高三数学一轮复习 立体几何(1)教案
高三数学第一轮复习教学案---立体几何全章
![高三数学第一轮复习教学案---立体几何全章](https://img.taocdn.com/s3/m/d40a7f5a1711cc7931b7163a.png)
高三数学第一轮复习教学案---立体几何全章(2008.7)第九章直线、平面、简单几何体知识图谱二、考纲要求(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图.能够画出空间两条直线、直线和平面的各种位置关系的图形.能够根据图形想象它们的位置关系.(2)掌握两条直线平行与垂直的判定定理和性质定理.掌握两条直线所成的角和距离的概念(对于异面线的距离,只要求会计算已给出公垂线时的距离或在坐标表示下的距离).(3)掌握直线和平面平行的判定定理和性质定理.掌握直线和平面垂直的判定定理和性质定理.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理.(4)掌握两个平面平行的判定定理和性质定理.掌握二面角、二面角的平面角、两个平面间的距离的概念掌握两个平面垂直的判定定理和性质定理.(5)会用反证法证明简单的问题.(6)了解多面体的概念,了解凸多面体的概念.(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(9)了解正多面体的概念.(10)了解球的概念,掌握球的性质,掌握球的表面积、体积公式.第一节:平面的基本性质教学目的:①知识目标:掌握平面的基本性质,会用斜二测画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系;②能力目标:能够运用平面的基本性质,进行有关推理,培养空间想能力;③情感目标:结合实际,认识学习基础知识的重要性。
教学重点、难点及其突破:本节内容是高考的基本考核内容,是为进一步学习和培养逻辑推理能力打下基础,高考中,一般不单独命题。
复习中要掌握平面基本性质的三条公理及推论,能运用它们证明共点、共线、共面问题,从而加深对性质的理解。
难点是平面基本性质的三条公理及推论,能运用它们证明共点、共线、共面问题,从而加深对性质的理解。
(精品打包)高三数学高考立体几何第一轮复习学案全国通用 第1讲教案doc
![(精品打包)高三数学高考立体几何第一轮复习学案全国通用 第1讲教案doc](https://img.taocdn.com/s3/m/afad0828f18583d0496459d1.png)
沙城中学补习班数学第一轮复习教案 编录:刘世亮第58讲:平面的性质与直线的位置关系(一)平面的概念和性质1.平面的概念:平面是没有厚薄的,可以无限延伸. 2.平面的基本性质 公理1.线的在平面内.用途:①作为判断和证明是否在平面内;②证明点在某平面内;③检验某面是否平面. 公理2两个平面的交线.用途:①判断和证明两平面是否相交;②证明点在某直线上;③证明三点共线;④证明三线共点. 公理3: 经过不在同一条直线上的三点,有且只有一个平面.推论1:经过一条直线和直线外的一点,推论2:经过两条相交直线.推论3:经过两条平行直线 用途:①确定平面的依据,②证明两个平面重合的依据,③空间问题平面化的理论依据和具体办法.3.证明直线共面通常的方法:①先由其中两条直线确定一个平面,再证明其余的直线都在此平面内;②分别过某些点作多个平面,然后证明这些平面重合;③共面向量定理来证明. 4.异面.定义—— 判定:5.求两条异面直线所成的角,①平移法:“作(找)—证—算”.注意,范围;②向量法:设,a b 分别为异面直线,a b 的方向向量,则两异面直线所成的角||||arccos ||a b a b α=;6.两条异面直线的公垂线定义:和两条异面直线都垂直相交的直线,叫做异面直线的公垂线; 7.两条异面直线的距离:①定义:两条异面直线的公垂线在这两条异面直线间的线段的长度. ②计算方法:①公垂线法;②转化成线面距离(点面距离);③转化成面面距离.8.公理4 :平行于同一条直线的两条直线互相平行.9.等角定理:一个角的两边和另一个角的两边分别平行且方向相同,则这两个角相等. 推论:两条相交直线和另两条相交直线分别平行,则这两条直线所成的角相等.二、双基题目练练手1.共点的四条直线最多可以确定_______平面;互不相交的三条直线可以确定_______平面.2. 对平面α和共面的直线,m n 下列命题中真命题是 ( ) (A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n(C )若,m n αα⊂∥,则m ∥n (D )若,m n 与α所成的角相等,则m ∥n3. 直线a 、b 相交于点O 且a 、b 成60°角,过点O 与a 、b 都成60°角的直线有( )4.下列各图是正方体或正四面体,P 、Q 、R 、S 分别是所在棱的中点,则PQ 与SR 一定是异面直线的是RR三、经典例题做一做例1.如图所示,空间四边形ABCD 中,E 、F 、G 分别在AB 、BC 、CD 上,且满足AE ∶EB =CF ∶FB =2∶1,CG ∶GD =3∶1,过E 、F 、G 的平面交AD 于H ,连接EH .1)求AH ∶HD ;(2)求证:EH 、FG 、BD 三线共点.(1)解 ∵FBCFEB AE ==2,∴EF ∥AC .EF ∥平面ACD .而EF ⊂平面EFGH EFGH ∩平面ACD =GHEF ∥GH .而EF ∥ACAC ∥GH .GDCG HD AH ==3,即AH ∶HD =3∶1. (2)证明 ∵EF ∥GH ,且31=AC EF ,41=AC GH EF ≠GH ,∴四边形EFGH 为梯形.令EH ∩FG =P ,则P ∈EH ,而EH ⊂平面ABD P ∈FG,FG ⊂平面BCD ,平面ABD ∩平面BCD =BD∴P ∈BD .∴EH、FG 、BD 三线共点.例2 如图所示,正方体ABCD —A 1B 1C 1D 1中,M 、N 分别是A 1B 1,B 1C 1的中点.(1)AM 和CN2)D 1B 和CC 1是否是异面直线?说明理由.解 (1)不是异面直线.∵M 、N 分别是A 1B 1、B 1C 1的中点.∴MN ∥A 1C 1,又∵A 1A D1D ,而D 1D C 1C , ∴A 1A CC 1,∴四边形A 1ACC 1为平行四边形.∴A 1C1∥AC ,得到MN ∥AC ,∴A 、M 、N 、C 在同一个平面内,故AM 和CN 不是异面直线. (2)是异面直线.假设D 1B 与CC 1在同一个平面D 1CC 1内,则B ∈平面CC 1D 1,C ∈平面CC 1D 1.∴BC ⊂平面CC 1D 1,这与在正方体中BC ⊥平面CC 1D 1相矛盾,∴假设不成立,故D 1B 与CC 1是异面直线.例3在四棱锥P —ABCD 中,底面是边长为2的菱形,∠DAB =60°,对角线AC 与BD 交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成角为60°.若E 是PB 的中点,求异面直线DE 与PA 所成角的余弦值.解 取AB 的中点F ,连接EF ,DFE 为PB 中点,∴EF ∥PA∴∠DEF 为异面直线DE 与PA 所成角(或其补角).在Rt △POB 中,∵BO =AB ·sin30°=1, 又PO ⊥OB ,∴PO =BO ·tan60°=3.Rt △AOB 中,AO =AB ·cos30°=3=OP ,∴在Rt △POA 中,PA =6,∴EF =26. 在正三角形ABD 和正三角形PDB 中,DF =DE =3, ∴cos ∠DEF =EFDE DF EF DE ·2222-+=4223462632)3(26)3(222==⨯⨯-⎪⎪⎭⎫⎝⎛+.所以异面直线DE 与PA 所成角的余弦值为42.例4.如图,E 、F 、G 、H 分别是空间四边形AB 、BC 、CD 、DA 上的点,且EH 与FG 相交于点O .B 、D 、O 三点共线.证明 ∵E ∈AB ,H ∈AD E ∈平面ABD ,H ∈平面ABD .∴EH ⊂平面ABD .EH ∩FG =O ,∴O ∈平面ABD .O ∈平面BCD∴O ∈平面ABD ∩平面BCD ,即O ∈BD B 、D 、O 三点共线.例5.在正方体AC 1中,E 是CD 的中点,连接AE 并延长与BC 的延长线交于点F ,连接BE 并延长交AD 的延长线于点G ,连接FG .FG ⊂平面ABCD 且直线FG ∥直线A 1B 1.证明 由已知得E 是CD 的中点,在正方体中,由于A ∈平面ABCD E ∈平面ABCD所以AE ⊂平面ABCD .AE ∩BC =FF ∈平面ABCD.同理G ∈平面ABCD ,所以FG ⊂平面ABCD .因为EC21AB ,故在Rt △FBA 中,CF =BC ,同理DG =AD . 又在正方形ABCD 中,BC AD ,所以CF DG ,所以四边形CFGD所以FG ∥CD .又CD ∥AB ,AB ∥A 1B 1FG ∥直线A 1B 1.。
2024届高考一轮复习数学教案(新人教B版):空间向量与立体几何
![2024届高考一轮复习数学教案(新人教B版):空间向量与立体几何](https://img.taocdn.com/s3/m/b6ff8eda112de2bd960590c69ec3d5bbfc0ada50.png)
必刷大题14空间向量与立体几何1.(2022·新高考全国Ⅰ改编)如图,直三棱柱ABC -A 1B 1C 1的体积为4,△A 1BC 的面积为22.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求平面ABD 与平面BCD 夹角的正弦值.解(1)设点A 到平面A 1BC 的距离为h ,因为直三棱柱ABC -A 1B 1C 1的体积为4,所以1A A BC V -=13S △ABC ·AA 11111433ABC A B C V -==,又△A 1BC 的面积为22,1113A A BC A BC V S h -=△=13×22h =43,所以h =2,即点A 到平面A 1BC 的距离为2.(2)取A 1B 的中点E ,连接AE ,则AE ⊥A 1B .因为平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B ,AE ⊂平面ABB 1A 1,所以AE ⊥平面A 1BC ,又BC ⊂平面A 1BC ,所以AE ⊥BC .又AA 1⊥平面ABC ,BC ⊂平面ABC ,所以AA 1⊥BC .因为AA 1∩AE =A ,AA 1,AE ⊂平面ABB 1A 1,所以BC ⊥平面ABB 1A 1,又AB ⊂平面ABB 1A 1,所以BC ⊥AB .以B 为坐标原点,分别以BC →,BA →,BB 1—→的方向为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系,由(1)知,AE =2,所以AA 1=AB =2,A 1B =22.因为△A 1BC 的面积为22,所以22=12·A 1B ·BC ,所以BC =2,所以A (0,2,0),B (0,0,0),C (2,0,0),A 1(0,2,2),D (1,1,1),E (0,1,1),则BD →=(1,1,1),BA →=(0,2,0).设平面ABD 的法向量为n =(x ,y ,z ),n ·BD →=0,n ·BA →=0,x +y +z =0,2y =0,令x =1,得n =(1,0,-1).又平面BDC 的一个法向量为AE →=(0,-1,1),所以cos 〈AE →,n 〉=AE →·n |AE →|·|n |=-12×2=-12.设平面ABD 与平面BCD 的夹角为θ,则sin θ=1-cos 2〈AE →,n 〉=32,所以平面ABD 与平面BCD 夹角的正弦值为32.2.如图,四棱锥P -ABCD 的底面为正方形,PA ⊥平面ABCD ,M 是PC 的中点,PA =AB .(1)求证:AM ⊥平面PBD ;(2)设直线AM 与平面PBD 交于O ,求证:AO =2OM .证明(1)由题意知,AB ,AD ,AP 两两垂直,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图,设PA =AB =2,则P (0,0,2),B (2,0,0),D (0,2,0),C (2,2,0),M (1,1,1),PB →=(2,0,-2),PD →=(0,2,-2),AM →=(1,1,1),设平面PBD 的法向量为n =(x ,y ,z ),n ·PB →=2x -2z =0,n ·PD →=2y -2z =0,取x =1,得n =(1,1,1),∵AM →=n ,∴AM ⊥平面PBD .(2)如图,连接AC 交BD 于点E ,则E 是AC 的中点,连接PE ,∵AM ∩平面PBD =O ,∴O ∈AM 且O ∈平面PBD ,∵AM ⊂平面PAC ,∴O ∈平面PAC ,又平面PBD ∩平面PAC =PE ,∴O ∈PE ,∴AM ,PE 的交点就是O ,连接ME ,∵M 是PC 的中点,∴PA ∥ME ,PA =2ME ,∴△PAO ∽△EMO ,∴PA ME =AO OM =21,∴AO =2OM .3.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB ∥CD ,PA =AB =2CD =2,∠ADC =90°,E ,F 分别为PB ,AB 的中点.(1)求证:CE ∥平面PAD ;(2)求点B 到平面PCF 的距离.(1)证明连接EF (图略),∵E ,F 分别为PB ,AB 的中点,∴EF ∥PA ,∵EF ⊄平面PAD ,PA ⊂平面PAD ,∴EF ∥平面PAD ,∵AB ∥CD ,AB =2CD ,∴AF ∥CD ,且AF =CD .∴四边形ADCF 为平行四边形,即CF ∥AD ,∵CF ⊄平面PAD ,AD ⊂平面PAD ,∴CF ∥平面PAD ,∵EF ∩CF =F ,EF ,CF ⊂平面EFC ,∴平面PAD ∥平面EFC ,CE ⊂平面EFC ,则CE ∥平面PAD .(2)解∵∠ADC =90°,AB ∥CD ,∴AB ⊥AD ,CF ⊥AB ,又PA ⊥平面ABCD ,∴PA ⊥CF ,又PA ∩AB =A ,∴CF ⊥平面PAB ,∴CF ⊥PF .设CF =x ,则S △AFC =12×1×x =x 2,S △PFC =12×5×x =52x ,设点A 到平面PCF 的距离为h ,由V P -AFC =V A -PFC ,得13×x 2×2=13×5x 2×h ,则h =255.∵点F 为AB 的中点,∴点B 到平面PCF 的距离等于点A 到平面PCF 的距离,为255.4.(2022·全国乙卷)如图,四面体ABCD 中,AD ⊥CD ,AD =CD ,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值.(1)证明因为AD =CD ,E 为AC 的中点,所以AC ⊥DE .在△ADB 和△CDB 中,因为AD =CD ,∠ADB =∠CDB ,DB =DB ,所以△ADB ≌△CDB ,所以AB =BC .因为E 为AC 的中点,所以AC ⊥BE .又BE ∩DE =E ,BE ,DE ⊂平面BED ,所以AC ⊥平面BED ,又AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)解由(1)可知AB =BC ,又∠ACB =60°,AB =2,所以△ABC 是边长为2的正三角形,则AC =2,BE =3,AE =1.因为AD =CD ,AD ⊥CD ,所以△ADC 为等腰直角三角形,所以DE =1.所以DE 2+BE 2=BD 2,则DE ⊥BE .由(1)可知,AC ⊥平面BED .连接EF ,因为EF ⊂平面BED ,所以AC ⊥EF ,当△AFC 的面积最小时,点F 到直线AC 的距离最小,即EF 的长度最小.在Rt △BED 中,当EF 的长度最小时,EF ⊥BD ,EF =DE ·BE BD =32.方法一由(1)可知,DE ⊥AC ,BE ⊥AC ,所以EA ,EB ,ED 两两垂直,以E 为坐标原点,EA ,EB ,ED 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (1,0,0),B (0,3,0),D (0,0,1),C (-1,0,0),AB →=(-1,3,0),DB →=(0,3,-1).易得DF =12,FB =32,所以3DF →=FB →.设F (0,y ,z ),则DF →=(0,y ,z -1),FB →=(0,3-y ,-z ),所以3(0,y ,z -1)=(0,3-y ,-z ),得y =34,z =34,即,34,所以CF →,34,设平面ABD 的法向量为n =(x 1,y 1,z 1),·AB →=-x 1+3y 1=0,·DB →=3y 1-z 1=0,不妨取y 1=1,则x 1=3,z 1=3,n =(3,1,3).记CF 与平面ABD 所成的角为α,则sin α=|cos 〈CF →,n 〉|=|CF →·n ||CF →||n |=437.所以CF 与平面ABD 所成角的正弦值为437.方法二因为E 为AC 的中点,所以点C 到平面ABD 的距离等于点E 到平面ABD 的距离的2倍.因为DE ⊥AC ,DE ⊥BE ,AC ∩BE =E ,AC ,BE ⊂平面ABC ,所以DE ⊥平面ABC .因为V D -AEB =V E -ADB ,所以13·12AE ·BE ·DE =13·S △ABD ·d 2,其中d 为点C 到平面ABD 的距离.在△ABD 中,BA =BD =2,AD =2,所以S △ABD =72,所以d =2217.由(1)知AC ⊥平面BED ,EF ⊂平面BED ,所以AC ⊥EF ,所以FC =FE 2+EC 2=72.记CF 与平面ABD 所成的角为α,则sin α=d CF =437.所以CF 与平面ABD 所成角的正弦值为437.方法三如图,过点E 作EM ⊥AB 交AB 于点M ,连接DM ,过点E 作EG ⊥DM 交DM 于点G .因为DE ⊥AC ,DE ⊥BE ,AC ∩BE =E ,AC ,BE ⊂平面ABC ,所以DE ⊥平面ABC ,又AB ⊂平面ABC ,所以DE ⊥AB ,又EM ∩DE =E ,EM ,DE ⊂平面DEM ,所以AB ⊥平面DEM ,又EG ⊂平面DEM ,所以AB ⊥EG ,又AB ∩DM =M ,AB ,DM ⊂平面ABD ,所以EG ⊥平面ABD ,则EG 的长度等于点E 到平面ABD 的距离.因为E 为AC 的中点,所以EG 的长度等于点C 到平面ABD 的距离的12.因为EM =AE ·sin 60°=32,所以EG =DE ·EM DM =DE ·EM DE 2+EM 2=217,所以点C 到平面ABD 的距离d =2217.FC =FE 2+EC 2=72.记CF 与平面ABD 所成的角为α,则sin α=d CF =437.所以CF 与平面ABD 所成角的正弦值为437.5.(2023·青岛模拟)如图①,在梯形ABCD 中,AB ∥DC ,AD =BC =CD =2,AB =4,E 为AB 的中点,以DE 为折痕把△ADE 折起,连接AB ,AC ,得到如图②的几何体,在图②的几何体中解答下列问题.(1)证明:AC ⊥DE ;(2)请从以下两个条件中选择一个作为已知条件,求平面DAE 与平面AEC 夹角的余弦值.①四棱锥A -BCDE 的体积为2;②直线AC 与EB 所成角的余弦值为64.(1)证明在图①中,连接CE (图略),因为DC ∥AB ,CD =12AB ,E 为AB 的中点,所以DC ∥AE ,且DC =AE ,所以四边形ADCE 为平行四边形,所以AD =CE =CD =AE =2,同理可证DE =2,在图②中,取DE 的中点O ,连接OA ,OC (图略),则OA =OC =3,因为AD =AE =CE =CD ,所以DE ⊥OA ,DE ⊥OC ,因为OA ∩OC =O ,OA ,OC ⊂平面AOC ,所以DE ⊥平面AOC ,因为AC ⊂平面AOC ,所以DE ⊥AC .(2)解若选择①:由(1)知DE ⊥平面AOC ,DE ⊂平面BCDE ,所以平面AOC ⊥平面BCDE ,且交线为OC ,所以过点A 作AH ⊥OC 交OC 于点H (图略),则AH ⊥平面BCDE ,因为S 四边形BCDE =23,所以四棱锥A -BCDE 的体积V A -BCDE =2=13×23·AH ,所以AH =OA =3,所以AO 与AH 重合,所以AO ⊥平面BCDE ,建立如图所示的空间直角坐标系,则O (0,0,0),C (-3,0,0),E (0,1,0),A (0,0,3),易知平面DAE 的一个法向量为CO →=(3,0,0),设平面AEC 的法向量为n =(x ,y ,z ),因为CE →=(3,1,0),CA →=(3,0,3),·CE →=3x +y =0,·CA →=3x +3z =0,取n =(1,-3,-1),设平面DAE 与平面AEC 的夹角为θ,则cos θ=|CO →·n ||CO →||n |=33×5=55,所以平面DAE 与平面AEC 夹角的余弦值为55.若选择②:因为DC ∥EB ,所以∠ACD 即为异面直线AC 与EB 所成的角,在△ADC 中,cos ∠ACD =AC 2+4-44AC=64,所以AC =6,所以OA 2+OC 2=AC 2,即OA ⊥OC ,因为DE ⊥平面AOC ,DE ⊂平面BCDE ,所以平面AOC ⊥平面BCDE ,且交线为OC ,又OA ⊂平面AOC ,所以AO ⊥平面BCDE ,建立如图所示的空间直角坐标系,则O (0,0,0),C (-3,0,0),E (0,1,0),A (0,0,3),易知平面DAE 的一个法向量为CO →=(3,0,0),设平面AEC 的法向量为n =(x ,y ,z ),因为CE →=(3,1,0),CA →=(3,0,3),·CE →=3x +y =0,·CA →=3x +3z =0,取n =(1,-3,-1),设平面DAE 与平面AEC 的夹角为θ,则cos θ=|CO →·n ||CO →||n |=33×5=55,所以平面DAE 与平面AEC 夹角的余弦值为55.6.(2022·连云港模拟)如图,在三棱锥A -BCD 中,△ABC 是正三角形,平面ABC ⊥平面BCD ,BD ⊥CD ,点E ,F 分别是BC ,DC 的中点.(1)证明:平面ACD ⊥平面AEF ;(2)若∠BCD =60°,点G 是线段BD 上的动点,问:点G 运动到何处时,平面AEG 与平面ACD 的夹角最小.(1)证明因为△ABC 是正三角形,点E 是BC 的中点,所以AE ⊥BC ,又因为平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,AE ⊂平面ABC ,所以AE ⊥平面BCD ,又因为CD ⊂平面BCD ,所以CD ⊥AE ,因为点E ,F 分别是BC ,CD 的中点,所以EF ∥BD ,又因为BD ⊥CD ,所以CD ⊥EF ,又因为AE ∩EF =E ,AE ⊂平面AEF ,EF ⊂平面AEF ,所以CD ⊥平面AEF ,又因为CD ⊂平面ACD ,所以平面ACD ⊥平面AEF .(2)解在平面BCD 中,过点E 作EH ⊥BD ,垂足为H ,此时EH ∥CD ,即H 为BD 的中点,设BC =4,则EA =23,DF =FC =1,EF = 3.以E 为原点,以EH ,EF ,EA 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则E (0,0,0),A (0,0,23),C (-1,3,0),D (1,3,0),设G (1,y ,0)(-3≤y ≤3),则EA →=(0,0,23),AD →=(1,3,-23),CD →=(2,0,0),EG →=(1,y ,0),设平面AEG 的法向量为n 1=(x 1,y 1,z 1),n 1·EA →=23z 1=0,n 1·EG →=x 1+yy 1=0,令y 1=-1,得n 1=(y ,-1,0),设平面ACD 的法向量为n 2=(x 2,y 2,z 2),2·CD →=2x 2=0,2·AD →=x 2+3y 2-23z 2=0,令z 2=1,得n 2=(0,2,1),设平面AEG 与平面ACD 的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|-2|5·y 2+1=25·y 2+1,当y =0时,cos θ最大,此时平面AEG 与平面ACD 的夹角θ最小,故当点G 为BD 的中点时,平面AEG 与平面ACD 的夹角最小.。
高三数学一轮复习 立体几何(1)教案
![高三数学一轮复习 立体几何(1)教案](https://img.taocdn.com/s3/m/e16c496510661ed9ad51f393.png)
江苏省徐州市贾汪区建平中学高三数学一轮复习教案:立体几何第节教学目标平面基本性质及公理直线与直线、直线与平面、平面与平面的位置关系教学重难点平面基本性质及公理的运用直线与直线、直线与平面、平面与平面的位置关系的判断,异面直线所成的角教学参考教材,教参,学案,优化探究授课方法自学引导,讲练结合教学辅助手段多媒体专用教室教学过程设计教学二次备课一、主干知识梳理1.平面的基本性质:公理1:文字语言描述为______________________,符号语言表示为___________________;公理2:文字语言描述为____________________,符号语言表示为___________________;公理3:推论1推论2推论32.空间两条直线的位置关系有________、_________、_________.3.公理4:_______________________________;等角定理:_____________________.4.异面直线判定定理:5.异面直线所成的角的定义: ,范围是二、基础自测自评1.棱柱的侧面是________形,棱锥的侧面是_________形,棱台的侧面是____________形.2.圆柱、圆锥、圆台的轴截面形状分别是______、_______、________.3.用符号表示“点A在直线l上,l在平面 外”为_____________________.学生课前预习师生共同回顾主干知识通过小题巩固公式的记忆及使用4.与长方体的某一条棱平行的棱有______条,与它相交的棱有_______条,与它异面的棱有_______条.5.与正方体的某条面对角线异面的棱有_______条.6.三条直线两两相交,它们可以确定的平面有________个.教学过程设计 教 学 二次备课三、典例分析【例1】例1填空题:(1)空间三条直线c b a 、、,若c b b a ////,,则由直线c b a 、、确定________个平面.(2)把下列图形中的点、线、面关系用集合符号表示出来.【例2】 如图,在长方体1111D C B A ABCD -中,P 为棱1BB 的中(1)画出由P C A ,,11三点所确定的平面α与长方体表面的交线;(2)画出平面α与平面ABCD 的交线.四、课堂小结:平面基本性质及公理直线与直线、直线与平面、平面与平面的位置关系练习:下列说法正确的有________________.(填上正确的序号)①过直线外一点可作无数条直线与已知直线成异面直线;②过直线外一点只有一条直线与已知直线垂直;③若a c b a ⊥,//,则b c ⊥;④若c b c a ⊥⊥,,则b a //.课外作业 优化探究变式训练1教 学 小 结中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
高三数学第一轮复习教学设计
![高三数学第一轮复习教学设计](https://img.taocdn.com/s3/m/7e2c9da8f80f76c66137ee06eff9aef8951e4805.png)
高三数学第一轮复习教学设计一、教学任务及对象1、教学任务本教学设计针对的是高三数学第一轮复习,旨在帮助学生全面回顾和巩固高中数学课程内容,为高考做好充分的准备。
教学内容主要包括:函数与极限、导数与微分、积分、立体几何、解析几何、数列、概率与统计等模块。
通过本轮复习,使学生能够熟练掌握各模块的基本概念、原理和方法,形成完整的知识体系,提高解题能力和数学思维能力。
2、教学对象本教学设计的教学对象为高三学生,他们已经完成了高中数学课程的学习,具有一定的数学基础和解决问题的能力。
但由于学生的个体差异,他们在知识掌握程度、学习方法和兴趣上存在一定差异。
因此,在教学过程中,需要关注每个学生的学习情况,因材施教,提高复习效果。
在教学过程中,教师将充分调动学生的积极性,引导他们主动参与课堂讨论和练习,培养良好的学习习惯和团队合作精神。
同时,针对学生的薄弱环节,进行有针对性的辅导和训练,提高他们的数学素养和应试能力。
二、教学目标1、知识与技能(1)熟练掌握高中数学各模块的基本概念、原理和方法,形成完整的知识体系。
(2)提高数学解题能力,特别是综合应用能力的提升,能够灵活运用所学知识解决实际问题。
(3)培养数学思维能力,包括逻辑推理、空间想象、数据分析等,提高学生的数学素养。
(4)掌握一定的数学研究方法,能够对数学问题进行深入探讨和拓展。
2、过程与方法(1)通过课堂讲解、讨论、练习等多种教学活动,让学生在复习过程中主动参与,提高学习积极性。
(2)采用问题驱动的教学方法,引导学生发现问题、分析问题、解决问题,培养学生的探究精神。
(3)运用案例教学,将数学知识与实际应用相结合,提高学生的应用意识。
(4)鼓励学生进行合作学习,发挥团队协作精神,共同解决问题,提高沟通与协作能力。
3、情感,态度与价值观(1)培养学生对数学的兴趣和热情,使他们认识到数学在生活中的重要作用,增强学习数学的自信心。
(2)引导学生树立正确的价值观,将数学学习与个人发展、国家利益和社会进步相结合,激发学生的社会责任感。
高考一轮复习教案立体几何文科用十一(1)平面、空间直线(教师)
![高考一轮复习教案立体几何文科用十一(1)平面、空间直线(教师)](https://img.taocdn.com/s3/m/6f7256b56c175f0e7dd137a1.png)
模块: 十一、立体几何课题: 1、平面、空间直线教学目标: 知道平面的含义,理解平面的基本性质,会用文字语言、图形语言、集合语方表述平面的基本性质;掌握确定平面的方法,并能运用于确定长方体的简单截面.掌握空间直线与直线、直线与平面、平面与平面的各种位置关系,并能用图形、符号和集合语言予以表示.重难点: 平面的基本性质,平行线的传递性,空间直线与直线、直线与平面、平面与平面的各种位置关系及其表示方法.一、 知识要点1、平面的基本性质公理1、如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内. 公理2、如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.公理3、经过不在同一条直线上的三点,有且只有一个平面.推论1、经过一条直线和直线外的一点有且只有一个平面.推论2、经过两条相交直线有且只有一个平面.推论3、经过两条平行直线有且只有一个平面.公理4、平行于同一条直线的两条直线互相平行.2、空间两直线的位置关系(1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何..一个平面内,没有公共点. 3、等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.二、 例题精讲例1、四面体ABCD 中,E 、G 分别为BC 、AB 的中点,F 在CD 上,H 在AD 上,且有DF ∶FC=2∶3,DH ∶HA=2∶3求证:EF 、GH 、BD 交于一点.答案:证明略.例2、已知n 条互相平行的直线123,,,,n l l l l 分别与直线l 相交于点12,,,n A A A , 求证:123,,,,n l l l l 与l 共面.例3、已知四边形ABCD 中,AB ∥CD ,四条边AB ,BC ,DC ,AD (或其延长线)分别与平面α相交于E ,F ,G ,H 四点,求证:四点E ,F ,G ,H 共线.例4、平面α平面βC =,a α⊂,且//a c ,b β⊂,b c M =,求证:直线a b 、是异面直线.例5、A 是△BCD 平面外的一点,E 、F 分别是BC 、AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.答案:(1)略;(2)45︒例6、长方体ABCD —A 1B 1C 1D 1中,已知AB =a ,BC =b ,AA 1=c ,且a >b ,求:(1)下列异面直线之间的距离:AB 与CC 1;AB 与A 1C 1;AB 与B 1C .(2)异面直线D 1B 与AC 所成角的余弦值.答案:(1);;b c 22c b bc +;(2)))((2222222c b a b a b a +++-.例7、在四棱锥P ABCD -中,底面ABCD 是一直角梯形,90BAD ︒∠=,//AD BC ,AB BC a ==,2AD a =,且PA ⊥底面ABCD ,PD 与底面成30︒角.(1) 若AE PD ⊥,E 为垂足,求证:BE PD ⊥;(2) 求异面直线AE 与CD 所成角的余弦值.答案:(1)略;(2)4.三、 课堂练习1、在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心,E 、F 分别是1CC 、AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于 .2、在空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,若EFGH 是正方形,则AC 与BD 满足的条件是 .答案:垂直且相等.3、已知,a b 为不垂直的异面直线,α是一个平面,则,a b 在α上的射影可能是:(1)两条平行直线;(2)两条互相垂直的直线;(3)同一条直线;(4)一条直线及其外一点,则在上面的结论中,正确结论的编号是 .答案:(1)(2)(4)4、已知m n 、为异面直线,m ⊂平面α,n ⊂平面β,l αβ=,则l ( )A 、与m n 、都相交B 、与m n 、中至少一条相交C 、与m n 、都不相交D 、至多与m n 、中的一条相交答案:B5、一个正方体纸盒展开后如图所示,在原正方体纸盒中有下列结论:(1)AB EF ⊥;(2)AB 与CM 成60︒;(3)EF 与MN 是异面直线;(4)//MN CD ,其中正确的是( )A 、(1)(2)B 、(3)(4)C 、(2)(3)D 、(1)(3)答案:D6、与正方体1111ABCD A B C D -的三条棱111AB CC A D 、、所在直线的距离相等的点( )A 、有且只有1个B 、有且只有 2个C 、有且只有3个D 、有无数个 答案:D四、 课后作业一、填空题1、空间中有8个点,其中有3个点在一条直线上,此外再无任何三点共线,由这8个点可以确定 条直线,最多可确定 个平面.答案:26,452、已知PA ⊥平面ABC ,90ACB ︒∠=,且PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于 .答案:2.3、(1)若//,//a b b c ,则//a c ;(2)若,,a b b c ⊥⊥则a c ⊥;(3)若a 与b 相交,b 与c 相交,则a 与c 也相交;(4)若a 与b 异面,b 与c 异面,则a 与c 也异面.上面的四个命题中,正确命题的题号是 .答案:(1)4、已知平面//αβ,A C α∈、,B D β∈、,直线AB 与CD 交于S ,且AS=8,BS=9,CD=34,则CS= .答案:16或2725、以下命题:(1)过直线外一点有且只有一条直线与已知直线平行;(2)某平面内的一条直线和这个平面外的一条直线是异面直线;(3)过直线外一点作该直线的垂线是唯一的;(4)如果一个角的两边和另一个角的两边分别平行,则这两个角相等或互补.则其中正确的命题的题号是 .答案:(1)(4)6、对于四面体ABCD ,下列命题正确的是 .(1)相对棱、AB 与CD 所在的直线异面;(2)由顶点A 作四面体的高,其垂足是BDC ∆的三条高线上的交点;(3)若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在的直线异面;(4)分别作三组相对棱中点的连线,所得的三条线段相交于一点;(5)最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.答案:(1)(4)(5)二、选择题7、正六棱柱111111ABCDEF A B C D E F -的底面边长为1,则这个棱柱的侧面对角线1E D 与1BC 所成的角是( )A 、90︒B 、60︒C 、45︒D 、30︒ 答案:B8、已知直线a 和平面αβ、,l αβ=,a α⊄,a β⊄,a 在αβ、内的射影分别为直线b 和c ,则b c 、的位置关系是( )A 、相交与平行B 、相交或异面C 、平行或异面D 、相交、平行或异面答案:D9、空间中有五个点,其中有四个点在同一个平面内,但没有任何三点共线,这样的五个点确定平面的个数最多可以是( )A 、4个B 、5个C 、6个D 、7个 答案:D三、解答题10、正方体1111ABCD A B C D -中,对角线1A C 与平面1BDC 交于点O ,AC BD 、交于点M ,求证:点1C O M 、、共线.11、如图,在四面体ABCD 中作截面PQR ,如PQ 、CB 的延长线交于点M ,RQ 、DB 的延长线交于点N ,RP 、DC 的延长线相交于点K .求证:M 、N 、K 三点共线.11、长方体1111ABCD A B C D -中,12,,AB BC a A A a E H ===、分别是11A B 和1BB的中点,求:(1)EH 与1AD 所成的角;(2)11A D 与1B C 之间的距离;(3)1AC 与1B C 所成的角.答案:(1)1arccos5;(2)2a ;(3)arccos 5.。
2020届江苏省镇江市统一高考数学第一轮复习学案(解析答案版):学案4.立体几何(1)表面积与体积
![2020届江苏省镇江市统一高考数学第一轮复习学案(解析答案版):学案4.立体几何(1)表面积与体积](https://img.taocdn.com/s3/m/b7f624aec8d376eeafaa3112.png)
立体几何复习(1)空间几何体的表面积与体积教学目标:1.掌握锥、台、柱、球体的表面积公式及表面积的求法;2.掌握锥、台、柱、球体的体积公式及体积的求法.教学重点:掌握锥体、台体、柱体、球体的表面积与体积的计算方法,能计算简单组合体的表面积与体积,以便从量的角度认识空间几何体.教学难点:锥体、台体、柱体、球体的表面积与体积公式的应用.【知识清单】 1.空间几何体的表面积球的表面积2=4S R π球,其中R 为球的半径.2.空间几何体的体积球的体积34=3V R π球,R 为球的半径. 【例题精讲】类型1:空间几何体的表面积与侧面积例1:1.若圆锥底面半径为1,高为2,则圆锥的侧面积为 .【解析】根据圆锥底面半径、高、母线长构成一个直角三角形,所以母线长l,在根据圆锥的侧面积公式S rl π=.2.将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27πcm 3,则该圆柱的侧面积为 cm 2. 【答案】18【解析】设正方体棱长为a ,则正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为2327a a a πππ⨯==,3a =,圆柱侧面积22218S a a a πππ=⨯==.3.若圆锥的底面直径和高都与一个球的直径相等,圆锥、球的表面积分别记为, ,则12S S 的值是 .【解析】设球的直径为2R ,由题意可知,2211)S R R R πππ=+=,224S R π=,所以12S S =1S 2S )h 圆台备选题1:正三棱锥中,,D、E分别是棱SA、SB上的点,为边的中点,,则三角形CDE的面积为 .【解析】根据题意在正三棱锥中,为边的中点,故可得AB SCQ⊥平面,则AB SQ⊥,又由,故//DE AB,假设DE SQ F=,又在SCQ∆中,SC CQ SQ===CF=,故112CDES∆=⨯=.备选题2:圆锥的母线长为L,过顶点的最大截面的面积为12L2,则圆锥底面半径与母线长的比rL的取值范围是 .【答案】【解析】由题意得轴截面的顶角θ不小于π2,因为sinθ2=rL≥sinπ4=22,所以22≤rL<1.【思想方法归纳】圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.(1)找准几何体中各元素间的位置关系及数量关系.(2)注意组合体的表面积问题中重合部分的处理.类型2:空间几何体的体积例2:1.已知圆锥的母线长为5cm,侧面积为215cmπ,则此圆锥的体积为3cm.S ABC-2BC=SB=Q AB SQ CDE⊥平面S ABC-Q ABSQ CDE⊥平面【答案】12π【解析】已知圆锥的母线长为5cm ,侧面积为215cm π,所以圆锥的底面周长26cm π,底面半径是3cm ,圆锥的高是4cm ,此圆锥的体积为194123ππ⨯⨯=3cm .2.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1-A 1BD 的体积为 cm3.(例2-2)【答案】32【解析】∵在正四棱柱ABCD -A 1B 1C 1D 1中,AB =3cm ,AA 1=1 cm ,∴三棱锥11D A BD -的体积:1111113113313362D A BD B A D D A D D V V S AB cm --∆==⋅⋅=⨯⨯⨯=.3.如图,在直四棱柱1111ABCD A B C D -中,点,E F 分别在11,AA CC 上,且134AE AA =,113CF CC =,点,A C 到BD 的距离之比为3:2,则三棱锥E BCD -和F ABD -的体积比E BCDF ABDV V --= .(例2-3)【答案】32【解析】点,A C 到BD 的距离之比为3:2,所以23BCD ABD S S ∆=∆,又直四棱柱1111ABCD A B C D -中,134AE AA =,113CF CC =,所以94AE CF =, 于是1293313423BCD E BCDF ABDABD S AEV V S CF ∆--∆⋅==⨯=⋅.备选题1:在直三棱柱ABC -A 1B 1C 1中,M ,N 分别为棱A 1B 1,A 1C 1的中点,则平面BMNC 将三棱柱分成的两部分的体积比为 . 【答案】7:5【解析】设直三棱柱ABC -A 1B 1C 1高为h ,底面积为4S ,则11111B C BMNC C B MNC M B BC V V V ---=+11111111534322233A B BC B ABC h S V Sh V hS h S Sh --=⨯⨯+=+=+⨯⋅=, 所以两部分的体积比为55(4):7:533Sh Sh Sh -=.备选题2:已知一个组合体是由圆锥与圆柱组合而成,下半部分是底面半径为1,高为4的圆柱,上半部分是底面半径为2,高为2的圆锥,则该几何体的体积为 3m . 【答案】203π【解析】由于该几何体是组合体,其中下半部分是底面半径为1,高为4的圆柱,上半部分是底面半径为2,高为2的圆锥,其体积为22120142233πππ⨯⨯+⨯⨯⨯=(3m ).备选题3:《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年.例如堑堵指底面为直角三角形,且侧棱垂直于底面的三棱柱;阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵ABC -A 1B 1C 1中,AC ⊥BC ,若A 1A =AB =2,当阳马B -A 1ACC 1体积最大时,则堑堵ABC -A 1B 1C 1的体积为 .备选题3【答案】2【解析】由阳马的定义知,VB -A 1ACC 1=13×A 1A ×AC ×BC =23AC ×BC ≤13(AC 2+BC 2)=13AB 2=43,当且仅当AC =BC =2时等号成立,所以当阳马B -A 1ACC 1体积最大时,则堑堵ABC -A 1B 1C 1的体积为12×2×2×2=2.【思想方法归纳】(1)计算柱、锥、台的体积关键是根据条件找出相应的底面积和高.(2)若所给几何体的体积不能直接利用公式得出,注意求体积的一些特殊方法:分割法、补体法、等体积转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.(3)注意组合体的组成形式及各部分几何体的特征.类型3:球内接几何体相关问题例3:1.正方体ABCD-A 1B 1C 1D 1的棱长为23,则四面体AB 1CD 1的外接球的体积为 . 【答案】36π【解析】四面体AB 1CD 1的外接球即为正方体ABCDA 1B 1C 1D 1的外接球,故正方体的外接球的直径为(23)2+(23)2+(23)2=6,故V =43πR 3=43π×(6÷2)3=36π.2.如图,在四棱锥P -ABCD 中,△PAB 为正三角形,四边形ABCD 为正方形且边长为2,平面PAB⊥平面ABCD ,四棱锥P -ABCD 的五个顶点都在一个球面上,则这个球的表面积是 .(例3-2)【答案】283π 【解析】由题意球的半径满足R 2-1+R 2-2=3⇒R 2=73,所以球的表面积是4πR 2=28π3.3.已知三棱柱ABC -A 1B 1C 1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为23,AB =2,AC =1,∠BAC =60°,则此球的表面积等于 . 【解析】20π【解析】由题意知三棱柱是直三棱柱,且底面是直角三角形,∠ACB =90°,设D ,D 1分别是AB ,A 1B 1的中点,O 是DD 1中点,可证O 就是三棱柱外接球球心,S △ABC =12×2×1×sin 60°=32,V =S △ABC ·h =32×DD 1=23,即DD 1=4,OA =AD 2+DO 2=12+22=5, 所以S =4π×OA 2=4π×(5)2=20π.备选题1:已知正三棱柱111A B C ABC -的所有棱长都为3,则该棱柱外接球的表面积为 . 【答案】21π【解析】如图,外接球的球心为上下底面中心连线1M M 的中点,连结1A O ,11A M ,所以三角形11A M O 为直角三角形, 132M O =,113A M =()()221213322AO =+ 所以该棱柱外接球的表面积为(2214π21π⨯=.备选题2:已知P -ABC 是正三棱锥,其外接球O 的表面积为16π,且∠APO =∠BPO =∠CPO =30°,则三棱锥的体积为 . 934【解析】设球的半径为R ,△ABC 的外接圆圆心为O ′,则由球的表面积为16π, 可知4πR 2=16π,所以R =2.设△ABC 的边长为2a , 因为∠APO =∠BPO =∠CPO =30°,OB =OP =2,所以BO ′=32R =3,OO ′=OB 2-BO ′2=1, PO ′=OO ′+OP =3.在△ABC 中,O ′B =23×32×2a =3, 所以a =32,所以三棱锥PABC 的体积为V =13×12×32×sin60°×3934【思想方法归纳】解决球与其他几何体的内切、外接问题,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径.类型4:综合应用例4:如图,四棱锥中,底面是边长为2的正方形,其它四个侧面都是侧棱长为的中点.(1)在侧棱上找一点,使∥平面,并证明你的结论;(2)在(1)的条件下求三棱锥的体积.【解析】(1)F为VC的中点,取CD的中点为H,连结BH,HF,ABCD为正方形,E为AB 的中点,//,DH DHBE BE=∴,//H DB E∴,又//VDFH,∴平面//BHF平面VDE,//BF∴平面VDE.(2)F为VC的中点,14BDE ABCDS S∆=,18E BDF F BDE V ABCDV V V---∴==,V ABCD-为正四棱锥,V∴在平面ABCD的射影为AC的中点O.5VA=AO=∴VO=2123V ABCDV-∴=⋅E BDFV-∴=【点睛】(1)为的中点,取的中点为,由三角形中位线性质得线线平行,再由线线平行证得面面平行,即得线面平行(2)因为为正四棱锥,所以可求V到底面距离,即得F到底面距离,再根据等体积法得,最后代入锥体体积公式即可.备选题1:如图,O是圆锥底面圆的圆心,圆锥的轴截面PAB为等腰直角三角形,C为底面圆周上一点.V ABCD-ABCDE ABVC F BF VDEE BDF-F VC CD HV ABCD-E BDF F BDEV V--=(1)若弧BC 的中点为D ,求证:AC ∥平面POD ; (2)如果△PAB 的面积是9,求此圆锥的表面积.【解析】(1)证明:方法一 设BC ∩OD =E ,∵D 是弧BC 的中点,∴E 是BC 的中点. 又∵O 是AB 的中点,∴AC ∥OE .又∵AC ⊄平面POD ,OE ⊂平面POD ,∴AC ∥平面POD .方法二 ∵AB 是底面圆的直径,∴AC ⊥BC .∵弧BC 的中点为D ,∴OD ⊥BC . 又AC ,OD 共面,∴AC ∥OD .又AC ⊄平面POD ,OD ⊂平面POD ,∴AC ∥平面POD . (2)解:设圆锥底面半径为r ,高为h ,母线长为l , ∵圆锥的轴截面PAB 为等腰直角三角形,∴h =r ,l =2r .由S △PAB =12×2r ×h =r 2=9,得r =3,∴S 表=πrl +πr 2=πr ×2r +πr 2=9(1+2)π.备选题2:如图,矩形ABCD 所在的平面和平面ABEF 互相垂直,等腰梯形ABEF 中,AB ∥EF ,AB =2,AD =AF =1,∠BAF =60°,O ,P 分别为AB ,CB 的中点,M 为底面△OBF 的重心.(1)求证:平面ADF ⊥平面CBF ; (2)求证:PM ∥平面AFC ; (3)求多面体CD -AFEB 的体积V .【解析】(1)证明:∵矩形ABCD 所在的平面和平面ABEF 互相垂直,且CB ⊥AB ,∴CB ⊥平面ABEF , 又AF ⊂平面ABEF ,所以CB ⊥AF ,又AB =2,AF =1,∠BAF =60°,由余弦定理知BF =3,∴AF 2+BF 2=AB 2,得AF ⊥BF , 又BF ∩CB =B ,∴AF ⊥平面CFB ,又∵AF ⊂平面ADF ,∴平面ADF ⊥平面CBF .(2)证明:连接OM 并延长交BF 于H ,则H 为BF 的中点,又P 为CB 的中点,∴PH ∥CF ,又∵CF ⊂平面AFC ,PH ⊄平面AFC ,∴PH ∥平面AFC , 连接PO ,则PO ∥AC ,又∵AC ⊂平面AFC ,PO ⊄平面AFC ,∴PO ∥平面AFC , 又∵PO ∩PH =P ,∴平面POH ∥平面AFC , 又∵PM ⊂平面POH ,∴PM ∥平面AFC .(3)解:多面体CD -AFEB 的体积可分成三棱锥C -BEF 与四棱锥F -ABCD 的体积之和. 在等腰梯形ABEF 中,计算得EF =1,两底间的距离EE 1=32. 所以V C -BEF =13S △BEF ×CB =13×12×1×32×1=312,V F -ABCD =13S 矩形ABCD ×EE 1=13×2×1×32=33,所以V =V C -BEF +V F -ABCD =5312.【课堂归纳总结】1.空间几何体表面积和体积的求法几何体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理.空间几何体体积问题的常见类型及解题策略:(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用等体积转换法、分割法、补形法等方法进行求解.2.多面体与球接、切问题的求解策略(1)涉及球与棱柱、棱锥的接、切问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内接、外切的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,则4R2=a2+b2+c2求解.【课后练习】1.已知圆锥的侧面展开图是半径为3,圆心角为23π的扇形,则这个圆锥的高为 .【答案】【解析】由题知圆锥的底面圆周长为2323ππ⋅=,所以半径为1r=,由题意圆锥的侧面展开图是半径为3即为圆锥的母线3l=,所以圆锥的高为h.2.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 .【答案】3π【解析】由题意得:1:(2)22rl h rππ⋅=2l h⇒=⇒母线与轴的夹角为3π.3.如图,在长方体中,,,则三棱锥的体积为.【答案】3 【解析】4.在ABC ∆中,2AB =, 1.5BC =,120ABC ∠=,若使ABC ∆绕直线BC 旋转一周,则所形成的几何体的体积是 . 【答案】32π【解析】过A 作AD 垂直BC 于点D ,则,AD =1BD =, 2.5CD =,因此所形成的几何体的体积是213(2.51)32ππ⨯⋅⋅-=.5.已知圆柱M 的底面半径为2,高为6,圆锥N 的底面直径和母线长相等,若圆柱M 和圆锥N 的体积相同,则圆锥N 的高为 . 【答案】6【解析】设圆锥N 的底面半径为r ,则它的母线长为2r ,高为3r ,由圆柱M 与圆锥N 的体积相同,得4π×6=13πr2×3r ,解得r =23,因此圆锥N 的高h =3r =6.6.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 .【解析】由体积相等得:22221145+28=4833r r r ππππ⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯⇒=.7.如图,在正三棱柱111ABC A B C -中,已知13AB AA ==,点P 在棱1CC 上,则三棱锥1P ABA -的体积为 .(第7题)【解析】三棱锥的底面积1193322ABA S ∆=⨯⨯=,点P 到底面的距离为ABC ∆的高h =,故三棱锥的体积13V Sh ==.8.如图,圆形纸片的圆心为,半径为,该纸片上的正四边形的中心为.为圆上的点分别是以为底边的等腰三角形.沿线剪开后,别以为折痕折起,使得重合,得到四棱锥记该四棱锥的体积,表面积分别是,当,则 .(第8题)【解析】,则四棱锥的高,所以体积,所以9.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .O 4cm ABCD O ,,,E F G H O ,,,EAB FBC GCD HDA ∆∆∆∆,,,AB BC CD DA ,,,AB BC CD DA ,,,EAB FBC GCD HDA ∆∆∆∆,,,E F G H ,V S 2AB =VS=2AB =h =13V Sh ==44316S =+⨯=V S =【答案】【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为【点睛】:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.10.设直三棱柱ABC -A 1B 1C 1的所有顶点都在同一个球面上,且球的表面积是40π,AB =AC =AA 1,∠BAC =120°,则此直三棱柱的高是 . 【答案】2 2【解析】设AB =AC =AA 1=x ,在△ABC 中,∠BAC =120°,则由余弦定理可得BC =3x . 由正弦定理,可得△ABC 外接圆的半径为r =x , ∵球的表面积是40π,∴球的半径为R =10.设△ABC 外接圆的圆心为O ′,球心为O ,在Rt △OBO ′中,有221()102x x +=,解得x =22,即AA 1=22,即此直三棱柱的高是2 2.11.如图,已知四棱锥P -ABCD 的底面是边长为2的菱形,∠BCD =60°,点E 是BC 边 的中点,AC ,DE 交于点O ,PO =23,且PO ⊥平面ABCD . (1)求证:PD ⊥BC ;(2)在线段AP 上找一点F ,使得BF ∥平面PDE , 并求此时四面体PDEF 的体积.【解析】(1)由题可得△BCD 为正三角形,E 为BC 中点,故DE ⊥BC . 又PO ⊥平面ABCD ,BC ⊂平面ABCD ,则PO ⊥BC ,而DE ∩PO =O ,,DE PO ⊂平面PDE ,所以BC ⊥平面PDE .又PD ⊂平面PDE ,故PD ⊥BC . (2)取AP 中点为F ,再取PD 中点为G ,连结FG . 则FG 为△PAD 中位线,故FG =∥ 12AD , 又BE =∥ 12AD ,所以FG =∥BE ,于是四边形BFGE 为平行四边形, 因此BF ∥EG .又BF ⊄平面PDE ,EG ⊂平面PDE ,所以BF ∥平面PDE . 由(1)知,BC ⊥平面PDE .则有BC ⊥PE ,BC ⊥DE ,而BC ∥FG ,故FG ⊥PE ,FG ⊥DE ,且DE ∩PE =E ,所以FG ⊥平面PDE . 于是四面体PDEF 的体积为V=13S △PDE ·FG =13×12×23×3×1=1.另解(等体积转化):因为BF //面PDE ,则B ,F 两点到平面PDE 的距离相等, 所以四面体PDEF 的体积等于四面体PDEB , 因为PO ⊥平面ABCD ,所以V P-BDE =13·PO ·S △BDE =1.12.如图,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求棱锥E -DFC 的体积;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?如果存在,求出BPBC的值;如果不存在,请说明理由.【解析】(1)AB ∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 的中点,得EF ∥AB . 又AB ⊄平面DEF ,EF ⊂平面DEF .∴AB ∥平面DEF .(2)∵AD ⊥CD ,BD ⊥CD ,将△ABC 沿CD 翻折成直二面角A -DC -B ,∴AD ⊥BD ,∴AD ⊥平面BCD .取CD 的中点M ,这时EM ∥AD ,∴EM ⊥平面BCD ,EM =1.V E -DFC =13×1()2BDC S ×EM =13×12×12×2×23×1=33. (3)在线段BC 上存在点P ,使AP ⊥DE .证明如下:在线段BC 上取点P ,使BP =BC3,过P 作PQ ⊥CD 于Q .∵AD ⊥平面BCD ,PQ ⊂平面BCD ,∴AD ⊥PQ .又∵AD ∩CD =D ,∴PQ ⊥平面ACD , ∴DQ =DC 3=233,∴tan ∠DAQ =DQ AD =2332=33,∴∠DAQ =30°,在等边△ADE 中,∠DAQ =30°,∴AQ ⊥DE ,∵PQ ⊥平面ACD ,DE ⊂平面ACD ,∴PQ ⊥DE ,AQ ∩PQ =Q ,∴DE ⊥平面APQ ,∴AP ⊥DE .此时BP =BC 3,∴BP BC =13.13.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC的长为cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14cm 和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l ,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱CC 1上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中部分的长度.【解析】(1)由正棱柱的定义,1CC ⊥平面ABCD ,所以平面11A ACC ⊥平面ABCD ,1CC AC ⊥.记玻璃棒的另一端落在1CC 上点M 处.因为40AC AM ==,所以30MC ==,从而 3sin 4MAC =∠,记AM 与水面的焦点为1P ,过1P 作P 1Q 1⊥AC , Q 1为垂足,则 P 1Q 1⊥平面 ABCD ,故P 1Q 1=12,从而 AP 1=1116sin P MACQ =∠. ( 如果将“没入水中部分冶理解为“水面以上部分冶,则结果为24cm) (2)如图,O ,O 1是正棱台的两底面中心.由正棱台的定义,OO 1⊥平面 EFGH , 所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG . 同理,平面 E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1.记玻璃棒的另一端落在GG 1上点N 处. 过G 作GK ⊥E 1G ,K 为垂足, 则GK =OO 1=32. 因为EG = 14,E 1G 1= 62,所以KG 1= 6214242-=,从而140GG ===.设1,,EGG ENG αβ==∠∠则114sin sin()cos 25KGG KGG απ=+==∠∠. 因为2απ<<π,所以3cos 5α=-. 在ENG △中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02βπ<<,所以24cos 25β=. 于是,sin sin()sin()NEG αβαβ=π--=+∠42473sin cos cos sin ()53525255αβαβ=+=⨯+-⨯=.记EN 与水面的交点为P 2,过 P 2作P 2Q 2⊥EG ,Q 2为垂足,则 P 2Q 2⊥平面 EFGH ,故P 2Q 2=12,从而EP 2=2220sin P NEGQ =∠.答:(1)玻璃棒l 没入水中部分的长度为16cm.(2)玻璃棒l 没入水中部分的长度为20cm.(如果将“没入水中部分冶理解为“水面以上部分冶,则结果为20cm)【点睛】空间几何体的考察,主要集中体积、表面积的计算和空间距离的距离,其实这些计算最后都得归结为平面中基本图形中的长度的计算,因此解三角形就是必要的工具.14.如图,圆柱体木材的横截面半径为1 dm ,从该木材中截取一段圆柱体,再加工制作成直四棱柱1111A B C D ABCD -,该四棱柱的上、下底面均为等腰梯形,分别内接于圆柱的上、下底面,下底面圆的圆心O 在梯形ABCD 内部,AB ∥CD ,DAB ∠=60°,1AA AD =,设DAO θ∠=. (1)求梯形ABCD 的面积;(2)当sin θ取何值时,四棱柱1111A B C D ABCD -的体积最大?并求出最大值. (注:木材的长度足够长)【解析】(1)由条件可得,2cos AD θ=, 所以梯形的高sin 603h AD θ==. 又2cos(60)AB θ=-,2cos(120)CD θ=-, 所以梯形ABCD 的面积为12cos(60)2cos(120)3cos 2S θθθ⎡⎤=-+-⨯⎣⎦ cos(60)cos(60)3cos θθθ⎡⎤=--+⨯⎣⎦(2sin 60sin )θθ=3sin 22θ=(2dm ).(2)设四棱柱1111A B C D ABCD -的体积为V ,因为12cos AA AD θ==, 所以123sin 22cos 6sin (1sin )2A V S A θθθθ=⋅⨯==-.设sin t θ=,因为060θ︒<<,所以0t ⎛∈ ⎝,所以23()6(1)6()V t t t t t =-=-+,0t ⎛∈ ⎝.由2()6(31)18(V t t t t '=-+=-+-,令()0V t '=,得t ,()V t 与()V t '的变化情况列表如下:由上表知,()V t在t =时取得极大值,即为最大值,且最大值V =答:当sin θ=时,四棱柱1111A B C D ABCD -3dm .【备选提高题】1.各棱长都为2的正四棱锥与正四棱柱的体积之比为m ,则m 的值为 . 【答案】12【解析】法一:正四棱柱的体积为8,底面积为4,故体积为3,所6,即6m =. 方法二:设正四棱锥与正四棱柱的高分别为12,h h .因为正四棱锥与正四棱柱的底面积相同,所以体积之比为121332h h ==.2.将一个半径为2的圆分成圆心角之比为1:2的两个扇形,且将这两个扇形分别围成圆锥的侧面,则所得体积较小的圆锥与较大圆锥的体积之比为 . 【答案】1【解析】因为圆分成圆心角之比为1:2的两个扇形,所以两个扇形圆心角分别为123lπ=和243l π=.1223r ππ=和2423r ππ=,解得123r =,243r =.13h ==, 2h ==.所以21112222114313r h v v r h πππ⋅===3.已知一球与一个正三棱柱的三个侧面及两个底面都相切.若该球的体积为4π3,则该三棱柱的体积是 . 【答案】6 3【解析】由体积得球半径R =1,三棱柱的高为2,底面边长为2 3.V =34(2 3)2×2=6 3.4.在三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V , 三棱锥P ABC -的体积为2V ,则12V V = . 【答案】14【解析】因为213C PAB PAB V V S h -∆==,121111323224E ABD DAB PAB h h V V S S V -∆∆==⋅=⨯⨯=,所以1214V V =.5.如图,四棱锥P ABCD -的底面ABCD 是矩形,PA ⊥底面ABCD ,E 为PD 上一点,且2PE ED =.设三棱锥P ACE -的体积为1V ,三棱锥P ABC -的体积为2V ,则12:V V = .【答案】23【解析】因为2PE ED =,所以三棱锥E ACD -的体积是三棱锥P ACD -体积的13,所以三棱锥P ACE -的体积是P ACD -体积的23.因为三棱锥P ABC -与三棱锥P ACD -体积相等,所以12:V V =23.6.在三棱锥D -ABC 中,AB =BC =DB =DC =1,当三棱锥体积最大时,其外接球的表面积为________. 【答案】7π3【解析】在三棱锥D -ABC 中,当且仅当AB ⊥平面BCD 时,三棱锥体积达到最大, 此时,设外接球的半径为R ,外接球的球心为O ,点F 为△BCD 的中心, 则有R 2=OB 2=OF 2+BF 2=221()2+=712,所以表面积S =4πR 2=7π3.7.已知三棱锥P -ABC 内接于球O ,PA =PB =PC =2,当三棱锥P -ABC 的三个侧面的面积之和最大时,球O 的表面积为 . 【答案】12π【解析】由于三条侧棱相等,根据三角形面积公式可知,当PA ,PB ,PC 两两垂直时,侧面积之和最大.此时PA ,PB ,PC 可看成正方体一个顶点的三条侧棱,其外接球直径为正方体的体对角线,即4R 2=3·22=12,故球的表面积为4πR 2=12π.8.已知正四面体P ABC -的棱长均为a ,O 为正四面体P ABC -的外接球的球心,过点O 作平行于底面ABC 的平面截正四面体P ABC -,得到三棱锥111P A B C -和三棱台111ABC A B C -,那么三棱锥111P A B C -的外接球的表面积为 . 【答案】22732a π 【解析】设底面ABC ∆的外接圆半径为r ,则2sin3a r π=,所以r ., 设正四面体的外接球半径为R,则222))R R =+-,∴R =.3:4=,所以三棱锥111P A B C -的外接球的表面积为2223274)()432a ππ⨯⨯=.。
高三数学立体几何专题复习教案
![高三数学立体几何专题复习教案](https://img.taocdn.com/s3/m/556e2be8e109581b6bd97f19227916888486b97d.png)
(解题思想方法归纳)
问题一: 证明线线平行
1.证明两直线 、 平行,若直线 和直线 共面时,则可以用平面几何中常用的一些方法(如证明 和 是一个平行四边形的一组对边)证明它们无公共点。
在立体几何中一般还有以下几种思路:
①根据公理4
②根据“线面平行Байду номын сангаас的性质定理
③根据“线面垂直”的性质定理,若直线 和 都与平面 垂直,则 // 。
②利用中位法。如给出异面直线AB和CD,连接AC、AD、BC,然后再分别取这三条线段的中点E、F、G,连接EF、EG、FG得到△EFG,则∠FEG就是所求角或所求角的补角。这种方法优点是作异面直线所成角比较容易,但缺点是△EFG中有一边GF的长度不容易求。
3.向量方法:
转化成求两个向量的夹角(即等于所求的异面直线所成的角或其补角的大小)
2.向量方法:
①转化为证明向量共线。
②根据共面向量定理。
③证明向量与平面的法向量相互垂直。
问题三: 证明面面平行
1.传统几何方法:
①根据两个平面平行的定义
②根据两个平面平行的判定定理
③垂直于同一条直线的两个平面平行
④平行于同一平面的两个平面平行
2.思维过程:
线线平行 线面平行 面面平行
线线平行 线面垂直 面面平行
问题八: 求平面的斜线与平面所成角
1.传统几何方法:
①转化为求斜线与它在平面内的射影所成的角,通过直角三角形求解。
②利用三面角定理(即最小角定理) 求 。
2.向量方法:设 为平面 的法向量,直线 与平面 所成的角为 ,则
问题九: 求二面角
1.作出二面角的平面角并通过解三角形计算。作平面角常用方法如下:
高中数学立体空间几何教案
![高中数学立体空间几何教案](https://img.taocdn.com/s3/m/54e18c5d6fdb6f1aff00bed5b9f3f90f77c64d73.png)
高中数学立体空间几何教案
一、教学目标:
1. 知识目标:学生能够掌握立体空间的基本概念和相关定理,能够运用立体空间几何知识解决实际问题。
2. 能力目标:培养学生的空间想象能力和逻辑思维能力,提高学生的应用能力和解决问题的能力。
3. 情感目标:激发学生对数学的兴趣,培养学生的数学学习兴趣和探究精神。
二、教学内容:
1. 立体空间的基本概念
2. 立体空间的投影相关定理
3. 立体空间的相交和平行关系
4. 立体空间的角度关系
三、教学过程:
1. 导入:通过展示一些立体空间的实际图像,引导学生了解立体空间的概念,并讨论立体空间在生活中的应用。
2. 学习:介绍立体空间的相关定理和概念,并通过实例分析让学生掌握立体空间的投影、相交及平行关系。
3. 巩固:设计一些练习题目,让学生运用所学知识,巩固立体空间几何的相关概念。
4. 拓展:引导学生继续探索立体空间的角度关系,并引导学生进行拓展思考,解决一些具有挑战性的问题。
5. 总结:总结本节课的重点知识,让学生对立体空间几何的知识有一个清晰的认识。
四、作业布置:
1. 完成课堂练习题
2. 自主拓展思考,设计一个与立体空间相关的问题,并尝试解答
五、教学反思:
本节课程注重学生的主动学习和思维能力的培养,通过实际的例题分析和练习引导学生掌握立体空间几何知识。
同时也通过拓展思考和问题解决,激发学生学习的兴趣,提高学生
的空间想象和推理能力。
在未来的教学中,可以更多地引导学生进行实际问题的拓展与解决,帮助学生深入理解立体空间几何知识。
新课标2023版高考数学一轮总复习第6章立体几何第1节空间几何体教师用书
![新课标2023版高考数学一轮总复习第6章立体几何第1节空间几何体教师用书](https://img.taocdn.com/s3/m/dbed58f1185f312b3169a45177232f60dccce748.png)
第一节 空间几何体考试要求:1.认识柱、锥、台及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能用斜二测画法画出简单空间图形(长方体、球、圆锥、棱柱及其简易组合)的直观图.3.知道棱柱、棱锥、棱台的表面积和体积的计算公式,能用公式解决简单的实际问题.一、教材概念·结论·性质重现1.多面体的结构特征互相平行且全等多边形互相平行平行且相等相交于一点但不一定相等延长线交于一点平行四边形三角形梯形相互平行且相等并垂直于底相交于一点延长线交于一圆空间几何体的直观图常用斜二测画法来画,其规则是:(1)“斜”:在直观图中,x′轴、y′轴的夹角为45°或135°.(2)“二测”:图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线,在直观图中长度为原来的一半.画直观图要注意平行,还要注意长度及角度两个要素.4.圆柱、圆锥、圆台的侧面展开图及侧面积公式S圆柱侧=2πrl S圆锥侧=πrl圆台侧=π(r1+.空间几何体的表面积与体积公式名称表面积体积几何体柱体(棱柱和圆柱)S表面积=S侧+2S底V=S 底·h锥体(棱锥和圆锥)S表面积=S侧+S底V=S底·h台体(棱台和圆台)S表面积=S侧+S上+S下V=(S上+S下+)h球S=4πR2V=πR3(1)求棱柱、棱锥、棱台与球的表面积时,要结合它们的结构特点与平面几何知识来解6.常用结论几个与球有关的切、接常用结论:(1)正方体的棱长为a,球的半径为R.①若球为正方体的外接球,则2R=a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R=a.(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=.(3)正四面体的外接球与内切球的半径之比为3∶1.解决与球“外接”问题的关键:二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)棱台是由平行于底面的平面截棱锥所得的平面与底面之间的部分.( √ )(4)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( × ) 2.如图,长方体ABCD A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是( )A.棱台 B.四棱柱C.五棱柱 D.简单组合体C 解析:由几何体的结构特征知,剩下的几何体为五棱柱.3.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )A.1 cm B.2 cmC.3 cm D. cmB 解析:S表=πr2+πrl=πr2+πr·2r=3πr2=12π,所以r2=4,所以r=2 cm.4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12π B.C.8π D.4πA 解析:由题意可知正方体的棱长为2,其体对角线为2即为球的直径,所以球的表面积为4πR2=(2R)2π=12π.故选A.5.在直观图(如图所示)中,四边形O′A′B′C′为菱形且边长为2 cm,则在平面直角坐标系xOy中,四边形ABCO为__________,面积为________cm2.矩形 8 解析:由斜二测画法的规则可知,在平面直角坐标系xOy中,四边形ABCO是一个长为4 cm,宽为2 cm的矩形,所以四边形ABCO的面积为8 cm2.考点1 空间几何体的结构特征与直观图——基础性1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( ) A.圆柱B.圆锥C.球D.圆柱、圆锥、球体的组合体C 解析:截面是任意的,且都是圆面,则该几何体为球体.2.下列命题正确的是( )A.以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥B.以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆面D.一个平面截圆锥,得到一个圆锥和一个圆台C 解析:由圆锥、圆台、圆柱的定义可知A,B错误,C正确.对于D,只有用平行于圆锥底面的平面去截圆锥,才能得到一个圆锥和一个圆台,D不正确.3.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,C ′D′=2 cm,则原图形是( )A.正方形 B.矩形C.菱形 D.一般的平行四边形C 解析:如图,在原图形OABC中,应有OD=2O′D′=2×2=4(cm),CD=C′D′=2 cm.所以OC===6(cm),所以OA=OC,所以四边形OABC是菱形.4.(多选题)下列命题中正确的是( )A.棱柱的侧棱都相等,侧面都是全等的平行四边形B.在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱C.存在每个面都是直角三角形的四面体D.棱台的上、下底面可以不相似,但侧棱长一定相等BC 解析:A不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;B正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;C正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1 ABC,四个面都是直角三角形;D不正确棱台的上、下底面相似且是对应边平行的多边形,各侧棱的延长线交于一点,但是侧棱长不一定相等.1.解决空间几何体的结构特征的判断问题主要方法是定义法,即紧考点2 空间几何体的表面积与体积——综合性考向1 空间几何体的表面积问题(1)(2021·新高考全国Ⅰ卷)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2 B.2 C.4 D.4B 解析:由题意知圆锥的底面周长为2π.设圆锥的母线长为l,则πl=2π,即l=2.故选B.(2)如图,在三棱柱ABCA1B1C1中,AA1⊥底面ABC,AB⊥BC,AA1=AC=2,直线A 1C 与侧面AA 1B 1B 所成的角为30°,则该三棱柱的侧面积为()A .4+4B .4+4C .12D .8+4A 解析:连接A 1B .因为AA 1⊥底面ABC ,则AA 1⊥BC ,又AB ⊥BC ,AA 1∩AB =A ,所以BC ⊥平面AA 1B 1B ,所以直线A 1C 与侧面AA 1B 1B 所成的角为∠CA 1B =30°.又AA 1=AC =2,所以A 1C =2,所以BC =.又AB ⊥BC ,则AB =,则该三棱柱的侧面积为2×2+2×2=4+4.(3)在如图所示的斜截圆柱中,已知圆柱底面的直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S = cm 2.2 600π 解析:将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S =×(50+80)×(π×40)=2 600π(cm 2).求解几何体表面积的类型及求法求多面体的表面积只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积求旋转体的表面积可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系求不规则几何体的表面积通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积1.一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为_________.12 解析:设正六棱锥的高为h,侧面的斜高为h′.由题意,得×6××2××h=2,所以h=1,所以斜高h′==2,所以S侧=6××2×2=12.2.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,书中将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.已知一个堑堵的底面积为6,体积为的球与其各面均相切,则该堑堵的表面积为________.36 解析:设球的半径为r,底面三角形的周长为l,由已知得r=1,所以堑堵的高为2.则lr=6,l=12,所以表面积S=12×2+6×2=36.考向2 空间几何体的体积问题(1)如图所示,已知三棱柱ABCA1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1ABC1的体积为( )A. B.C. D.A 解析:易知三棱锥B1ABC1的体积等于三棱锥AB1BC1的体积,又三棱锥AB1BC1的高为,底面积为,故其体积为××=.(2)(2021·八省联考)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为________.61π 解析:圆台的下底面半径为5,故下底面在外接球的大圆上,如图,设球的球心为O,圆台上底面的圆心为O′,则圆台的高OO′===3.据此可得圆台的体积V=π×3×(52+5×4+42)=61π.求空间几何体的体积的常用方法公式法对于规则几何体的体积问题,可以直接利用公式进行求解割补法把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算其体积等体积法一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.通过选择合适的底面来求几何体体积,主要用来解决有关锥体的体积,特别是三棱锥的体积1.(2021·全国甲卷)已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为________.39π 解析:设圆锥的高为h ,母线长为l ,则圆锥的体积V =×π×62×h =30π,解得h =.所以l ===,故圆锥的侧面积S =πrl =π×6×=39π.2.如图,已知体积为V 的三棱柱ABCA 1B 1C 1,P 是棱B 1B 上除B 1,B 以外的任意一点,则四棱锥PAA 1C 1C 的体积_________. 解析:如图,把三棱柱ABCA 1B 1C 1补成平行六面体A 1D 1B 1C 1ADBC .设点P 到平面AA 1C 1C 的距离为h ,则V =S ·h =V =·2V=.考点3 与球有关的切、接问题——综合性考向1 “相切”问题已知正四面体PABC 的表面积为S 1,此四面体的内切球的表面积为S 2,则=________. 解析:设正四面体的棱长为a,则正四面体的表面积为S1=4××a2=a2,其内切球半径r为正四面体高的,即r=×a=a,因此内切球表面积为S2=4πr2=,则==.考向2 “相接”问题已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( )A. B. 2C. D.3C 解析:如图所示,由球心作平面ABC的垂线,则垂足为BC的中点M.又AM=BC=,OM=AA1=6,所以球O的半径R=OA==.1.已知三棱锥PABC中,△ABC为等边三角形,PA=PB=PC=3,PA⊥PB,则三棱锥PABC的外接球的体积为( )A.π B.π C.27π D.27πB 解析:因为三棱锥PABC中,△ABC为等边三角形,PA=PB=PC=3,所以△PAB≌△PBC≌△PAC.因为PA⊥PB,所以PA⊥PC,PC⊥PB.以PA,PB,PC为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥PABC的外接球.因为正方体的体对角线长为=3,所以其外接球半径R=.因此三棱锥PABC的外接球的体积V=×=π.2.(2020·全国Ⅲ卷)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.π 解析:方法一:如图,在圆锥的轴截面ABC中,CD⊥AB,BD=1,BC=3,圆O内切于△ABC,E为切点,连接OE,则OE⊥BC.在Rt△BCD中,CD==2.易知BE =BD=1,则CE=2.设圆锥的内切球半径为R,则OC=2-R,在Rt△COE中,OC2-OE2=CE2,即(2-R)2-R2=4,所以R=,圆锥内半径最大的球的体积为πR3=π.方法二:如图,记圆锥的轴截面为△ABC,其中AC=BC=3,AB=2,CD⊥AB,在Rt△BCD中,CD==2,则S△ABC=2.设△ABC的内切圆O的半径为R,则R==,所以圆锥内半径最大的球的体积为πR3=π.。
高考数学一轮复习 第八章 立体几何 第1讲 简单几何体及其直观图、三视图教学案 理
![高考数学一轮复习 第八章 立体几何 第1讲 简单几何体及其直观图、三视图教学案 理](https://img.taocdn.com/s3/m/44f62493783e0912a3162ad3.png)
【第1讲简单几何体及其直观图、三视图】之小船创作一、知识梳理1.空间几何体的结构特征(1)多面体的结构特征(1)画法:常用斜二测画法.(2)规则:①在已知图形中建立直角坐标系xOy,画直观图时,它们分别对应x′轴和y′轴,两轴交于点O′,使x′O′y′=45°,它们确定的平面表示水平平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x ′轴和y ′轴的线段.③已知图形中平行于x 轴的线段,在直观图中保持原长度不变,平行于y 轴的线段,长度为原来的12. 3.三视图 (1)几何体的三视图包括主视图、左视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法 ①基本要求:长对正,高平齐,宽相等. ②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线.常用结论1.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变2.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的主视图和左视图均为全等的等腰三角形.(3)水平放置的圆台的主视图和左视图均为全等的等腰梯形.(4)水平放置的圆柱的主视图和左视图均为全等的矩形.二、教材衍化1.下列说法正确的是( )A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行解析:选D.由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变.2.在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)答案:③⑤3.已知如图所示的几何体,其俯视图正确的是________.(填序号)解析:由俯视图定义易知选项③符合题意.答案:③一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.( )(4)正方体、球、圆锥各自的三视图中,三视图均相同.( )(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( )(6)菱形的直观图仍是菱形.( )答案:(1)×(2)×(3)×(4)×(5)×(6)×二、易错纠偏常见误区|K(1)棱柱的概念不清致误;(2)不清楚三视图的三个视图间的关系,想象不出原几何体而出错;(3)斜二测画法的规则不清致误.1.如图,长方体ABCDA′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是( )A.棱台B.四棱柱C.五棱柱D.六棱柱解析:选C.由几何体的结构特征,剩下的几何体为五棱柱.故选C.2.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的主视图与俯视图如图所示,则该几何体的左视图为( )解析:选B.先根据主视图和俯视图还原出几何体,再作其左视图.由几何体的主视图和俯视图可知该几何体为图①,故其左视图为图②.故选B.3.在直观图(如图所示)中,四边形O′A′B′C′为菱形且边长为2 cm,则在平面直角坐标系xOy中,四边形ABCO 为________,面积为________cm2.解析:由斜二测画法的特点,知该平面图形的直观图的原图,即在平面直角坐标系xOy中,四边形ABCO是一个长为4 cm,宽为2 cm的矩形,所以四边形ABCO的面积为8 cm2.答案:矩形8空间几何体的几何特征(自主练透) 1.下列说法正确的是( )A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D.由图知,A不正确.两个平行平面与底面不平行时,截得的几何体不是旋转体,则B不正确.侧棱长与底面多边形的边长相等的棱锥一定不是六棱锥,故C错误.由定义知,D正确.2.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0 B.1C.2 D.3解析:选B.①不一定,只有这两点的连线平行于旋转轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.3.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.解析:①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体ABCDA1B1C1D1中的三棱锥C1ABC,四个面都是直角三角形.答案:②③④空间几何体概念辨析问题的常用方法空间几何体的三视图(多维探究)角度一已知几何体,识别三视图(1)(2020·宜宾模拟)已知棱长都为2的正三棱柱ABCA1B1C1的直观图如图.若正三棱柱ABCA1B1C1绕着它的一条侧棱所在直线旋转,则它的左视图可以为( )(2)(2020·湖南衡阳二模)如图,正方体ABCDA1B1C1D1的顶点A,B在平面α上,AB= 2.若平面A1B1C1D1与平面α所成角为30°,由如图所示的俯视方向,正方体ABCDA1B1C1D1在平面α上的俯视图的面积为( )A.2 B.1+ 3 C.2 3 D.22【解析】(1)由题知,四个选项的高都是2.若左视图为A,则中间应该有一条竖直的实线或虚线;若左视图为C,则其中有两条侧棱重合,不应有中间竖线;若左视图为D,则长度应为3,而不是1.故选B.(2)由题意得AB在平面α内,且平面α与平面ABCD 所成的角为30°,与平面B1A1AB所成的角为60°,故所得的俯视图的面积S=2×(2cos 30°+2cos 60°)=2(cos 30°+cos 60°)=1+ 3.【答案】(1)B (2)B角度二已知三视图,判断几何体(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥D.四棱柱(2)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1 B.2C.3 D.4【解析】(1)由题三视图得直观图如图所示,为三棱柱,故选B.(2)将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示.易知,BC ∥AD ,BC =1,AD =AB =PA =2,AB ⊥AD ,PA ⊥平面ABCD ,故△PAD ,△PAB 为直角三角形,因为PA ⊥平面ABCD ,BC ⊂平面ABCD ,所以PA ⊥BC ,又BC ⊥AB ,且PA ∩AB =A ,所以BC ⊥平面PAB ,又PB ⊂平面PAB ,所以BC ⊥PB , 所以△PBC 为直角三角形,容易求得PC =3,CD =5,PD =22,故△PCD 不是直角三角形,故选C.【答案】 (1)B (2)C【迁移探究1】 (变问法)在本例(2)条件下,求该四棱锥的所有棱中,最长棱的棱长是多少?解:由三视图可知,PA =AB =AD =2,BC =1,经计算可知,PB =PD =22,PC =3,CD =5,故最长棱为PC ,且|PC |=3.【迁移探究2】 (变问法)在本例(2)条件下,求该四棱锥的五个面中,最小面的面积.解:面积最小的面为面PBC ,且S △PBC =12BC ·PB =12×1×22=2,即最小面的面积为 2. 角度三 已知几何体的某些视图,判断其他视图(1)(2020·福州模拟)如图为一圆柱切削后的几何体及其主视图,则相应的左视图可以是( )(2)(2020·河北衡水中学联考)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈、长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知该楔体的主视图和俯视图如图中粗实线所示,则该楔体的左视图的周长为( )A .3丈B .6丈C .8丈D .(5+13)丈【解析】 (1)圆柱被不平行于底面的平面所截,得到的截面为椭圆,结合主视图,可知左视图最高点在中间,故选B.(2)由题意可知该楔体的左视图是等腰三角形,它的底边长为3丈,相应高为2丈,所以腰长为 22+⎝ ⎛⎭⎪⎪⎫322=52(丈),所以该楔体左视图的周长为3+2×52=8(丈).故选C. 【答案】 (1)B (2)C三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意主视图、左视图和俯视图的观察方向,注意看到的部分用实线表示,看不到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图.先根据已知的一部分视图,还原、推测其直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为直观图.1.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )解析:选A.由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.2.(2020·安徽宣城二模)一个几何体的三视图如图所示,在该几何体的各个面中,面积最大面的面积是( ) A.2 B.2 2 C.2 3 D.4解析:选C.如图所示,由三视图可知该几何体是四棱锥PABCD截去三棱锥PABD后得到的三棱锥PBCD.其中四棱锥中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AB=2,易知面积最大面为面PBD,面积为34×(22)2=2 3.故选C.3.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在主视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为( )A.217 B.2 5 C.3 D.2解析:选B.由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N 的路径中,最短路径的长度为MS2+SN2=22+42=2 5.故选B.空间几何体的直观图(自主练透) 1.如图所示为一个平面图形的直观图,则它的实际形状四边形ABCD为( )A.平行四边形B.梯形C.菱形D.矩形解析:选D.由斜二测画法可知在原四边形ABCD中DA⊥AB,并且AD∥BC,AB∥CD,故四边形ABCD为矩形.2.已知等边三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为( )A.34a2B.38a2C.68a2D.616a2解析:选D.如图①②所示的实际图形和直观图,由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于点D′,则C′D′=22O′C′=68a.所以S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.故选D.3.在等腰梯形ABCD中,上底CD=1,腰AD=CB=2,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.解析:因为OE=(2)2-12=1,所以O′E′=12,E′F′=24.所以直观图A′B′C′D′的面积为S′=12×(1+3)×24=22.答案:22(1)斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变(2)平面图形直观图与原图形面积间的关系对于几何体的直观图,除掌握斜二测画法外,记住原图形面积S 与直观图面积S ′之间的关系S ′=24S ,能更快捷地进行相关问题的计算.构造法求解三视图问题的三个步骤三视图问题(包括求解几何体的表面积、体积等)是培养和考查空间想象能力的好题目,是高考的热点.由三视图还原几何体是解决这类问题的关键,而由三视图还原几何体只要按照以下三个步骤去做,基本都能准确还原出来.这三个步骤是:第一步,先画长(正)方体,在长(正)方体中画出俯视图;第二步,在三个视图中找直角;第三步,判断直角位置,并向上(或向下)作垂线,找到顶点,连线即可.一个几何体的三视图如图所示,图中直角三角形的直角边长均为1,则该几何体的体积为( ) A.16 B .26 C.36D .12【解析】 几何体还原说明:①画出正方体,俯视图中实线可以看作正方体的上底面及底面对角线.②俯视图是正方形,有四个直角,主视图和左视图中分别有一个直角.主视图和左视图中的直角对应上底面左边外侧顶点(图中D 点上方顶点),将该顶点下拉至D 点,连接DA ,DB ,DC 即可.该几何体即图中棱长为1的正方体中的四面体ABCD ,其体积为13×12×1×1×1=16.故选A. 【答案】 A如图是一个四面体的三视图,三个三角形均是腰长为2的等腰直角三角形,还原其直观图.【解】 第一步,根据题意,画正方体,在正方体内画出俯视图,如图①.第二步,找直角,在俯视图、主视图和左视图中都有直角.第三步,将俯视图的直角顶点向上拉起,与三视图中的高一致,连线即可.所求几何体为三棱锥ABCD,如图②.[基础题组练]1.如图所示是水平放置的三角形的直观图,点D是△ABC的BC边的中点,AB,BC分别与y′轴,x′轴平行,则在原图中三条线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD解析:选 B.由条件知,原平面图形中AB⊥BC,从而AB<AD<AC.2.如图所示的几何体由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则截面图形可能是( ) A.①② B.②③ C.③④D.①⑤解析:选D.圆锥的轴截面为等腰三角形,此时①符合条件;当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时⑤符合条件;故截面图形可能是①⑤.3.(2020·陕西彬州质检)一个几何体的三视图如图所示,其中主视图中△ABC 是边长为1的等边三角形,左视图为正六边形,那么该几何体的左视图的面积为( ) A.38 B .34 C .1 D .32 解析:选A.由三视图可知该几何体为正六棱锥,其直观图如图所示.该正六棱锥的底面正六边形的边长为12,侧棱长为1,高为32.左视图的底面边长为正六边形的高,为32,则该几何体的左视图的面积为12×32×32=38,故选A. 4.(2020·江西省名校学术联盟质检)如图所示,边长为1的正方形网格中粗线画出的是某几何体的三视图,则该几何体所有棱长组成的集合为( )A .{1,5}B .{1,6}C .{1,2,5}D .{1,2,22,6}解析:选B.如图所示,该几何体是四棱柱,底面是边长为1的正方形,侧棱长为6,故选B.5.(一题多解)(2020·河南非凡联盟4月联考)某组合体的主视图和左视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O ′A ′B ′C ′为平行四边形,D ′为C ′B ′的中点,则图(2)中平行四边形O′A′B′C′的面积为( )A.12 B.3 2 C.6 2 D.6解析:选B.法一:由题图易知,该几何体为一个四棱锥(高为23,底面是长为4,宽为3的矩形)与一个半圆柱(底面圆半径为2,高为3)的组合体,所以其俯视图的外侧边沿线组成一个长为4,宽为3的矩形,其面积为12,由斜二测知识可知四边形O′A′B′C′的面积为4×32sin 45°=3 2.法二:由斜二测画法可先还原出俯视图的外轮廓是长为4,宽为3的矩形,其面积为4×3=12,结合直观图面积是原图形面积的24,即可得结果.6. 某多面体的三视图如图所示,其中主视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为________.解析:由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12.答案:127.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为______cm.解析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12(cm),BC=8-3=5(cm).所以AB=122+52=13(cm).答案:138.已知正四棱锥VABCD中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.解析:如图,取正方形ABCD的中心O,连接VO,AO,则VO就是正四棱锥VABCD的高.因为底面面积为16,所以AO=2 2.因为一条侧棱长为211,所以VO=VA2AO2=44-8=6.所以正四棱锥VABCD的高为6.答案:69.如图所示的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的主视图和左视图如图所示(单位:cm).(1)在主视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积.解:(1)如图.(2)所求多面体的体积V =V 长方体-V 正三棱锥=4×4×6-13×(12×2×2)×2=2843(cm 3). 10.已知正三棱锥V ABC 的主视图和俯视图如图所示.(1)画出该三棱锥的直观图和左视图;(2)求出左视图的面积.解:(1)如图.(2)左视图中VA =42-⎝ ⎛⎭⎪⎪⎫23×32×232=12=2 3. 则S △VBC =12×23×23=6. [综合题组练]1.(2020·河南开封一模)如图,在一个正方体内放入两个半径不相等的球O 1,O 2,这两个球外切,且球O 1与正方体共顶点A 的三个面相切,球O 2与正方体共顶点B 1的三个面相切,则两球在正方体的面AA 1C 1C 上的正投影是( )解析:选B.由题意可以判断出两球在正方体的面AA 1C 1C 上的正投影与正方形相切,排除C ,D.由于两球不等,把其中一个球扩大为与正方体相切,则另一个球被挡住一部分,所以排除A.B 正确.2.某几何体的三视图如图所示,则该几何体的左视图中的虚线部分是( )A.圆弧B.抛物线的一部分C.椭圆的一部分D.双曲线的一部分解析:选D.根据几何体的三视图可得,左视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故左视图中的虚线部分是双曲线的一部分,故选D.3.如图,在正方体ABCDA1B1C1D1中,点P是线段A1C1上的动点,则三棱锥PBCD的俯视图与主视图面积之比的最大值为( )A.1 B.2C. 3 D.2解析:选D.主视图,底面B,C,D三点,其中D与C重合,随着点P的变化,其主视图均是三角形且点P在主视图中的位置在边B1C1上移动,由此可知,设正方体的棱长为a,则S主视图=12×a2;设A1C1的中点为O,随着点P的移动,在俯视图中,易知当点P在OC1上移动时,S俯视图就是底面三角形BCD的面积,当点P在OA1上移动时,点P越靠近A1,俯视图的面积越大,当到达A1的位置时,俯视图为正方形,此时俯视图的面积最大,S俯视图=a2,所以S俯视图S主视图的最大值为a212a2=2,故选D.4.(2020·河北衡水二模)某几何体的三视图如图所示,三视图中的点P ,Q 分别对应原几何体中的点A ,B ,在此几何体中从点A 经过一条侧棱上点R 到达点B 的最短路径的长度为( )A .aB .2a C.52a D .3a解析:选D.由几何体的三视图可知,该几何体为棱长为a 的正四面体(如图1),将侧面三角形CDB 绕CD 翻折到与面ACD 在同一平面内(如图2),连接AB 与CD 交于一点R ,该点即为使路径最短的侧棱上的点R ,且最短路径为AB 长,在△ACB 中,由余弦定理易知AB =a 2+a 2-2a ·a ·cos 120°=3a .故选D.5.已知正方体ABCD A 1B 1C 1D 1的体积为1,点M 在线段BC 上(点M 异于B ,C 两点),点N 为线段CC 1的中点,若平面AMN 截正方体ABCD A 1B 1C 1D 1所得的截面为四边形,则线段BM 的取值范围为( )A.⎝⎛⎦⎥⎥⎤0,13 B .⎝ ⎛⎦⎥⎥⎤0,12 C.⎣⎢⎢⎡⎭⎪⎪⎫12,1 D .⎣⎢⎢⎡⎦⎥⎥⎤12,23 解析:选B.由题意,正方体ABCD A 1B 1C 1D 1的棱长为1,如图所示,当点M为线段BC的中点时,截面为四边形AMND1,当0<BM≤12时,截面为四边形,当BM>12时,截面为五边形,故选B.6.已知直三棱柱ABCA1B1C1的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA1,BB1,CC1分别交于三点M,N,Q,若△MNQ为直角三角形,则该直角三角形斜边长的最小值为( )A.2 2 B.3C.2 3 D.4解析:选C.如图,不妨设N在B处,AM=h,CQ=m,则MB2=h2+4,BQ2=m2+4,MQ2=(h-m)2+4,由MB2=BQ2+MQ2,得m2-hm+2=0.Δ=h2-8≥0即h2≥8,该直角三角形斜边MB=4+h2≥2 3.故选C.7.某几何体的主视图和左视图如图(1),它的俯视图的直观图是矩形O1A1B1C1,如图(2),其中O1A1=6,O1C1=2,则该几何体的侧面积为________.解析:由题图(2)及斜二测画法可知原俯视图为如图所示的平行四边形OABC,设CB与y轴的交点为D,则易知CD=2,OD=2×22=42,所以CO=CD2+OD2=6=OA,所以俯视图是以6为边长的菱形,由三视图知几何体为一个直四棱柱,其高为4,所以该几何体的侧面积为4×6×4=96.答案:968.(2019·高考全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一,印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.解析:依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则22x+x+22x=1,解得x=2-1,故题中的半正多面体的棱长为2-1.答案:26 2-1。
高三数学高考一本通立体几何第一轮复习教案棱柱
![高三数学高考一本通立体几何第一轮复习教案棱柱](https://img.taocdn.com/s3/m/dc6d86b948d7c1c708a145ed.png)
例 3、( 1)如图,在三棱柱 ABC - A 1B 1C1 中,底面边长 AB = AC = 2b, BC= 2 2b , AA 1
= l ,且 A 1AC = A 1AB=60 °,求这个三棱柱的侧面积及体积。
[ 点拨 ] 本题应要求掌握求斜棱柱的侧面积的方法:其一可求各 侧面面积之和;其二可利用公式 S 侧=直截面周长×侧棱长
线线平行,求二面角的大小转化为求平面角的大小,故要掌握这种转化思想。
(2)已知正三棱 ABC - A 1B 1C1 中,底面边长为 10cm,高为 12cm 过底面一边 AB 作与底
面 ABC 成 60°角的截面,求此截面面积。
(3)过底面一边 AB 作与底面 ABC 成 30°角的截面,求此截面面积。
①底面是矩形的平行六面体是长方体;
②棱长相等的直四棱柱是正方体;
③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;
④对角线相等的平行六面体是直平行六面体。
以上四D : 4
2、长方体全面积为 11,十二条棱长底的和为 24,则长方体的一条对角线长为(
长方体是正四棱柱, 高和底边长相等的正四棱柱或棱长都相等的长方体是正方体,
另外, 长
方体是研究问题时经常用的几何体,它有许多重要的性质和结论,学习时要引起重视。
[ 随堂巩固 ]
1、下列命题中,真命题的个数是(
)
(1)正棱柱的棱长都相等;( 2)直棱柱的侧棱就是直棱柱的高;(
形;
3)直棱柱的侧面是矩
)
A: 2 3 B : 14 C : 5 D : 6
3、长方体 ABCD- A1B1C1D1 中, AB= 3, BC= 2, BB1=1,则 A 到 C1 在长方体表面上的最短距 离为( )
高三数学一轮复习教学案:立体几何初步
![高三数学一轮复习教学案:立体几何初步](https://img.taocdn.com/s3/m/30d2dac3b8f67c1cfad6b860.png)
立体几何初步1.理解平面的基本性质,会用斜二测画法画水平放置的平面图形的直观图、能够画出空间两条直线、直线和平面的各种位置关系的图形,能根据图形想象它们的位置关系.2.了解空间两条直线、直线和平面、两个平面的位置关系.3.掌握直线和平面平行的判定定理和性质定理;理解直线和平面垂直的概念;掌握直线和平面垂直的判定定理和性质定理;掌握三垂线定理及其逆定理.4.掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念;掌握两个平面平行、垂直的判定定理和性质定理.5.了解多面体、凸多面体、正多面体的概念.6.了解棱柱,棱锥的概念;了解棱柱,棱锥的性质;会画其直观图.了解球的概念;掌握球的性质;掌握球的表面积、体积公式.本章的定义、定理、性质多,为了易于掌握,可把主要知识系统化.首先,归纳总结,理线串点,可分为四块:A、平面的三个基本性质,四种确定平面的条件;B、两个特殊的位置关系,即线线,线面,面面的平行与垂直.C、三个所成角;即线线、线面、面面所成角;D、四个距离,即两点距、两线距、线面距、面面距.R P QαCB A其次,平行和垂直是位置关系的核心,而线面垂直又是核心中的核心,线面角、二面角、距离等均与线面垂直密切相关,把握其中的线面垂直,也就找到了解题的钥匙.再次,要加强数学思想方法的学习,立体几何中蕴涵着丰富的思想方法,化空间图形为平面图形解决,化几何问题为坐标化解决,自觉地学习和运用数学思想方法去解题,常能收到事半功倍的效果.第1课时 平面的基本性质公理1 如果一条直线上的 在同一个平面内,那么这条直线上的 都在这个平面内 (证明直线在平面内的依据).公理2 如果两个平面有 个公共点,那么它们还有其他公共点,这些公共点的集合是 (证明多点共线的依据).公理3 经过不在 的三点,有且只有一个平面(确定平面的依据).推论1 经过一条直线和这条直线外的一点有且只有一个平面.推论2 经过两条 直线,有且只有一个平面.推论3 经过两条 直线,有且只有一个平面.例1.正方体ABCD-A 1B 1C 1D 1中,对角线A 1C 与平面BDC 1交于O ,AC 、BD 交于点M .求证:点C 1、O 、M 共线.证明:A 1A ∥CC 1⇒确定平面A 1CA 1C ⊂面A 1C ⇒O ∈面A 1C ⇒O ∈A 1C面BC 1D∩直线A 1C =O ⇒O ∈面BC 1D O 在面A 1C 与平面BC 1D 的交线C 1M 上∴C 1、O 、M 共线变式训练1:已知空间四点A 、B 、C 、D 不在同一平面内,求证:直线AB 和CD 既不相交也不平行.提示:反证法.例2. 已知直线l 与三条平行线a 、b 、c 都相交.求证:l 与a 、b 、c 共面.证明:设a ∩l =A b ∩l =B c ∩l =C a ∥b ⇒ a 、b 确定平面α ⇒l ⊂β A ∈a, B ∈bb ∥c ⇒b 、c 确定平面β 同理可证l ⊂β所以α、β均过相交直线b 、l ⇒ α、β重合⇒ c ⊂α ⇒a 、b 、c 、l 共面变式训练2:如图,△ABC 在平面α外,它的三条边所在的直线AB 、BC 、CA 分别交平面α于P 、Q 、R 点.求证:P 、Q 、R 共线.证明:设平面ABC∩α=l ,由于P =AB∩α,即P =平面ABC∩α=l ,即点P 在直线l 上.同理可证点Q 、R 在直线l 上.∴P 、Q 、R 共线,共线于直线l .例3. 若△ABC 所在的平面和△A 1B 1C 1所在平面相交,并且直线AA 1、BB 1、CC 1相交于一点O ,求证: (1) AB 和A 1B 1、BC 和B 1C 1分别在同一个平面内;A(2) 如果AB 和A 1B 1,BC 和B 1C 1分别相交,那么交点在同一条直线上.证明:(1) ∵AA 1∩BB 1=0,∴AA 1与BB 1确定平面α,又∵A ∈a ,B ∈α,A 1∈α,B 1∈α,∴AB ⊂α,A 1B 1⊂α,∴AB 、A 1B 1在同一个平面内同理BC 、B 1C 1、AC 、A 1C 1分别在同一个平面内(2) 设AB∩A 1B 1=X ,BC∩B 1C 1=Y ,AC∩A 1C 1=Z ,则只需证明X 、Y 、Z 三点都是平面A 1B 1C 1与ABC 的公共点即可.变式训练3:如图,在正方体ABCD -A 1B 1C 1D 1中,E 为AB 中点,F 为AA 1中点,求证:(1) E 、C .D 1、F 四点共面;(2) CE 、D 1F 、DA 三线共点.证明(1) 连结A 1B 则EF ∥A 1B A 1B ∥D 1C∴EF ∥D 1C ∴E 、F 、D 1、C 四点共面(2) 面D 1A∩面CA =DA∴EF ∥D 1C 且EF =21D 1C∴D 1F 与CE 相交 又D 1F ⊂面D 1A ,CE ⊂面AC∴D 1F 与CE 的交点必在DA 上∴CE 、D 1F 、DA 三线共点.例4.求证:两两相交且不通过同一点的四条直线必在同一平面内.证明:(1) 若a 、b 、c 三线共点P ,但点p ∉d ,由d 和其外一点可确定一个平面α又a∩d =A ∴点A ∈α ∴直线a ⊂α同理可证:b 、c ⊂α ∴a 、b 、c 、d 共面(2)若a 、b 、c 、d 两两相交但不过同一点∵a ∩b =Q ∴a 与b 可确定一个平面β又c ∩b =E ∴E ∈β同理c ∩a =F ∴F ∈β∴直线c 上有两点E、F在β上 ∴c ⊂β同理可证:d ⊂β 故a 、b 、c 、d 共面由(1) (2)知:两两相交而不过同一点的四条直线必共面变式训练4:分别和两条异面直线AB 、CD 同时相交的两条直线AC 、BD 一定是异面直线,为什么?解:假设AC 、BD 不异面,则它们都在某个平面α内,则A 、B 、C 、D ∈α.由公理1知AC α⊂≠,BD α⊂≠.这与已知AB 与CD 异面矛盾,所以假设不成立,即AC 、BD 一定是异面直线。
高三一轮立体几何复习课教案
![高三一轮立体几何复习课教案](https://img.taocdn.com/s3/m/8716f20beffdc8d376eeaeaad1f34693daef1020.png)
高三一轮立体几何复习课教案教案标题:高三一轮立体几何复习课教案教案目标:1. 复习高三一轮学习的立体几何基础知识;2. 强化学生对常见立体几何概念的理解和应用;3. 提高学生的解题能力和问题解决能力。
教学重点:1. 复习并掌握常见立体几何概念,如平行四边形、柱体、锥体等;2. 强化立体几何的思维方式和问题解决方法;3. 训练学生解决高难度立体几何题目的能力。
教学准备:1. 教学课件或者白板、黑板等;2. 学生练习册或习题集;3. 成绩单和学生笔记。
教学过程:一、引入(5分钟)1. 利用教学课件或黑板,引入本节课的主题,并激发学生对立体几何的兴趣和热情;2. 老师可以提出一个与立体几何相关的问题或者引用一个实际问题来引导学生思考;二、复习基础知识(15分钟)1. 复习并强化学生对立体几何基础概念的理解,例如平行四边形的性质、柱体的表面积和体积公式等;2. 提供简单的练习题,让学生回顾并解答,鼓励他们回忆相关的知识点;三、强化概念应用(25分钟)1. 回顾并讲解一些与立体几何相关的典型问题,例如求解线段比例、求解表面积和体积等;2. 给学生一些有挑战性的练习题,鼓励他们应用所学概念解决实际问题;3. 指导学生分析问题、确定解题方法,并辅导他们解题的思路和步骤;四、解题方法分享(15分钟)1. 学生进行小组活动,交流并分享解答问题的方法和思路;2. 老师对学生的分享进行点评和总结,同时指导他们在解题过程中的注意事项;3. 提供一些高难度问题,鼓励学生结合所学知识和解题方法进行探索和解答;五、课堂练习与梳理(15分钟)1. 发放练习册或习题集,让学生进行课堂练习;2. 在学生进行练习的同时,教师可以对学生的解题过程进行辅导和指导;3. 收集学生的成绩单,并提醒学生及时梳理和复习今日所学的知识点。
六、课堂总结与反思(5分钟)1. 对本节课的重点、难点进行总结,并强调学生的进步和知识提高;2. 鼓励学生提出问题、反思自己在学习过程中的困惑和不足之处;3. 鼓励学生积极参与课后的巩固练习,并准备下节课的复习内容。
高考数学立体几何备考复习教案
![高考数学立体几何备考复习教案](https://img.taocdn.com/s3/m/4da9ef45c381e53a580216fc700abb68a882ad00.png)
高考数学立体几何备考复习教案一、教学目标1. 知识与技能:使学生掌握立体几何的基本概念、性质和定理,提高空间想象能力。
2. 过程与方法:通过复习,使学生掌握立体几何的解题方法,提高解题能力。
3. 情感态度与价值观:激发学生学习立体几何的兴趣,培养学生的创新意识。
二、教学内容1. 立体几何的基本概念:点、线、面的位置关系,空间向量。
2. 立体几何的性质:平行公理,空间向量的运算律。
3. 立体几何的定理:平行线、异面直线、线面平行、面面平行、线面垂直、面面垂直的判定与性质。
4. 立体几何的计算:体积、表面积、角、距离的计算。
5. 立体几何的综合应用:空间几何体的结构特征,几何体的运动变化。
三、教学重点与难点1. 教学重点:立体几何的基本概念、性质和定理,立体几何的计算方法。
2. 教学难点:立体几何的综合应用,空间想象能力的培养。
四、教学方法1. 采用讲解、示范、练习、讨论、探索相结合的方法,引导学生掌握立体几何的基本概念、性质和定理。
2. 通过案例分析、几何画板演示等手段,培养学生的空间想象能力。
3. 组织学生进行合作学习,提高学生的解题能力。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习与作业:检查学生完成的练习和作业,评估学生的掌握程度。
3. 考试成绩:定期进行立体几何的测试,分析学生的成绩,了解学生的学习效果。
教案第一课时:立体几何的基本概念1. 教师讲解立体几何的基本概念,如点、线、面的位置关系,空间向量。
2. 学生通过案例分析,理解并掌握基本概念。
第二课时:立体几何的性质1. 教师讲解立体几何的性质,如平行公理,空间向量的运算律。
2. 学生通过几何画板演示,直观地理解立体几何的性质。
第三课时:立体几何的定理1. 教师讲解立体几何的定理,如平行线、异面直线、线面平行、面面平行、线面垂直、面面垂直的判定与性质。
2. 学生通过案例分析,掌握立体几何的定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省徐州市贾汪区建平中学高三数学一轮复习教案:立体几
何
第节
教学目标平面基本性质及公理
直线与直线、直线与平面、平面与平面的位置关系
教学重难点
平面基本性质及公理的运用
直线与直线、直线与平面、平面与平面的位置关系的判断,异面直线所成的角
教学参考教材,教参,学案,优化探究
授课方法自学引导,讲练结合教学辅助手段多媒体
专用教室
教学过程设计教学二次备课
一、主干知识梳理
1.平面的基本性质:
公理1:文字语言描述为______________________,符号语言表示为___________________;
公理2:文字语言描述为____________________,符号语言表示为___________________;
公理3:
推论1 推论2 推论3 2.空间两条直线的位置关系有________、_________、_________.
3.公理4:_______________________________;等角定理:_____________________.4.异面直线判定定理:
5.异面直线所成的角的定义: ,范围是
二、基础自测自评
1.棱柱的侧面是________形,棱锥的侧面是_________形,棱台的侧面是____________形.
2.圆柱、圆锥、圆台的轴截面形状分别是______、_______、________.
3.用符号表示“点A在直线l上,l在平面 外”为_____________________.
学生课前预习
师生共同回顾
主干知识
通过小题巩固公式的记忆及使用
4.与长方体的某一条棱平行的棱有______条,与它相交的棱有_______条,与它异面的棱有_______条.
5.与正方体的某条面对角线异面的棱有_______条.
6.三条直线两两相交,它们可以确定的平面有________个.
教学过程设计
教 学 二次备课 三、典例分析
【例1】
例1填空题:
(1)空间三条直线c b a 、、,若c b b a ////,,则由直线c b a 、、确定________个平面.
(2)把下列图形中的点、线、面关系用集合符号表示出来.
【例2】 如图,在长方体1111D C B A ABCD -中,P 为棱1BB 的中
(1)画出由P C A ,,11三点所确定的平面α与长方体表面的交线;
(2)画出平面α与平面ABCD 的交线.
四、课堂小结:平面基本性质及公理
直线与直线、直线与平面、平面与平面的位置关系
练习:
下列说法正确的有________________.(填上正确的序号)
①过直线外一点可作无数条直线与已知直线成异面直线;
②过直线外一点只有一条直线与已知直线垂直;
③若a c b a ⊥,//,则b c ⊥;
④若c b c a ⊥⊥,,则b a //.
课外作业
优化探究变式训练1 教 学 小 结。