编号为1、2、3、4,[90,100]之间的2人编号为5、6.在[80,100]之间任取2人的基本事件有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.其中,至少有1人分数在[90,100]之间的基本事件有9个,根据古典概型概率的计算公式,得P(A)=915=35.[易错点拨]在茎叶图的基础上,计算频率分布直方图中某个小矩形的高是较新颖的命题方式,计算时,要注意理解小矩形的高的意义.对于古典概型的概率的求解很重要的一步是列举基本事件,此时,要注意避免重复与迹漏.19.(本小题满分12分)某城市理论预测2014年到2018年人口总数(单位:十万)与年份的关系如下表所示:年份2014+x 0123 4人口总数y 5781119(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的回归方程y^=b^x+a^;(3)据此估计2019年该城市人口总数.(参考数据:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30)[解析](1)概据题中数表画出数据的散点图如下图所示.(2)由题中数表,知x=15(0+1+2+3+4)=2,y=15(5+7+8+11+19)=10.所以b=5i=1x i y i-5x-y5i=1x2i-5x-2=3.2,a ^=y -b ^x =3.6.所以回归方程为y ^=3.2x +3.6.(3)当x =5时,y ^=3.2×5+3.6=19.6(十万)=196(万). 答:估计2019年该城市人口总数约为196万.20.(本小题满分12分)(2014·福建)根据世行2013年新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为1035~4085元为中等偏下收入国家;人均GDP 为4085~12616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如下表:行政区 区人口占城市人口比例区人均GDP(单位:美元)A 25% 8000B 30% 4000C 15% 6000D 10% 3000 E20%10000(1)判断该城市人均GDP 是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.[解析] (1)设城市人口总数为a ,该城市人均GDP 为:8000×0.25a +4000×0.30a +6000×0.15a +3000×0.10a +10000×0.20aa =6400因为6400∈[4085,12616)所以该城市人均GDP 达到了中等偏上国家标准.(2)从“5个行政区中随机抽取2个”所有的基本事件是:{A ,B },{A ,C },{A ,D },{A ,E },{B ,C },{B ,D },{B ,E },{C ,D },{C ,E },{D ,E },共10种情况,其中2个行政区都达到中等以上国家标准的有{A ,C },{A ,E },{C ,E },共3种情况因此P =310. 21.(本小题满分12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.[探究] (1)茎叶图中的数据越集中在上部,则说明该班的平均身高较高;(2)先求出平均数,再代入方差公式即可;(3)写出所有基本事件,再统计基本事件的总数和所求事件包含的基本事件的个数,利用古典概型计算概率.[解析] (1)由题中茎叶图可知:甲班身高集中于160~179 cm 之间,而乙班身高集中于170~180 cm 之间,因此乙班平均身高高于甲班.(2)甲班的平均身高为x =110(158+162+163+168+168+170+171+179+179+182)=170,甲班的样本方差为 s 2=110[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2.(3)设“身高为176 cm 的同学被抽中”的事件为A ,用(x ,y )表示从乙班10名同学中抽中两名身高不低于173 cm 的同学的身高,则所有的基本事件有(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173),共10个基本事件,而事件A 含有(181,176),(179,176),(178,176),(176,173),共4个基本事件,故P (A )=410=25.22.(本小题满分12分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的分类垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计 1 000吨生活垃圾,数据统计如下(单位:吨):(1)(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱,“可回收物”箱,“其他垃圾”箱的投放量分别为a 、b 、c ,其中a >0,a +b +c =600.当数据a 、b 、c 的方差s 2最大时,写出a 、b 、c 的值(结论不要求证明),并求出此时s 2的值.[解析] (1)厨余垃圾投放正确的概率为P =“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23.(2)设“生活垃圾投放错误”为事件A ,则事件A 表示“生活垃圾投放正确”.事件A 的概率为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )=400+240+601 000=710,所以P (A )=1-P (A )=1-710=310.(3)当a =600,b =0,c =0时,方差s 2取得最大值. 因为x =13(a +b +c )=200,所以s 2=13[(600-200)2+(0-200)2+(0-200)2]=80 000.[名题点睛] 本题结合一个特殊设计的表格给出各类数据,显然,可用的与不可用的数据均在表中,合理应用表中的数据是求解本题的关键.在求解事件的概率时,可考虑利用对立事件求解题.在限定条件下,可根据条件及方差公式判断何时“方差最大”,抓住这一关键性的条件,问题就容易解决了.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修三综合测试题
一、选择题
1.算法的三种基本结构是()
A.顺序结构、模块结构、条件分支结构B.顺序结构、条件结构、循环结构
C.模块结构、条件分支结构、循环结构D.顺序结构、模块结构、循环结构
2.一个年级有 12 个班,每个班有学生 50 名, 并从 1 至 50 排学号,为了交流学习经验,要
求每班学号为14 的同学留下进行交流,这里运用的是()
A. 分层抽样
B.抽签抽样
C.随机抽样
D.系统抽样
3.某单位有职工 160人,其中业务员有104 人,管理人员32 人,后勤服务人员24 人,现
用分层抽样法从中抽取一容量为20 的样本,则抽取管理人员()
A.3 人
B.4人
C.7人
D.12人
4. 一个容量为 20的样本数据,分组后组距与频数如下表.
组距[10, 20)[ 20,30)[ 30,40 )[ 40, 50)[ 50, 60)[ 60, 70)频数234542则样本在区间(-∞,50)上的频率为 ( )
A.0.5
B.0.25
C.0.6
D.0.7
5、把二进制数111(2)化为十进制数为 ()
A、 2
B、 4
C、7
D、 8
6.抽查 10 件产品,设事件A:至少有两件次品,则 A 的对立事件为( )
A. 至多两件次品
B.至多一件次品
C. 至多两件正品
D.至少两件正品
7.取一根长度为 3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于 1 m 的概率是 .()
A. 1
B.1
C.1
D.不确定234
8. 甲、乙 2人下棋,下成和棋的概率是1
,乙获胜的概率是
1
,则甲不胜的概率是() 23
1
B.5
C.
12
A.
6D.
3
26
9.某银行储蓄卡上的密码是一种 4 位数号码 , 每位上的数字可在0 到 9 中选取 , 某人只记得密码的首位数字 ,如果随意按下一个密码, 正好按对密码的概率为 ()
1
B.1
C.
1
D.
1
A.
10310210
104
10.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为 3.2 ,全年比赛
进球个数的标准差为3;乙队平均每场进球数为 1.8 ,全年比赛进球个数的标准差为0.3.
下列说法正确的个数为()
①甲队的技术比乙队好②乙队发挥比甲队稳定
③乙队几乎每场都进球④甲队的表现时好时坏
A.1
B.2
C.3
D.4
11.已知变量 a ,b 已被赋值,要交换 a, b 的值,应采用下面()的算法。
A. a=b, b=a B a=c, b=a, c=b C a=c, b=a, c=a D c=a, a=b, b=c
12. 从 10 个篮球中任取一个,检验其质量,则应采用的抽样方法为()
A 简单随机抽样B系统抽样C分层抽样D放回抽样
13. 某企业有职工150 人,其中高级职称15 人,中级职称45 人,一般职员90 人,
现抽取 30 人进行分层抽样,则各职称人数分别为()
A 5,10,15
B 3,9,18
C 3,10,17
D 5, 9, 16
14.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品” ,
C=“三件产品不全是次品”,则下列结论哪个是正确的()
A A,C 互斥
B B,C互斥C任何两个都互斥D任何两个都不
15.某人忘记了电话号码的最后一个数字,随意拨号,则拨号不超过三次而接通电话
的概率为()
A 9/10
B 3/10
C 1/8
D 1/10
16.回归方程 y? =1.5x-15,则
A. y =1.5 x -15
B.15是回归系数 a
C.1.5是回归系数 a
D.x=10时, y=0
开始
二、填空题
输入 a,b, c
17.两个数120,168的最大公约数是 __________ 。
否是
a>b
18. 阅读右面的流程图,输出max 的含义____________ 。
19 .已知{ x1, x2, x3,......x n}的平均数为 a ,标准差是b, 则max:=b max:=a
3x1 2, 3x2 2, ..., 3x n2的平均数是_____。
标准差是________.否
c>max
是
20.对一批学生的抽样成绩的茎叶图如下:
max:=c
8 9 25
1 5 34
输出 max
528443
39841652结束则表示的原始数据为.
21.在边长为 25cm 的正方形中挖去腰长为23cm的两个等腰直角三角形(如
图),现有均匀
的粒子散落在正方形中,问粒子落在中间带形区域的概率是.
22.下列是容量为 100 的样本的频率分布直方图,试根据图形中的数据填空。
(1)样本数据落在范围〔6,10〕内的频率为;
频率
10, 14〕内的频率为;
(2)样本数据落在范围〔
组距
2, 6〕内的概率为。
(3)总体数据在范围〔
0.09
0.08
样本
0.03
数据
0.02
26101418
三、解答题
23.由经验得知,新亚购物广场付款处排队等候付款的人数及其概率如下:
排队人数01234 5 人以上
概率0.100.160.300.300.100.04求: (1) 至多 2 人排队的概率;
(2)至少 2 人排队的概率。
24.画出1 2 3 4 ... 100 的程序框图,写出对应的程序。
25.抛掷两颗骰子,求:( 1)点数之和出现 7 点的概率;
(2)出现两个 4 点的概率 .
26.如图在墙上挂着一块边长为 16cm的正方形木板,上面画了大、中、小三个同心圆,半径分别为 2cm,4cm,6cm, 某人站在 3m 处向此木板投镖,设击中线上或没有投中木
板时都不算,可重新投一次.
问:⑴投中大圆内的概率是多少?
⑵投中小圆与中圆形成的圆环的概率是多少?
⑶投中大圆之外的概率又是多少?
数学必修三模块测试A
一、选择题:
1—5 BDBDC 6 — 10 BBBBD11 —16 DABBBA
二、填空题:
17、 2418、 a.b.c 中的最大者19、 a+2 、 b
96
20、 3521、 62522、 0.320.40 0.12
三、解答题:
23. 解:记“付款处排队等候付款的人数为0、1、 2、3、4、5 人以上”的事件分别为A、B、
C、 D、 E、F,则由题设得P(A) =0.1 ,P( B) =0.16, P( C)=0.30, P ( D) =0.3 0,P( E)
=0.1, P ( F) =0.04.
(1)事件“至多 2 人排队”是互斥事件A、 B、 C 的和 A+B+C,其概率为
P( A+B+C) =P(A) +P( B) +P( C) =0.1+0.16+0.3=0.56 ,至多 2 人排队的概率为 0.46 。
(2)“至少2 人排队”的对立事件是“至多 1 人排队”。
而“至多 1 人排队”为互斥事件 A、
B 的和 A+B,其概率为 P( A+B)=P(A)+P( B) =0.1+0.16=0.26,因此“至少 2 人排队”的
概率为 1- P( A+B) =1- 0.26=0.74.
24. 框图:略程序:
方法一方法二
i=1i=1
s=0s=0
WHILE i<=100DO
S=s+i S=s+i
I=i+1I=i+1
WEND LOOP UNTIL i>100
PRINT s PRINT s
END END
25. 解:作图,从下图中容易看出基本事件空间与点集S={( x,y)|x ∈ N,y∈N,1≤ x≤ 6,
1≤ y≤ 6} 中的元素一一对应. 因为 S 中点的总数是6× 6=36(个),所以基本事件总数n=36.(1)记“点数之和出现7 点”的事件为 A,从图中可看到事件 A 包含的基本事件数共 6 个:
( 6,1),(5,2),(4,3),(3, 4),(2, 5),( 1, 6),所以 6 1 P (A )=
.
36
6
(8 分)
(2)记“出现两个 4 点”的事件为 B ,则从图中可看到事件
B 包含的基本事件数只有 1 个:
( 4,4). 所以 P (B )= 1
.
36
26. 解:镖投在板上任何位置的可能性相等,故概率与面积应成正比,设所求概率分
p 1 , p 2 , p 3 于是有:
p 1
s 大圆
36
9
s
正方
形
256
64
p 2
s 大圆
s 中
园
36
16 20 5
s 正方形
256
256 64
p 3
s
正方形
s 中园 256 16
1
s 正方形
256
16。