上海市宝山区2017-2018学年八年级(下)期末数学试卷
最新第二学期宝山区八年级数学期末卷
第二学期期末八年级数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,一次函数b kx y +=的图像如图1所示, 那么下列判断正确的是( )(A )0>k ,0>b ; (B )0<k ,0>b ; (C )0>k ,0<b ; (D )0<k ,0<b .2.用换元法解方程31122=-+-x x x x 时,如果设y x x =-12,那么可以 得到一个关于y 的整式方程,该方程是( )(A )0132=--y y ; (B )0132=-+y y ; (C )0132=+-y y ; (D )0132=++y y . 3.如图2,已知四边形ABCD 的对角线互相垂直,若适当添加一个条件, 就能判定该四边形是菱形.那么这个条件可以是( ) (A )BC BA =; (B )BD AC =; (C )CD AB ∥; (D )BD AC 、互相平分. 4.顺次联结等腰梯形各边中点所得到的四边形一定是( ) (A )等腰梯形; (B )矩形; (C )菱形; (D )正方形.5.根据你对向量的理解,下列判断中,不正确的是 ( )(A )0=+BA AB ; (B )如果CD AB =,那么CD AB =; (C )a b b a +=+; (D) c b a c b a ++=++)()(.6.我们知道“必然事件和不可能事件称为确定事件”.那么从平行四边形、矩形、菱形、等腰梯形中任选一个图形,下列事件中,确定事件是( )(A )选出的是中心对称图形; (B )选出的既是轴对称图形又是中心对称图形; (C )选出的是轴对称图形; (D )选出的既不是轴对称图形又不是中心对称图形. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.方程83=x 的根是 ▲ . 8.方程132=+x 的根是 ▲ .9.将直线12+=x y 向下平移2个单位,所得直线的表达式是 ▲ .10.已知一个一次函数的图像经过点(3-,2)和(1,1-),那么该一次函数的函数值y 随着自变量x 的增大而 ▲ (填“增大”或“减小”). ABCD(图2)Axy(图1)O11.化简:BD CD AB +-= ▲ .12.某单位在两个月内将开支从25000元降到16000元,如果每月降低开支的百分率相同,设为x ,则由题意可以列出关于x 的方程是 ▲ .13.甲乙两个同学做“石头、剪刀、布”的游戏,在一个回合中能分出胜负的概率是 ▲ . 14.学习概率有关知识时,全班同学一起做摸球实验.布袋里装有红球和白球共5个,它们除了颜色不同其他都一样.每次从袋中摸出一个球,记下颜色后放回摇匀,一共摸了100次,其中63次摸出红球,由此可以估计布袋中红球的个数是 ▲ . 15.如果一个多边形的每一个内角都等于140°,那么这个多边形是 ▲ 边形. 16.如图3,平行四边形ABCD 中,已知AB=3,AD=5,∠BAD 的平分线交BC 于点E ,则CE = ▲ .17.某地区采用分段计费的方法计算电费,月用电量x (度)与应缴纳电费y (元)之间的函数关系如图4所示.那么当用电量为260度时,应缴电费 ▲ 元.18.如图5,梯形ABCD 中,AB ∥CD ,且AB CD BC =+,设∠A =︒x ,∠B =︒y ,那么y 关于x 的函数关系式是 ▲ .三、简答题:(本大题共3题,每题8分,满分24分)19.解方程组:⎩⎨⎧-=-=--203222x y y xy x )2()1(.20.如图6,已知一次函数42+=x y 的图像与x 轴、y 轴分别交于点A 、B ,且BC ∥AO ,梯形AOBC 的面积为10. (1)求点A 、B 、C 的坐标; (2)求直线AC 的表达式.x (度)200y (元)60 100 O(图4)130 (图5)D CBADCBA(图3)EByA xO C(图6)21.如图7,平面直角坐标系xOy 中,O 为原点,已知点A (2-,1)、B (0,1)、C (2,0)、D (0,3), (1)画出向量AB 、CD ,并直接写出AB = ▲ ,CD = ▲ ;(2)画出向量CD AB -.四、解答题:(本大题共4题,每题10分,满分40分)22.如图8,已知梯形ABCD 中,AD ∥BC ,AB ⊥BC ,点E 、F 分别是边BC 、CD 的中点,直线EF 交边AD 的延长线于点M ,联结BD .(1)求证:四边形DBEM 是平行四边形;(2)若BD =DC ,联结CM ,求证:四边形ABCM 为矩形.23.为了改善部分经济困难家庭的居住条件,某市计划在一定时间内完成100万平方米的保障房建设任务.后来市政府调整了计划,不仅保障房建设任务比原计划增加了20%,而且还要提前1年完成建设任务.经测算,要完成新的计划,平均每年需要比原计划多建设10万平方米的保障房,那么按新的计划,平均每年应建设多少万平方米的保障房?24.如图9,已知平行四边形ABCD ,E 是对角线AC 延长线上的一点, (1)若四边形ABCD 是菱形,求证BE =DE ; (2)写出(1)的逆命题,并判断其是真命题还是假命题, 若是真命题,试给出证明;若是假命题,试举出反例.xyO 11(图7)D CBAE(图9)ABCDEFM(图8)25.如图10,直线102+-=x y 与x 轴交于点A ,又B 是该直线上一点,满足OA OB =, (1)求点B 的坐标;(2)若C 是直线上另外一点,满足AB=BC ,且四边形OBCD 是平行四边形,试画出符合要求的大致图形,并求出点D 的坐标.五、探究题:(本题满分14分,第(1)、(2)题每小题5分,第(3)小题题4分) 26.已知正方形ABCD 和正方形AEFG ,联结CF ,P 是CF 的中点,联结EP 、DP . (1)如图11,当点E 在边AB 上时,试研究线段EP 与DP 之间的数量关系和位置关系; (2)把(1)中的正方形AEFG 绕点A 逆时针方向旋转90°,试在图12中画出符合题意的图形,并研究这时(1)中的结论是否仍然成立;(3)把(1)中的正方形AEFG 绕点A 任意旋转某个角度(如图13),试按题意把图形补画完整,并研究(1)中的结论是否仍然成立.OBAxy(图10)D CBA(图12)(图11)DCBA EFPGD CBA EF(图13)G八年级第二学期期末质量监控数学参考答案一、选择题(本大题共6题,每题4分,满分24分)1.B ; 2.C ; 3.D ; 4.C ; 5.A ; 6. D ; 二、填空题(本大题共12题,每题4分,满分48分)7.2; 8.1-; 9.12-=x y ; 10.减小; 11.AC ;12.16000)1(250002=-x ; 13.32; 14.3; 15.9; 16.2;17.172 ; 18.9021+-=x y . 三、解答题(本大题共9题,满分78分)19.解:方程(1)化为 0))(3(=+-y x y x , 即y x 3=或y x -= …(2分)从而原方程组化为⎩⎨⎧-=-=23x y y x 、⎩⎨⎧-=--=2x y yx …………(2分)分别解得 ⎩⎨⎧==13y x 或⎩⎨⎧-==11y x …………………………………(4分) 即为原方程组的解20.解:(1)由已知,A (-2,0),B (0,4).……………(2分)所以OA=2,OB=4,∵梯形AOBC 的面积为10,∴ 10)(21=⋅+OB BC OA .……(1分)解得3=BC ,所以点C (-3,4)……………………(1分)(2)设直线AC 的表达式为b kx y +=.………………(1分)则⎩⎨⎧=+-=+-4302b k b k ,解得⎩⎨⎧-=-=.8,4b k …………………(2分) ∴直线AC 的表达式为84--=x y .……(1分)21.解:(1)画图正确.…………………………………(3分) AB = 2 ,CD =13;………………(2分) (2)画图正确.…………………………………(3分) 22.(1)证明:∵ 梯形ABCD 中,AD BC ∥,即DM ∥BE ,∵ E 、F 分别是边BC 、CD 的中点∴ EF //BD ,…………………………(2分)∴ 四边形DBEM 是平行四边形.…………………(2分)(2)证明:联结DE ,∵ DB=DC,且E 是BC 中点, ∴ DE ⊥BC ………………(1分) 又∵ AB ⊥BC ∴ AB //DE∵ 平行四边形DBEM ∴ DM //BE 且DM =BE ,∴ DM //EC 且DM =EC ,∴ 四边形DMCE 是平行四边形 ………………………(2分) ∴ CM ∥DE ∴ AB ∥CM …………………………(1分)又AM ∥BC ∴ 四边形ABCM 是平行四边形,∵ AB ⊥BC ,∴四边形ABCM 是矩形……………………(2分)23. 解:设按新的计划,平均每年应建设x 万平方米的保障房. ………(1分)则1%)201(10010100=+--xx ,………………………………(4分) 即 01200102=-+x x , ……………………………………(2分) 解得 30,4021=-=x x .…………………………………………(2分) 经检验它们都是原方程的根,但40-=x 不符合实际意义,舍去. 所以 30=x 是符合题意的解答:按新的计划,平均每年应建设30万平方米的保障房. ……………(1分) 24.(1)证明:联结BD ,交AC 于点O ………………………(1分)∵ 菱形ABCD ,∴ AC ⊥BD ,且BO=OD ………(2分) 又E 是AC 延长线上的一点∴BE =DE .……………………………………………(1分)(2)解:(1)的逆命题是“若BE =DE ,则四边形ABCD 是菱形”,它是真命题,理由如下: ………………(2分) ∵ 平行四边形ABCD ,对角线AC 、BD 交于点O , ∴ BO=OD …………………………(1分) 又∵BE =DE∴ EO ⊥BD ,即AC ⊥BD …………………(1分) ∴ 四边形ABCD 是菱形 …………………(2分)25.解:(1)由已知,点A 坐标为(5,0),所以OA =5. …………(1分)设点B 坐标为),(n m . 因为B 是直线102+-=x y 上一点∴ 102+-=m n …………………………………(1分) 又OB=OA ,∴ 522=+n m ,…………………(1分)解得⎩⎨⎧==43n m 或⎩⎨⎧==05n m (与点A 重合,舍去)…………………(2分) ∴点B 坐标为(3,4).(2)符合要求的大致图形如右图所示。
2017--2018学年度第二学期沪科版(上海)八年级期末考试数学试卷
…………外………内…………○…………绝密★启用前 2017--2018学年度第二学期 沪科版(上海)八年级期末考试数学试卷 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分钟,满分120分1.(本题3分)已知y 是x 的一次函数,下表中列出了部分对应值,则m 等 A. -1 B. 0 C. -2 D. -12 2.(本题3分)已知点()()1242y y -,,,都在直线23y x b =-+上,则1y 与2y 的大小关系是() A. 12y y > B. 12y y = C. 12y y < D. 不能确定 3.(本题3分)小李驾驶汽车以50千米/小时的速度匀速行驶1小时后,途中靠边停车接了半小时电话,然后继续匀速行驶.已知行驶路程(y 单位:千米)与行驶时间(t 单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为() A. 43.5 B. 50 C. 56 D. 58………○…………○……※※在※※装※※订※※…○……线4.(本题3分)已知直线2y x =与y x b =-+的交点的坐标为(1, a ),则方程组2{ y xy x b ==-+的解是( )A. 1{ 2x y ==B. 2{ 1x y ==C. 2{ 3x y ==D. 1{ 3x y == 5.(本题3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x 个零件,那么下面所列方程中正确的是( )A. 90606x x =-B. 90606x x =+C. 90606x x =+D. 90606x x =-6.(本题3分)若关于x 的分式方程2213m xx x +-=-无解,则m 的值为( )A. -1.5B. 1C. -1.5或2D. -0.5或-1.57.(本题3分)如图,正方形ABCD 中,E 是BD 上一点,BE=BC ,则∠BEC 的度数是( )A. 45°B. 60°C. 67.5°D. 82.5°8.(本题3分)若菱形两条对角线的长分别为6和8,则这个菱形的边长为()A. 5B. 10C. 20D. 149.(本题3分)如图是四个全等的直角三角形围成的,若两条直角边分别为3和4,斜边为5,则向图中随机抛掷一枚飞镖,飞镖落在阴影区域的概率是(不考虑在线上的情形)()A. 35 B. 45 C. 1625 D. 254910.(本题3分)如图,A .B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )…………外…………○…………装……○…………订…………○……学校:___________姓______班级:___________考号…内…………○…………装…………○…………订…………线…………○…………………装…………○… A. 625 B. 15 C. 425 D. 725 二、填空题(计32分) x+2y=5与直线x+y=3的交点坐标是________. 12.(本题4分)有甲、乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的高度y(米)与注水时间x(小时)之间的函数图象如图所示,若要使甲、乙两个蓄水池的蓄水深度相同,则注水的时间应为_______. 13.(本题4分)直线y=kx 过点(x 1,y 1),(x 2,y 2),若x 1-x 2=1,y 1-y 2=-2,则k 的值为______. 14.(本题4分)如图,将一张长方形纸片ABCD 折叠成如图所示的形状,∠EGC=26°,则∠DFG= . 15.(本题4分)如图,E 是正方形ABCD 内一点,如果△ABE 为等边三角形,那么∠DCE=____度. 16.(本题4分)如图,把一个圆形转盘按1∶2∶3∶4的比例分成A ,B ,C ,D 四个扇形区域,自由转动转盘,停止后指针落在C 区域的概率是………○…………17.(本题4分)在一个不透明的盒子中装12个白球,若干个黄球,它们除了颜色不同外,其余都相同,若从中随机摸出一个球是黄球的概率是13,则黄球的个数为________。
2017-2018最新沪教版八年级下册数学全册综合检测试卷(含答案
八年级下册数学全册综合检测二姓名:__________ 班级:_________一、选择题(共12小题;每小题3分,共36分)1.已知一次函数y=x+b的图象经过一、二、三象限,则b的值可以是()A. -2B. -1C. 0D. 22.当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C. D.3.下列关于矩形的说法中正确的是().A. 矩形的对角线互相垂直且平分B. 矩形的对角线相等且互相平分C. 对角线相等的四边形是矩形D. 对角线互相平分的四边形是矩形4.如图,四边形ABCD中,AB与CD不平行,M,N分别是AD,BC的中点,AB=4,DC=2,则MN的长不可能是()A. 3B. 2.5C. 2D. 1.55.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形6.如图,已知四边形ABCD是菱形,过顶点D作DE⊥AD,交对角线AC于点E,若∠DAE=20°,则∠CDE的度数是()A. 70°B. 60°C. 50°D. 40°7.从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2013个三角形,则这个多边形的边数为()A. 2 011B. 2 015C. 2 014D. 2 0168.在▱ABCD中,AB=6,AD=8,∠ABC=60°,点E是AB的中点,EF⊥AB交BC于F,连接DF,则DF的长为()A. 2B. 8C. 5D. 109.如图,菱形ABCD的边长为20,∠DAB=60,对角线为AC和BD,那么菱形的面积为()A. 50B. 100C. 200D. 40010.有如下命题:1)有两个角相等的梯形是等腰梯形;2)有两条边相等的梯形是等腰梯形;3)两条对角线相等的梯形是等腰梯形;4)等腰梯形上,下底边中点的连线把等腰梯形分成面积相等的两部分.其中正确的命题有()A. 1个B. 2个C. 3个D. 4个11.如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A. 150°B. 130°C. 120°D. 100°12.在四边形ABCD中,若有下列四个条件:①AB∥CD;②AD=BC;③∠A=∠C;④AB=CD.现以其中的两个条件为一组,能判定四边形ABCD是平行四边形的条件有()A. 3组B. 4组C. 5组D. 6组二、填空题(共10题;共30分)13.如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买甲家的1件售价约为3元,其中正确的说法是(填序号)________14.若关于有增根,则=________;15.若分式方程=5+ 有增根,则a的值为________.16.已知:如图所示,△ABC中,E、F、D分别是AB、AC、BC上的点,且DE∥AC,DF∥A B,要使四边形AEDF是菱形,在不改变图形的前提下,你需添加的一个条件是________,试证明:这个多边形是菱形.17.以方程组的解为坐标的点(x,y)在平面直角坐标系中的第________象限.18.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.19.如图,在Rt△ABC中,∠B=90°,AB=10,BC>AB,点D在BC上,以AC为对角线的所有平行四边形ADCE 中,DE的最小值是________.20.一个正六边形的内角和是________度,每一个外角是________度.21.如图,在矩形ABCD中,AC,BD相交于点O,根据矩形的性质,AO=OB=OC=0D=AC=BD,由此我们得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的________ .(1)在矩形ABCD中,AB=1,BC=2,则对角线AC的长等于________ .(2)在矩形ABCD中,AB=1,BC=2,则Rt△ABC中,斜边AC边上的中线等于________ .22.一个正多边形的内角和为720°,则这个正多边形的每一个外角等于________.三、解答题(共4题;共34分)23.已知从n边形的一个顶点出发共有4条对角线,其周长为56,且各边长是连续的自然数,求这个多边形的各边长.24. 如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=AB,连接EF,判断四边形ADEF的形状,并加以证明.25.如图,在平行四边形ABCD中,已知对角线AC、BD相交于点O,若E、F是AC上两动点,分别从A、C 两点以相同的速度1cm/s向点O运动.(1)当E与F不重合时,四边形DEBF是否是平行四边形?请说明理由;(2)若AC=16cm,BD=12cm,点E,F在运动过程中,四边形DEBF能否为矩形?如能,求出此时的运动时间t的值,如不能,请说明理由.26.某通讯公司推出甲、乙两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.(1)有月租费的收费方式是________(填甲或乙),月租费是________元;(2)求出甲、乙两种收费方式中y与自变量x之间的函数关系式.参考答案一、选择题D D B A D C C A C B C A二、填空题13. ①②③14. 415. 416. AE=AF17. 三18. ≥219. 1020. 720;621. 一半;;22. 60°三、解答题23. 解:依题意有n﹣3=4,解得n=7,设最短边为x,则7x+1+2+3+4+5+6=56,解得x=5.故这个多边形的各边长是5,6,7,8,9,10,11.24. 答:四边形ADEF是平行四边形.证明:∵点D,E分别是边BC,AC的中点,∴DE∥BF,DE=AB,∵AF=AB,∴DE=AF,∴四边形ADEF是平行四边形.25. (1)解:当E与F不重合时,四边形DEBF是平行四边形理由:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD;∵E、F两动点,分别从A、C两点以相同的速度向C、A运动,∴AE=CF;∴OE=OF;∴BD、EF互相平分;∴四边形DEBF是平行四边形(2)解:∵四边形DEBF是平行四边形,∴当BD=EF时,四边形DEBF是矩形;∵BD=12cm,∴EF=12cm;∴OE=OF=6cm;∵AC=16cm;∴OA=OC=8cm;∴AE=2cm或AE=14cm;由于动点的速度都是1cm/s,所以t=2(s)或t=14(s);故当运动时间t=2s或14s时,以D、E、B、F为顶点的四边形是矩形.26. (1)甲;30(2)解:由图象可知,甲图象过(0,30),(300,60)两点,设y甲=kx+b,得:,解得:,故y甲=0.1x+30;根据图象可知,乙图象经过原点(0,0),(300,60),设y乙=mx,将(300,60)代入求得:m=0.2,故y乙=0.2x。
2017-2018学年第二学期期末八年级数学试题(含答案)
2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
17 2017--2018宝山期末数学卷_20200506190439
1 ,并把不等式的解集表示在数轴上.
2
2 ݖඐ 2 . 解方程组: ݖ ඐ 2
ݖ ݖඐ 0
2. 1 如图,在已知图形基础上,补画长方体的直观图 不写画法 步骤 ; 2 在这个长方体中,从同一顶点出发的三个面的面积之比是 5: 7:2,其中最大的比最小的面积大 0 2,求这个长方体的表 面积.
求学校在第二次购买活动中最少需要多少资金?
17 2017--2018 学年度宝山期末数学试卷
一、选择题(本大题共 5 小题,共 10.0 分)
1. 下列关于“0”的说法中正确的是
A. 0 不是有理数 B. 0 是正数
C. 0 没有相反数
2. 下列方程组中属于二元一次方程组的是
A.
2 ඐ
ඐ1 ݖ1
B.
ඐ 2 ݖ
ඐ
D. 0 没有倒数
C.
28.
若关于 x、y 的二元一次方程组
ݖ ݖ
ඐ1ݖ ඐ
的解满足
ݖ
ඐ 2,求 a 的取值范围.
29. 为弘扬中华民族传统文化,学校开设了书法课,并购买了 A、B 两种字帖.若购买 A 种字 帖 50 本、B 种字帖 25 本,共花费 450 元,且 A 种字帖比 B 种字帖的单价便宜 3 元. 1 求 A、B 两种字帖的单价分别是多少元? 2 为了激发全校学生的学习热情,学校决定再次购买 A、B 两种字帖共 80 本,如果学校 要求此次购买 A、B 两种字帖的总费用不超过 580 元,并且购买 B 种字帖数量不少于 58 本,则这次学校可以有哪几种购买方案?
2
1 2
ඐ______.
9. 莫斯科卢日尼基体育场是俄罗斯最大的体育场,是 2018 年俄罗斯世界杯决赛场馆,约
上海市2017—2018学年八年级下册期末数学试卷含答案解析
2017—2018学年八年级(下)期末数学试卷一、选择题:(本大题共6题,每题3分,满分18分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.下列函数中,是一次函数的是()A.B.y=x+2 C.y=x2+2 D.y=kx+b2.用换元法解分式方程,如果设,那么原方程可以化为()A.y2+y﹣5=0 B.y2﹣5y+1=0 C.5y2+y+1=0 D.5y2+y﹣1=0 3.下列四个方程中,有一个根是x=2的方程是()A.B.C.D.4.下列说法错误的是()A.确定事件的概率是1B.不可能事件的概率是0C.必然事件的概率是1D.随机事件的概率是大于0且小于1的一个数5.下列关于向量的等式中,正确的是()A.B.﹣=C.D.6.如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD二、填空题(本大题共12题,每小题2分,满分24分)[在答题纸相应题号后的空格内直接填写答案]7.直线y=x﹣2的截距是.8.已知一次函数y=(m﹣1)x﹣2的函数值y随着自变量x的值的增大而增大,那么m的取值范围是.9.关于x的方程ax﹣4x﹣2=0(a≠4)的解是.10.方程2x3﹣16=0的根是.11.方程的根是.12.一个二元二次方程的一个解是,写出符合要求的方程(只需写一个即可).13.已知▱ABCD,设,,那么用向量、表示向量=.14.一个正多边形的每一个外角都是72°,那么这个多边形是边形.15.在▱ABCD中,如果∠A+∠C=200°,那么∠B的度数是度.16.矩形ABCD的两条对角线AC、BD相交于点O,已知AC=12,∠ACB=30°,那么△DOC 的周长是.17.如果菱形的两条对角线长分别为6和8,那么这个菱形一边上的高是.18.在▱ABCD中,AB=5,BC=7,对角线AC和BD相交于点O,如果将点A绕着点O顺时针旋转90°后,点A恰好落在平行四边形ABCD的边AD上,那么AC的长是.三、解答题(共8题,满分58分)[将下列各题的解答过程做在答题纸的相应位置上19.解方程:=﹣1.20.解方程组:.21.一个不透明的布袋中装了分别标有数字1、2、3、4的四个小球,这些小球除标记数字不同外其余均相同.(1)如果从中任意摸出两个小球,用树形图法或列表法展现所有等可能的结果;(2)如果从中任意摸出两个小球,求摸到的两个小球上的数字之和是5的概率.22.已知:如图,在梯形ABCD中,DC∥AB,AD=BC=2,∠A=60°,对角线BD平分∠ABC.(1)求对角线BD的长;(2)求梯形ABCD的面积.23.某项研究表明:人的眼睛疲劳系数y与睡眠时间t之间成函数关系,它们之间的关系如图2所示.其中,当睡眠时间不超过4小时(0≤t≤4)时,眼睛疲劳系数y是睡眠时间t 的反比例函数;当睡眠时间不少于4小时(4≤t≤6)时,眼睛疲劳系数y是睡眠时间t的一次函数,且当睡眠时间达到6小时后,眼睛疲劳系数为0.根据图象,回答下列问题:(1)求当睡眠时间不少于4小时(4≤t≤6)时,眼睛疲劳系数y关于睡眠时间t之间的函数关系式;(2)如果某人睡眠了t(1<t<3)小时后,再连续睡眠了3小时,此时他的眼睛疲劳系数恰好减少了3,求t的值.24.如图,在△ABC中,点D是BC边的中点,点E是AD的中点,过A点作AF∥BC,且交CE的延长线于点F,联结BF.(1)求证:四边形AFBD是平行四边形;(2)当AB=AC时,求证:四边形AFBD是矩形.25.如图,在平面直角坐标系xOy中,直线y=x﹣2与x轴、y轴分别相交于点A和点B,点C在y轴的正半轴上,且OC=2OB.(1)求线段BC的长度;(2)如果点D在直线AB上,且以B、C、D、E为顶点的四边形为菱形,请直接写出点E 的坐标.26.已知:在正方形ABCD中,AB=2,点P是射线AB上的一点,联结PC、PD,点E、F 分别是AB和PC的中点,联结EF交PD于点Q.(1)如图1,当点P与点B重合时,△QPE的形状是(2)如图2,当点P在AB的延长线上时,设BP=x,EF=y,求y关于x的函数关系式,并写出定义域;(3)当点Q在边BC上时,求BP的长.参考答案与试题解析一、选择题:(本大题共6题,每题3分,满分18分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.下列函数中,是一次函数的是()A.B.y=x+2 C.y=x2+2 D.y=kx+b【考点】一次函数的定义.【分析】直接利用一次函数的定义分析得出答案.【解答】解:A、y=+2,不符合一次函数的定义,故此选项错误;B、y=x+2,是一次函数,故此选项正确;C、y=x2+2,是二次函数,故此选项错误;D、y=kx+b(k≠0),故此选项错误;故选:B.2.用换元法解分式方程,如果设,那么原方程可以化为()A.y2+y﹣5=0 B.y2﹣5y+1=0 C.5y2+y+1=0 D.5y2+y﹣1=0【考点】换元法解分式方程.【分析】直接把化为y即可.【解答】解:设,则原方程化为5y﹣+1=0,去分母得,5y2+y﹣1=0.故选D.3.下列四个方程中,有一个根是x=2的方程是()A.B.C.D.【考点】无理方程;分式方程的解.【分析】可以先将各个选项的方程解出来,然后看看哪个方程的其中一个根是x=2,从而可以解答本题.【解答】解:当x=2时,方程中的分母x﹣2=0,故x=2不是方程的根,故选项A错误;,解得x=2,故的根是x=2,不符合题意,故选项B错误;=2,解得x=10,故选项C错误;,解得x=2或x=3,故方程,有一根是x=2,故选项D正确;故选D.4.下列说法错误的是()A.确定事件的概率是1B.不可能事件的概率是0C.必然事件的概率是1D.随机事件的概率是大于0且小于1的一个数【考点】概率的意义.【分析】确定事件包括必然事件和不可能事件,必然事件的概率为1,不可能事件的概率为0.不可能发生的事件就是一定不会发生的事件,因而概率为0.必然发生的事件就是一定发生的事件,因而概率是1.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率>0并且<1.【解答】解:A、确定事件包括必然事件和不可能事件,必然事件的概率为1,不可能事件的概率为0,选项正确;B、不可能发生的事件概率为0,选项错误;C、必然发生的事件发生的概率为1,选项错误;D、随机事件发生的概率介于0和1之间,选项正确.故选A.5.下列关于向量的等式中,正确的是()A.B.﹣=C.D.【考点】*平面向量.【分析】根据平面向量的平行四边形法则和三角形法则对各选项分析判断即可得解.【解答】解:A、+=,而不是等于0,故本选项错误;B、﹣=,故本选项错误;C、+=,故本选项错误;D、∵+=,∴++=,故本选正确.故选D.6.如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD【考点】菱形的判定.【分析】已知四边形的对角线互相垂直,可依据“对角线互相垂直且平分的四边形是菱形”的判定方法,来选择条件.【解答】解:四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD互相平分;(对角线互相垂直且平分的四边形是菱形)故选B.二、填空题(本大题共12题,每小题2分,满分24分)[在答题纸相应题号后的空格内直接填写答案]7.直线y=x﹣2的截距是﹣2.【考点】一次函数的性质.【分析】把x=0代入一次函数的解析式求出y即可.【解答】解:把x=0代入y=x﹣2得:y=﹣2,故答案为:﹣2.8.已知一次函数y=(m﹣1)x﹣2的函数值y随着自变量x的值的增大而增大,那么m的取值范围是m>1.【考点】一次函数图象与系数的关系.【分析】由题意y=(m﹣1)x﹣2,y随x的增大而增大,可得自变量系数大于0,进而可得出m的范围.【解答】解:∵y=(m﹣1)x﹣2中,y随x的增大而增大,∴m﹣1>0,∴m>1.故答案为:m>1;9.关于x的方程ax﹣4x﹣2=0(a≠4)的解是.【考点】一元一次方程的解.【分析】根据解一元一次方程的方法可以求得方程ax﹣4x﹣2=0(a≠4)的解,本题得以解决.【解答】解:ax﹣4x﹣2=0(a≠4)移项及合并同类项,得(a﹣4)x=2,系数化为1,得x=,故答案为:.10.方程2x3﹣16=0的根是x=2.【考点】高次方程.【分析】求出x3=8,两边开立方根,即可求出x.【解答】解:2x3﹣16=0,2x3=16,x3=8,x=2,故答案为:2.11.方程的根是x=3.【考点】无理方程.【分析】方程两边平方,转化为一元二次方程,解一元二次方程并检验.【解答】解:方程两边平方,得x2=2x+3,即x2﹣2x﹣3=0,解得x1=3,x2=﹣1,代入原方程检验可知x=3符合题意,x=﹣1舍去.故答案为:x=3.12.一个二元二次方程的一个解是,写出符合要求的方程xy=2(只需写一个即可).【考点】高次方程.【分析】分析:方程的解是二元二次方程有很多,如:xy=2;x2+y=5等等.【解答】解:xy=2等13.已知▱ABCD,设,,那么用向量、表示向量=﹣.【考点】*平面向量;平行四边形的性质.【分析】根据=+即可解决问题【解答】解:如图,∵四边形ABCD是平行四边形,∴==,∵=+=﹣+=﹣,故答案为﹣14.一个正多边形的每一个外角都是72°,那么这个多边形是5边形.【考点】多边形内角与外角.【分析】由一个多边形的外角为360°和每一个外角都是72°,可求得其边数.【解答】解:∵一个多边形的每一个外角都是72°,多边形的外角和等于360°,∴这个多边形的边数为:360÷72=5,故答案为:5.15.在▱ABCD中,如果∠A+∠C=200°,那么∠B的度数是80度.【考点】平行四边形的性质.【分析】由在▱ABCD中,如果∠A+∠C=200°,即可求得∠A的度数,又由平行四边形的邻角互补,求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=200°,∴∠A=100°,∵AD∥BC,∴∠B=180°﹣∠A=80°.故答案为:80.16.矩形ABCD的两条对角线AC、BD相交于点O,已知AC=12,∠ACB=30°,那么△DOC 的周长是18.【考点】矩形的性质.【分析】直接利用矩形的性质得出∠OCD=60°,DO=CO=6,进而得出△OCD是等边三角形,即可得出答案.【解答】解:如图所示:∵矩形ABCD的两条对角线AC、BD相交于点O,AC=12,∠ACB=30°,∴∠OCD=60°,DO=CO=6,∴△OCD是等边三角形,∴△DOC的周长是:18.故答案为:18.17.如果菱形的两条对角线长分别为6和8,那么这个菱形一边上的高是.【考点】菱形的性质.【分析】根据对角线的长度即可计算菱形的面积,根据菱形对角线互相垂直平分的性质,可以求得△AOB为直角三角形,根据AO,BO可以求得AB的值,根据菱形的面积和边长即可解题.【解答】解:由题意知AC=6,BD=8,则菱形的面积S=×6×8=24,∵菱形对角线互相垂直平分,∴△AOB为直角三角形,AO=3,BO=4,∴AB==5,∴菱形的高h==.故答案为:.18.在▱ABCD中,AB=5,BC=7,对角线AC和BD相交于点O,如果将点A绕着点O顺时针旋转90°后,点A恰好落在平行四边形ABCD的边AD上,那么AC的长是或.【考点】旋转的性质;平行四边形的性质.【分析】如图,过O点作OE⊥AD于E,过C点作CF⊥AD于F,根据旋转的性质可得△AOA′是等腰直角三角形,△AA′C是等腰直角三角形,再根据勾股定理可求AA′,再根据等腰直角三角形的性质即可求解.【解答】解:如图,过O点作OE⊥AD于E,过C点作CF⊥AD于F,∵将点A绕着点O顺时针旋转90°后,点A恰好落在平行四边形ABCD的边AD上,∴△AOA′是等腰直角三角形,∴△AA′C是等腰直角三角形,设AA′=x,则CF=x,DF=7﹣x,在Rt△CDF中,x2+(7﹣x)2=52,解得x1=4,x2=3,在Rt△CFA中,AC=或.故答案为:或.三、解答题(共8题,满分58分)[将下列各题的解答过程做在答题纸的相应位置上19.解方程:=﹣1.【考点】解分式方程.【分析】观察可得最简公分母是(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:去分母,得4=(x+2)﹣(x+2)(x﹣2),整理,得x2﹣x﹣2=0,解得x1=﹣1,x2=2.经检验:x1=﹣1是原方程的根,x2=2是增根.故原方程的根为x=﹣1.20.解方程组:.【考点】高次方程.【分析】先由①得:(x﹣2y)(x﹣3y)=0,求出x=2y或x=3y,再分别代入②,求出x,y的值即可.【解答】解:,由①得:(x﹣2y)(x﹣3y)=0,则x=2y或x=3y,将x=2y代入②得y=,x=,将x=3y代入②得y=,x=,则方程组的解是:,.21.一个不透明的布袋中装了分别标有数字1、2、3、4的四个小球,这些小球除标记数字不同外其余均相同.(1)如果从中任意摸出两个小球,用树形图法或列表法展现所有等可能的结果;(2)如果从中任意摸出两个小球,求摸到的两个小球上的数字之和是5的概率.【考点】列表法与树状图法.【分析】(1)画树状图展示所有12种等可能的情况;(2)找出摸到的两个小球上的数字之和为5的结果数,然后根据概率公式求解.【解答】解:(1)画树状图:共有12种等可能的情况;(2)摸到的两个小球上的数字之和为5的结果数为4,所以摸到摸到的两个小球上的数字之和为5的概率==.22.已知:如图,在梯形ABCD中,DC∥AB,AD=BC=2,∠A=60°,对角线BD平分∠ABC.(1)求对角线BD的长;(2)求梯形ABCD的面积.【考点】梯形.【分析】(1)根据等腰梯形的同一底上的两个底角相等,即可求得∠B的度数,根据三角形的内角和定理证明△ABD是直角三角形,利用直角三角形的性质以及勾股定理即可求解;(2)过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G,在直角△ADB中求得DH 和AH的长,则AB即可求得,然后利用梯形的面积公式求解.【解答】解:(1)∵DC∥AB,AD=BC,∴∠A=∠ABC.∵BD平分∠ABC,∠A=60°,∴∠ABD=∠ABC=30°.∴∠ADB=90°.∵AD=2,∴AB=2AD=4.∴BD=.(2)过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G.∵DC∥AB,BD平分∠ABC,∴∠CDB=∠ABD=∠CBD.∵BC=2,∴DC=BC=2.在RT△ADH和RT△BCG中,,∴RT△ADH≌RT△BCG.∴AH=BG.∵∠A=60°,∴∠ADH=30°.∴AH=AD=1,DH=.∵DC=HG=2,∴AB=4.∴.23.某项研究表明:人的眼睛疲劳系数y与睡眠时间t之间成函数关系,它们之间的关系如图2所示.其中,当睡眠时间不超过4小时(0≤t≤4)时,眼睛疲劳系数y是睡眠时间t 的反比例函数;当睡眠时间不少于4小时(4≤t≤6)时,眼睛疲劳系数y是睡眠时间t的一次函数,且当睡眠时间达到6小时后,眼睛疲劳系数为0.根据图象,回答下列问题:(1)求当睡眠时间不少于4小时(4≤t≤6)时,眼睛疲劳系数y关于睡眠时间t之间的函数关系式;(2)如果某人睡眠了t(1<t<3)小时后,再连续睡眠了3小时,此时他的眼睛疲劳系数恰好减少了3,求t的值.【考点】反比例函数的应用.【分析】(1)根据图象经过的两点利用待定系数法确定函数的解析式即可;(2)首先利用待定系数法确定反比例函数的解析式,根据“某人睡眠了t(1<t<3)小时后,再连续睡眠了3小时,此时眼睛疲劳系数恰好减少了3”列方程求解.【解答】解:(1)根据题意,设当4≤t≤6时,眼睛疲劳系数y关于睡眠时间t的函数关系式为:y=kt+b(k≠0).∵它经过点(4,2)和(6,0),∴,解得:.…(2分)∴当睡眠时间不少于4小时,眼疲劳系数y关于睡眠时间t的函数关系式是y=﹣t+6.当睡眠时间不超过4小时(0≤t≤4)时,眼睛疲劳系数y是睡眠时间t的反比例函数,设这个反比例函数为:,∵它经过点(4,2),∴,∵某人睡眠了t(1<t<3)小时后,再连续睡眠了3小时,此时眼睛疲劳系数恰好减少了3,∴,整理得:t2﹣6t+8=0.解得:t1=2,t2=4,经检验:t1=2,t2=4是原方程的解,t2=4不符合题意舍去,∴t的值是2.24.如图,在△ABC中,点D是BC边的中点,点E是AD的中点,过A点作AF∥BC,且交CE的延长线于点F,联结BF.(1)求证:四边形AFBD是平行四边形;(2)当AB=AC时,求证:四边形AFBD是矩形.【考点】矩形的判定;平行四边形的判定与性质.【分析】(1)首先证明△AEF≌△DEC(AAS),得出AF=DC,进而利用AF BD得出答案;(2)利用等腰三角形的性质,结合矩形的判定方法得出答案.【解答】证明:(1)∵AF∥BC,∴∠AFC=∠FCD.在△AFE和△DCE中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形;(2)∵AB=AC,BD=DC,∴AD⊥BC.∴∠ADB=90°.∵四边形AFBD是平行四边形,∴四边形AFBD是矩形.25.如图,在平面直角坐标系xOy中,直线y=x﹣2与x轴、y轴分别相交于点A和点B,点C在y轴的正半轴上,且OC=2OB.(1)求线段BC的长度;(2)如果点D在直线AB上,且以B、C、D、E为顶点的四边形为菱形,请直接写出点E 的坐标.【考点】一次函数图象上点的坐标特征;菱形的性质.【分析】(1)可先求得B点坐标,再结合OC=2OB,可求得BC的长度;(2)分BC为边和对角线,①当BC为边时有两种情况,BD为边或BD为对角线,当BD 为边时,则BD=BC,可先求得D点坐标,再根据DE∥BC且DE=BC可求得E点坐标;当BD为对称线时,则四边形为正方形,可求得E点坐标;②当BC为对角线时,则DE为BC的垂直平分线,可先求得D点坐标,利用对称性可求得E点坐标【解答】解:(1)∵直线y=x﹣2与x轴、y轴分别相交于点A和点B,∴点A(2,0),点B(0,﹣2),∴OB=2,∵OC=2OB,∴OC=4,点C(0,4),∴BC的长度是6;(2)①当BC为边时,有两种情况,BD为边或BD为对称线,当BD为边时,则有BD=BC=6,设D点坐标为(x,x﹣2),则=6,解得x=3或x=﹣3,∴D点坐标为(3,3﹣2)或(﹣3,﹣3﹣2),∵DE=BC=6,且DE∥BC,∴E点坐标为(,3+4)或(,﹣3+4);当BD为对角线时,则∠CBD=∠EBD=45°,如图1,则∠EBC=90°,∴四边形BCDE为正方形,∴BE=BC=6,且BE∥x轴,∴E点坐标为(6,﹣2);②当BC为对角线时,则有DE⊥BC,如图2,设BC与DE交于点F,则F为BC的中点,∴F(0,1),∴D点纵坐标为1,代入直线AB解析式可得1=x﹣2,解得x=3,∴D点坐标为(3,1),又D、E关于BC对称,∴E点坐标为(﹣3,1);综上可知点E的坐标可以为(,3+4)或(,﹣3+4)或(6,﹣2)或(﹣3,1).26.已知:在正方形ABCD中,AB=2,点P是射线AB上的一点,联结PC、PD,点E、F 分别是AB和PC的中点,联结EF交PD于点Q.(1)如图1,当点P与点B重合时,△QPE的形状是等腰直角三角形(2)如图2,当点P在AB的延长线上时,设BP=x,EF=y,求y关于x的函数关系式,并写出定义域;(3)当点Q在边BC上时,求BP的长.【考点】相似形综合题.【分析】(1)根据正方形的性质得到AB=BC,∠ABC=90°,根据等式的性质得到PE=PF,即可得到结论;(2)延长BA到点M,使得AM=BP,连接CM,根据已知条件得到EM=EP,根据三角形的中位线的性质得到EF=MC,根据正方形的性质得到∠MBC=90°,AB=BC,由已知条件得到BM=2+x.根据勾股定理得到MC==,于是得到结论;(3)当点Q在边BC上时,根据平行线的性质得到∠M=∠QEB,根据全等三角形的性质得到∠M=∠APD,推出QE=QP,根据等腰三角形的性质即可得到结论.【解答】解:(1)△QPE的形状是等腰直角三角形,理由:在正方形ABCD中,∵AB=BC,∠ABC=90°,∵点P与点B重合,∴AP=PC,∠APC=90°,∵点E、F分别是AB和PC的中点,∴PE=AP,PF=PC,∴PE=PF,∴△QPE是等腰直角三角形;故答案为:等腰直角三角形;(2)延长BA到点M,使得AM=BP,连接CM,∵AE=BE,∴AE+AM=BE+BP,即EM=EP,∵PF=CF,∴EF=MC,∵四边形ABCD是正方形,∴∠MBC=90°,AB=BC,∵AB=2,BP=AM=x,∴BM=2+x.∴MC==,∴EF=,∴y=(x>0);(3)当点Q在边BC上时,由(2)可知EF∥MC,∴∠M=∠QEB,∵在△ADP和△BCM中,,∴△ADP≌△BCM,∴∠M=∠APD,∴∠QEB=∠APD,∴QE=QP,∵QB⊥PE,∴BP=BE=AB=1.。
2017---2018学年度第二学期沪科版八年级期末考试数学试卷
绝密★启用前2017---2018学年度第二学期 沪科版八年级期末考试数学试卷一、单选题(计30分)1.(本题3分)下列计算正确的是( ) A. 43-33=1 B.3+5=8 C. 331=3 D. 3+22=52 2.(本题3分)关于x 的一元二次方程2430x x m -+=有两个相等的实数根,那么m 的值是( ) A.98 B. 916 C. ﹣98 D. ﹣9163.(本题3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为( ) A.21()-x x =930 B. 2)1(+x x =930 C. x (x+1)=930 D. x (x ﹣1)=930 4.(本题3分)如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,则梯子顶端A 下落了( )米.A. 0.5B. 1C. 1.5D. 2 5.(本题3分)如图,一只蚂蚁沿边长为a 的正方体表面从点A 爬到点B ,则它走过的路程最短为( )A.5a B. (1+2)a C. 3a D. 3aA.B.C. 3D. 47.(本题3分)如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE =BF ,将△AEH , △CFG 分别沿EH ,FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的161时,则EBAE 为( )A.25 B. 2 C. 35D. 4 8.(本题3分)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是( )A. 12B. 13C. 14D. 15 9.(本题3分)如图,在正方形ABCD 中,AD=5,点E 、F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为( )A.23 B.232 C. 57D. 210.(本题3分)如图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误的是( )A. 众数是7B. 中位数是6.5C. 平均数是 6.5D. 平均每周锻炼超过6小时的人占总数的一半 二、填空题(计32分)12.(本题4分)12.(本题4分)若6,则xy=_____. 13.(本题4分)方程的两个根为、,则x 211x 1+的值等于______.14.(本题4分)如图,某小区有一块长为36m ,宽为24m 的矩形空地,计划在其中间修建两块形状相同的矩形绿地,它们的面积之和为600m 2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m .15.(本题4分)已知|a -6|+(2b -16)2+c -10=0,则以a 、b 、c 为三边的三角形的形状是______. 16.(本题4分)如图,在四边形ABCD 中,∠A=∠C=90°,AB=AD .若这个四边形的面积为16,求BC+CD 的值是_____.17.(本题4分)如图,四边形ABCD 是菱形,∠BAD=60°,AB=6,对角线AC 与BD 相较于点O ,点E 在AC 上,若OE=2,则CE 的长为_____18.(本题4分)把9个数按从小到大的顺序排列,其平均数是9,如果这组数中前5个数的平均数是8,后5个数的平均数是10,则这9个数的中位数是____. 三、解答题19.(本题7分)化简求值 (1)-×4x +3x 2 (2)20.(本题7分)关于x 的一元二次方程x 2-(k+3)x+2k+2=0. (1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.21.(本题7分)某超市去年12月份的销售额为100万元,今年2月份的销售额比今年1月份的销售额多24万元,若去年12月份到今年2月份每个月销售额增长的百分数相同. 求:(1)这个相同的百分数; (2)2月份的销售额.22.(本题7分)已知AB=2,AC=214,Bc=12552,在图中的4×4的方格内画△ABC ,使它的顶点都在格点上. (1)求△ABC 的面积;(2)求点A 到BC 边的距离.23.(本题7分)如图,在矩形ABCD 中,E 是BC 上的点,AE=BC,DF ⊥AE,垂足为F,连接DE.(1)求证:△ABE ≌△DFA;(2)如果AD=10,AB=6,求DE 的长.24.(本题7分)已知:如图,在平行四边形ABCD 中,AE⊥BD,CF⊥BD,垂足分别为E ,F .求证:△ADE≌△CBF .25.(本题8分)如图,四边形ABCD 是平行四边形,BE 平分∠ABC ,交AD 于点E ,AF ⊥BE 于点F .求证:∠BAF =∠EAF .26.(本题8分)某校八年级学生数学科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录: (1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:m 的权重,小张的期末评价成绩为81分,则小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?参考答案1.C 【解析】【分析】根据二次根式的加减法法则、乘法法则逐项进行计算即可作出判断.【详解】A. 4-3=,故A 选项错误;B.与不是同类二次根式,不能进行合并,故B 选项错误;C. 3= ,故C 选项正确;D. 3与2不是同类二次根式,不能进行合并,故D 选项错误,故选C.【点睛】本题考查了二次根式的运算,熟练掌握二次根式的运算法则是解题的关键. 2.B【解析】∵关于x 的一元二次方程2430x x m -+=有两个相等的实数根, ∴△=(﹣3)2﹣4×4m =9﹣16m =0,解得:m =916, 故选B . 3.D【解析】分析:可设全班有x 名同学,则每人写(x-1)份留言,共写x(x-1)份留言,进而可列出方程即可.详解:设全班有x 名同学,则每人写(x ﹣1)份留言, 根据题意得:x (x ﹣1)=930, 故选:D .点睛:此题主要考查了由实际问题抽象出一元二次方程,其中x(x-1)不能和握手问题那样除以2,另外这类问题转化为一元二次方程求解时应注意考虑解的合理性,即考虑解的取舍. 4.A【解析】分析:在直角三角形ABC 中,根据勾股定理,得:AC =2米,由于梯子的长度不变,在直角三角形CDE 中,根据勾股定理,得CE =1.5米,所以AE =0.5米,即梯子的顶端下滑了0.5米.详解:在Rt △ABC 中,AB =2.5米,BC =1.5米, 故AC ===2米.在Rt △ECD 中,AB =DE =2.5米,CD =(1.5+0.5)米, 故EC ===1.5米,故AE=AC﹣CE=2﹣1.5=0.5米.故选A.点睛:本题中主要注意梯子的长度不变,分别运用勾股定理求得AC和CE的长,即可计算下滑的长度.5.D【解析】分析:把正方体的侧面展开,再根据勾股定理求解即可.详解:如图,则AB===a.故选D.点睛:本题考查的是平面展开﹣最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.6.A【解析】分析:根据勾股定理求得OD=,然后根据矩形的性质得出CE=OD=.详解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.点睛:本题考查了矩形的性质以及勾股定理的应用,熟练掌握矩形的性质是解题的关键.7.C【解析】分析:设重叠的菱形边长为x,BE=BF=y,由矩形和菱形的对称性以及折叠的性质得:四边形AHME、四边形BENF是菱形,得出EN=BE=y,EM=x+y,由相似的性质得出AB=4MN=4x,求出AE=AB-BE=4x-y,得出方程4x-y=x+y,得出x=y,AE=y,即可得出结论.详解:如图:设重叠的菱形边长为x,BE=BF=y,由矩形和菱形的对称性以及折叠的性质得:四边形AHME、四边形BENF是菱形,∴AE=EM,EN=BE=y,EM=x+y,∵当重叠部分为菱形且面积是菱形ABCD面积的,且两个菱形相似,∴AB=4MN=4x,∴AE=AB−BE=4x−y,∴4x−y=x+y,解得:x=y,∴AE=y,∴==;故选:C.点睛:本题考查了折叠的性质、菱形的性质与判定、矩形的性质、相似多边形的性质等知识,熟练掌握菱形的判定和性质是解决问题的关键.8.C【解析】解:根据题意,得:(n﹣2)•180=360°×2+180°,解得:n=7.则这个多边形的边数是7,七边形的对角线条数为=14,故选C.9.D【解析】分析:延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF的长.详解:延长AE交DF于G.如图,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,∴同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=.故选D.点睛:本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.10.C【解析】分析:根据中位数、众数和平均数的概念分别求得这组数据的中位数、众数和平均数,由图可知锻炼时间超过6小时的有20+5=25人.即可判断四个选项的正确与否.详解:A.因为7出现了20次,出现的次数最多,所以众数为:7,故此选项正确,不合题意;B.∵一共有50个数据,∴按从小到大排列,第25,26个数据的平均值是中位数,∴中位数是6.5,故此选项正确,不合题意;C.平均数为:(5×7+18×6+20×7+5×8)÷50=6.46(分),故本选项错误,符合题意;D.由图可知锻炼时间超过6小时的有20+5=25人,故平均每周锻炼超过6小时的人占总数的一半,故此选项正确,不合题意;故选:C点睛:此题考查了中位数、众数和平均数的概念等知识,中位数时将一组数据从小到大(或从大到小)重新排列后,最中间的数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数概念掌握不好,不把数据按要求重新排列,就会错误地将这组数据中最中间的那个数当作中位数.11.【解析】原式==12.-3【解析】解:由题意可知:12{12xx-≥-≥,解得:x=12,∴y=0+0﹣6=﹣6,∴xy=﹣3,故答案为:﹣3.13.3.【解析】解:根据题意得,,所以===3.故答案为:3.点睛:本题考查了根与系数的关系:若、是一元二次方程(a≠0)的两根时,,.14.2【解析】分析:设人行道的宽度为x米,根据矩形绿地的面积之和为600m2,列出一元二次方程求解即可.详解:设人行道的宽度为x米,根据题意得,(36-3x)(24-2x)=600,化简整理得,(12-x)2=100.解得x1=2,x2=22(不合题意,舍去).答:人行通道的宽度是2m.故答案为:2.点睛:本题考查了一元二次方程的应用,利用两块相同的矩形绿地面积之和为600m2得出等式是解题关键.15.直角三角形【解析】分析:根据非负数的性质可得a-6=0,2b-16=0,10-c=0,再解方程可得a、b、c的值,再利用勾股定理逆定理可得三角形的形状.详解:由题意得:a-6=0,2b-16=0,10-c=0,解得:a=6,b=8,c=10,∵62+82=102,∴三角形为直角三角形,故答案为:直角三角形.点睛:此题主要考查了非负数的性质,以及勾股定理逆定理,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.16.8【解析】分析:连接BD.设AB=AD=a,BC=x,CD=y.根据勾股定理和四边形的面积,得到关于a,x,y的方程组,再进一步运用消元法,得到关于x,y的方程即可.详解:连接BD.设AB=AD=a,BC=x,CD=y.根据勾股定理,得BD2=a2+a2=x2+y2,2a2=x2+y2①,又a2+xy=16,2a2=64-2xy②,①-②,得(x+y)2=64,所以x+y=8.即BC+CD=8.点睛:此题综合运用了勾股定理和直角三角形的面积公式,能够巧妙对方程组进行变形.17.5或【解析】分析:由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.详解:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∴△ABD是等边三角形,∴BD=AB=6,∴∴∴∵点E在AC上,∴当E在点O左边时当点E在点O右边时∴或;故答案为:或.点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.18.9【解析】【分析】因为前5个数的和加上后5个数的和,恰好中间的数加了两次,再减去9个数的和刚好剩下的就是中位数.【详解】∵9个数的和是:9×9=81,前5个数的和是:8×5=40,后5个数的和是:10×5=50,∴这9个数的中位数是:40+50-81=9,故答案为:9.【点睛】本题主要考查了中位数的性质、定义,解题的关键在于明确中位数的定义,明确前5个数的和加上后5个数的和,恰好中位数加了两次.19.(1)(2)16-6【解析】分析:(1)根据二次根式的性质,化简各二次根式,然后合并同类二次根式即可;(2)利用完全平方公式和平方差公式化简,然后合并即可.详解:(1)-×+ =3-+=3-2+=(2)=5-6+9+11-9 =16-6.点睛:此题主要考查了二次根式的混合运算,利用二次根式的性质,乘法公式进行计算,关键是利用二次根式的性质化简和最简二次根式的、同类二次根式的确定.20.(1)证明见解析;(2)k<0.【解析】试题分析:(1)先求出“根的判别式”的表达式,并化为()21k -的形式,即可得出结论;(2)利用(1)中求得的“根的判别式”,可解得方程的两个根(用含k 的代数式表达),再由已知可列出不等式求解.试题解析:(1)∵△=[-(k+3)]2-4(2k+2)=k 2-2k+1=(k-1)2.∴无论k 取何值,△都为非负数,∴原方程总有实数根.(2)∵△=(k-1)2,∴()()312k k x +±-==,即121,2x k x =+=又∵方程有一根小于1,∴11,k +< 解得: 0k <.21.(1)所求百分数为20%;(2)2月份的销售额为144万元.【解析】分析:(1)题中有一个等量关系:12月份的销售额×(1+每个月销售额的增长率)2=1月份的销售额+24,根据等量关系列方程,求出解.(2)把所求结果代入(1)中方程的任何一边,可以求出答案.详解:设每个月销售额的增长率为x,由题意得:(1)100(x+1)2=100(x+1)+24解得:x1=﹣1.2(不合题意舍去),x2=0.2=20%.故所求百分数为20%.(2)2月份的销售额:100×1.22=144万元.点睛:题目根据二月份的销售额不变列方程,找等量关系是解应用题的关键.22.(1)2(2)【解析】分析:(1)根据题意画出图形,已知,观察可得AB边上的高CD长为2,从而不难求得其面积;(2)根据第(1)问求得的面积,再利用面积公式即可求得BC边上的高.详解:,又∵AB=2,∴△ABC如图所示:(1)过点C作CD⊥AB交BA的延长线于点D,则CD=2,∴(2)过点A作AE⊥BC于点E.∴∵,∴AE,即A到BC边的距离为.点睛:考查勾股定理以及三角形的面积公式,注意等面积法在解题中的运用.23.(1)见解析;(2)2【解析】【分析】(1)根据矩形的性质可得BC=AD,AD∥BC,∠B=90°,根两直线平行,内错角相等可得∠DAF=∠AEB,然后利用“角角边”即可证明△ABE和△DFA全等;(2)根据全等三角形的对应边相等,可以求得DF和EF的长,再根据勾股定理即可求得DE的长.【详解】(1)在矩形ABCD中,BC=AD,AD∥BC,∠B=90°,∴∠DAF=∠AEB,∵DF⊥AE,AE=BC,∴∠AFD=90°,AE=AD,在△ABE和△DFA中,,∴△ABE≌△DFA(AAS),(2)由(1)知△ABE≌△DFA,∴DF=AB=6,在直角△ADF中,AF===8,∴EF=AE-AF=AD-AF=2,在直角△DFE中,DE===2.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理等知识,结合图形熟练应用相关性质与定理是解题的关键.24.证明见解析.【解析】试题分析:根据已知条件易证∠ADE=∠CBF,AD=CB,由AAS证△ADE≌△CBF 即可.试题解析:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,{ADE CBF AED CFBAD CB∠=∠∠=∠=,∴△ADE≌△CBF(AAS).25.证明见解析.【解析】分析:由已知条件易得∠ABE=∠CBE=∠AEB,由此可得AB=AE,结合AF⊥BE即可得到∠BAF=∠EAF.详解:∵AE平分∠ABC,∴∠ABE=∠CBE.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠AEB=∠CBE.∴∠ABE=∠AEB.∴AB=AE.∵AF⊥BE于点F,∴∠BAF=∠EAF.点睛:能由“BE平分∠ABC结合AD∥BC得到∠ABE=∠AEB”且熟悉“等腰三角形的三线合一”是解答本题的关键.26.(1)80分;(2)小王在期末应该至少考85分才能达到优秀.【解析】分析:(1)小张期末评价成绩=(小张完成作业分+小张的单元检测+小张期末考试分)÷3,(2)先根据小张期末评价成绩及小张三项成绩求出期末考试成绩的权重.因为期末评价成绩至少80分才是优秀,所以根据题意依据小王的期末评价成绩80分来计算他的期末考试成绩即可.详解:(1)小张的期末评价成绩==80,答:小张的期末评价成绩是80分;(2)依题意得,70×+90×+80×=81解得:m=7,经检查,m=7是所列方程的解.设小王期末考试分数为x,依题意列方程得60×+75×+x=80,解得:x=84≈85,答:小王在期末应该至少考85分才能达到优秀.点睛:本题考查的知识点是平均数和加权平均数的计算,比较基础,注意计算准确.。
上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(一)
上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(一)加而增加,则m的取值范围是▲.10.已知等差数列{an}的公差为d,首项为a1,末项为an,且a1+an=20,d=2,则a5=▲.11.已知函数f(x)=2x²+bx+c的图像过点(1,3),且在点(2,8)处的切线斜率为4,则b=▲,c=▲.12.如图,矩形ABCD中,AE=3cm,BF=4cm,且AE⊥BF,那么矩形ABCD的面积为▲平方厘米.13.如图,在三角形ABC中,DE//BC,AD=4cm,BD=5cm,CE=6cm,则AE=▲cm.14.如图,在平行四边形ABCD中,E、F分别是AB、CD的中点,则三角形EFC的面积为▲平方厘米.15.已知函数f(x)=2x³-3x²-kx+1在x=1处有极值,则k=▲.16.已知函数f(x)=x²-2x+3,点P(x,y)在f(x)的图像上,则点P到直线y=x的距离为▲.17.如图,在正方形ABCD中,点E、F分别在AB、BC 边上,且AE=CF,则EF的长度为▲厘米.18.如图,在直角三角形ABC中,AB=3,AC=4,AD是BC上的高,则AD的长度为▲厘米.三、解答题(本大题共8题,共58分)19.(6分)解方程:3x-2=4x+1-2x20.(6分)解不等式:2x-5<3x+2≤4x-121.(6分)已知函数f(x)=2x-1,g(x)=x²,求复合函数(fog)(x)和(gof)(x).22.(8分)如图,在△ABC中,D、E、F分别是BC、AC、AB上的点,且AD⊥BC,BE⊥AC,CF⊥AB.若AD=6,BE=8,CF=10,求△XXX的面积.23.(8分)如图,在长方形ABCD中,E、F分别是BC、CD上的点,且AE=2,BF=3,CE=4,求长方形ABCD的面积.24.(8分)如图,在平行四边形ABCD中,点E、F分别是BC、CD的中点,EF与AB交于点P,连接AP、DP,求证:AP=DP.25.(10分)如图,在△ABC中,D、E、F分别是BC、AC、AB上的点,且AD⊥BC,BE⊥AC,CF⊥AB.若AD=8,BE=6,CF=10,求△XXX的面积.26.(6分)如图,在平行四边形ABCD中,E、F分别是AB、CD的中点,连接AC、BD相交于点P,求证:AP=CP.1.大而增大,那么m的取值范围是多少?2.解方程a^2x+x=1的解是什么?3.解方程2x+3=x的解是多少?4.如图,一次函数y=kx+b的图像与x轴、y轴分别相交于A、B两点,那么当y<0时,自变量x的取值范围是多少?5.2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是多少?6.如果一个八边形的每一个内角都相等,那么它的一个内角的度数等于多少度?7.在□ABCD中,如果∠A+∠C=140º,那么∠B是多少度?8.在△ABC中,D、E分别是边AB、AC的中点,且DE=6,那么BC是多少?9.在梯形ABCD中,AD//BC,AB=CD,AC⊥BD.如果AD=4,BC=10,那么梯形ABCD的面积等于多少?10.如图,在△ABC中,AB=AC,点M、N分别在边AB、AC上,且XXX⊥AC.将四边形BCNM沿直线MN翻折,点B、C的对应点分别是点B′、C′,如果四边形XXX′C′是平行四边形,那么∠BAC是多少度?三、计算题(本大题共8题,满分58分)11.解方程:x^2(x-1)/(x-1)=1.12.解方程组:{x+2y=1.x-4xy+4y-9=0.13.已知:如图,在△ABC中,设BA=a,BC=b.(1)填空:CA=?(用a、b的式子表示);(2)在图中求作a+b.14.已知直线y=kx+b经过点A(-3,-8),且与直线y=x的公共点B的横坐标为6.(1)求直线y=kx+b的表达式;(2)设直线y=kx+b与y轴的公共点为点C,求△BOC的面积。
2017第二学期期末考试宝山区八年级数学试卷及答案教学提纲
2017学年第二学期期末考试八年级数学试卷(满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分45分)1. 如果一次函数2+=kx y 不经过第三象限,那么k 的取值范围是( ▲ ) A. k <0 B. k >0 C. k ≤0 D. k ≥02. 下列关于向量的等式中,不正确的是( ▲ )A. −→−OE +−→−ED =−→−OD B. −→−AB -−→−BC =−→−CA C.−→−AB -−→−AC =−→−CB D. −→−AB +−→−BA =−→−0 3. 下列说法错误的是( ▲ )A.“买一张彩票中大奖”是随机事件B.不可能事件和必然事件都是确定事件 A. “穿十条马路连遇十次红灯”是不可能事件 D.“太阳东升西落”是必然事件 4. 在一个四边形的所有内角中,锐角的个数最多有( ▲ )A. 4个B. 3个C. 2个D. 1个5. 已知甲车行驶30千米与乙车行驶40千米所有的时间相同,并且乙车每小时比甲车多行驶15千米. 若设甲车的速度为x 千米/时,依题意列方程正确的是( ▲ ) A.x x 401530=- B. xx 401530=+ B. 154030+=x x D. 154030-=x x 6. 如图,将正方形ABCD 绕点A 逆时针旋转30°得到AB ′C ′D ′,如果AB=1,点C与C ′的距离为( ▲ ) A.22B. 23-C. 1D. 13-二、填空题:(本大题共12题,每题4分,满分48分)7.如果点A (1,n )在一次函数y =3x -2的图像上,那么n= ▲ . 8. 直线321-=x y 与y 轴的交点是 ▲ . 9. 方程31x 5=81的解是 ▲ .10. 关于x 的方程)(2052≠=--a x ax 的解是 ▲ . 11. 用换元法034223=+---x x x x 时,如果设y x x=-2,那么将原方程变形后所得的一元二次方程是 ▲ . 12. 方程33=++x x 的解是 ▲ .13. 如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率 ▲ . 14. 如果在平行四边形ABCD 中,两个邻角的大小是5:4,那么其中较小的角等于 ▲ . 15. 如果一个多边形的各个外角都是40°,那么这个多边形的内角和是 ▲ . 如图在平行四边形ABCD 中,AD=8,点E ,F 分别是BD ,CD 的中16.点,则EF 等于 ▲ .17. 如图,在平行四边形ABCD 中,AB :BC=2:3,∠DAB=60°,E 在AB 上,如果AE :EB=1:2,F 是BC 中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,那么DP :DQ 等于 ▲ .18. 如图,点E 、F 分别在矩形ABCD 的边BC 和CD 上,如果△ABE 、△ECF 、△FDA 的面积分别刚好为6、2、5,那么矩形ABCD 的面积为 ▲.第17题图第18题图第16题图第6题图三、解答题:(本大题共7题,其中第19至22题每题10分,第23至24题每题12分,第25题14分,满分78分) 19. 甲、乙、丙三支排球队共同参加一届比赛,由抽签决定其中两队先打一场,然后胜者在和第三队(第一场轮空者)比赛,争夺冠军。
2018学年宝山区八年级试卷
宝山区2018学年第二学期初二年级数学学科期末教学质量监控测试题2.除第一、二大题外,其余各题如无特别说明,都必须写出解答的主要步骤. 6题,每题2分,满分12分)【每题只有一个正确选项,在答题纸相应位置填涂】1. 如果一次函数1y kx =+不经过第三象限,那么k 的取值范围是( )(A )0k <; (B )0k >; (C )0k ≤; (D )0k ≥. 2. 下列方程中,无实数解的是( )(A 410-=; (B 10-=; (C )232x x +=-; (D )2111x x x =--. 3. 在一个多边形的所有内角中,锐角的个数最多有( )(A )2个; (B )3个; (C )4个; (D )5个. 4. 下列关于向量的等式中,不正确的是 ( )(A )0AB BA +=; (B )OE ED OD +=; (C )AB BC CA -=; (D )AB AC BD CD -+=.5. 下列说法错误的是( )(A )“买一张彩票中大奖”发生的概率是0; (B )“软木塞沉在水底”发生的概率是0; (C )“太阳东升西落”发生的概率是1;(D )“10只鸟关在3个笼子里,至少有一个笼子关的鸟超过3只”发生的概率是1. 6. 如图,在四边形ABCD 中,AC 与BD 相交于点O ,∠BAD =90º,BO =DO ,那么下列 条件中不能..判定四边形ABCD 是矩形的是( ) (A )∠ABC =90º; (B )AO =OC ; (C )AB//CD ; (D )AB =CD .第6题图ODCBA二、填空题(本大题共12题,每小题3分,满分36分)[请将结果直接填入答题纸的相应位置] 7. 一次函数15=-y x 的截距是 .8. 把函数2y x =的图像向右平移1个单位长度,得到的函数图像的解析式为 .9. 如果一次函数的图像经过点()26--,和()52,,那么函数值y 随着自变量x 的增大而 . 10. 关于x 的方程()2502ax x a --=≠的解是 . 11.1=的解是 .12. 已知方程221131x x x x +-=+,如果设y x x=+12,那么原方程可以变形为关于y 的整式方 程为 .13. 在□ABCD 中,两邻角的度数比是7:2,那么较小角的度数为 度. 14. 在□ABCD 中,已知AD a =,AB b =,用a 和b 表示DB ,则DB = .15. 从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好能被2整除的概率是 .16. 某学校准备用2400元购买一批学习用品,已知甲种学习用品的单价比乙种学习用品的单价少2元,若用这些钱全部购买甲种学习用品比全部购买乙种学习用品可多买200件,问:这两种学习用品的单价分别是多少元?若设乙种学习用品的单价为x 元,那么根据题意可列方程 .17. 如图,在矩形ABCD 中,BC=6,AB=3,R 在边CD 上,且CR=1,P 为边BC 上一动点,E 、F 分别是AP 、RP 的中点,当P 从B 向C 移动时,线段EF 的长度为 .18. 已知P 是正方形ABCD 内一点,将△ABP 绕点B 旋转,使得边BA 与边BC 重合,点P 落在点P '的位置上.如果PB =2,那么P P '的长等于 .R PABCDE F第17题图三、解答题(本大题共7题,满分52分) 19.(本题满分5分)解方程:2654111x x x x x +-=--+.20.(本题满分5分)解方程组:21.(本题满分5分)已知:如图,在梯形ABCD 中,DC ∥ AB ,AD =BC ,BD 平分∠ABC ,∠CDB =30°. (1)求∠A 的度数;(2)当AD =4时,求梯形ABCD 的面积.②①22860.x y x xy y +=-⎧⎨+-=⎩,第21题图ADCB22.(本题满分7分)庆华社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了 工作效率.该绿化组完成的绿化面积S (单位:2m )与工作时间t (单位:h )之间的函数关系如图所示. (1)求提高工作效率后,S 关于t 的函数关系式;(2)求该绿化组提高工作效率后每小时完成的绿化面积比提高工作 效率前每小时完成的绿化面积多多少?23.(本题满分8分)如图,四边形ABCD 是平行四边形,AE//DB ,AE 与CB 的延长线交于点E ,DE 交AB 于F . (1)求证:BC=BE ;(2)联结CF ,若∠ADF=∠BCF 且AD=2AF ,求证:四边形ABCD 是正方形.F EDCBA第23题图第22题图24. (本题满分10分)如图,在平面直角坐标系xOy中,直线y =+与x 轴、y 轴分别交于A 、B 两点. (1)求△AOB 的面积;(2)点P 是y 轴上的点,在坐标平面内是否存在点Q ,使以 A 、B 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q 的坐标;若不存在,请说明理由.第24题图备用图25.(本题满分12分)如图,在矩形ABCD 中,AB =8,AD =6,点P 、Q 分别是AB 边和CD 边上的动点,点P 从点A 向点B 运动,点Q 从点C 向点D 运动,且保持AP =CQ .直线l 为线段PQ 的垂直平分线,与边BC 交于点E .设AP =x .(1)当直线l 经过点B 时,求x 的值; (2)求BE 的长(用含x 的代数式表示);(3)联结EP 、EQ ,设△EPQ 的面积为y ,求y 关于x 的函数关系式,并写出它的定义域.第25题图El QP BCDAA DCB备用图第二学期八年级期末学业质量调研参考答案及评分说明一、选择题:1.A ; 2.C ; 3.B ; 4.C ; 5.A ; 6.D . 二、填空题:7.1; 8.22=-y x ; 9.增大; 10.52=-x a ; 11.=x 12.23310+-=y y ;13.40; 14.-+a b ; 15.23; 16.240024002002-=-x x;1718. 三、解答题:19.解:方程两边同时乘以()()11x x +-,得()()()65141x x x x ++=+-.·············································································· (1分) 整理,得2890x x --=. ························································································· (1分) 解得11x =-,29x =. ···························································································· (1分) 经检验:11x =-是增根,舍去. ············································································ (1分) 所以,原方程的根是9x =. ··················································································· (1分)20.解:由②得20x y -=或30x y +=. ········································································· (1分)原方程可化为820.x y x y +=-⎧⎨-=⎩,830.x y x y +=-⎧⎨+=⎩,······························································ (2分) 解得原方程的解是1116383x y ⎧=-⎪⎪⎨⎪=-⎪⎩,;22124x y =-⎧⎨=⎩,. ·························································· (2分) 21.解:(1)∵DC ∥AB ,∴∠ABD =∠CDB =30°. ·········································································· (1分)∵BD 平分∠ABC ,∴∠ABC =2∠ABD =60°.∵四边形ABCD 为等腰梯形,∴∠A =∠ABC =60°. ················································· (1分) (2)过点D 作DH ⊥AB ,垂足为点H .∵∠CBD =∠CDB =30°,∴CD =BC .∵AD =4,∴CD =4. ∵∠A =60°,∠ABD =30°,∴∠ADB =90°.∵AD =4,∴AB =8. ····································································································· (1分) 可得AH =2,DH= ···························································································· (1分)()()11=4822ABCD S DC AB DH +⋅=+⨯=梯形 ···································· (1分) 答:梯形ABCD的面积为 22.解:(1)由题意,设()0s kt b k =+≠∵(4,1200),(5,1650)在此函数图像上, ·························································· (1分)∴4120051650.k b k b +=⎧⎨+=⎩,·········································································································· (1分)解得450600k t ==-,. ····························································································· (1分) ∴450600s t =-. ········································································································· (1分) (2)当2t =时,300s =. ·································································································· (1分)∴提高工作效率前每小时完成的绿化面积为1502m / h . ·········································· (1分) ∴450–150=300. ··········································································································· (1分) 答:提高工作效率后每小时完成的绿化面积比提高工作效率前多3002m / h . 23.证明:(1)∵四边形ABCD 是平行四边形,∴AD//BC ,AD=BC . ················································ (1分)∵AE//DB ,∴四边形AEBD 是平行四边形. ······························································· (1分) ∴AD=EB . ······················································································································· (1分)∴BC=BE . ······················································································································· (1分) (2)∵AD//EC ,∴∠ADF=∠DEC .∵∠ADF=∠BCF ,∴∠DEC=∠BCF ,∴FE=FC . ··························································· (1分) 又∵BC=BE ,∴FB ⊥BC . ······························································································· (1分)∵四边形AEBD 是平行四边形,∴AB=2AF ,又∵AD=2AF ,∴AB=AD . ····························································································· (1分) ∴四边形ABCD 是正方形. ····························································································· (1分) 24.解:(1)当0=x时,=y B 的坐标为(0,. ············································· (1分)当0=y 时,2=x ,∴点A 的坐标为(2,0). ······················································ (1分)11=222⋅=⨯⨯AOB SAO BO ································································ (1分) (2)∵OA =2,OB=AB =4.······················································································ (1分)① 当AB 为菱形的边时图1 图2 图3 图4如图1,菱形11ABPQ ,∵111//=,,AQ BPAQ BA ∴1Q (2,4). ························· (1分) 如图2,菱形22ABP Q ,∵222//=,,AQ BP AQ BA ∴2Q (2,-4). ····················· (1分) 如图3,菱形33ABQ P ,∵3,=Q O AO ∴3Q (-2,0). ········································· (1分)② 当AB 为菱形的对角线时如图4,菱形44AP BQ ,设4Q (2,m ),∵44=Q B Q A ,∴(224-+=m m,解得3=m ,∴4Q (2,3). ····························· (3分) 综上所述, Q 点的坐标为:1Q (2,4),2Q (2,-4),3Q (-2,0),4Q (2). 25.解:ClDBAPQ图 (1)如图,联结BQ .∵直线l 为线段PQ 的垂直平分线,∴BP =BQ . ····················································· (1分)∵AP =x ,∴BP =BQ =8-x . ····························································································· (1分)在Rt ∆BCQ 中,∵222+=QC BC BQ ,∴()22368+=-x x , ·································································································· (1分)解得74=x . ·················································································································· (1分) (2)联结EP 、EQ .∵EP =EQ ,∴()()222286-+=-+x BE BE x , ···················································· (2分)八年级数学 第11页 共11页解得473-=x BE . ······································································································ (1分) (3)()2114743956=82236--+-⋅=⨯⨯-=BPE x x x S BE PB x . ······························· (1分) 21147425=62236--+⎛⎫⋅=⨯-⨯= ⎪⎝⎭ECQ x x x S CE QC x . ····································· (1分) ()11=862422梯形+⋅=⨯⨯=PQCB S CQ BP BC . ······················································· (1分) 2243956425=2466-+--+--x x x x y =24321003-+x x (47≤x ≤425). ······ (2分)。
上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(共五套)
上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(共五套)上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(一)(考试时间90分钟,满分100分)考生注意:1.本试卷含三个大题,共26题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答 题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证 明或计算的主要步骤. 4.本次考试可使用科学计算器.一、选择题:(本大题共6题,每题3分,满分18分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】 1.下列方程中,不是分式方程的是 (A )21xx-=; (B 1223x +=-+;(C )22112x x x x ++=+; (D 2112x x +=-. 2.一次函数23y x =-+的图像一定经过(A )第一、二、三象限; (B )第一、三、四象限; (C )第二、三、四象限; (D )第一、二、四象限.3.已知C 是线段AB 的中点,那么下列结论中正确的是(A )0AC BC +=uuu r uu u r;(B )0AC BC -=uuu r uu u r;(C )0AC BC +=uuu r uu u r r;(D )0AC BC -=uuu r uu u r r.4.小杰两手中仅有一只手中有硬币.他让小敏猜哪只手中有硬币.下列说法正确的是(A )第一次猜中的概率与重放后第二次猜中的概率不一样; (B )第一次猜不中后,小杰重放后再猜1次肯定能猜中; (C )第一次猜中后,小杰重放后再猜1次肯定猜不中; (D )每次猜中的概率都是0.5.5.如图,在梯形ABCD 中,AB // CD ,AD = DC = CB ,AC ⊥BC ,那么下列结论不正确的是(A)AC = 2CD;(B)DB⊥AD;(C)∠ABC = 60º;(D)∠DAC =∠CAB.6.下列命题中,假命题是(A)有一组对角是直角且一组对边平行的四边形是矩形;(B)有一组对角是直角且一组对边相等的四边形是矩形;(C)有两个内角是直角且一组对边平行的四边形是矩形;(D)有两个内角是直角且一组对边相等的四边形是矩形.二、填空题(本大题共12题,每题2分,满分24分)7.一次函数35y x=--的图像在y轴上的截距为▲.8.已知直线y k x b=+经过点(-2,2),并且与直线21y x=+平行,那么b=▲.9.如果一次函数(2)y m x m=-+的函数值y随x的值增大而增大,那么m的取值范围是▲.10.关于x的方程21a x x+=的解是▲.11.方程x的解是▲.12.如图,一次函数y k x b=+的图像与x轴、y轴分别相交于A、B两点,那么当y < 0时,自变量x的取值范围是▲.13.2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是▲.14.如果一个八边形的每一个内角都相等,那么它的一个内角的度数等于▲度.15.在□ABCD中,如果∠A +∠C = 140º,那么∠B =▲度.16.在△ABC中,D、E分别是边AB、AC的中点,且DE = 6,那么BC =▲.17.在梯形ABCD中,AD // BC,AB = CD,AC⊥BD.如果AD = 4,BC = 10,那么梯形ABCD的面积等于▲.18.如图,在△AB C中,AB = AC,点M、N分别在边AB、AC上,且MN⊥AC.将四边形BCNM沿直线MN翻折,点B、C的对应点分别是点B′、C′,如果四边形ABB′C′是平行四边形,那么∠BAC =▲度.(第12题图)AB C(第18题图)A BCD(第5题图)三、计算题(本大题共8题,满分58分) 19.(本题满分6分)解方程:2(1)11x x x x--=-.20.(本题满分6分)解方程组:2221,4490.x y x x y y +=⎧⎨-+-=⎩21.(本题共2小题,每小题3分,满分6分)已知:如图,在△ABC 中,设BA a =uu r r ,BC b =uu u r r.(1)填空:CA =uu r ▲ ;(用a r 、b r的式子表示)(2)在图中求作a b +r r.(不要求写出作法,只需写出结论即可.) 22.(本题共2小题,每小题3分,满分6分)已知直线y k x b =+经过点A (–3,–8),且与直线23y x =的公共点B 的横坐标为6.(1)求直线y k x b =+的表达式;(2)设直线y k x b =+与y 轴的公共点为点C ,求△BOC 的面积.(第21题图)xyO(第22题图)23.(本题共2小题,每小题4分,满分8分)已知:如图,在正方形ABCD 中,点E 在边BC 上,点F 在边CD 的延长线上,且BE = DF . (1)求∠AEF 的度数;(2)如果∠AEB = 75º,AB = 2,求△FEC 的面积.24.(本题满分8分)某中学八年级学生到离学校15千米的青少年营地举行庆祝十四岁生日活动,先遣队与大部队同时从学校出发.已知先遣队每小时比大部队多行进1千米,预计比大部队早半小时到达目的地.求先遣队与大部队每小时各行进了多少千米. 25.(本题共2小题,其中第(1)小题5分,第(2)小题3分,满分8分)已知:如图,在□ABCD 中,E 为边CD 的中点,联结AE 并延长,交边BC 的延长线于点F .(1)求证:四边形ACFD 是平行四边形; (2)如果∠B +∠AFB = 90º,求证:四边形ACFD 是菱形.A BCDEF (第23题图)ABCDE F(第25题图)26.(本题共3小题,其中第(1)小题3分,第(2)小题4分,第(3)小题3分,满分10分)已知:如图,在梯形ABCD 中,AD // BC ,AB ⊥BC,AB E 是边AB 的中点,联结DE 、CE ,且DE ⊥CE .设AD = x ,BC = y . (1)如果∠BCD = 60º,求CD 的长;(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围; (3)联结BD .如果△BCD 是以边CD 为腰的等腰三角形,求x 的值.A B C D E (第26题图) A B C D E (备用图)参考答案及评分标准一、选择题:(本大题共6题,每题3分,满分18分) 1.B ; 2.D ; 3.C ; 4.D ; 5.A ; 6.C .二、填空题(本大题共12题,每题2分,满分24分) 7.-5; 8.6; 9.m > 2; 10.211x a =+; 11.x = 3; 12.x < 2; 13.16; 14.135; 15.110; 16.12; 17.49; 18.60.三、计算题(本大题共8题,满分58分) 19.解:设1xy x =-. 则原方程可化为21y y-=.………………………………………………(1分) 解得 12y =,21y =-.……………………………………………………(2分)当12y =时,得21xx =-.解得 12x =.………………………………(1分)当21y =-时,得11x x =--.解得 212x =. ……………………………(1分)经检验:12x =,212x =是原方程的根. ∴原方程的根是12x =,212x =. ……………………………………(1分) 20.解:由②,得 2(2)9x y -=.…………………………………………………(1分)即得 23x y -=,23x y -=-. …………………………………………(1分)则原方程组可化为21,23x y x y +=⎧⎨-=⎩;21,23.x y x y +=⎧⎨-=-⎩………………………………………………(2分) 解这两个方程组,得112,12x y =⎧⎪⎨=-⎪⎩;221,1.x y =-⎧⎨=⎩………………………………………………………(2分)21.(1)a b -r r;(2)作图正确,2分;结论正确,1分.22.解:(1)由 x = 6,得 2643y =⨯=.∴ 点B (6,4). ……………………(1分)由直线y k x b =+经过点A 、B ,得38,6 4.k b k b -+=-⎧⎨+=⎩…………………………………………………………(1分)解得 4,34.k b ⎧=⎪⎨⎪=-⎩∴ 所求直线表达式为443y x =-.…………………………………(1分) (2)当 x = 0时,得 4y =-.得 C (0,- 4).…………………………(1分)于是,由点B (6,4)、C (0,- 4), 得146122BOC S ∆=⨯⨯=.………………………………………………(2分)∴ △BOC 的面积为12.23.解:(1)由正方形ABCD ,得 AB = AD ,∠B =∠ADF =∠BAD = 90º.……(1分)在△ABE 和△ADF 中,∵ AB = AD ,∠B =∠ADF = 90º,BE = DF , ∴△ABE≌△ADF .……………………………………………………(1分)∴ ∠BAE =∠F AD ,AE = AF .∴ ∠BAD =∠BAE +∠EAD =∠F AD +∠EAD = 90º. 即得∠EAF=90º.……………………………………………………(1分)又∵ AE = AF ,∴ ∠AEF =∠AFE =45º. …………………………(1分)(2)∵ ∠AEB = 75º,∠AEF = 45º,∴ ∠BEF = 120º.即得 ∠FEC = 60º.……………………………………………………(1分)由正方形ABCD ,得 ∠C = 90º.∴ ∠EFC = 30º. ∴EF=2EC .…………………………………………………………(1分)设EC = x .则 EF = 2x ,2BE DF x ==-,4CF x =-. 在Rt △CEF 中,由勾股定理,得 222CE CF EF +=. 即得 222(4)4x x x +-=.解得 12x =,22x =-(不合题意,舍去).∴ 2EC =,6CF =- …………………………………(1分)∴ 112)(61222CEF S EC CF ∆=⋅=-=.…………(1分)∴ △FEC 的面积为12.24.解:设先遣队每小时行进x 千米,则大部队每小时行进(1)x -千米. ……(1分) 根据题意,得1515112x x -=-.……………………………………………(3分)解得 16x =,25x =-. ……………………………………………………(2分)经检验:16x =,25x =-是原方程的根,25x =-不合题意,舍去.……(1分)∴ 原方程的根为x = 6. ∴ 1615x -=-=.答:先遣队与大部队每小时分别行进6千米和5千米.…………………(1分)25.证明:(1)在□ABCD 中,AD // BF .∴∠ADC=∠FCD .…………………………………………………(1分)∵ E 为CD 的中点,∴ DE = CE .………………………………(1分)在△ADE 和△FCE 中,,,,AED FEC ADE FCE DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ADE ≌△FCE .………………………………………………(1分)∴ AD = FC . 又∵ AD // FC ,∴ 四边形ACFD 是平行四边形.…………………………………(2分)(2)在△ABF 中,∵ ∠B +∠AFB = 90º,∴ ∠BAF = 90º.…………(1分)又∵ 四边形ABCD 是平行四边形,∴ AD = BC . ∵ AD = FC ,∴ BC = CF . 即得AC=CF .………………………………………………………(1分)∵ 四边形ACDF 是平行四边形, ∴四边形ACDF是菱形.…………………………………………(1分)26.解:(1)过点D 作DH ⊥BC ,垂足为点H .∵ AD // BC ,AB ⊥BC ,DH ⊥BC ,∴ DH AB ==. ………(1分)在Rt △DHC 中,∵ ∠BCD = 60º,∴ ∠CDH = 30º.∴ CD =2CH .………………(1分)设CH = x ,则 CD = 2x .利用勾股定理,得 222CH DH CD +=.即得 2224x x +=.解得 2x =(负值舍去). ∴CD=4.……………………………………………………………(1分) (2)在边CD 上截取一点F ,使DF = CF .∵ E 为边AB 的中点,DF = CF , ∴ 11()()22EF AD BC x y =+=+. ∵ DE ⊥CE ,∴ ∠DEC = 90º. 又∵DF=CF,∴2CD EF x y ==+.………………………………(1分)由AB ⊥BC ,DH ⊥BC ,得 ∠B =∠DHC = 90º.∴ AB // DH . 又∵ AB = DH ,∴ 四边形ABHD 是平行四边形. ∴ BH = AD = x . 即得CH y x =-.……………………………………………………(1分)在Rt △DHC 中,利用勾股定理,得 222CH DH CD +=. 即得 22()12()y x x y -+=+. 解得3y x=.……………………………………………………………(1分) ∴ 所求函数解析式为3y x=. 自变量x的取值范围是x >,且x 1分)(3)当△BCD 是以边CD 为腰的等腰三角形时,有两种可能情况:CD = BD 或CD = BC .(i )如果CD = BD ,由DH ⊥BC ,得 BH = CH . 即得 y = 2x .利用 3y x =,得 32x x =.解得 1x =,2x =经检验:1x =2x =,且2x =不合题意,舍去. ∴x =1分) (ii )如果CD = BC ,则 x y y +=.即得 x = 0(不合题意,舍去).…………………………………(1分)∴x =1分)上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(二)一、选择题(本大题共6题,每题2分,满分12分)1. 下列方程中,属于无理方程的是………………………………( ) (A )03=+x ;(B )052=-x x ;(C )032=-+x ;(D )06=-x x2. 解方程33131122-=--+x x x x 时,去分母方程两边同乘的最简公分母是………( )(A ))1)(1(-+x x ; (B ))1)(1(3-+x x ; (C ))1)(1(-+x x x ; (D ))1)(1(3-+x x x .3.下列图形中,是中心对称图形,但不是轴对称图形的是…………………………( )(A )矩形; (B )平行四边形; (C ) 直角梯形; (D )等腰梯形. 4.关于x 的函数)1(+=x k y 和xky =(0≠k )在同一坐标系中的图像大致是…………( )(A ) (B) (C) (D)5.布袋中有大小一样的3个白球和2个黑球,从袋中任意摸出1个球,下列判断正确的是………………………………………………………………………………………………( )(A )摸出的球一定是白球; (B )摸出的球一定是黑球; (C )摸出的球是白球的可能性大; (D )摸出的球是黑球的可能性大. 6.顺次连接等腰梯形四边中点所得的四边形一定是……………………………………( )(A )等腰梯形 (B )平行四边形 (C )矩形 (D )菱形二、填空题(本大题共12题,每题3分,满分36分)7. 如果一次函数m x m y +-=)13(的函数值y 随x 的值增大而减少,那么m 的取值范围是 .8. 将一次函数x y 2=的图象向上平移3个单位,平移后,若y>0,那么x 的取值范围是 .9. 一次函数的图像在y 轴上的截距为3,且与直线12+-=x y 平行,那么这个一次函数的解析式是___________.DCBA10.方程27)1(3-=+x 的解是 .11. 当m 取 时,关于 x 的方程x m mx 2=+无解12. 在一个不透明的盒子中放入标号分别为1,2,3,4,5,6,7,8,9 的形状、大小、质地完全相同的9 个球,充分混合后,从中取出一个球,标号能被3 整除的概率是 .13. 一个多边形的内角和是外角和的4倍,那么这个多边形是 边形. 14. 在菱形ABCD 中,对角线AC 、BD 相交于点O ,P 为AB 边中点,菱形ABCD 的周长为24,那么OP 的长等于 .15. 直线)0(111<+=k b x k y 与)0(222>+=k b x k y 相交于点)0,2(-,且两直线与y 轴围成的三角形面积为6,那么12b b -的值是 .16.如图,在梯形ABCD 中,AB ∥CD ,∠ABC =︒90,如果AB =5,BC =4,CD =3,那么AD =____________. 第16题 第17题第18题17. 如图,四边形ABCD 的对角线交于点O ,从下列条件:①AD ∥BC ,②A B C D =,③AO CO =,④ABC ADC ∠=∠中选出两个可使四边形ABCD 是平行四边形,则你选的两个条件是 .(填写一组序号即可) 18. 如图,在四边形ABCD 中,∠ADC=∠ABC=90°,AD=CD ,DP ⊥AB 于P .若四边形ABCD 的面积是18,则DP 的长是 . 三、简答题:(本大题共4题,每题6分,满分24分)19.解方程: 011=-+-x x 20. 解方程组:⎩⎨⎧=+=--320222y x y xy xP DC B A21.解方程:022331222=++-+x x x x22. 如图,在平行四边形ABCD 中,点P 是BC 边的中点,设==,, (1)试用向量,表示向量,那么= .;(2)在图中求作:-. (保留作图痕迹,不要求写作法,写出结果).四、解答题:(第23和24题,每题6分,第25和26题,每题8分,满分28分)23.如图,梯形ABCD 中AD ∥BC ,AB = DC ,(1)求证:四边形AEFG 是平行四边形(2)当∠FGC=2∠EFB 时,求证:四边形AEFGABD FE M25题图1C24.某市为了美化环境,计划在一定的时间内完成绿化面积200万亩的任务,后来市政府调整了原定计划,不但绿化面积在原计划的基础上增加20%,而且要提前1年完成任务。
2017-2018学年上海市宝山区刘行新华实验学校下学期八年级期末试卷
2017-2018学年上海市宝山区刘行新华实验学校下学期八年级期末试卷(满分 150 分,考试时间 100 分钟)一.这择题:(本大题共6题,每题4分,满分24分)1.如果一次函数1-=kx y 的图像一定经过第一象限,那么k 的取值范围是( ) A 0<k B 0>k C 0≤k D 0≥k【答案】B【解析】∵一次函数1-=kx y 的图像一定经过第一象限,∴0>k .2. 下列关于向量的等式中,正确的是( ) A 0=+BA AB B AC BC AB =+ C AC BC AB =- D 0=-BA AB【答案】B【解析】AC BC AB =+3.我国文化源远流长,很多成语无论过去、现在、将来都有教育意义,下列成语中反映 不可能事件的是( )A 望梅止渴;B 见异思迁;C 钻冰取火;D 唇亡齿寒.【答案】C【解析】钻冰取火为不可能事件.4.如果反比例数xk y =1和一次函数n mx y +=2的图像如图,那么当21y y <时,相应的x 的取值范围是( )A 1<x ;B 1>x ;C 61<<x ;D 6<x .【答案】C【解析】由图像可知.5.下列命题中错误的是( )A 等腰梯形同底的两底角相等;B 等腰梯形的两对角线相等;C 等腰梯形是轴对称图形;D 等腰梯形的两对角线互相垂直.【答案】D【解析】等腰梯形的两对角线相等,不一定垂直.6. 如图,ABC RT ∆中,9=AB ,6=BC , 90=∠B ,将ABC ∆折叠,使A 点与BC 的中点D 重合,折痕为MN ,那么折痕MN 与线段AB 的交点N 与点B 距离为( ) A35 25B 4C 5D 【答案】C【解析】∵折叠,ND AN =∴BN BN AB DN -=-=∴9点D 为BC 的中点,321==∴BC BD 在BND ∆中, 90=∠B ,222DN BN BD =+∴,即()22293BN BN -=+,解得4=BN ,即点N 与点B 距离为4.二、填空题:(本大题共12题,每题4分,满分48分)7.直线23-=x y 在y 轴上的截距是 .【答案】2-【解析】b kx y +=,b 为截距.8.如果一次函数2+-=mx y 的函数值y 随x 的增大而减小,则m 的取值范围是 .【答案】0>m【解析】y 随x 的增大而减小,0-<m ∴,0>m ∴.9.方程2413-=x 的解是 . 【答案】2-=x 【解析】83-=x ,2-=x .10. 关于的方程224a x ax +=+(其中2≠a )的解是 . 【答案】2+=a x【解析】()422-=-a x a ,2≠a ,∴2+=a x .11.方程()021=-+x x 的根是 .【答案】2=x【解析】02≥-x ,2≥∴x ,31≥+∴x ,∴方程()021=-+x x 时,02=-x ,解得2=x .12.方程组⎩⎨⎧=-=-791322y x y x 的解是 .【答案】4=x ,1=y【解析】()()733922=+-=-y x y x y x ,且13=-y x ,73=+∴y x ,联立方程组⎩⎨⎧=+=-7313y x y x ,解得⎩⎨⎧==14y x . 13.确定事件的率是 .【答案】0或1【解析】确定事件包括必然事件和不可能事件,必然事件的概率为1,不可能事件的概率为0,故答案为0或1.14.如果过多边形的一个顶点共有3条对角线,那么这个多边形的内角和是 .【答案】720【解析】 过多边形的一个顶点共有3条对角线,即将这个多边形分为4个三角形,∴这个多边形的内角和是 7204180=⨯.15.在平行四边形ABCD 中,若D B A ∠+∠=∠,则=∠C 度. 【答案】 120【解析】 四边形ABCD 是平行四边形,C A ∠=∠∴,D B ∠=∠, 180=∠+∠B A , 180=∠+∠D A ,D B A ∠+∠=∠ , 1801803+=∠∴A ,解得 120=∠A ,即 120=∠C .16.如图,若菱形ABCD 的顶点A ,B 的坐标分别为()03,,()02,-,点D 在y 轴上,则点C 的坐标是 .【答案】()4,5-【解析】 菱形ABCD 的顶点A ,B 的坐标分别为()03,,()02,-,点D 在y 轴上,5=∴AB ,5=AD ,由勾股定理可知4352222=-=-=OA AD OD ,∴点C 的坐标是()4,5-17. 如图G 是矩形ABCD 的对角线BD 上一点,过点G 作DC EF //,分别交AD 、BC 于点E 、F ,联结GA 、GC ,如果5=EG ,2=BF ,则图中GFC ∆面积为等于 .【答案】5【解析】作AB GM ⊥于M ,延长MG 交CD 于N ,则有矩形AEGM 、矩形DEGN 、矩形CFGN 、矩形BMGF2==∴BF AE ,DBC AD B S S ∆∆=,BGF BGM S S ∆∆=,DNG DEG S S ∆∆=,1052=⨯==∴CFG N AEG M S S ,521==∴∆CFGN GFC S S ,18. 如图,在ABC ∆中, 60=∠ACB ,2=AC ,D 是AB 边中点,E是边BC 上一点,若DE 平分ABC ∆的周长,则DE 的长是 . 【答案】3 【解析】延长BC 至点M ,使CA CM =,连接AM ,作CA CN ⊥于点N60=∠ABC , 120=∠∴AMC ,CA CM = ,AM CN ⊥,AM MN AN 21==∴,()3018021=∠-=∠ACM MAC ,AN CN ⊥121==∴AC CN 322=-=∴CN AC AN ,322==∴AN AM , DE 平分ABC ∆的周长,BD BE AD AC CE +=++∴,D 是AB 边中点,BD AD =∴,AC CM = ,BE CM CE =+∴,即EB ME =,DE ∴是ABM ∆的中位线,321==∴AM DE . 三、解答题:(本大题共 7题,其中第19 至 22 题每题 10 分,第 23 至 24 题每题12分,第25题14分,满分78分)19.在一次比赛中,甲、乙、丙成绩完全一样,不得不用抽签决定其中两人晋级。
上海市名校2017-2018学年八年级下学期期末考试数学试题
8B.m>89C.m=9上海市名校2017-2018学年八年级下学期期末考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本题共12个小题,每小题3分,满分36分)1.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直2.下列交通标志中,既是轴对称图形又是中心对称图形的是()3.如图,一次函数y=2x+3的图象大致是()4.甲、乙、丙三个游客团的年龄的方差分别是S甲2=1.47,S乙2=10.2,S丙2=2.3,导游小邱最喜欢带游客年龄相近的团队,若在这三个游客团中选择一个,则他应选()A.甲队B.乙队C.丙队D.哪个都可以5.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m>98D.m=896.周日,小华从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小华离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中不正确的是()A.小华家离报亭的距离是1200mB.小华从家去报亭的平均速度是80m/minC.小华从报亭返回家中的平均速度是80m/minD.小华在报亭看报用了15min7.对于一次函数y=x+2,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴交点坐标是(0,2)C.函数图象与x轴正方向成45°角D.函数图象不经过第四象限8.如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AB、BC边上的中点,连接EF,若EF=3,BD=8,则菱形ABCD的周长为()A.14B.20C.22D.289.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28B.12x(x﹣1)=28C.x(x﹣1)=28D.x(x﹣1)=2810.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组乙组158158159159160160160161160161161163169165以下叙述错误的是()A.甲组同学身高的众数是160A.(﹣3,0)B.(﹣6,0)C.(﹣5B.乙组同学身高的中位数是161C.甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大11.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.2,60°B.4,30°C.1,30°D.3,60°12.如图,直线y=23x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()3,0)D.(﹣,0)22二、填空题:(本大题共8个小题,每小题填对最后结果得5分,满分40分。
2017-2018沪科版数学八年级(下)期末试卷及答案
2017-2018沪科版数学八年级(下)期末试卷及答案一、选择题(共10小题,每小题4分,满分40分)1.(4分)下列根式中,不是最简二次根式的是()A. B.C.D.2.(4分)下列计算正确的是()A.﹣= B.3×2=6C.(2)2=16 D.=13.(4分)已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.2 C.﹣1 D.﹣54.(4分)正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.135.(4分)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分6.(4分)已知等腰三角形的腰和底的长分别是一元二次方程x2﹣6x+8=0的根,则该三角形的周长为()A.8 B.10 C.8或10 D.127.(4分)现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是()A.正方形和正六边形B.正三角形和正方形C.正三角形和正六边形D.正三角形、正方形和正六边形8.(4分)在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.119.(4分)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°10.(4分)如图,点P是菱形ABCD边上一动点,若∠A=60°,AB=4,点P从点A出发,以每秒1个单位长的速度沿A→B→C→D的路线运动,当点P运动到点D 时停止运动,那么△APD的面积S与点P运动的时间t之间的函数关系的图象是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(5分)要使代数式有意义,则x的取值范围是.12.(5分)方程x(x﹣1)=x的解为.13.(5分)如图所示,△ABC的顶点A、B、C在边长均为1的正方形网络的格点上,BD⊥AC于D,则BD的长=.14.(5分)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E 在线段AB上,连接EF、CF,则下列结论中一定成立的是.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC =2S△CEF;④∠DFE=3∠AEF.三、解答题(共2小题,满分16分)15.(8分)计算:(+1)(﹣1)+﹣()0.16.(8分)解方程:x2﹣2x=4.四、解答题(共2小题,满分16分)17.(8分)(1)如图1,在平行四边形ABCD中,请作出一条直线,将其分成面积相等的两部分;(2)如图2,在多边形ABCDEF中,AB∥CD∥EF,AF∥DE∥BC,请作出一条直线,将该多边形分成面积相等的两部分.(不写作法,保留作图痕迹)18.(8分)定义新运算:对于任意实数m,n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0.(1)求a的值;(2)请判断方程:2x2﹣bx+a=0的根的情况.五、解答题(共2小题,满分20分)19.(10分)如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求CD,AD的值;(2)判断△ABC的形状,并说明理由.20.(10分)中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60100.05200.1060≤x<7030b70≤x<80a0.3080≤x<90800.4090≤x≤100请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?六、解答题(共1小题,满分12分)21.(12分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.七、解答题(共1小题,满分12分)22.(12分)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC 于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.八、解答题(共1小题,满分14分)23.(14分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.2017-2018沪科版数学八年级(下)期末试卷及答案参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2016•自贡)下列根式中,不是最简二次根式的是()A. B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:因为==2,因此不是最简二次根式.故选B.【点评】规律总结:满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.2.(4分)(2016•来宾)下列计算正确的是()A.﹣= B.3×2=6C.(2)2=16 D.=1【分析】A、和不是同类二次根式,不能合并;B、二次根式相乘,系数相乘作为积的系数,被开方数相乘,作为积中的被开方数;C、二次根式的乘方,把每个因式分别平方,再相乘;D、二次根式的除法,把分母中的根号化去.【解答】解:A、不能化简,所以此选项错误;B、3×=6,所以此选项正确;C、(2)2=4×2=8,所以此选项错误;D、==,所以此选项错误;本题选择正确的,故选B.【点评】本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.3.(4分)(2017•潮阳区模拟)已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.2 C.﹣1 D.﹣5【分析】设方程的两个根为x1,x2,由根与系数的关系找出x1+x2=﹣3,代入x1=﹣2即可得出x2的值.【解答】解:设方程的两个根为x1,x2,∴x1+x2=﹣3,∵方程的一根x1=﹣2,∴x2=﹣1.故选C.【点评】本题考查了根与系数的关系,根据方程的系数找出x1+x2=﹣3是解题的关键.4.(4分)(2016•衡阳)正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.13【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是:180°﹣150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:C.【点评】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数是解题关键.5.(4分)(2016•南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(4分)(2016•青海)已知等腰三角形的腰和底的长分别是一元二次方程x2﹣6x+8=0的根,则该三角形的周长为()A.8 B.10 C.8或10 D.12【分析】用因式分解法可以求出方程的两个根分别是4和2,根据等腰三角形的三边关系,腰应该是4,底是2,然后可以求出三角形的周长.【解答】解:x2﹣6x+8=0(x﹣4)(x﹣2)=0∴x1=4,x2=2,由三角形的三边关系可得:腰长是4,底边是2,所以周长是:4+4+2=10.故选:B.【点评】本题考查的是用因式分解法解一元二次方程,用十字相乘法因式分解求出方程的两个根,然后根据三角形的三边关系求出三角形的周长.7.(4分)(2011•十堰)现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是()A.正方形和正六边形B.正三角形和正方形C.正三角形和正六边形D.正三角形、正方形和正六边形【分析】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【解答】解:A、正方形和正六边形内角分别为90°、120°,由于90m+120n=360,得m=4﹣n,显然n取任何正整数时,m不能得正整数,故A选项不能铺满;B、正三角形和正方形内角分别为60°、90°,由于60°×3+90°×2=360°,故B选项能铺满;C、正三角形和正六边形内角分别为60°、120°,由于60°×2+120°×2=360°,故C 选项能铺满;D、正三角形、正方形和正六边形内角分别为60°、90°、120°,由于60°+90°+90°+120°=360°,故D选项能铺满.故选:A.【点评】考查了平面镶嵌(密铺),解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.8.(4分)(2016•梧州)在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.11【分析】先根据三角形中位线性质得DF=BC=2,DF∥BC,EF=AB=,EF∥AB,则可判断四边形DBEF为平行四边形,然后计算平行四边形的周长即可.【解答】解:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=7.故选B.【点评】本题考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.9.(4分)(2016•海南)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.【解答】解:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.【点评】此题考查了矩形的性质以及平行线的性质.注意准确作出辅助线是解此题的关键.10.(4分)(2014•牡丹江)如图,点P是菱形ABCD边上一动点,若∠A=60°,AB=4,点P从点A出发,以每秒1个单位长的速度沿A→B→C→D的路线运动,当点P运动到点D时停止运动,那么△APD的面积S与点P运动的时间t之间的函数关系的图象是()A.B.C.D.【分析】根据∠A的度数求出菱形的高,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:∵∠A=60°,AB=4,∴菱形的高=4×=2,点P在AB上时,△APD的面积S=×4×t=t(0≤t≤4);点P在BC上时,△APD的面积S=×4×2=4(4<t≤8);点P在CD上时,△APD的面积S=×4×(12﹣t)=﹣t+12(8<t≤12),纵观各选项,只有B选项图形符合.故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出相应的函数解析式是解题的关键.二、填空题(共4小题,每小题5分,满分20分)11.(5分)(2017春•安庆期末)要使代数式有意义,则x的取值范围是x ≥﹣1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】本题考查的知识点为:二次根式的被开方数是非负数.12.(5分)(2017•高新区一模)方程x(x﹣1)=x的解为x1=0,x2=2.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣1)=x,x(x﹣1)﹣x=0,x(x﹣1﹣1)=0,x=0,x﹣1﹣1=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.13.(5分)(2017春•安庆期末)如图所示,△ABC的顶点A、B、C在边长均为1的正方形网络的格点上,BD⊥AC于D,则BD的长=.【分析】根据图形和三角形的面积公式求出△ABC的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.【解答】解:△ABC的面积=×BC×AE=2,由勾股定理得,AC==,则××BD=2,解得BD=.故答案为:.【点评】本题考查的是勾股定理,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.14.(5分)(2014•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE ⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是①②④.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC =2S△CEF;④∠DFE=3∠AEF.【分析】分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.【解答】解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC =S△CFM,∵MC>BE,∴S△BEC ≤2S△EFC故S△BEC =2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DMF是解题关键.三、解答题(共2小题,满分16分)15.(8分)(2015•大连)计算:(+1)(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣1+2﹣1,然后进行加减运算.【解答】解:原式=3﹣1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.16.(8分)(2016•安徽)解方程:x2﹣2x=4.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.【点评】在实数运算中要注意运算顺序,在解一元二次方程时要注意选择适宜的解题方法.四、解答题(共2小题,满分16分)17.(8分)(2017春•安庆期末)(1)如图1,在平行四边形ABCD中,请作出一条直线,将其分成面积相等的两部分;(2)如图2,在多边形ABCDEF中,AB∥CD∥EF,AF∥DE∥BC,请作出一条直线,将该多边形分成面积相等的两部分.(不写作法,保留作图痕迹)【分析】(1)由于平行四边形是中心对称图形,于是过对角线的交点作直线即可;(2)延长CB交EF于G,过两个平行四边形的对角线交点作直线即可.【解答】解:(1)连接AC、BD交于点O,过O作直线,即把平行四边形面积等分;如图所示:(2)延长CB交EF于G,连接CE、DG交于点M,连接AG、BF交于点N,作直线MN,如图所示【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质是关键.18.(8分)(2017春•安庆期末)定义新运算:对于任意实数m,n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0.(1)求a的值;(2)请判断方程:2x2﹣bx+a=0的根的情况.【分析】(1)根据新运算的定义式结合2☆a的值小于0,即可得出关于a的一元一次不等式,解之即可得出结论;(2)根据方程的系数结合根的判别式,即可得出△=b2﹣8a≥﹣8a>0,由此可得出方程2x2﹣bx+a=0有两个不相等的实数根.【解答】解:(1)∵2☆a的值小于0,∴22a+a=5a<0,解得:a<0.(2)∵在方程2x2﹣bx+a=0中,△=(﹣b)2﹣4×2a=b2﹣8a≥﹣8a>0,∴方程2x2﹣bx+a=0有两个不相等的实数根.【点评】本题考查了根的判别式以及实数的运算,解题的关键是:(1)根据新运算的定义式找出关于a的一元一次不等式;(2)牢记“当△>0时,方程有两个不相等的实数根”.五、解答题(共2小题,满分20分)19.(10分)(2017春•安庆期末)如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求CD,AD的值;(2)判断△ABC的形状,并说明理由.【分析】(1)应用勾股定理,求出CD,AD的值各是多少即可.(2)判断出AC2+BC2=AB2,即可判断出△ABC为直角三角形.【解答】解:(1)∵CD⊥AB,∴△BCD和△ACD都是直角三角形,∴CD==12,AD==16.(2)△ABC为直角三角形,理由:∵AD=16,BD=9,∴AB=AD+BD=16+9=25,∵AC2+BC2=202+152=625=252=AB2,∴△ABC为直角三角形.【点评】此题主要考查了勾股定理的应用,以及勾股定理的逆定理的应用,要熟练掌握.20.(10分)(2015•长沙)中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60100.05200.1060≤x<7030b70≤x<80a0.3080≤x<90800.4090≤x≤100请根据所给信息,解答下列问题:(1)a=60,b=0.15;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在80≤x<90分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得a的值,用第三组频数除以数据总数可得b的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)样本容量是:10÷0.05=200,a=200×0.30=60,b=30÷200=0.15;(2)补全频数分布直方图,如下:(3)一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在第四个分数段,所以这次比赛成绩的中位数会落在80≤x<90分数段;(4)3000×0.40=1200(人).即该校参加这次比赛的3000名学生中成绩“优”等的大约有1200人.故答案为60,0.15;80≤x<90;1200.【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.六、解答题(共1小题,满分12分)21.(12分)(2016•毕节市)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【分析】(1)设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;(2)根据2016年该县投入教育经费和每年的增长率,直接得出2017年该县投入教育经费为8640×(1+0.2),再进行计算即可.【解答】解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.【点评】此题考查了一元二次方程的应用,掌握增长率问题是本题的关键,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.七、解答题(共1小题,满分12分)22.(12分)(2016•南通)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.【分析】(1)先根据平行四边形的性质得出AB=CD,AB∥CD,再由BE=AB得出BE=CD,根据平行线的性质得出∠BEF=∠CDF,∠EBF=∠DCF,进而可得出结论;(2)根据平行四边形的性质可得AB∥CD,AB=CD,∠A=∠DCB,再由AB=BE,可得CD=EB,进而可判定四边形BECD是平行四边形,然后再证明BC=DE即可得到四边形BECD是矩形【解答】(1)证明:∵四边形ABCD是平行四边形,∵AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,在△BEF与△CDF中,∵,∴△BEF≌△CDF(ASA);(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形.【点评】此题主要考查的值矩形的判定及平行四边形的性质,关键是掌握平行四边形的对边相等;对角相等;对角线互相平分.八、解答题(共1小题,满分14分)23.(14分)(2014•临沂)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM【解答】方法一:(1)解:如图1(1)过点E作EF⊥AM交AM于F点,连接EM,∵AE平分∠DAM∴∠DAE=∠EAF在△ADE和△AEF中,AE=AE∠D=∠AFE=90°∴△ADE≌△AEF∴AD=AF,EF=DE=EC,在△EFM和△ECM中,∠EFM=∠CEM=EMEF=CE∴△EFM≌△ECM,∴FM=MC,AM=AF+FM=AD+MC方法二:证明:延长AE、BC交于点N,如图1(2),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.方法一:证明:将△ADE绕点A顺时针旋转90°,得到新△ABF,如图1(3)∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM方法二:证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(4)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.【点评】本题考查了正方形及矩形的性质、全等三角形的性质和判定、等腰三角形的判定、平行线的性质、角平分线的定义等知识,考查了基本模型的构造(平行加中点构造全等三角形),考查了反证法的应用,综合性比较强.添加辅助线,构造全等三角形是解决这道题的关键.。
上海市宝山区2017学年第一学期初二数学期末卷
宝山区2017学年第一学期期末考试八年级数学试卷(满分100分,考试时间90分钟)一、选择题:(本大题共6题,每题3分,满分18分)1.在下列二次根式中,和x 2是同类二次根式的是……………………………………( ) (A )x 2; (B )x 2; (C )x 8; (D )2+x .2.下列各方程中,一定是一元二次方程的是………………………………………………( )(A )21120x x+−=; (B )a ax 22=; (C )0)2)(1(=+−y y ; (D )32−=x y .3.下列命题中,为真命题的是…………………………………………………………( )(A )同位角相等; (B )三角形两边之和大于第三边;(C )直角三角形“三线合一”; (D )三角形面积为其某一边a 和该边上的高h 之积.4.在直角△ABC 中,∠C=90°,如果AB BC 21=,那么…………………………( ) (A )∠A=30° ; (B )∠A=45°; (C )∠A=60°; (D )∠A=36°.5.某工厂第二季度的产值比第一季度增长%x ,第三季度的产值又比第二季度增长%x ,那么第三季度的产值比第一季度增长了……………………………………………( )(A )%2x ; (B )%21x +; (C )2%)1(x +; (D )%)2%(x x +.6.如图,反比例函数x y 4−=的图像与直线3x y −=的交点为 A 、B , 过点A 作y 轴的平行线与过点B 作x 轴的平行线相交于点C ,则△ABC 的面积为…………………( )(A )8 ; (B )6; (C )4; (D )2.二、填空题:(本大题共12题,每题3分,满分36分)7.化简:312a = .8.方程0)1(=+x x 的根是 .9.在实数范围内分解因式:242+−x x = .10.函数=y 12+x 的定义域是 .11.已知函数x x f 6)(=,那么=)2(f .2017学年第一学期期末考试八年级数学试卷 第 1 页 共 4 页。
宝山2017学年第二学期八年级数学期末卷参考答案
3
3
3
(3)点 N(-3,3 3 -1)
………2 分
围成的多边形(菱形)的周长为 8 3 ,其面积为 6 3
………2 分
25. (1)过 A 作 AH⊥ BC 于 H ,
………………1 分
在 ABCD 中,AD//BC, ∠D=90° ∴ AHCD 为矩形,AD=HC
在直角△ ACH 中,∵ AC=4,∠ACB=30°,∴ AH=2
…………1 分
∵ BE⊥ AC ∴ ABCE 为菱形
…………1 分
∵ AB=BC=AC=4,∴ 菱形 ABCE 的面积为等边三角形 ABC 面积的 2 倍
四边形 ABCE 的面积为 8 3 .
…………1 分
综上所述四边形 ABCE 的面积为 8 3 或 8
2017 学年第二学期期末考试八年级数学评分参考
∵ 四边形 ABCD 为正方形,∴ DA=BA,∠ADO=∠CDO=45°,CO=DO
2017 学年第二学期期末考试八年级数学评分参考第Leabharlann 页共4页∵ ∠ADG=∠DCF
∴ ∠ MDO=∠ NCO
在△ DOM 和△ CON 中, ∠DMO=∠CNO=90°
∴ △ DOM≌ △ CON(AAS). ∴ OM=ON,
宝山 2017 学年第二学期期末考试八年级数学评分参考
一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)
1.A; 2.B; 3. C; 4.B; 5. C; 6. D.
二、填空题(本大题共 12 题,每题 4 分,满分 48 分)
7.1; 8.(0, 3) ;
3
13. ; 14.80︒;
(2) 如图,设点 M 的坐标为(a,0),………………1 分
2018学年宝山区第二学期八年级数学试卷
八年级数学 共6页 第1页宝山区2018学年第二学期初二年级数学学科期末教学质量监控测试题2.除第一、二大题外,其余各题如无特别说明,都必须写出解答的主要步骤.(本大题共6题,每题4分,满分24分)】1.下列各点中,在函数27y x =-的图像上的是 …………………………………………( )(A)(2,3);(B)(0,7)-;(C)(3,1);(D)(1,9)-.2.下列方程中,有实数根的方程是…………………………………………………………( )(A)4160x +=;(B)2230x x ++=;(C)2402x x -=-;0.3.若AB 是非零向量,则下列等式正确的是 ………………………………………………( )(A)AB BA =;(B)0AB BA +=; (C)0AB BA +=;(D)AB BA =.4.下列事件中属于随机事件的是……………………………………………………………( ) (A) 关于x 2有实数解; (B) 向量AB 与向量BC 是平行向量; (C) 直线21y x =-与直线2y x =+相交;(D) 一组对边平行且相等的四边形为平行四边形.5.某校计划修建一条400米长的跑道,开工后每天比原计划多修10米,结果提前2天完成任务.如果设原计划每天修x 米,那么根据题意可列出方程……………………………( )(A)400400210x x -=-; (B)400400210x x -=-; (C)400400210x x -=+; (D)400400210x x-=+. 6.下列命题中,真命题是……………………………………………………………………( ) (A) 对角线相等的四边形是矩形;(B) 对角线互相垂直的四边形是菱形;(C) 对角线互相平分的四边形是平行四边形; (D) 对角线互相垂直平分的四边形是正方形.八年级数学 共6页 第2页二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置.】7.如果将一次函数31y x =-的图像沿y 轴向上平移5个单位,那么平移后所得图像的函数解析式为 .8.已知直线y kx b =+平行于直线74y x =-+,且在y 轴上的截距为1-,那么该直线的解析式是 .9.如图,如果点(2,)A m 和点(4,)B n 在直线l 的图像上,那么m 、n 的大小关系是:m n .(用“>”、“=”或“<”表示)10.方程32160x -=的解是 . 11x =的解为 . 12.用换元法解分式方程221231x xx x +-=+时,如果设21x y x =+,那么原方程可以化为关于 y 的整式方程是 .13.将分别写有“创建”、“文明”、“城市”的三张大小、质地相同的卡片随机排列,那么恰好排列成“创建文明城市”的概率是 .14.已知一个凸多边形的每个内角都是150°,那么它的边数为 .15.在梯形ABCD 中,AD BC ∥,E 、F 分别是边AB 、CD 的中点.如果6AD =,10EF =,那么BC = .16.如图,已知在梯形ABCD 中,AD BC ∥,30B ∠=︒,75C ∠=︒,2AD =,7BC =,那么AB = .17.如图,在ABC ∆中,90ACB ∠=︒,M 、N 分别是AB 、AC 的中点,延长BC 至点D ,使2BC CD =,联结DM 、DN 、MN .如果6AB =,那么DN = .18.如图,在菱形ABCD 中,4AB =,60ABC ∠=︒.将菱形ABCD 绕点B 顺时针旋转(旋转角小于90°),点A 、C 、D 分别落在A '、C '、D '处,那么当A C BC ''⊥时,线段A D '的长 为 .(第18题图)ABCD(第9题图)(第16题图)BC(第17题图)八年级数学 共6页 第3页三、解答题(本大题共7题,满分78分)19.(本题满分8分)解方程:2241242x x x x --=+-- 20.(本题满分8分)解方程组:2226444y x x x y y -=⎧⎪⎨++=⎪⎩①②21.(本题满分8分,第(1)小题3分,第(2)小题2分,第(3)小题3分)如图,在梯形ABCD 中,AD BC ∥,2BC AD =,过点A 作AE DC ∥交BC 于点E . (1)写出图中所有与AD 互为相反向量的向量:;(2)填空:BA AD += ;AD CD BA -+= ; (3)求作:AB DC +.(保留作图痕迹,写出结果,不要求写作法)E(第21题图)DBCA八年级数学 共6页 第4页22.(本题满分8分,第(1)小题2分,第(2)小题2分,第(3)小题4分)将牌面数字分别是1(A),2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上. (1)从中随机抽出一张牌,牌面数字是偶数的概率是 ; (2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树形图的方法求组成的两位数恰好是4的倍数的概率.23.(本题满分10分,第(1)小题6分,第(2)小题4分)如图,在ABC ∆中,90ACB ∠=︒,CD 是AB 边上的高,BAC ∠的平分线AE 交CD 于F ,EG AB ⊥于G .(1)求证:①CF CE =;②四边形GECF 是菱形吗?请说明理由.(2)当四边形GBCF 是等腰梯形时,试判定ABC ∆的形状,并说明理由.ACBDEF G (第23题图)八年级数学 共6页 第5页(吨)24.(本题满分10分,第(1)小题4分,第(2)小题6分)某市为鼓励市民节约用水,自来水公司按分段收费标准收费,下图反映的是每月水费y (元)与用水量x (吨)之间的函数关系.(1)当用水量超过10吨时,求y 关于x 的函数解析式(不写定义域);(2)按上述分段收费标准,小聪家三、四月份分别交水费38元和27元,问四月份比三月份节约用水多少吨?25.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,四边形ABCD 为矩形,C 点在x 轴上,A 点在y 轴上,D 点坐标是(0,0),B 点坐标是8),矩形ABCD 沿直线EF 翻折点A 落在BC 边上的G 处,E 、F 分别在AD 、AB 上,且F点的坐标是8). (1)求G 点坐标; (2)求直线EF 的解析式.(3)点M 在直线EF 上,x 轴上是否存在点N ,使以M 、N 、F 、G 为顶点的四边形是平行四边形?若存在,请直接写出N 点的坐标;若不存在,请说明理由.(第25题图)八年级数学 共6页 第6页26.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图1,在矩形ABCD中,BC =,ADC ∠的平分线交边BC 于点E ,过点A 作AH 垂直DE ,垂足为H .联结CH 并延长与边AB 相交于点F ,联结AE 交CF 于点O . (1)求证:AEB AEH ∠=∠; (2)求证:点O 为AE 的中点;(3)如图2,连接OD ,与AH 相交于点M,若1BE ,求AM 的长.(第26题图1)OHFEDCBA(第26题图2)A BCDEFHOM。
宝山区2018学年度第二学期八年级数学期末考试试题卷
黄浦区2016学年度第二学期八年级数学期末考试试题卷一、选择题(本大题共6题,每题3分,满分18分)1.下列方程中,有实数解的方程是 ( )(A)122=-+-x x ; (B)0222=-+-xx x (C)x x -=+1(D) 034=+-x2.已知点A (-1,m )和点B (1,n )在函数k x y +=31的图像上,则下列结论中正确的( ) (A )n m >;(B )n m <;(C )0>k ;(D )0<k .3..甲、乙两同学同时从学校出发,步行10千米到某博物馆,已知甲每小时比乙多走1千米,结果乙比甲晚20分钟,设乙每小时走x 千米,则所列方程正确的是( )(A)2010110=-+x x ; (B) 2011010=+-x x ; (C)x x 106020110=-+ ; (D) 110602010+=-x x . 4.如图,已知△ABC ,点D 、E 、F 分别是AB 、AC 、BC 的中点,下列表示不正确的是( )(A ).= (B ).//(C ).-=(D ).=++5.菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为( ).(A )( B )( C )( D )6.下列命题正确的是 ( ). (A )任何事件发生的概率为1;(B )随机事件发生的概率可以是任意实数; (C )可能性很小的事件在一次实验中有可能发生; (D )不可能事件在一次实验中也可能发生。
二、填空题(本大题共12题,每题2分,满分24分)7. 一次函数b x y +-=的图像经过第二、三、四象限,则b 的取值范围是__________ 8.解关于x 的方程x ax +=3()1≠a ,则方程的解为9.用换元法解方程2111322=---x x x x ,设x x y 12-=,那么原方程可以化为关于y 的一元二次方程为.10. 已知平面直角坐标系内,O (0,0), A (2,6), C (6,0)若以O ,A ,C ,B 为顶点的四边形是平行四边形,则点B 不可能在第象限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市宝山区2017-2018学年八年级(下)期末数学试卷一、选择题:(本大题共6题,每题4分,满分24分)
1.如果一次函数y=kx+不经过第三象限,那么k的取值范围是()A.k<0B.k>0C.k≤0D.k≥0
2.下列关于向量的等式中,不正确的是()
A.+=B.﹣=C.﹣=D.+=3.下列说法错误的是()
A.“买一张彩票中大奖”是随机事件
B.不可能事件和必然事件都是确定事件
C.“穿十条马路连遇十次红灯”是不可能事件
D.“太阳东升西落”是必然事件
4.在一个四边形的所有内角中,锐角的个数最多有()
A.4个B.3个C.2个D.1个
5.已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米.若设甲车的速度为x千米/时,依题意列方程正确的是()
A.=B.=C.=D.=
6.如图,将正方形ABCD绕点A逆时针旋转30°得到AB′C′D′,如果AB=1,点C与C′的距离为()
A.B.﹣C.1D.﹣1
二、填空题:(本大题共12题,每题4分,满分48分)
7.如果点A(1,n)在一次函数y=3x﹣2的图象上,那么n=.
8.直线y=x﹣与y轴的交点是.
9.方程x5=81的解是.
10.关于x的方程ax﹣2x﹣5=0(a≠2)的解是.
11.用换元法解方程﹣+3=0时,如果设=y,那么将原方程变形后所得的一元二次方程是.
12.方程+=3的解是.
13.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于.
14.如果在平行四边形ABCD中,两个邻角的大小是5:4,那么其中较小的角等于.15.如果一个多边形的各个外角都是40°,那么这个多边形的内角和是度.16.如图,在▱ABCD中,AD=8,点E、F分别是BD、CD的中点,则EF=.
17.如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,如果AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,那么DP:DC 等于.
18.如图,点E、F分别在矩形ABCD的边BC和CD上,如果△ABE、△ECF、△FDA的面积分别刚好为6、2、5,那么矩形ABCD的面积为.
三、解答题(本大题共7题,其中第19至22题每题10分,第23至24题每题12分,第25题14分,满分78分)
19.(10分)甲、乙、丙三支排球队共同参加一届比赛,由抽签决定其中两队先打一场,然后胜者再和第三队(第一场轮空者)比赛,争夺冠军.
(1)如果采用在暗盒中放形状大小完全一致的两黑一白三个小球,摸到白色小球的第一场轮空直接晋级进入决赛,那么甲队摸到白色小球的概率是多少?
(2)如果采用三队各抛一枚硬币,当出现二正一反或二反一正时则由抛出同面的两个队先打一场,而出现三枚同面(同为正面或反面)时,则重新抛,试用“树形图”或表格表示第一轮抽签(抛币)所有可能的结果,并指出必须进行第二轮抽签的概率.20.(10分)解方程组:.
21.(10分)如图,在ABCD中,AB∥CD,AD=BC,∠B=60°,AC平分∠DAB.(1)求∠ACB的度数;
(2)如果AD=1,请直接写出向量和向量++的模.
22.(10分)如图直线y=2x+m与y=(n≠0)交于A,B两点,且点A的坐标为(1,4).
(1)求此直线和双曲线的表达式;
(2)过x轴上一点M作平行于y轴的直线1,分别与直线y=2x+m和双曲线y=(n ≠0)交于点P,Q,如果PQ=2QM,求点M的坐标.
23.(12分)如图,四边形ABCD是正方形,AC与BD,相交于点O,点E、F是边AD上
两动点,且AE=DF,BE与对角线AC交于点G,联结DG,DG交CF于点H.
(1)求证:∠ADG=∠DCF;
(2)联结HO,试证明HO平分∠CHG.
24.(12分)观摩、学习是我们生活的一部分,而在观摩中与展览品保持一定的距离是一种文明的表现.某学校数学业余学习小组在平面直角坐标系xOy有关研讨中,将到线段PQ所在的直线距离为的直线,称为直线PQ的“观察线”,并称观察线上到P、Q 两点距离和最小的点L为线段PQ的“最佳观察点”.
(1)如果P(1,),Q(4,),那么在点A(1,0),B(,2),C(,3)中,处在直线PQ的“观察线”上的是点;
(2)求直线y=x的“观察线”的表达式;
(3)若M(0,﹣1),N在第二象限,且MN=6,当MN的一个“最佳观察点”在y 轴正半轴上时,直接写出点N的坐标;并按逆时针方向联结M、N及其所有“最佳观察点”,直接写出联结所围成的多边形的周长和面积.
25.(14分)如图,在ABCD中,AD∥BC,AC=BC=4,∠D=90°,M,N分别是AB、DC的中点,过B作BE⊥AC交射线AD于点E,BE与AC交于点F.
(1)当∠ACB=30°时,求MN的长:
(2)设线段CD=x,四边形ABCD的面积为y,求y与x的函数关系式及其定义域;
(3)联结CE,当CE=AB时,求四边形ABCE的面积.。