圆锥曲线最值问题及练习

合集下载

专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题试题及答案

专题23  圆锥曲线中的最值、范围问题  微点1  圆锥曲线中的最值问题试题及答案
题型四、与面积有关的最值问题
例7.
7.已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为− .记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明: 是直角三角形;
最值问题不仅解答题中分量较大,而且客观题中也时常出现.
一、常用方法
解决圆锥曲线中的最值问题,常见的方法有:
(1)函数法:一般需要找出所求几量的函数解析式,要注意自变量的取值范围.求函数的最值时,一般会用到配方法、均值不等式或者函数单调性.
(2)方程法:根据题目中的等量关系建立方程,根据方程的解的条件得出目标量的不等关系,再求出目标量的最值.
题型三、与向量有关的最值问题
例6.
6.如图,已知椭圆C1: + =1(a>b>0)的右焦点为F,上顶点为A,P为椭圆C1上任一点,MN是圆C2:x2+(y-3)2=1的一条直径,在y轴上截距为3- 的直线l与AF平行且与圆C2相切.
(1)求椭圆C1的离心率;
(2)若椭圆C1的短轴长为8,求 · 的最大值.
题型二、与角度有关的最值问题
例5.
5.在平面直角坐标系 中,椭圆 : 的离心率为 ,焦距为 .
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 : 交椭圆 于 两点, 是椭圆 上一点,直线 的斜率为 ,且 , 是线段 延长线上一点,且 , 的半径为 , 是 的两条切线,切点分别为 .求 的最大值,并求取得最大值时直线 的斜率.
专题23 圆锥曲线中的最值、范围问题 微点1 圆锥曲线中的最值问题
专题23圆锥曲线中的最值、范围问题

高中数学圆锥曲线与最值及取值范围问题(附经典例题与解析)

高中数学圆锥曲线与最值及取值范围问题(附经典例题与解析)

圆锥曲线与最值问题【知识点分析】方法一、圆锥曲线的的定义转化法借助圆锥曲线定义将最值问题等价转化为易求、易解、易推理证明的问题来处理.(1)椭圆:到两定点的距离之和为常数(大于两定点的距离)(2)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (3)抛物线:到定点与定直线距离相等。

【相似题练习】1.已知抛物线y 2=8x ,点Q 是圆C :x 2+y 2+2x ﹣8y +13=0上任意一点,记抛物线上任意一点到直线x =﹣2的距离为d ,则|PQ |+d 的最小值为( ) A .5 B .4 C .3 D .2 1.已知双曲线C :的右焦点为F ,P 是双曲线C 的左支上一点,M (0,2),则△PFM 周长最小值为 .【知识点分析】 方法二、函数法二次函数2y ax bx c =++顶点坐标为24b ac b ⎛⎫-- ⎪,1.已知F 1,F 2为椭圆C :+=1的左、右焦点,点E 是椭圆C 上的动点,1•2的最大值、最小值分别为( ) A .9,7 B .8,7 C .9,8 D .17,8【知识点分析】方法三、利用最短路径【问题1】“将军饮马”作法图形原理在直线l 上求一点P ,使P A +PB 值最小.作B 关于l 的对称点B '连A B ',与l 交点即为P .两点之间线段最短. P A +PB 最小值为A B '.【问题2】 作法图形原理在直线1l 、2l 上分别求点M 、N ,使△PMN 的周长最小.分别作点P 关于两直线的对称点P '和P '',连P 'P '',与两直线交点即为M ,N .两点之间线段最短. PM +MN +PN 的最小值为 线段P 'P ''的长.【问题3】 作法图形原理在直线1l 、2l 上分别求点M 、N ,使四边形PQMN 的周长最小.分别作点Q 、P 关于直线1l 、2l 的对称点Q '和P '连Q 'P ',与两直线交点即为M ,N .两点之间线段最短. 四边形PQMN 周长的最小值为线段P 'P ''的长.【问题4】 作法图形原理作点P 关于1l 的对称点P ',作P 'B ⊥2l 于B ,交l 于A .点到直线,垂线段最短. P A +AB 的最小值为线段P 'B 的长.l B A lPB'AB l 1l 2Pl 1l 2NMP''P'P l 1l 2N MP'Q'Q P l 1l 2P Q l 1A P'Pl 1l 2P小.【问题5】 作法图形原理A 为1l 上一定点,B 为2l 上一定点,在2l 上求点M ,在1l 上求点N ,使AM +MN +NB 的值最小.作点A 关于2l 的对称点A ',作点B 关于1l 的对称点B ',连A 'B '交2l 于M ,交1l 于N .两点之间线段最短. AM +MN +NB 的最小值为线段A 'B '的长.【相似题练习】1.已知双曲线x 2﹣y 2=1的右焦点为F ,右顶点A ,P 为渐近线上一点,则|PA |+|PF |的最小值为( )A .B .C .2D .【知识点分析】方法四、利用圆的性质【相似题练习】1.已知椭圆,圆A :x 2+y 2﹣3x ﹣y +2=0,P ,Q 分別为椭圆C 和圆A 上的点,F (﹣2,0),则|PQ |+|PF |的最小值为( ) A . B . C . D .l 2l 1ABNMl 2l 1M N A'B'AB【知识点分析】 方法五、切线法【相似题练习】1.如图,设椭圆C :+=1(a >b >0)的左右焦点为F 1,F 2,上顶点为A ,点B ,F 2关于F 1对称,且AB⊥AF 2(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知P 是过A ,B ,F 2三点的圆上的点,若△AF 1F 2的面积为,求点P 到直线l :x ﹣y ﹣3=0距离的最大值.【知识点分析】 方法六、参数法1.圆222)()(r b y a x =-+-的参数方程可表示为)(.sin ,cos 为参数θθθ⎩⎨⎧+=+=r b y r a x .2. 椭圆12222=+b y a x )0(>>b a 的参数方程可表示为)(.sin ,cos 为参数ϕϕϕ⎩⎨⎧==b y a x .3. 抛物线px y 22=的参数方程可表示为)(.2,22为参数t pt y px x ⎩⎨⎧==.【相似题练习】已知点A (2,1),点B 为椭圆+y 2=1上的动点,求线段AB 的中点M 到直线l 的距离的最大值.并求此时点B 的坐标.【知识点分析】方法七、基本不等式1、均值不等式定理: 若0a >,0b >,则2a b ab +≥,2、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.【相似题练习】1.抛物线y 2=4x 的焦点为F ,点A 、B 在抛物线上,且∠AFB =,弦AB 的中点M 在准线l 上的射影为M ′,则的最大值为 .方法七、利用三角形的三边关系两边之和大于第三边,两边之差小于第三边。

圆锥曲线求最值方法总结及典型例题

圆锥曲线求最值方法总结及典型例题

圆锥曲线最值问题—5大方面最值问题是圆锥曲线中的典型问题,它是教学的重点也是历年高考的热点。

解决这类问题不仅要紧紧把握圆锥曲线的定义,而且要善于综合应用代数、平几、三角等相关知识。

以下从五个方面予以阐述。

一.求距离的最值例1.设AB 为抛物线y=x 2的一条弦,若AB=4,则AB 的中点M 到直线y+1=0的最短距离为 , 解析:抛物线y=x 2的焦点为F (0 ,41),准线为y=41-,过A 、B 、M 准线y=41-的垂线,垂足分别是A 1、B 1、M 1, 则所求的距离d=MM 1+43=21(AA 1+BB 1) +43=21(AF+BF) +43≥21AB+43=21×4+43=411, 当且仅当弦AB 过焦点F 时,d 取最小值411, 评注:灵活运用抛物线的定义和性质,结合平面几何的相关知识,使解题简洁明快,得心应手。

二.求角的最值例2.M ,N 分别是椭圆12422=+y x 的左、右焦点,l 是椭圆的一条准线,点P 在l 上,则∠MPN 的最大值是 .解析:不妨设l 为椭圆的右准线,其方程是22=x ,点)0)(,22(00>y y P ,直线PM 和PN 倾斜角分别为βα和.∵)0,2(),0,2(N M -∴,232220tan 00y y k PM =+-==α22220tan 00y y k PN =--==β于是)tan(tan αβ-=∠MPN 2321232tan tan 1tan tan 0000y y y y ⋅+-=+-=αβαβ 33622262262200200=≤+=+=y y y y ∵)2,0[π∈∠MPN ∴6π≤∠MPN 即∠MPN 的最大值为6π. 评注:审题时要注意把握∠MPN 与PM 和PN 的倾斜角之间的内在联系.三、求几何特征量代数和的最值例3.点M 和F 分别是椭圆192522=+y x 上的动点和右焦点,定点B(2,2).⑴求|MF|+|MB|的最小值. ⑵求45|MF|+|MB|的最小值. 解析:易知椭圆右焦点为F(4,0),左焦点F ′(-4,0),离心率e=54,准线方程x=±425. ⑴|MF| + |MB| = 10―|MF ′ | + |MB| =10―(|MF ′|―|MB|)≥10―|F ′B|=10―210.故当M ,B ,F ′三点共线时,|MF|+|MB|取最小值10―210.⑵过动点M 作右准线x=425的垂线,垂足为H , 则54||||==e MH MF ⇒||54|H |MF M =. 于是45|MF|+|MB|=|MH|+|MB|≥|HB|=417. 可见,当且仅当点B 、M 、H 共线时,45|MF|+|MB|取最小值417. 评注:从椭圆的定义出发,将问题转化为平几中的问题,利用三角形三边所满足的基本关系,是解决此类问题的常见思路。

圆锥曲线的最值问题

圆锥曲线的最值问题

圆锥曲线的最值问题例1、给定点A (-2,2),已知B 是椭圆2212516x y +=上的动点,F 是右焦点,当53AB BF +取得最小值时,试求B 点的坐标。

解析:因为椭圆的35e =,所以513AB BF AB BF e +=+,而1BF e 为动点B 到左准线的距离。

故本题可化为,在椭圆上求一点B ,使得它到A 点和左准线的距离之和最小,过点B 作l 的垂线,垂点为N ,过A 作此准线的垂线,垂点为M ,由椭圆定义||35||||||||BF e BF BN e BN BF ==⇒= 于是 5||||||3AB BF AB BN AN AM +=+≥≥为定值 其中,当且仅当B 点AM 与椭圆的定点时等点成立,此时B为(2) 所以,当53AB BF +取得最小值时,B点坐标为(2)例2、已知椭圆的焦点1(3,0)F -、2(3,0)F ,且与直线90x y -+=有公共点,求其中长轴最短的椭圆方程.解:(法一)设椭圆方程为222219x y a a +=-(29a >),由22221990x y a a x y ⎧+=⎪-⎨⎪-+=⎩得22224(29)18900a x a x a a -++-=, 由题意,a 有解,∴22224(18)4(29)(90)0a a a a ∆=---≥, ∴42544050a a -+≥,∴245a ≥或29a ≤(舍),∴2min 45a =,此时椭圆方程是2214536x y +=. (法二)先求点1(3,0)F -关于直线90x y -+=的对称点(9,6)F -,直线2FF 与椭圆的交点为M,则12222||||||||||a MF MF MF MF FF =+=+≥=,∴mina =2214536x y +=. 例3、已知动点A 、B 分别在x 轴、y 轴上,且满足|AB|=2,点P 在线段AB 上,且).(是不为零的常数t t =设点P 的轨迹方程为C(1)求点P 的轨迹方程C ;(2)若t=2,点M 、N 是C 上关于原点对称的两个动点(M 、N 不在坐标轴上),点Q坐标为),3,23(求△QMN 的面积S 的最大值。

(完整版)圆锥曲线常见题型及答案

(完整版)圆锥曲线常见题型及答案

圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。

此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。

此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。

高中数学圆锥曲线与最值及取值范围问题(附经典例题与解析)

高中数学圆锥曲线与最值及取值范围问题(附经典例题与解析)

圆锥曲线与最值问题【知识点分析】方法一、圆锥曲线的的定义转化法借助圆锥曲线定义将最值问题等价转化为易求、易解、易推理证明的问题来处理.(1)椭圆:到两定点的距离之和为常数(大于两定点的距离)(2)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (3)抛物线:到定点与定直线距离相等。

【相似题练习】1.已知抛物线y 2=8x ,点Q 是圆C :x 2+y 2+2x ﹣8y +13=0上任意一点,记抛物线上任意一点到直线x =﹣2的距离为d ,则|PQ |+d 的最小值为( ) A .5 B .4 C .3 D .2 1.已知双曲线C :的右焦点为F ,P 是双曲线C 的左支上一点,M (0,2),则△PFM 周长最小值为 .【知识点分析】 方法二、函数法二次函数2y ax bx c =++顶点坐标为24b ac b ⎛⎫-- ⎪,1.已知F 1,F 2为椭圆C :+=1的左、右焦点,点E 是椭圆C 上的动点,1•2的最大值、最小值分别为( ) A .9,7 B .8,7 C .9,8 D .17,8【知识点分析】方法三、利用最短路径【问题1】“将军饮马”作法图形原理在直线l 上求一点P ,使P A +PB 值最小.作B 关于l 的对称点B '连A B ',与l 交点即为P .两点之间线段最短. P A +PB 最小值为A B '.【问题2】 作法图形原理在直线1l 、2l 上分别求点M 、N ,使△PMN 的周长最小.分别作点P 关于两直线的对称点P '和P '',连P 'P '',与两直线交点即为M ,N .两点之间线段最短. PM +MN +PN 的最小值为 线段P 'P ''的长.【问题3】 作法图形原理在直线1l 、2l 上分别求点M 、N ,使四边形PQMN 的周长最小.分别作点Q 、P 关于直线1l 、2l 的对称点Q '和P '连Q 'P ',与两直线交点即为M ,N .两点之间线段最短. 四边形PQMN 周长的最小值为线段P 'P ''的长.【问题4】 作法图形原理作点P 关于1l 的对称点P ',作P 'B ⊥2l 于B ,交l 于A .点到直线,垂线段最短. P A +AB 的最小值为线段P 'B 的长.l B A lPB'AB l 1l 2Pl 1l 2NMP''P'P l 1l 2N MP'Q'Q P l 1l 2P Q l 1A P'Pl 1l 2P小.【问题5】 作法图形原理A 为1l 上一定点,B 为2l 上一定点,在2l 上求点M ,在1l 上求点N ,使AM +MN +NB 的值最小.作点A 关于2l 的对称点A ',作点B 关于1l 的对称点B ',连A 'B '交2l 于M ,交1l 于N .两点之间线段最短. AM +MN +NB 的最小值为线段A 'B '的长.【相似题练习】1.已知双曲线x 2﹣y 2=1的右焦点为F ,右顶点A ,P 为渐近线上一点,则|PA |+|PF |的最小值为( )A .B .C .2D .【知识点分析】方法四、利用圆的性质【相似题练习】1.已知椭圆,圆A :x 2+y 2﹣3x ﹣y +2=0,P ,Q 分別为椭圆C 和圆A 上的点,F (﹣2,0),则|PQ |+|PF |的最小值为( ) A . B . C . D .l 2l 1ABNMl 2l 1M N A'B'AB【知识点分析】 方法五、切线法【相似题练习】1.如图,设椭圆C :+=1(a >b >0)的左右焦点为F 1,F 2,上顶点为A ,点B ,F 2关于F 1对称,且AB⊥AF 2(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知P 是过A ,B ,F 2三点的圆上的点,若△AF 1F 2的面积为,求点P 到直线l :x ﹣y ﹣3=0距离的最大值.【知识点分析】 方法六、参数法1.圆222)()(r b y a x =-+-的参数方程可表示为)(.sin ,cos 为参数θθθ⎩⎨⎧+=+=r b y r a x .2. 椭圆12222=+b y a x )0(>>b a 的参数方程可表示为)(.sin ,cos 为参数ϕϕϕ⎩⎨⎧==b y a x .3. 抛物线px y 22=的参数方程可表示为)(.2,22为参数t pt y px x ⎩⎨⎧==.【相似题练习】已知点A (2,1),点B 为椭圆+y 2=1上的动点,求线段AB 的中点M 到直线l 的距离的最大值.并求此时点B 的坐标.【知识点分析】方法七、基本不等式1、均值不等式定理: 若0a >,0b >,则2a b ab +≥,2、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.【相似题练习】1.抛物线y 2=4x 的焦点为F ,点A 、B 在抛物线上,且∠AFB =,弦AB 的中点M 在准线l 上的射影为M ′,则的最大值为 .方法七、利用三角形的三边关系两边之和大于第三边,两边之差小于第三边。

专题3-3 圆锥曲线最值问题-(人教A版2019选择性必修第一册) (教师版)

专题3-3 圆锥曲线最值问题-(人教A版2019选择性必修第一册) (教师版)

圆锥曲线最值问题1 常见的几何模型①圆外点到圆上点的距离圆⊙O外一点A与圆上一点B的距离AB最小值是AB1=AO−r,最大值AB2=AO+r(r是圆的半径).②圆上点到圆外直线的距离圆上一动点P到圆外一定直线l的距离最小值是d−r,最大值d+r(r是圆的半径,d是圆心到直线l的距离);③三点共线模型一动点P到两定点A、B的距离分别为PA、PB,当P、A、B共线,且点P在A、B之间时,PA+PB取到最小值P1A+P1B=AB;当P、A、B共线,且点P在A、B同侧时,|PA−PB|取到最大值|P1A−P1B|=AB;其本质是三角形两边之和大于第三边,两边之差小于第三边;④将军饮马模型点A、B在直线l同侧,点P在直线l上,那(AP+BP)min=AP1+BP1;⑤垂线段最值模型点A是∠MON内外的一点,点P在OM上,PA与点P到射线ON的距离之和为PA+PB.(1) 点A是∠MON外,(PA+PB)min=AB1(2) 点A是∠MON内,(PA+PB)min=A′B1⑥胡不归模型如图,求k∙AC+BC(0<k<1),构造射线AE,使得角度sinα=k,则k∙AC+BC=CD+BC,问题转化为“垂线段模型”,则(k∙AC+BC)min=BF.⑦阿氏圆模型如图,圆O半径是r,点A,B在圆O外,点P是圆O上一动点,已知r=k∙OB,求k∙BP+AP的最小值.在线段OB上截取OC=k∙r,则COOP =OPOB=k⇒∆BPO∽∆PCO,即k∙PB=PC,则k∙BP+AP的最小值转化为PC+PA的最小值,当然是AC,即(k∙BP+AP)min=AC.2最值问题常见处理方法①几何法通过观察掌握几何量的变化规律,利用几何知识点找到几何量取到最值的位置,从而求出最值,这需要熟悉常见的几何模型.②代数法理解几何量之间的变化规律,找到“变化源头”,通过引入恰当的参数(一般与源头有关),把所求几何量表示成参数的式子,再利用求函数最值的方法(基本不等式、换元法、数形结合等)求得几何量的最值.【方法一】几何法【典题1】已知椭圆C:x225+y216=1内有一点M(2 ,3),F1 ,F2为椭圆的左、右焦点,P为椭圆C上的一点,求:(1)|PM|-|PF1|的最大值与最小值;(2)|PM|+|PF1|的最大值与最小值.【解析】(1)由椭圆C:x 225+y216=1可知a=5 ,b=4 ,c=3,则F1(-3 ,0) ,F2(3 ,0),则||PM|-|PF1||≤|MF1|=√34,当且仅当P、M、F1三点共线时成立,所以−√34≤|PM|-|PF1|≤√34,所以|PM|-|PF1|的最大值与最小值分别为√34和−√34;(2)2a=10 ,F2(3 ,0) ,|MF2|=√10,设P是椭圆上任一点,由|PF1|+|PF2|=2a=10 ,|PM|≥|PF2|-|MF2|,∴|PM|+|PF1|≥|PF2|-|MF2|+|PF1|≥2a-|MF2|=10−√10,等号仅当|PM|=|PF2|-|MF2|时成立,此时P、M、F2共线,由|PM|≤|PF2|+|MF2|,∴|PM|+|PF1|≤|PF2|+|MF2|+|PF1|=2a+|MF2|=10+√10,等号仅当|PM|=|PF2|+|MF2|时成立,此时P、M、F2共线,故|PM|+|PF1|的最大值10+√10与最小值为10−√10.【点拨】本题采取几何法,通过三点共线模型与椭圆的定义进行求解.【典题2】设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,记点P到点A(-1 ,1)的距离与点P到直线x=-1的距离之和的最小值为M,若B(3 ,2),记|PB|+|PF|的最小值为N,则M+N=.【解析】如图所示,过点P作PG垂直于直线x=-1,垂足为点G,由抛物线的定义可得|PG|=|PF|,所以点P到直线x=-1的距离为|PG|,所以|PA|+|PG|=|PA|+|PF|≥|AF|=√5,(三点共线模型)当且仅当A、P、F三点共线时,|PA|+|PG|取到最小值,即M=√5.如图所示,过点P作直线PH垂直于直线x=-1,垂足为点H,由抛物线的定义可得|PH|=|PF| ,点B到直线x=-1的距离为d=4,所以|PB|+|PF|=|PB|+|PH|≥4,当且仅当B、P、H三点共线时,等号成立,即N=4,(垂线段最值模型)因此M+N=√5+4.【点拨】①本题采取几何法,通过几何模型与抛物线的定义进行求解;②处理抛物线类似的题目,注意点在抛物线之内还是之外,比如本题点A在抛物线外,点B在抛物线内.=1,如图,点A的坐标为(−√5 ,0),B是圆x2+(y−√5)2=1上的点,【典题3】已知双曲线方程为x2−y24点M在双曲线的右支上,求|MA|+|MB|的最小值.【解析】设点D的坐标为(√5,0),则点A ,D是双曲线的焦点,由双曲线的定义,得|MA|-|MD|=2a=2.∴|MA|+|MB|=2+|MB|+|MD|≥2+|BD|,(此时相当于把点B看成“定点”看待,当M,B,D三点共线时|MB|+|MD|取到最小值,这是处理两动点的常规方法)又B 是圆x 2+(y −√5)2=1上的点,圆心为C(0,√5), 半径为1,故|BD|≥|CD|-1=√10−1, 从而|MA|+|MB|≥2+|BD|≥√10+1,当点M ,B 在线段CD 上时取等号,即|MA|+|MB|的最小值为√10+1.【点拨】本题眨眼一看,存在两动点M 、B ,有些头疼.题中通过双曲线的定义把|MA|+|MB|的最小值转化为|BD|最小值问题,这就是圆外一点到圆上最短距离问题,即|BD|≥|CD|-1=√10−1.注意两动点最值问题处理的方式.【典题4】 椭圆x 24+y 23=1上的点到直线l :2x +√3y -9=0的距离的最大值为 .【解析】 设与直线2x +√3y -9=0平行的直线2x +√3y +m =0与椭圆x 24+y 23=1相切,由{2x +√3y +m =0x 24+y 23=1得25x 2+16mx +4m 2−36=0, 由∆=0得m =±5,设直线2x +√3y +m =0与直线2x +√3y -9=0的距离为d , 当m =5时,d =4√77; 当m =−5时,d =2√7.椭圆x 24+y 23=1上的点到直线2x +√3y -9=0的距离的最大值为2√7.【点拨】通过观察,可知与直线l 平行且与椭圆相切的直线与椭圆的切点即是取到最小距离的点,最小距离为两平行线的距离.【方法二】代数法【典题1】 求点A(a ,0)到椭圆x 22+y 2=1上的点之间的最短距离. 【解析】设椭圆x 22+y 2=1上的点P(x ,y),其中−√2≤x ≤√2,则PA 2=(x −a )2+y 2=(x −a)2+1−x 22=x 22−2ax +a 2+1 (曲线消元)设f (x )=x 22−2ax +a 2+1, −√2≤x ≤√2,其对称轴为x =2a ,(构造函数,问题转化为二次函数定区间动轴最值问题) ① 当2a <−√2,即a <−√22时,y =f(x)在[−√2 ,√2]上递增,则f (x )min =f(−√2)=a 2+2√2a +2=(a +√2)2,即PA 的最小值为|a +√2|; ②当−√2≤2a ≤ √2,即−√22≤a ≤√22时,y =f(x)在[−√2 ,√2]上先递减再递增,则f (x )min =f (2a )=2a 2−4a 2+a 2+1=1−a 2,即PA 的最小值为√1−a 2; ③当2a > −√2,即a >−√22时,y =f(x)在[−√2 ,√2]上递减,则f (x )min =f(√2)=a 2−2√2a +2=(a −√2)2,即PA 的最小值为|a −√2|; 综上,当a <−√22时,|PA|最小为|a +√2|;−√22≤a ≤√22时,|PA|最小为√1−a 2;a >−√22时,|PA|最小为|a −√2|.【点拨】① 两点A 、B 距离AB 往往用两点距离公式√(x A −x B )2+(y A −y B )2表示;② 本题把求距离最值问题转化为函数的最值问题,函数问题优先讨论定义域x ∈[−√2 ,√2],函数含有参数a ,则按照“二次函数动轴定区间最值问题”的解题套路根据对称轴x =2a 与区间[−√2 ,√2]的相对位置进行分类讨论;③ 本题还是利用椭圆的参数方程{x =acosθy =bsinθ,设椭圆上点P(√2cosθ ,sinθ),从而构造函数|PA|=√cos 2θ−2√2acosθ+a 2+1进行分析,相当引入变量θ表示PA ,而解析中是引入变量x .【典题2】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,左顶点为A ,离心率为√22,点B 是椭圆上的动点,△ABF 1的面积的最大值为√2−12. (1)求椭圆C 的方程;(2)设经过点F 1的直线l 与椭圆C 相交于不同的两点M ,N ,线段MN 的中垂线为l′.若直线l′与直线l 相交于点P ,与直线x =2相交于点Q ,求|PQ||MN|的最小值.【解析】(1)过程略,椭圆C 的方程为x 22+y 2=1. (2)(采取代数法,思路很直接,引入变量表示|PQ||MN|再求其最值,而|PQ |,|MN|是线段,用两点距离公式和弦长公式求出,由于它们是由直线l 引起,故该变量与直线方程有关) 由题意知直线l 的斜率不为0,故设直线l 的方程为x =my -1, 设M(x 1 ,y 1) ,N(x 2 ,y 2) ,P(x P ,y P ) ,Q(2 ,y Q ). 联立{x 2+2y 2=2x =my −1,得(m 2+2)y 2-2my -1=0.此时△=8(m 2+1)>0.∴y 1+y 2=2mm 2+2,y 1y 2=−1m 2+2.由弦长公式,得|MN |=√1+m 2|y 1−y 2|=√1+m 2√4m 2+4m 2+8m 2+2=2√2⋅m 2+1m 2+2,(用m 表示|MN |,弦长公式求得) 又y P =y 1+y 22=m m 2+2,∴x P =my P -1=−2m 2+2.∴P(−2m 2+2,mm 2+2),∵直线l 与直线l′相互垂直,∴k PQ ∙k l =−1 ∴y Q −m m 2+22+2m 2+2⋅1m=−1⇒y Q =−2m −mm 2+2, 即Q(2 ,−2m −mm 2+2),∴|PQ|=√1+m 2⋅2m 2+6m 2+2,∴|PQ||MN|=22√2√m 2+1=√22⋅2√m 2+1=√22(√m 2+1√m 2+1)≥2,当且仅当√m 2+1=√m 2+1m =±1时等号成立.∴当m =±1,即直线l 的斜率为±1时,|PQ||MN|取得最小值2. 【点拨】 ① 本题中求|PQ||MN|的最小值,用代数法,则可把|PQ|、|MN|表示出来,|MN|用到了弦长公式,而|PQ|用两点距离公式,最后|PQ||MN|=√222√m 2+1,则问题就转化为求函数f (m )=√22⋅2√m 2+1的最小值,利用了基本不等式求解;② 求|PQ|时,也可以|PQ |=√1+m 2|x P −2|=√1+m 2⋅2m 2+6m 2+2.【典题3】P是抛物线x2=2y上的动点,过P(x0 ,y0)作圆C:x2+(y-1)2=1的两条切线l1,l2交x轴于A,B 两点,(1)若两条切线l1,l2的斜率乘积为1,求P点的纵坐标;(2)求当4<y0<8时,△PAB面积的取值范围.【解析】(1)设点直线PA ,PB的斜率分别为k1 ,k2,记P(x0 ,y0)∴PA的方程:y-y0=k1(x-x0),则由直线l1与圆相切得:010√1+k1=1⇒(x02−1)k12+2x0(1−y0)k1+y02−2y0=0同理直线l2与圆相切可得(x02−1)k22+2x0(1−y0)k2+y02−2y0=0所以k1 ,k2是(x02−1)k2+2x0(1−y0)k+y02−2y0=0的两根,∴k1k2=y02−2y0 x02−1又∵k1k2=1.∴y02−2y0=x02−1,又x02=2y0,∴y02−4y0+1=0,∴y0=2±√3.(2)由(1)得x A=x0−y0k1,x B=x0−y0k2,∴S△PAB=12|AB||y P|=12y02|1k1−1k2|=12y02|k2−k1k1k2|由(1)知:|k1k2|=|y02−2y0x02−1| ,|k1−k2|=|2√y02−2y0+x02x02−1|=|2√y02x02−1|=|2y0x02−1|;∴S△PAB=12y02|k2−k1k1k2|=12y02|2y0y02−2y0|=y02|y0−2|=y02y0−2,故令t=y0-2∈(2 ,6),∴S△PAB=y02y0−2=(t+2)2t=t+4t+4∵f(t)=t+4t+4在(2 ,6)上递增,故函数值域为(8 ,323),即△PAB 面积的取值范围为(8 ,323).【点拨】① 若x 1、x 2满足ax 12+bx 2+c =0 ,ax 22+bx 2+c =0(a ≠0),则x 1、x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根;② 本题求△PAB 面积的取值范围,则先求出S △PAB =y 02y 0−2(本题给出了y 0的范围,用y 0作为变量表示面积很自然),则问题就变成求函数f (y 0)=y 02y 0−2, y 0∈(4 ,8)的值域问题,用到了换元法与对勾函数f (t )=t +4t的性质.【典题4】 如图,已知抛物线C :y 2=2px(p >0),G 为圆H :(x +2)2+y 2=1上一动点,由G 向C 引切线,切点分别为E ,F ,当G 点坐标为(-1 ,0)时,△GEF 的面积为4. (1)求C 的方程;(2)当点G 在圆H :(x +2)2+y 2=1上运动时,记k 1,k 2,分别为切线GE ,GF 的斜率,求|1k 1−1k 2|的取值范围.【解析】(1)设切线方程为:y =k(x +1),不妨设k >0. 联立{y =k(x +1)y 2=2px ,化为k 2x 2+(2k 2-2p)x +k 2=0,则△=(2k 2-2p)2-4k 4=0,化为p =2k 2.方程k 2x 2+(2k 2-2p)x +k 2=0化为(x -1)2=0,解得x =1. ∴E(1 ,2k),由对称性可知F(1,−2k),∵△GEF 的面积为4,∴12×2×4k =4,解得k =1. ∴p =2.∴C 的方程为:y 2=4x .(2)设G(x 0 ,y 0) ,(-3≤x 0≤-1),则y 02=1−(x 0+2)2.设切线方程为:y -y 0=k(x -x 0),联立{y −y 0=k(x −x 0)y 2=4x ,化为ky 2-4y +4(y 0-kx 0)=0,△1=16-16k(y 0-kx 0)=0.∴x 0k 2-ky 0+1=0,∴k 1+k 2=y 0x 0,k 1k 2=1x 0,∴|k 1-k 2|=√(k 1+k 2)2−4k 1k 2=√y 02x 02−4x 0=√y 02−4x 0|x 0|.∴|1k 1−1k 2|=|k 1−k 2||k 1k 2|=√y 02−4x 0=√1−(x 0+2)2−4x 0=√−(x 0+4)2+13∈[2 ,2√3].∴|1k 1−1k 2|的取值范围是[2 ,2√3].【点拨】理解到本题的变化源头在点G(x 0 ,y 0),利用直线与抛物线相切把|1k 1−1k 2|用x 0 ,y 0表示,由于y 02+(x 0+2)2=1,想到消元y 0,得到|1k 1−1k 2|=√−(x 0+4)2+13,把问题转化为求函数f (x 0)=√−(x 0+4)2+13的值域,注意到x 0的取值范围. 巩固练习1(★★) 已知抛物线y 2=4x 的焦点为F ,定点A(2 ,2),在此抛物线上求一点P ,使|PA|+|PF|最小,则P 点坐标为( ) A .(-2,2) B .(1,√2)C .(1,2)D .(1,-2)【答案】 C【解析】根据抛物线的定义,点P 到焦点F 的距离等于它到准线l 的距离, 设点P 到准线l :x =-1的距离为PQ,则所求的|PA|+|PF|最小值,即|PA|+|PQ|的最小值;根据平面几何知识,可得当P 、A 、Q 三点共线时|PA|+|PQ|最小, ∴|PA|+|PQ|的最小值为A 到准线l 的距离;此时P 的纵坐标为2,代入抛物线方程得P 的横坐标为1,得P(1,2) 故选:C .2(★★) F 是椭圆x 29+y 25=1的左焦点,P 是椭圆上的动点,A(1 ,1)为定点,则|PA|+|PF|的最小值是( ) A .9−√2B .3+√2C .6−√2D .6+√2 【答案】 C【解析】椭圆x 29+y 25=1的a =3,b =√5,c =2,如图,设椭圆的右焦点为F′(2,0),则|PF|+|PF′|=2a =6;∴|PA|+|PF|=|PA|+6-|PF′| =6+|PA|-|PF′|;由图形知,当P 在直线AF′上时,||PA |-|PF ′||=|AF ′|=√2,当P 不在直线AF′上时,根据三角形的两边之差小于第三边有,||PA|-|PF′||<|AF′|=√2;∴当P 在F′A 的延长线上时,|PA|-|PF′|取得最小值−√2,∴|PA|+|PF|的最小值为6−√2.故选:C .3(★★) 点P 是双曲线x 24−y 2=1的右支上一点,M 、N 分别是(x +√5)2+y 2=1和(x −√5)2+y 2=1上的点,则|PM|-|PN|的最大值是( )A .2B .4C .6D .8 【答案】C【解析】双曲线x 24−y 2=1中,如图:∵a =2,b =1,c =√5,∴F 1(−√5,0),F 2(√5,0),∴|MP|≤|PF 1|+|MF 1|,…①∵|PN|≥|PF 2|-|NF 2|,可得-|PN|≤-|PF 2|+|NF 2|,…②∴①②相加,得|PM|-|PN|≤|PF 1|+|MF 1|-|PF 2|+|NF 2|=(|PF 1|-|PF 2|)+|MF 1|+|NF 2|∵|PF 1|-|PF 2|=2a =2×2=4,|MF 1|=|NF 2|=1∴|PM|-|PN|≤4+1+1=6故选:C .4(★★★) 【多选题】已知抛物线x 2=2py(p >0)的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,以线段AB 为直径的圆交x 轴于M ,N 两点,设线段AB 的中点为Q .若抛物线C 上存在一点E(t ,2)到焦点F 的距离等于3.则下列说法正确的是( )A .抛物线的方程是x 2=2yB .抛物线的准线是y =-1C .sin∠QMN 的最小值是12D .线段AB 的最小值是6【答案】BC【解析】(1)抛物线C :x 2=2py(p >0)的焦点为F (0,p 2),得抛物线的准线方程为y =−p 2, 点点E(t,2)到焦点F 的距离等于3,可得2+p 2=3,解得p =2, 则抛物线C 的方程为x 2=4y ;所以A 不正确;抛物线的准线方程:y =-1,所以B 正确;(2)由题知直线l 的斜率存在,F(0,1),设A(x 1,y 1),B(x 2,y 2),直线l 的方程为y =kx +1,由{y =kx +1x 2=4y,消去y 得x 2-4kx -4=0,所以x 1+x 2=4k,x 1x 2=-4,所以y 1+y 2=k(x 1+x 2)+2=4k 2+2,所以AB 的中点Q 的坐标为(2k,2k 2+1),|AB|=y 1+y 2+p =4k 2+2+2=4k 2+4,所以圆Q 的半径为r =2k 2+2,在等腰△QMN 中,sin∠QMN =|y Q |r =2k 2+12k 2+2=1−12k 2+2≥1−12=12, 当且仅当k =0时取等号.所以sin∠QMN 的最小值为12.所以C 正确; 线段AB 的最小值是:y 1+y 2+2=4k 2+4≥4.所以D 不正确;故选:BC .5(★★) 设P ,Q 分别为圆x 2+(y −6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是 .【答案】 6√2【解析】设椭圆上的点为(x,y),则∵圆x 2+(y -6)2=2的圆心为(0,6),半径为√2, ∴椭圆上的点(x,y)到圆心(0,6)的距离为√x 2+(y −6)2=√10(1−y)2+(y −6)2=√−9(y +23)2+50≤5√2∴P,Q 两点间的最大距离是5√2+√2=6√2.6(★★★) E 、F 是椭圆x 24+y 22=1的左、右焦点,点P 在直线x =2√2上,则∠EPF 的最大值是 .【答案】π6 【解析】设P(2√2,t)(t >0),则tan∠EPF =tan(∠EPM -∠FPM)=3√2t −√2t 1+3√2×√2t 2=2√2t+6t ≤√33(当且仅当t =√6时取等号) 此时tan∠EPF =√33,∠EPF =π6. 7(★★★) 已知过抛物线C :y 2=4x 焦点的直线交抛物线C 于P,Q 两点,交圆x 2+y 2-2x =0于M ,N 两点,其中P ,M 位于第一象限,则1|PM|+4|QN|的最小值为 .【答案】4【解析】设P(x 1,y 1),Q(x 2,y 2),再设PQ 的方程为x =my +1,联立{x =my +1y 2=4x,得y 2-4my -4=0. ∴y 1+y 2=4m ,y 1y 2=-4,则x 1x 2=(y 1y 2)216=1.|PM|∙|QN|=(|PF|-1)(|QF|-1)=(x 1+1-1)(x 2+1-1)=x 1x 2=1,则1|PM|+4|QN|≥2√1|PM|⋅4|QN|=4. ∴1|PM|+4|QN|的最小值为4.8(★★★) 如图,抛物线C :x 2=2py(p >0)的焦点为F ,以A(x 1 ,y 1)(x 1≥0)为直角顶点的等腰直角△ABC 的三个顶点A ,B ,C 均在抛物线C 上.(1)过Q(0 ,-3)作抛物线C 的切线l ,切点为R ,点F 到切线l 的距离为2,求抛物线C 的方程;(2)求△ABC 面积的最小值.【答案】 (1) x 2=4y (2) 4p 2【解析】(1)设过点Q(0,-3)的抛物线C 的切线l :y =kx -3,联立抛物线C :x 2=2py(p >0),得x 2-2pkx +6p =0,则△=4p 2k 2-4×6p =0,得pk 2=6,∵F(0,p 2),F 到切线l 的距离为d =|p 2+3|√k 2+1=2, 化简得(p +6)2=16(k 2+1),∴(p +6)2=16(6p +1)=16(p+6)p∵p >0,∴p +6>0,得p 2+6p -16=(p +8)(p -2)=0,∴p=2.∴抛物线方程为x2=4y.(2)已知直线AB不会与坐标轴平行,设直线AB:y-y1=t(x-x1)(t>0),联立抛物线方程,得x2-2ptx+2p(tx1-y1)=0,则x1+x B=2pt,则x B=2pt-x1,同理可得x C=−2pt−x1.∵|AB|=|AC|,即√1+t2|x B-x1|=√1+1t2|x C-x1|,∴t(x B-x1)=x1-x C,即x1=p(t 2−1t)t+1.∴|AB|=√1+t2|x B-x1|=√1+t2(2pt-2x1)=2p√1+t2(t2+1)t(t+1).∵t2+1t≥2(当且仅当t=1时,等号成立),√t2+1 t+1=√t2+1t2+2t+1≥√t2+1t2+1+(t2+1)=√22(当且仅当t=1时等号成立),所以|AB|≥2√2p,△ABC面积的最小值为4p2.9(★★★★) 已知抛物线C:y2=2px(p>0),焦点为F,直线l交抛物线C于A(x1 ,y1),B(x2 ,y2)两点,D(x0 ,y0)为AB的中点,且|AF|+|BF|=1+2x0.(1)求抛物线C的方程;(2)若x1x2+y1y2=-1,求x0|AB|的最小值.【答案】(1) y2=2x(2) √24【解析】(1)根据抛物线的定义知|AF|+|BF|=x1+x2+p,x1+x3=2x D,∵|AF|+|BF|=1+2x D,∴p=1,∴y2=2x.(2)设直线l的方程为x=my+b,代入抛物线方程,得y2-2my-2b=0,∵x1x2+y1y2=-1,即y12y124+y1y2=−1,∴y1y2=-2,即y1y2=-2b=-2,∴b=1,∴y1+y2=2m,y1y2=-2,|AB|=√1+m2|y1−y2|=√1+m2⋅√(y1+y2)2−4y1y2=2√1+m2⋅√m2+2x D=x1+x22=y12+y124=14[(y1+y2)2−2y1y2]=m2+1,∴x0|AB|=22√m2+1⋅√m2+2令t=m2+1,t∈[1,+∞),则x0|AB|=2√t⋅√t+1=2√1+1t≥√24;即x0|AB|的最小值为√24.。

圆锥曲线中的最值与范围问题-专题突破

圆锥曲线中的最值与范围问题-专题突破

以F→M·F→N=|F→M||F→N|cos∠NFM=|F→M||F→N|
→ |FN| →
=|F→N|2=
|FM|
|F→M|2-|M→N|2=|F→M|2-1.由抛物线的定义,得|F→M|=|MQ|,则由图可得|MQ|
的最小值即抛物线顶点 O 到准线 x=2 的距离,即|MQ|min=2,所以 (F→M·F→N)min=(|F→M|2-1)min=(|MQ|2-1)min=3.故,y2),F34,0,联立 xy=2=m3yx+,t,得 y2-3my-3t=0,所以由根与系数的关 系得 y1y2=-3t,从而 x1x2=y321×y322=y13y22=-33t2= t2,又由 OA⊥OB,可知O→A·O→B=x1x2+y1y2=t2-3t=0,
目录 狂刷小题 1 2 3 4 5 6 7 8 9 10 11 12 13 14
解析
10.(2024·江西红色十校高三联考)已知椭圆 C:ax22+by22=1(a>b>0)
的焦距为 2 3,离心率为 23,过 C 上一点 P 分别作与 l1:y=2x 和 l2:y
=-2x 平行的直线,交直线 l2,l1 于 M,N 两点,则线段 MN 长度的最 大值为( )
圆锥曲线中的最值与范围问题
高考 概览
圆锥曲线中的最值与范围问题是解析几何中的重要题型,也是高 考的重点,综合性强,题目难度较大,常考题型为选择题、填空 题、解答题,分值为5分、12分
1.会利用圆锥曲线的定义、几何性质将最值转化,结合平面几何
中的定理、性质及图形的直观性求解
考点 2.能利用圆锥曲线的几何性质或利用已知条件或隐含的不等关
答案 解析
5.已如 P(3,3),M 是抛物线 y2=4x 上的动点(异于顶点),过 M 作圆 C: (x-2)2+y2=4 的切线,切点为 A,则|MA|+|MP|的最小值为____3____.

圆锥曲线中的最值和取值范围问题挑战练习

圆锥曲线中的最值和取值范围问题挑战练习

专题14 圆锥曲线中的最值和范围问题★★★高考在考什么【考题回放】1.已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(C )A.( 1,2)B. (1,2)C.[2,)+∞D.(2,+∞)2. P 是双曲线221916x y -=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为( B )A. 6B.7C.8D.9 3.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是( A )A .43 B .75 C .85D .3 4.已知双曲线22221,(0,0)x y a b a b-=>>的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为:(B )(A)43(B)53(C)2 (D)735.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 32 .6.设椭圆方程为1422=+y x ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足OP (21=OA +)OB ,点N 的坐标为)21,21(,当l 绕点M 旋转时,求(1)动点P 的轨迹方程;(2)||NP 的最小值与最大值.【专家解答】(1)法1:直线l 过点M (0,1)设其斜率为k ,则l 的方程为y=kx+1.记A (x 1,y 1),B (x 2,y 2),由题设可得点A 、B 的坐标 (x 1,y 1)、 (x 2,y 2)是方程组⎪⎩⎪⎨⎧=++=14122y x kx y 的解. 将①代入②并化简得(4+k 2)x 2+2kx -3=0, 所以⎪⎪⎩⎪⎪⎨⎧+=++-=+.48,42221221k y y k k x x于是).44,4()2,2()(21222121kk k y y x x OB OA OP ++-=++=+= ① ②设点P 的坐标为(x,y ), 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y k k x 消去参数k 得4x 2+y 2-y =0 ③ 当k 不存在时,A 、B 中点为坐标原点(0,0),也满足方程③, 所以点P 的轨迹方程为4x 2+y 2-y =0解法二:设点P 的坐标为(x ,y ),因A (x 1,y 1),B (x 2,y 2)在椭圆上,所以,142121=+y x ④ .142222=+y x ⑤④—⑤得0)(4122212221=-+-y y x x ,所以.0))((41))((21212121=+-++-y y y y x x x x当21x x ≠时,有.0)(4121212121=--⋅+++x x y y y y x x ⑥ 并且⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-+=+=.1,2,221212121x x y y x y y y y x x x ⑦ 将⑦代入⑥并整理得 4x 2+y 2-y =0 ⑧ 当x 1=x 2时,点A 、B 的坐标为(0,2)、(0,-2),这时点P 的坐标为(0,0)也满足⑧,所以点P 的轨迹方程为.141)21(16122=-+y x (2)由点P 的轨迹方程知.4141,1612≤≤-≤x x 即所以127)61(3441)21()21()21(||222222++-=-+-=-+-=x x x y x NP故当41=x ,||NP 取得最小值,最小值为1;4当16x =-时,||NP 取得最大值,最大值为.621★★★高考要考什么【考点透视】与圆锥曲线有关的最值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。

圆锥曲线的最值 定值 范围等经典考题型附答案 作业

圆锥曲线的最值 定值 范围等经典考题型附答案 作业

圆锥曲线的综合应用一、圆锥曲线的最值问题方法1:定义转化法①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解.例1、已知点F 是双曲线错误!-错误!=1的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________.方法2:数形结合(切线法)当所求的最值是圆锥曲线上的点到某条直线的距离的最值时:①求与直线平行的圆锥曲线的切线;②求出两平行线的距离即为所求的最值.例2、求椭圆错误!+y 2=1上的点到直线y =x +2错误!的距离的最大值和最小值,并求取得最值时椭圆上点的坐标.方法3:参数法(函数法)① 选取合适的参数表示曲线上点的坐标;②求解关于这个参数的函数最值例3、在平面直角坐标系xOy 中,点P (x ,y )是椭圆错误!+y 2=1上的一个动点,则S =x +y 的最大值为________.方法4:基本不等式法①将最值用变量表示.②利用基本不等式求得表达式的最值.例4、求椭圆错误!+y 2=1内接矩形ABCD 面积的最大值.二、圆锥曲线的范围问题方法1:曲线几何性质法①由几何性质建立关系式;②化简关系式求解.例1、已知双曲线错误!-错误!=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线中ac 的取值范围是________.方法2:判别式法当直线和圆锥曲线相交、相切和相离时,分别对应着直线和圆锥曲线方程联立消元后得到的一元二次方程的判别式大于零、等于零、小于零①联立曲线方程,消元后求判别式;②根据判别式大于零、小于零或等于零结合曲线性质求解.例2、在平面直角坐标系xOy中,经过点(0,错误!)且斜率为k的直线l与椭圆错误!+y2=1有两个不同的交点P和Q。

(1)求k的取值范围;(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数m,使得向量错误!+错误!与错误!共线?如果存在,求m值;如果不存在,请说明理由.三、圆锥曲线的定值、定点问题方法1:特殊到一般法根据特殊情况能找到定值(或定点)的问题①根据特殊情况确定出定值或定点;②对确定出来的定值或定点进行一般情况的证明.例1、已知双曲线C:x2-错误!=1,过圆O:x2+y2=2上任意一点作圆的切线l,若l交双曲线于A,B两点,证明:∠AOB的大小为定值.方法2:引进参数法定值、定点是变化中的不变量,引入参数找出与变量与参数没有关系的点(或值)即是定点(或定值)。

最值问题(训练篇A)-用思维导图突破圆锥曲线压轴题

最值问题(训练篇A)-用思维导图突破圆锥曲线压轴题

专题03最值问题训练篇A1.直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是()A .[2,6]B .[4,8]C .[2,32]D .[22,32]解选A设圆(x -2)2+y 2=2的圆心为C ,半径为r ,点P 到直线x +y +2=0的距离为d ,则圆心C (2,0),r =2,所以圆心C 到直线x +y +2=0的距离为|2+2|2=22,可得d max =22+r =32,d min =22-r =2.由已知条件可得|AB |=22,所以△ABP 面积的最大值为12|AB |·d max =6,△ABP 面积的最小值为12|AB |·d min =2.综上,△ABP 面积的取值范围是[2,6].2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为()A .2B.455C.4105D.8105解选C 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,2+4y 2=4,=x +t消去y ,得5x 2+8tx +4(t 2-1)=0,则x 1+x 2=-85t ,x 1x 2=4t 2-15.∴|AB |=1+k 2|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=2·=425·5-t 2,当t =0时,|AB |max =4105.3.已知抛物线方程为y 2=4x ,直线l 的方程为x -y +5=0,在抛物线上有一动点P 到y 轴的距离为d 1,到直线l 的距离为d 2,则d 1+d 2的最小值为________.解由题意知,抛物线的焦点为F (1,0).点P 到y 轴的距离d 1=|PF |-1,所以d 1+d 2=d 2+|PF |-1.易知d 2+|PF |的最小值为点F 到直线l 的距离,故d 2+|PF |的最小值为|1+5|12+-12=32,所以d 1+d 2的最小值为32-1.4.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为()A.2B.3C .2D .3解选C设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则有x 20+y 20=1,且切线方程为x 0x +y 0y =1.分别令y =0,x =0得则|AB |=1x 0y 0≥1x 20+y 202=2,当且仅当x 0=y 0时,等号成立.5.已知点P 是椭圆x 216+y 28=1上的动点,F 1,F 2分别是椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上一点,且F 1M ―→·MP ―→=0,则|OM ―→|的取值范围是()A .[0,3)B .(0,22)C .[22,3)D .(0,4]解选B如图,延长F 1M 交PF 2的延长线于点G .∵F1M ―→·MP ―→=0,∴F 1M ―→⊥MP ―→.又MP 为∠F 1PF 2的平分线,∴|PF 1|=|PG |,且M 为F 1G 的中点.∵O 为F 1F 2中点,∴OM =12F 2G .∵|F 2G |=||PF 2|-|PG ||=||PF 1|-|PF 2||,∴|OM ―→|=12|2a -2|PF 2||=|4-|PF 2||.∵4-22<|PF 2|<4或4<|PF 2|<4+22,∴|OM ―→|∈(0,22).6.已知1F ,2F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上的点,O 为坐标原点.(1)若2POF ∆为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且△12F PF 的面积等于16,求b 的值和a 的取值范围.解(1)连接1PF ,由2POF ∆为等边三角形可知在△12F PF 中,1290F PF ∠=︒,2||PF c =,1||PF =,于是122||||1)a PF PF c =+=,故曲线C 的离心率1ce a==.(2)由题意可知,满足条件的点(,)P x y 存在当且仅当:1||2162y c = ,1y yx c x c=-+-,22221x y a b +=,即||16c y =,①222x y c +=,②22221x y a b +=,③由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =,由②③得22222()a x c b c=-,所以22c b ,从而2222232a b c b =+=,故a ,当4b =,a 时,存在满足条件的点P .7.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,且|F 1F 2|=6,直线y =kx与椭圆交于A ,B 两点.(1)若△AF 1F 2的周长为16,求椭圆的标准方程;(2)若k =24,且A ,B ,F 1,F 2四点共圆,求椭圆离心率e 的值;(3)在(2)的条件下,设P (x 0,y 0)为椭圆上一点,且直线PA 的斜率k 1∈(-2,-1),试求直线PB 的斜率k 2的取值范围.解(1)由题意得c =3,根据2a +2c =16,得a =5.结合a 2=b 2+c 2,解得a 2=25,b 2=16.所以椭圆的标准方程为x 225+y 216=1.(2)+y 2b 2=1,=24x ,得2+18a2-a 2b 2=0.设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=0,x 1x 2=-a 2b 2b 2+18a2,由AB ,F 1F 2互相平分且共圆,易知,AF 2⊥BF 2,因为F 2A ―→=(x 1-3,y 1),F 2B ―→=(x 2-3,y 2),所以F 2A ―→·F 2B ―→=(x 1-3)(x 2-3)+y 1y21x 2+9=0.即x 1x 2=-8,所以有-a 2b 2b 2+18a 2=-8,结合b 2+9=a 2,解得a 2=12,所以离心率e =32.(3)由(2)的结论知,椭圆方程为x 212+y 23=1,由题可知A (x 1,y 1),B (-x 1,-y 1),k 1=y 0-y 1x 0-x 1,k 2=y 0+y 1x 0+x 1,所以k 1k 2=y 20-y 21x 20-x 21,又y 20-y 21x 20-x 21=01=-14,即k 2=-14k 1,由-2<k 1<-1可知,18<k 2<14.即直线PB 的斜率k 28.已知椭圆222:1x C y a +=()1a >的离心率是2.(1)求椭圆C 的方程;(2)已知1F ,2F 分别是椭圆C 的左、右焦点,过2F 作斜率为k 的直线l ,交椭圆C 于,A B两点,直线11,F A F B 分别交y 轴于不同的两点,M N .如果1MF N ∠为锐角,求k 的取值范围.解(1)由题意2222221c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,,解得22a =.所以椭圆C的方程为22 1.2x y +=…………4分(2)由已知直线l 的斜率不为0.设直线l 方程为()1y k x =-.直线l 与椭圆C 的交点为()()1122,,,A x y B x y .由()22112y k x x y =-⎧⎪⎨+=⎪⎩,得()2222214220k x k x k +-+-=.由已知,判别式0∆>恒成立,且22121222422,.2121k k x x x x k k -+==++①直线1F A 的方程为()1111y y x x =++,令0x =,则11(0,1yM x +.同理可得22(0,1y N x +.所以()()()()()()2121211121211111111k x x y y F M F N x x x x --⋅=+=+++++uuu u r uuu r()()()()222212121212121212121111111k x x k x x k k x x x x x x x x x x x x ++-+++-++⎡⎤⎣⎦=+=++++++.将①代入并化简,得21127181k F M F N k -⋅=-uuu u r uuu r .依题意,1MF N ∠为锐角,所以110F M F N ⋅> ,即211271081k F M F N k -⋅=>-uuu u r uuu r .解得217k >或218k <.综上,直线l 斜率的取值范围是7227(,(,0)(0,(,)7447-∞--+∞U U U .9.如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆221(0)4y x x +=<上的动点,求PAB ∆面积的取值范围.分析第(1)要设出A ,B ,P 的坐标,确定PA ,PB 其中点坐标,把中点坐标代入抛物线方程,然后利用“点差法”或韦达定理证明P ,M 中点纵坐标相同;第(2)题要求三角形面积,可视|PB |为底,A B y y -为高,把底和高表示为P x 或P y 的函数,确定函数定义域,再求其最值.(1)解1设112200(,)(,)(,)A x y B x y P x y ,,,AB 中点1212,22x x y y M ++⎛⎫⎪⎝⎭,PA 中点1010,22x x y y Q ++⎛⎫ ⎪⎝⎭,PB 中点2020,22x x y y R ++⎛⎫ ⎪⎝⎭,由Q R 、在抛物线24y x =上得,2101022020=422=422y y x x y y x x ⎧++⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨++⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎩,两式相减并化简得22121212012+2()2224y y y y y y y x x +--⋅=-=⋅(),即1202y y y +=,所以PM 垂直于y 轴.解2设22121200(,)(,)(,)44y y A y B y P x y ,,,则PA 中点为20110+,282x y y y ⎛⎫+ ⎪⎝⎭,PA中点在抛物线24y x =上,得221001=4+228y y x y ⎛⎫+⎛⎫ ⎪ ⎪⎝⎭⎝⎭,化简得2210100280y y y x y -+-=同理可得2220200280y y y x y -+-=,因为12y y ≠,所以12y y ,是方程22000280y y y x y -+-=的两个解,从而1202y y y +=,1202M P y y y y y +===,即PM 垂直于y 轴.(2)因为00(,)P x y 在半椭圆221(0)4y x x +=<上,由题意知010x -≤<.由(1)解2得1202y y y +=,212008y y x y =-,所以12y y -==,222121212004||=88M P y y y y y y PM x x x x ++-=-=--()200=3(1)x x --,于是121=2S PM y y =-1212M P x x y y --200x x --,t ,则2t ⎡∈⎢⎣⎦,所以34S ⎡∈⎢⎣⎦.10.设m R ∈,在平面直角坐标系中,已知向量(,1)a mx y =+ ,向量(,1)b x y =-,a b ⊥ ,动点(,)M x y 的轨迹为E.(1)求轨迹E 的方程,并说明该方程所表示曲线的形状;(2)已知41=m ,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E 恒有两个交点A,B,且OA OB ⊥(O 为坐标原点),并求出该圆的方程;(3)已知41=m ,设直线l 与圆C:222x y R +=(12R <<)相切于A 1,且l 与轨迹E 只有一个公共点B 1,当R 为何值时,|A 1B 1|取得最大值?并求最大值.解(1)因为a b ⊥ ,(,1)a mx y =+ ,(,1)b x y =-,所以2210a b mx y ⋅=+-= ,即221mx y +=.当m=0时,方程表示两直线,方程为1±=y ;当1m =时,方程表示的是圆;当0>m 且1≠m 时,方程表示的是椭圆;当0<m 时,方程表示的是双曲线.(2).当41=m 时,轨迹E 的方程为2214x y +=,设圆心在原点的圆的一条切线为y kx t =+,解方程组2214y kx t x y ++==⎧⎪⎨⎪⎩,得224()4x kx t ++=,即222(14)8440k x ktx t +++-=,要使切线与轨迹E 恒有两个交点A,B,则其△=2222226416(14)(1)16(41)0k t k t k t -+-=-+>,(*)即22410k t -+>,即2241t k <+,且12221228144414kt x x k t x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩.2212121212()()()y y kx t kx t k x x kt x x t =++=+++222414t k k-=+.因OA OB ⊥ ,故12120x x y y +=,解得22544t k =+且2241t k <+,即2244205k k +<+恒成立.又因为直线y kx t =+为圆心在原点的圆的一条切线,所以圆的半径为r =222224(1)45115k t r k k +===++,所求的圆为2245x y +=.当切线的斜率不存在时,切线为552±=x ,与2214x y +=交于点)552,552(±或552,552(±-也满足OA OB ⊥.综上,存在圆心在原点的圆2245x y +=,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥ .(3)设直线l 的方程为y kx t =+,因为直线l 与圆C:222x y R +=(1<R<2)相切于A 1,由(2)知R =,即222(1)t R k =+①,因为l 与轨迹E 只有一个公共点B 1,由(*)知22410k t -+=,②由①②得2222223414R t R R k R ⎧=⎪⎪-⎨-⎪=⎪⎩-.当l 与轨迹E 只有一个公共点B 1时,A,B 重合为B 1(x 1,y 1),21x x =,所以,22211222441616143t R x x x k R --===+.因(x 1,y 1)点在椭圆上,所以22211214143R y x R-=-=,所以22211124||5OB x y R =+=-,在直角三角形OA 1B 1中,因2222211112244||||||55()A B OB OA R R R R =-=--=-+因为2244R R+≥当且仅当(1,2)R =时取等号,所以211||541A B ≤-=,即当(1,2)R =时|A 1B 1|取得最大值,最大值为1.。

圆锥曲线最值的练习题

圆锥曲线最值的练习题

圆锥曲线最值的练习题一、椭圆最值问题1. 已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$($a >b > 0$),求椭圆上点到原点的最大距离。

2. 椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 上任一点到直线 $x + y + 1 = 0$ 的距离的最大值是多少?3. 椭圆 $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 上任一点到点 $P(4, 0)$ 的距离的最小值是多少?二、双曲线最值问题4. 已知双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$,求双曲线上任一点到中心的最大距离。

5. 双曲线 $\frac{x^2}{9} \frac{y^2}{16} = 1$ 上任一点到直线 $2x 3y + 6 = 0$ 的距离的最小值是多少?6. 双曲线 $\frac{y^2}{4} \frac{x^2}{5} = 1$ 上任一点到点$A(2, 0)$ 的距离的最大值是多少?三、抛物线最值问题7. 已知抛物线 $y^2 = 4ax$,求抛物线上任一点到焦点的距离的最小值。

8. 抛物线 $x^2 = 8y$ 上任一点到直线 $y = 2x + 1$ 的距离的最大值是多少?9. 抛物线 $y^2 = 12x$ 上任一点到点 $B(3, 0)$ 的距离的最小值是多少?四、综合应用题10. 已知椭圆 $\frac{x^2}{25} + \frac{y^2}{16} = 1$,求椭圆上点到直线 $3x + 4y 10 = 0$ 的距离的最大值。

11. 双曲线 $\frac{x^2}{9} \frac{y^2}{16} = 1$ 上任一点到直线 $x y + 2 = 0$ 的距离的最小值是多少?12. 抛物线 $y^2 = 8x$ 上任一点到点 $C(2, 0)$ 的距离的最大值是多少?13. 已知椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$ 和抛物线$y^2 = 4x$,求两曲线上的点到直线 $x + y 3 = 0$ 的距离之和的最小值。

圆锥曲线中的最值、范围、证明问题

圆锥曲线中的最值、范围、证明问题

第九节 圆锥曲线中的最值、范围、证明问题突破点(一) 圆锥曲线中的最值问题圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.考点贯通 抓高考命题的“形”与“神”利用几何性质求最值[例1] 设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( )A .9,12B .8,11C .8,12D .10,12[解析] 如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|P A |+|PB |=2a =10,连接P A ,PB 分别与圆相交于两点,此时|PM |+|PN |最小,最小值为|P A |+|PB |-2R =8;连接P A ,PB 并延长,分别与圆相交于两点,此时|PM |+|PN |最大,最大值为|P A |+|PB |+2R =12,即最小值和最大值分别为8,12.[答案] C[方法技巧]利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解,也叫做几何法.建立目标函数求最值本节主要包括3个知识点: 1.圆锥曲线中的最值问题; 2.圆锥曲线中的范围问题; 3.圆锥曲线中的几何证明问题.[例2] 已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF =3FM .(1)若|PF |=3,求点M 的坐标; (2)求△ABP 面积的最大值.[解] (1)由题意知焦点F (0,1),准线方程为y =-1. 设P (x 0,y 0),由抛物线定义知|PF |=y 0+1,得y 0=2, 所以P (22,2)或P (-22,2),由PF =3FM ,得M ⎝⎛⎭⎫-223,23或M ⎝⎛⎭⎫223,23. (2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),由⎩⎪⎨⎪⎧y =kx +m ,x 2=4y ,得x 2-4kx -4m =0. 于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m , 所以AB 中点M 的坐标为(2k,2k 2+m ).由PF =3FM ,得(-x 0,1-y 0)=3(2k,2k 2+m -1),所以⎩⎪⎨⎪⎧x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0得k 2=-15m +415, 由Δ>0,k 2≥0,得-13<m ≤43.又因为|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=41+k 2·k 2+m , 点F (0,1)到直线AB 的距离为d =|m -1|1+k 2,所以S △ABP =4S △ABF =8|m -1|k 2+m =16153m 3-5m 2+m +1. 记f (m )=3m 3-5m 2+m +1⎝⎛⎭⎫-13<m ≤43, 令f ′(m )=9m 2-10m +1=0, 解得m 1=19,m 2=1,可得f (m )在⎝⎛⎭⎫-13,19上是增函数,在⎝⎛⎭⎫19,1上是减函数,在⎝⎛⎭⎫1,43上是增函数, 又f ⎝⎛⎭⎫19=256243>f ⎝⎛⎭⎫43=59.所以当m =19时,f (m )取到最大值256243,此时k =±5515.所以△ABP 面积的最大值为2565135. [方法技巧](1)当题目中给出的条件有明显的几何特征,考虑用图象性质来求解.(2)当题目中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值.求函数最值的常用方法有配方法、判别式法、单调性法、三角换元法等.利用基本不等式求最值[例3] 已知椭圆M :x 2a 2+y 23=1(a >0)的一个焦点为F (-1,0),左、右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点.(1)当直线l 的倾斜角为45°时,求线段CD 的长;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值. [解] (1)由题意,c =1,b 2=3, 所以a 2=4,所以椭圆M 的方程为x 24+y 23=1,易求直线方程为y =x +1,联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =x +1,消去y ,得7x 2+8x -8=0,设C (x 1,y 1),D (x 2,y 2),Δ=288,x 1+x 2=-87,x 1x 2=-87,所以|CD |=2|x 1-x 2|= 2(x 1+x 2)2-4x 1x 2=247.(2)当直线l 的斜率不存在时,直线方程为x =-1, 此时△ABD 与△ABC 面积相等,|S 1-S 2|=0;当直线l 的斜率存在时,设直线方程为y =k (x +1)(k ≠0), 联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x +1),消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, Δ>0,且x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,此时|S 1-S 2|=2||y 2|-|y 1||=2|y 2+y 1|=2|k (x 2+1)+k (x 1+1)|=2|k (x 2+x 1)+2k |=12|k |3+4k 2,因为k ≠0,上式=123|k |+4|k |≤1223|k |·4|k |=12212=3当且仅当k =±32时等号成立,所以|S 1-S 2|的最大值为 3. [方法技巧](1)求最值问题时,一定要注意对特殊情况的讨论.如直线斜率不存在的情况,二次三项式最高次项的系数的讨论等.(2)利用基本不等式求函数的最值时,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.能力练通 抓应用体验的“得”与“失”1.[考点一]如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA +OB =(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.解析:(1)由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 因为OA +OB =(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以⎩⎪⎨⎪⎧ -2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,知抛物线过点P 的切线与l 平行时,△ABP 的面积最大,又y ′=-x ,所以-x 0=2,故x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d =|2×(-2)-(-2)-2|22+(-1)2=45=455.由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,故x 1+x 2=-4,x 1x 2=-4, 所以|AB |=1+k 2×(x 1+x 2)2-4x 1x 2=1+22×(-4)2-4×(-4)=410. 所以△ABP 面积的最大值为410×4552=8 2.2.[考点二]平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,左、右焦点分别是F 1,F 2.以F 1为圆心、以3为半径的圆与以F 2为圆心、以1为半径的圆相交,且交点在椭圆C 上.(1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点.过点P 的直线y =kx +m 交椭圆E于A ,B 两点,射线PO 交椭圆E 于点Q .①求|OQ ||OP |的值;②求△ABQ 面积的最大值. 解析:(1)由题意知2a =4,则a =2. 又c a =32,a 2-c 2=b 2,可得b =1, 所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1.①设P (x 0,y 0),|OQ ||OP |=λ,由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1, 又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2.②设A (x 1,y 1),B (x 2, y 2). 将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2.(*)则有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m 21+4k 2.因为直线y =kx +m 与y 轴交点的坐标为(0,m ),所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2⎝⎛⎭⎫4-m 21+4k 2m 21+4k 2.设m 21+4k 2=t .将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.(**) 由(*)(**)可知0<t ≤1,因此S =2(4-t )t =2-t 2+4t ,故S ≤2 3. 当且仅当t =1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 的面积为3S , 所以△ABQ 面积的最大值为6 3.3.[考点三]定圆M :(x +3)2+y 2=16,动圆N 过点F (3,0)且与圆M 相切,记圆心N 的轨迹为E .(1)求轨迹E 的方程;(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且|AC |=|BC |,当△ABC 的面积最小时,求直线AB 的方程.解析:(1)∵F (3,0)在圆M :(x +3)2+y 2=16内, ∴圆N 内切于圆M . ∵|NM |+|NF |=4>|FM |,∴点N 的轨迹E 为椭圆,且2a =4,c =3,∴b =1, ∴轨迹E 的方程为x 24+y 2=1.(2)①当AB 为长轴(或短轴)时,S △ABC =12|OC |·|AB |=2.②当直线AB 的斜率存在且不为0时,设直线AB 的方程为y =kx ,A (x A ,y A ),由题意,C 在线段AB 的中垂线上,则OC 的方程为y =-1kx .联立方程⎩⎪⎨⎪⎧x 24+y 2=1,y =kx得,x 2A =41+4k 2,y 2A =4k 21+4k 2,∴|OA |2=x 2A +y 2A =4(1+k 2)1+4k 2.将上式中的k 替换为-1k ,可得|OC |2=4(1+k 2)k 2+4.∴S △ABC =2S △AOC =|OA |·|OC |=4(1+k 2)1+4k 2·4(1+k 2)k 2+4=4(1+k 2)(1+4k 2)(k 2+4). ∵(1+4k 2)(k 2+4)≤(1+4k 2)+(k 2+4)2=5(1+k 2)2,∴S △ABC ≥85,当且仅当1+4k 2=k 2+4,即k =±1时等号成立,此时△ABC 面积的最小值是85.∵2>85,∴△ABC 面积的最小值是85,此时直线AB 的方程为y =x 或y =-x .突破点(二) 圆锥曲线中的范围问题圆锥曲线中的范围问题是高考中的热点问题,常涉及不等式的恒成立问题、函数的值域问题,综合性比较强.解决此类问题常用几何法和判别式法.考点贯通 抓高考命题的“形”与“神”利用判别式构造不等关系求范围[例1] 已知A ,B ,C 是椭圆M :x 2a 2+y 2b2=1(a >b >0)上的三点,其中点A 的坐标为(23,0),BC 过椭圆的中心,且AC ·BC =0,|BC |=2|AC |. (1)求椭圆M 的方程;(2)过点(0,t )的直线l (斜率存在时)与椭圆M 交于两点P ,Q ,设D 为椭圆M 与y 轴负半轴的交点,且|DP |=|DQ |,求实数t 的取值范围.[解] (1)因为|BC |=2|AC |且BC 过(0,0),则|OC |=|AC |.因为AC ·BC =0,所以∠OCA =90°, 即C (3,3).又因为a =23,设椭圆的方程为x 212+y 212-c 2=1,将C 点坐标代入得312+312-c 2=1,解得c 2=8,b 2=4.所以椭圆的方程为x 212+y 24=1.(2)由条件D (0,-2),当k =0时,显然-2<t <2; 当k ≠0时,设l :y =kx +t ,⎩⎪⎨⎪⎧x 212+y 24=1,y =kx +t ,消去y 得(1+3k 2)x 2+6ktx +3t 2-12=0 由Δ>0可得t 2<4+12k 2,①设P (x 1,y 1),Q (x 2,y 2),PQ 中点H (x 0,y 0),则x 0=x 1+x 22=-3kt1+3k 2,y 0=kx 0+t =t1+3k 2,所以H ⎝⎛⎭⎫-3kt 1+3k 2,t1+3k 2,由|DP |=|DQ |,所以DH ⊥PQ ,即k DH =-1k ,所以t1+3k 2+2-3kt 1+3k 2-0=-1k ,化简得t =1+3k 2,②所以t >1,将②代入①得,1<t <4. 所以t 的范围是(1,4). 综上可得t ∈(1,2).[方法技巧]圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.利用函数性质求范围[例2] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过点M (1,0)的直线l 交椭圆C 于A ,B 两点,|MA |=λ|MB |,且当直线l 垂直于x 轴时,|AB |= 2.(1)求椭圆C 的方程;(2)若λ∈⎣⎡⎦⎤12,2,求弦长|AB |的取值范围.[解] (1)由已知e =22,得c a =22, 又当直线垂直于x 轴时,|AB |=2, 所以椭圆过点⎝⎛⎭⎫1,22, 代入椭圆方程得1a 2+12b2=1,∵a 2=b 2+c 2,联立方程可得a 2=2,b 2=1, ∴椭圆C 的方程为x 22+y 2=1.(2)当过点M 的直线斜率为0时,点A ,B 分别为椭圆长轴的端点, λ=|MA ||MB |=2+12-1=3+22>2或λ=|MA ||MB |=2-12+1=3-22<12,不符合题意. ∴直线的斜率不能为0.设直线方程为x =my +1,A (x 1,y 1),B (x 2,y 2), 将直线方程代入椭圆方程得:(m 2+2)y 2+2my -1=0,由根与系数的关系可得,⎩⎨⎧y 1+y 2=-2mm 2+2①,y 1y 2=-1m 2+2②,将①式平方除以②式可得:y 1y 2+y 2y 1+2=-4m 2m 2+2,由已知|MA |=λ|MB |可知,y 1y 2=-λ,∴-λ-1λ+2=-4m 2m 2+2,又知λ∈⎣⎡⎦⎤12,2, ∴-λ-1λ+2∈⎣⎡⎦⎤-12,0, ∴-12≤-4m 2m 2+2≤0,解得m 2∈⎣⎡⎦⎤0,27. |AB |2=(1+m 2)|y 1-y 2|2=(1+m 2)[(y 1+y 2)2-4y 1y 2]=8⎝ ⎛⎭⎪⎫m 2+1m 2+22=8⎝⎛⎭⎫1-1m 2+22, ∵m 2∈⎣⎡⎦⎤0,27, ∴1m 2+2∈⎣⎡⎦⎤716,12,∴|AB |∈⎣⎡⎦⎤2,928. [方法技巧]利用函数性质解决圆锥曲线中求范围问题的关键是建立求解关于某个变量的函数,通过求这个函数的值域确定目标的取值范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算方便,在建立函数的过程中也可以采用多个变量,只要在最后结果中把多个变量化为单个变量即可,同时要特别注意变量的取值范围.1.[考点一]设F 1,F 2分别是椭圆E :x 24+y 2b 2=1(b >0)的左、右焦点,若P 是该椭圆上的一个动点,且1PF ·2PF 的最大值为1.(1)求椭圆E 的方程;(2)设直线l :x =ky -1与椭圆E 交于不同的两点A ,B ,且∠AOB 为锐角(O 为坐标原点),求k 的取值范围.解析:(1)易知a =2,c =4-b 2,b 2<4, 所以F 1(-4-b 2,0),F 2(4-b 2,0),设P (x ,y ),则1PF ·2PF =(-4-b 2-x ,-y )·(4-b 2-x ,-y )=x 2+y 2-4+b 2=x 2+b 2-b 2x 24-4+b 2=⎝⎛⎭⎫1-b 24x 2+2b 2-4.因为x ∈[-2,2],故当x =±2,即点P 为椭圆长轴端点时,1PF ·2PF 有最大值1, 即1=⎝⎛⎭⎫1-b24×4+2b 2-4,解得b 2=1. 故所求椭圆E 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =ky -1x 24+y 2=1得(k 2+4)y 2-2ky -3=0,Δ=(-2k )2+12(4+k 2)=16k 2+48>0,故y 1+y 2=2kk 2+4,y 1·y 2=-3k 2+4.又∠AOB 为锐角,故OA ·OB =x 1x 2+y 1y 2>0,又x 1x 2=(ky 1-1)(ky 2-1)=k 2y 1y 2-k (y 1+y 2)+1,所以x 1x 2+y 1y 2=(1+k 2)y 1y 2-k (y 1+y 2)+1=(1+k 2)·-34+k 2-2k 24+k 2+1=-3-3k 2-2k 2+4+k 24+k 2=1-4k 24+k 2>0,所以k 2<14,解得-12<k <12,故k 的取值范围是⎝⎛⎭⎫-12,12. 2.[考点二]已知圆心为H 的圆x 2+y 2+2x -15=0和定点A (1,0),B 是圆上任意一点,线段AB 的中垂线l 和直线BH 相交于点M ,当点B 在圆上运动时,点M 的轨迹记为曲线C .(1)求C 的方程;(2)过点A 作两条相互垂直的直线分别与曲线C 相交于P ,Q 和E ,F ,求PE ·QF 的取值范围.解析:(1)由x 2+y 2+2x -15=0,得(x +1)2+y 2=16, 所以圆心为H (-1,0),半径为4.连接MA ,由l 是线段AB 的中垂线,得|MA |=|MB |, 所以|MA |+|MH |=|MB |+|MH |=|BH |=4, 又|AH |=2<4.根据椭圆的定义可知,点M 的轨迹是以A ,H 为焦点,4为长轴长的椭圆,所以a 2=4,c 2=1,b 2=3,所求曲线C 的方程为x 24+y 23=1.(2)由直线EF 与直线PQ 垂直,可得AP ·AE =AQ ·AF =0,于是PE ·QF =(AE -AP )·(AF -AQ )=AE ·AF +AP ·AQ .①当直线PQ 的斜率不存在时,直线EF 的斜率为零,此时可不妨取P ⎝⎛⎭⎫1,32,Q ⎝⎛⎭⎫1,-32,E (2,0),F (-2,0),所以PE ·QF =⎝⎛⎭⎫1,-32·⎝⎛⎭⎫-3,32=-3-94=-214. ②当直线PQ 的斜率为零时,直线EF 的斜率不存在,同理可得PE ·QF =-214. ③当直线PQ 的斜率存在且不为零时,直线EF 的斜率也存在,于是可设直线PQ 的方程为y =k (x -1),P (x P ,y P ),Q (x Q ,y Q ),AP =(x P -1,y P ),AQ =(x Q -1,y Q ),则直线EF 的方程为y =-1k(x -1).将直线PQ 的方程代入曲线C 的方程,并整理得,(3+4k 2)x 2-8k 2x +4k 2-12=0, 所以x P +x Q =8k 23+4k 2,x P ·x Q =4k 2-123+4k 2.于是AP ·AQ =(x P -1)(x Q -1)+y P ·y Q =(1+k 2)[x P x Q -(x P +x Q )+1] =(1+k 2)⎝ ⎛⎭⎪⎫4k 2-123+4k 2-8k 23+4k 2+1=-9(1+k 2)3+4k 2.将上面的k 换成-1k ,可得AE ·AF =-9(1+k 2)4+3k 2,所以PE ·QF =AE ·AF +AP ·AQ =-9(1+k 2)⎝⎛⎭⎫13+4k 2+14+3k 2. 令1+k 2=t ,则t >1,于是上式化简整理可得,PE ·QF =-9t ⎝⎛⎭⎫14t -1+13t +1=-63t 212t 2+t -1=-63494-⎝⎛⎭⎫1t -122. 由t >1,得0<1t <1,所以-214<PE ·QF ≤-367.综合①②③可知,PE ·QF 的取值范围为⎣⎡⎦⎤-214,-367.突破点(三) 圆锥曲线中的几何证明问题圆锥曲线中的几何证明问题多出现在解答题中,难度较大,多涉及线段或角相等以及位置关系的证明等.考点贯通 抓高考命题的“形”与“神”圆锥曲线中的几何证明问题[典例] 如图,圆C 与x 轴相切于点T (2,0),与y 轴正半轴相交于两点M ,N (点M 在点N 的下方),且|MN |=3.(1)求圆C 的方程;(2)过点M 任作一条直线与椭圆x 28+y 24=1相交于两点A ,B ,连接AN ,BN ,求证:∠ANM =∠BNM .[解] (1)设圆C 的半径为r (r >0),依题意,圆心C 的坐标为(2,r ). ∵|MN |=3,∴r 2=⎝⎛⎭⎫322+22,解得r 2=254. ∴r =52,圆C 的方程为(x -2)2+⎝⎛⎭⎫y -522=254. (2)证明:把x =0代入方程(x -2)2+⎝⎛⎭⎫y -522=254,解得y =1或y =4,即点M (0,1),N (0,4). ①当AB ⊥x 轴时,可知∠ANM =∠BNM =0.②当AB 与x 轴不垂直时,可设直线AB 的方程为y =kx +1. 联立方程 ⎩⎪⎨⎪⎧y =kx +1,x 28+y 24=1,消去y 得,(1+2k 2)x 2+4kx -6=0.设直线AB 交椭圆于A (x 1,y 1),B (x 2,y 2)两点,则x 1+x 2=-4k 1+2k 2,x 1x 2=-61+2k 2. ∴k AN +k BN =y 1-4x 1+y 2-4x 2=kx 1-3x 1+kx 2-3x 2=2kx 1x 2-3(x 1+x 2)x 1x 2.若k AN +k BN =0,则∠ANM =∠BNM . ∵2kx 1x 2-3(x 1+x 2)=-12k 1+2k 2+12k1+2k 2=0, ∴∠ANM =∠BNM .1.设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,M 是椭圆上任意一点,且△MF 1F 2的周长是4+2 3.(1)求椭圆C 1的方程;(2)设椭圆C 1的左、右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E ,若点C 满足AB ⊥BC ,AD ∥OC ,连接AC 交DE 于点P ,求证:PD =PE .解析:(1)由e =32,知c a =32,所以c =32a , 因为△MF 1F 2的周长是4+23,所以2a +2c =4+23,所以a =2,c =3, 所以b 2=a 2-c 2=1,所以椭圆C 1的方程为:x 24+y 2=1.(2)证明:由(1)得A (-2,0),B (2,0), 设D (x 0,y 0),所以E (x 0,0), 因为AB ⊥BC ,所以可设C (2,y 1),所以AD =(x 0+2,y 0),OC =(2,y 1), 由AD ∥OC 可得:(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2.所以直线AC 的方程为:y 2y 0x 0+2=x +24. 整理得:y =y 02(x 0+2)(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得:y =y 02,即点P 的坐标为⎝⎛⎭⎫x 0,y 02,所以P 为DE 的中点,所以PD =PE .2.已知点A (-4,0),直线l :x =-1与x 轴交于点B ,动点M 到A ,B 两点的距离之比为2.(1)求点M 的轨迹C 的方程;(2)设C 与x 轴交于E ,F 两点,P 是直线l 上一点,且点P 不在C 上,直线PE ,PF 分别与C 交于另一点S ,T ,证明:A ,S ,T 三点共线.解析:(1)设点M (x ,y ),依题意,|MA ||MB |=(x +4)2+y 2(x +1)2+y 2=2,化简得x 2+y 2=4,即轨迹C 的方程为x 2+y 2=4. (2)证明:由(1)知曲线C 的方程为x 2+y 2=4,令y =0得x =±2,不妨设E (-2,0),F (2,0),如图所示.设P (-1,y 0),S (x 1,y 1),T (x 2,y 2),则直线PE 的方程为y =y 0(x +2),由⎩⎪⎨⎪⎧y =y 0(x +2),x 2+y 2=4得(y 20+1)x 2+4y 20x +4y 20-4=0, 所以-2x 1=4y 20-4y 20+1,即x 1=2-2y 20y 20+1,y 1=4y 0y 20+1.直线PF 的方程为y =-y 03(x -2),由⎩⎪⎨⎪⎧y =-y 03(x -2),x 2+y 2=4得(y 20+9)x 2-4y 20x +4y 20-36=0, 所以2x 2=4y 20-36y 20+9,即x 2=2y 20-18y 20+9,y 2=12y 0y 20+9.所以k AS =y 1x 1+4=4y 0y 20+12-2y 20y 20+1+4=2y 0y 20+3, k AT =y 2x 2+4=12y 0y 20+92y 20-18y 20+9+4=2y 0y 20+3,所以k AS =k AT ,所以A ,S ,T 三点共线.[全国卷5年真题集中演练——明规律] 1.(2014·新课标全国卷Ⅰ)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程. 解析:(1)设F (c,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1. 所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0.所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 2.(2013·新课标全国卷Ⅱ)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1 (a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.解析:(1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1, 由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3.所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1,解得⎩⎨⎧x =433,y =-33,或⎩⎨⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝⎛⎭⎫-533<n <3, 设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1得3x 2+4nx +2n 2-6=0. 于是x 3,4=-2n ±2(9-n 2)3.因为直线CD 的斜率为1, 所以|CD |=2|x 4-x 3|=439-n 2. 由已知,四边形ACBD 的面积S =12|CD |·|AB |=8699-n 2.当n =0时,S 取得最大值,最大值为863.所以四边形ACBD 面积的最大值为863.[课时达标检测] 难点增分课时——设计3级训练,考生据自身能力而选 一、全员必做题1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F 2(1,0),且该椭圆过定点M ⎝⎛⎭⎫1,22.(1)求椭圆E 的标准方程;(2)设点Q (2,0),过点F 2作直线l 与椭圆E 交于A ,B 两点,且2F A =λ2F B ,λ∈[-2,-1],以QA ,QB 为邻边作平行四边形QACB ,求对角线QC 长度的最小值.解析:(1)由题易知c =1,1a 2+12b 2=1,又a 2=b 2+c 2,解得b 2=1,a 2=2,故椭圆E 的标准方程为x 22+y 2=1.(2)设直线l :x =ky +1,由⎩⎪⎨⎪⎧x =ky +1,x 22+y 2=1得(k 2+2)y 2+2ky -1=0, Δ=4k 2+4(k 2+2)=8(k 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则可得y 1+y 2=-2k k 2+2,y 1y 2=-1k 2+2.QC =QA +QB =(x 1+x 2-4,y 1+y 2)=⎝ ⎛⎭⎪⎫-4(k 2+1)k 2+2,-2k k 2+2,∴|QC |2=|QA +QB |2=16-28k 2+2+8(k 2+2)2,由此可知,|QC |2的大小与k 2的取值有关.由2F A =λ2F B 可得y 1=λy 2,λ=y 1y 2,1λ=y 2y 1(y 1y 2≠0).从而λ+1λ=y 1y 2+y 2y 1=(y 1+y 2)2-2y 1y 2y 1y 2=-6k 2-4k 2+2,由λ∈[-2,-1]得⎝⎛⎭⎫λ+1λ∈⎣⎡⎦⎤-52,-2,从而-52≤-6k 2-4k 2+2≤-2,解得0≤k 2≤27. 令t =1k 2+2,则t ∈⎣⎡⎦⎤716,12,∴|QC |2=8t 2-28t +16=8⎝⎛⎭⎫t -742-172, ∴当t =12时,|QC |min =2.2.已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3. (1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.解析:(1)由抛物线的定义得|AF |=2+p2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)证明:设以点F 为圆心且与直线GA 相切的圆的半径为r. 因为点A(2,m)在抛物线E :y2=4x 上, 所以m =±2 2.由抛物线的对称性,不妨设A(2,22). 由A(2,22),F(1,0)可得直线AF 的方程为 y =22(x -1).由⎩⎨⎧y =22x -1,y2=4x ,得2x2-5x +2=0,解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2. 又G(-1,0),故直线GA 的方程为22x -3y +22=0, 从而r =|22+22|8+9=4 217 .又直线GB 的方程为22x +3y +22=0, 所以点F 到直线GB 的距离 d =|22+22|8+9=4217=r.这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.3.已知中心在原点,焦点在y 轴上的椭圆C ,其上一点P 到两个焦点F 1,F 2的距离之和为4,离心率为32. (1)求椭圆C 的方程;(2)若直线y =kx +1与曲线C 交于A ,B 两点,求△OAB 面积的取值范围. 解析:(1)设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0),由条件知,⎩⎪⎨⎪⎧2a =4,e =c a =32,a 2=b 2+c 2,解得a =2,c =3,b =1,故椭圆C 的方程为y 24+x 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1得(k 2+4)x 2+2kx -3=0, 故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4,设△OAB 的面积为S ,由x 1x 2=-3k 2+4<0,知S =12×1×|x 1-x 2|=12(x 1+x 2)2-4x 1x 2=2k 2+3(k 2+4)2,令k 2+3=t ,知t ≥3, ∴S =21t +1t+2. 对函数y =t +1t (t ≥3),知y ′=1-1t 2=t 2-1t 2>0,∴y =t +1t 在t ∈[3,+∞)上单调递增,∴t +1t ≥103,∴0<1t +1t+2≤316,∴0<S ≤32. 故△OAB 面积的取值范围为⎝⎛⎦⎤0,32. 二、重点选做题1.过离心率为22的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (1,0)作直线l 与椭圆C 交于不同的两点A ,B ,设|F A |=λ|FB |,T (2,0).(1)求椭圆C 的方程;(2)若1≤λ≤2,求△ABT 中AB 边上中线长的取值范围. 解析:(1)∵e =22,c =1,∴a =2,b =1, 即椭圆C 的方程为:x 22+y 2=1.(2)①当直线的斜率为0时,显然不成立. ②设直线l :x =my +1,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x 2+2y 2-2=0,x =my +1得(m 2+2)y 2+2my -1=0,则y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,由|F A |=λ|FB |,得y 1=-λy 2, ∵-λ+1-λ=y 1y 2+y 2y 1,∴-λ+1-λ+2=(y 1+y 2)2y 1y 2=-4m 2m 2+2,∴m 2≤27,又∵AB 边上的中线长为12 |TA +TB |=12(x 1+x 2-4)2+(y 1+y 2)2=4m 4+9m 2+4(m 2+2)2= 2(m 2+2)2-7m 2+2+4∈⎣⎡⎦⎤1,13216.2.如图所示,已知直线l 过点M (4,0)且与抛物线y 2=2px (p >0)交于A ,B 两点,以弦AB 为直径的圆恒过坐标原点O .(1)求抛物线的标准方程;(2)设Q 是直线x =-4上任意一点,求证:直线QA ,QM ,QB 的斜率依次成等差数列. 解析:(1)设直线l 的方程为x =ky +4, 代入y 2=2px 得y 2-2kpy -8p =0.设A (x 1,y 1),B (x 2,y 2),则有y 1+y 2=2kp ,y 1y 2=-8p ,而AB 为直径,O 为圆上一点,所以OA ·OB =0, 故0=x 1x 2+y 1y 2=(ky 1+4)(ky 2+4)-8p =k 2y 1y 2+4k (y 1+y 2)+16-8p , 即0=-8k 2p +8k 2p +16-8p ,得p =2, 所以抛物线方程为y 2=4x .(2)设Q (-4,t )由(1)知y 1+y 2=4k ,y 1y 2=-16,所以y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32.因为k QA =y 1-t x 1+4=y 1-t y 214+4=4(y 1-t )y 21+16,k QB =y 2-t x 2+4=y 2-t y 224+4=4(y 2-t )y 22+16,k QM =t -8,所以k QA +k QB =4(y 1-t )y 21+16+4(y 2-t )y 22+16=4×(y 1-t )(y 22+16)+(y 2-t )(y 21+16)(y 21+16)(y 22+16)=4×y 1y 22+16y 1-ty 22-16t +y 2y 21+16y 2-ty 21-16t y 21y 22+16(y 21+y 22)+16×16=-t (y 21+y 22)-32t 8×16+4(y 21+y 22)=-t (16k 2+32)-32t 8×16+4(16k 2+32) =-t 4=2k QM . 所以直线QA ,QM ,QB 的斜率依次成等差数列.三、冲刺满分题1.已知椭圆C :x 24+y 2b 2=1(0<b <2)的离心率为32,与坐标轴不垂直且不过原点的直线l 1与椭圆C 相交于不同的两点A ,B (如图所示),过AB 的中点M 作垂直于l 1的直线l 2,设l 2与椭圆C 相交于不同的两点C ,D ,且CN =12CD . (1)求椭圆C 的方程;(2)设原点O 到直线l 1的距离为d ,求d |MN |的最大值. 解析:(1)依题意得,⎩⎪⎨⎪⎧a =2,c a =32,c 2=a 2-b 2,解得b 2=1, 所以椭圆C 的方程为x 24+y 2=1. (2)设直线l 1:y =kx +m (k ≠0,m ≠0), 由⎩⎪⎨⎪⎧ x 24+y 2=1,y =kx +m 得(1+4k 2)x 2+8kmx +4m 2-4=0, 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 1+x 2=-8mk 1+4k 2,x 1x 2=4m 2-41+4k 2.故M ⎝⎛⎭⎫-4mk 1+4k 2,m 1+4k 2. l 2:y -m 1+4k 2=-1k ⎝⎛⎭⎫x +4mk 1+4k 2,即y =-1k x -3m 1+4k 2.由⎩⎨⎧ y =-1k x -3m 1+4k 2,x 24+y 2=1, 得⎝⎛⎭⎫1+4k 2x 2+24m k (1+4k 2)x +36m 2(1+4k 2)2-4=0, 设C (x 3,y 3),D (x 4,y 4),则x 3+x 4=-24mk (1+4k 2)(k 2+4), 故N ⎝⎛⎭⎫-12mk (1+4k 2)(k 2+4),-3mk 2(1+4k 2)(k 2+4). 故|MN |=|x M -x N | 1+1k 2=4|m |(k 2+1)k 2+1(1+4k 2)(k 2+4). 又d =|m |1+k 2,所以d |MN |=(1+4k 2)(k 2+4)4(k 2+1)2. 令t =k 2+1(t >1),则d |MN |=4t 2+9t -94t 2=-94t 2+94t +1=-94⎝⎛⎭⎫1t -122+2516≤2516(当且仅当t =2时取等号), 所以d |MN |的最大值为2516. 2.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=6,直线y =kx 与椭圆交于A ,B 两点.(1)若△AF 1F 2的周长为16,求椭圆的标准方程;(2)若k =24,且A ,B ,F 1,F 2四点共圆,求椭圆离心率e 的值; (3)在(2)的条件下,设P (x 0,y 0)为椭圆上一点,且直线P A 的斜率k 1∈(-2,-1),试求直线PB 的斜率k 2的取值范围.解析:(1)由题意得c =3,根据2a +2c =16,得a =5. 结合a 2=b 2+c 2,解得a 2=25,b 2=16.所以椭圆的方程为x 225+y 216=1. (2)法一:由⎩⎨⎧x 2a 2+y 2b 2=1,y =24x ,得⎝⎛⎭⎫b 2+18a 2x 2-a 2b 2=0. 设A (x 1,y 1),B (x 2,y 2).所以x 1+x 2=0,x 1x 2=-a 2b 2b 2+18a 2,由AB ,F 1F 2互相平分且共圆,易知,AF 2⊥BF 2,因为2F A =(x 1-3,y 1),2F B =(x 2-3,y 2), 所以2F A ·2F B =(x 1-3)(x 2-3)+y 1y 2=⎝⎛⎭⎫1+18x 1x 2+9=0. 即x 1x 2=-8,所以有-a 2b 2b 2+18a 2=-8, 结合b 2+9=a 2,解得a 2=12(a 2=6舍去), 所以离心率e =32.(若设A (x 1,y 1),B (-x 1,-y 1)相应给分) 法二:设A (x 1,y 1),又AB ,F 1F 2互相平分且共圆,所以AB ,F 1F 2是圆的直径,所以x 21+y 21=9,又由椭圆及直线方程综合可得:⎩⎨⎧ x 21+y 21=9,y 1=24x 1,x 21a 2+y 21b 2=1.由前两个方程解得x 21=8,y 21=1, 将其代入第三个方程并结合b 2=a 2-c 2=a 2-9, 解得a 2=12,故e =32. (3)由(2)的结论知,椭圆方程为x 212+y 23=1, 由题可设A (x 1,y 1),B (-x 1,-y 1),k 1=y 0-y 1x 0-x 1,k 2=y 0+y 1x 0+x 1,所以k 1k 2=y 20-y 21x 20-x 21, 又y 20-y 21x 20-x 21=3⎝⎛⎭⎫1-x 2012-3⎝⎛⎭⎫1-x 2112x 20-x 21=-14, 即k 2=-14k 1,由-2<k 1<-1可知,18<k 2<14. 即直线PB 的斜率k 2的取值范围是⎝⎛⎭⎫18,14.。

圆锥曲线最值问题(培优)

圆锥曲线最值问题(培优)

第一讲:圆锥曲线最值问题 (理科)典型例题分析:例1:已知P 是椭圆2214x y +=在第一象限内的点,A (2,0),B (0,1),O 为原点,求四边形OAPB 的例2:已知△OFQ 的面积为OF FQ m ⋅=(1m ≤≤OFQ ∠正切值的取值范围;(2)设以O 为中心,F 为焦点的双曲线经过点Q (如图),2||,(1)4OF c m c ==- 当 ||OQ 取得最小值时,求此双曲线的方程。

例3:已知椭圆221259x y +=,A (4,0),B (2,2)是椭圆内的两点,P 是椭圆上任一点,求:(1)求5||||4P A P B +的最小值;(2)求||||PA PB +的最小值和最大值例4:如图所示,设点1F ,2F 是22132x y +=的两个焦点,过2F 的直线与椭圆相交于A 、B 两点,求△1F AB 的面积的最大值, 并求出此时直线的方程。

例5:A 、B 是经过椭圆2222 1.x y a b+=(0)a b >> 右焦点的任一弦,若过椭圆中心O的弦//MN AB ,求证:2||MN :||AB 是定值例题答案:例题2解析:(1)设OFQ θ∠=||||cos()1||||sin 2OF FQ mOF FQ πθθ⎧⋅-=⎪⎨⋅⋅=⎪⎩tan θ⇒=6m ≤≤4tan 1θ-≤≤-(2)设所求的双曲线方程为221111221(0,0),(,),(,)x y a b Q x y FQ x c y a b-= >> =-则∴11||||2OFQ S OF y ∆=⋅=1y = 又∵OF FQ m ⋅=,∴2111(,0)(,)()1OF FQ c x c y x c c c ⋅=⋅-=-⋅=-)21,||4x OQx ∴= ∴==当且仅当4c=时,||OQ 最小,此时Q 的坐标是或22222266141216a ab b a b ⎧⎧-==⎪⎪∴ ⇒⎨⎨=⎪⎩⎪+=⎩,所求方程为22 1.412x y -= (借助平面向量,将三角形、圆锥曲线最值、求曲线方程、基本不等式等多个知识点有机的结合起来,综合考察学生应用相关知识点解题的能力例题3分析:(1)A 为椭圆的右焦点。

圆锥曲线中的最值问题

圆锥曲线中的最值问题

圆锥曲线中的最值问题一 重点:求圆锥曲线中的各种最值问题。

二 难点:题目中各种基本思想方法的灵活应用。

三 基本方法:本节所用到换元、数形结合、目标函数等数学思想和方法。

四 例题 1.几何法(Ⅰ)有关点的最值问题【练习1】椭圆22221(0)x y a b a b+=>>上的点到原点距离的最大值是 ;最小值是 ;相应点的坐标是 .【练习2】双曲线22221x y a b-=上的点到原点距离的最小值是 ;相应点的坐标是 .【练习3】椭圆22221(0)x y a b a b+=>>上的点到焦点距离的最大值是 ;最小值是 ;相应点的坐标是 .【练习4】双曲线22221x y a b-=上的点到焦点距离的最小值是 ;相应点的坐标是 .【练习5】抛物线22(0)y px p =>上的点到焦点距离的最小值是 ;相应点的坐标是 .【例1】点P 为抛物线上24x y =上一动点,定点(8,7)A ,则点P 到x 轴与到A 点的距离之和的最小值为 ,并求此时点P 的坐标 。

【解析】1019PB PA PC BC PA PF PA BC FA BC +=-+=+-≥-=-=,当且仅当点P 是抛物线与FA 的交点时,9PB PA +=最小。

此时,由243440x yx y ⎧=⎨-+=⎩解得(4,4)P 或1(1,)4P -(舍去.但,是PF PA -的最大值点.P 在线段外,有向线段方向问题。

PF PA-的最小值点即线段AF 的垂直平分线与抛物线的交点)。

【评析】(1)如何判断点A 的位置。

参照区域判断方法。

(2)折线和化为直线段。

(3)此题无最大值。

(4)若点A 在抛物线内部,如何?(过A 作x 轴的垂线,垂线段长即为所求,垂线与抛物线的交点即为P 点。

此情况也无最大值。

)PF PA -的最大、最小值点?说明:①“兜底”;②细节。

【变式1】F 是椭圆221259x y +=的右焦点,P 是其上一点,定点(2,1)B ,则54PB PF +最小值为 ;P B P F +的最大、最小值为 .【解析】首先判断定点(2,1)B 的位置. ①54PB PF PB PQ BC +=+≥; ②222a BF PB PF PB PF a a BF '-≤'+=-+'≤+【评析】(1)54PB PF +的最大值存在,但求不出.(涉及4次方程) (2)55(2)44PB PF PB PF a '-=+-能求最小,最大求不出.(3)PB PF -的最大、最小值点? (4)(2,4)B 点在椭圆外,54PB PF +如何?无法求出.PB PF +最小可求,即连接BF 与椭圆的交点; PB PF +最大也可求,2PB PF PB PF a '+=-+,连接BF '与椭圆的交点;PB PF -的最大值可求,最小值与BF 的垂直平分线和椭圆有无交点有关――有交点可求,无交点存在最小值但求不出.【变式2】已知双曲线2213y x -=上有动点P 和定点(2,1)A ,且F 为双曲线的右焦点,则12PA PF +的最小值 ;P A P F +的最小值(分P 点在左、右支) 。

高中数学 圆锥曲线最值问题的的7种必考题型

高中数学 圆锥曲线最值问题的的7种必考题型

圆锥曲线中的最值问题探究一.点的横(纵)坐标的最值例题1.定长为l (22b l a >)的线段AB 的端点在双曲线12222=by -a x 的右支上,求AB 中点M 的横坐标的最小值解析:如图,作出双曲线的右准线,过A,B 作AA′、BB′垂直于准线,垂足为A′,B′。

又过AB 的中点M 作MM′垂直于准线,垂足为M′.因为|MM′|=21(|AA′|+|BB′|),(1)据双曲线的第二定义:||||,=||||AF BF e eAA BB =''可得|AA′|=e 1|AF|,|BB′|=e1|BF|,将此二式代入(1),结合三角形两边之和大于第三边可得:|MM′|=e 21(|AF|+|BF|)≥e21|AB|,当且仅当A、F、B 三点共线时,即AB 过焦点F 时,有|AF|+|BF|=|AB|。

即'min |MM |=e 21|AB|=el 2,此时x―c a 2=e l 2=c al 2.即x=c a 2+222)2(2b a a l a c al ++=.AB 中点M的横坐标的最小值为:二.离心率最值例题2.设椭圆12222=+by a x (a >b >0)两焦点F 1、F 2,若椭圆上存在一点Q ,使∠F 1QF 2=120º,求椭圆离心率e 的最小值.解析:设1112(,),(,0),(,0),c 0P x y F c F c ->,则1121||,|PF a ex PF a ex =+=-在12PF F ∆中,由余弦定理得:22222201212111211||||||()()41cos1202||||2()()2PF PF F F a ex a ex c PF PF a ex a ex +-++--===-+-解得:22221243[0,]c a x a e -=∈,所以312c e a >=≥,即椭圆离心率e 的最小值为32FA'AB B 'MM 'Oyx变式:双曲线)0012222>>=-b a by a x ,(的左右焦点分别为21,F F ,若椭圆上存在点P,使得12||2||PF PF =,求双曲线离心率e 的最大值解析:由1212||2||||||=2PF PF PF PF a =⎧⎨-⎩得12||4||=2PF aPF a=⎧⎨⎩因为在12PF F ∆中,12||||>2c PF PF +,即422422a a c a a c+>⎧⎨-<⎩所以13c a<<又因为当三点一线时,422a a c+=所以综上得:离心率e 的取值范围是(1,3],即双曲线离心率e 的最大值为3三.线段长度最值例题3.已知椭圆1422=+y x G :,过点(),0m 作221x y +=的切线l 交椭圆G 于,A B 两点,求||AB 的最大值.解析:由题意得:点(),0m 在圆221x y +=上或在圆外,所以11-≤≥m m 或当1=m 时,切线1:=x l 由⎪⎩⎪⎨⎧=+=14122y x x 得⎪⎩⎪⎨⎧±==231y x ,故3||=AB ,同理1-=m 时,3||=AB 当11-<>m m 或时,设)(:m x k y l -=,),(),,(2211y x B y x A 因为直线l 与圆221x y +=相切,所以11||2=+k km ,即2221k m k +=由⎪⎩⎪⎨⎧=+-=14)(22y x m x k y 得0448)4122222=-+-+m k mx k x k (所以⎪⎩⎪⎨⎧+-=+=+>-+-=∆222212221222244144,4180)1)(41(1664k m k x x k m k x x m k k m k 所以]4))[(1(||212212x x x x k AB -++=24233m |m |m ||m |==≤++当且仅当3±=m 时取等号,综上可知:||AB 的最大值为2.F 1F 2A MxyO变式:若点P 在抛物线x y =2上,点Q 在圆1)322=+-y x (上,求||PQ 的最小值解析:12111411)25(1)3(1222-≥-+-=-+-=-≥x y x PC PQ 即||PQ 的最小值为12-四.多线段运算最值例题4.1F 、2F 分别是椭圆1162522=+y x 的左右焦点,)2,2(A 为定点,M 为椭圆上任意点,求2MF MA +的最小值。

2025高考数学圆锥曲线中的最值、范围问题课件练习题

2025高考数学圆锥曲线中的最值、范围问题课件练习题
例1
训练1
例2
训练2
返回目录
突破2
圆锥曲线中的最值、范围问题
方法技巧
圆锥曲线中最值(范围)问题的求解方法
几何法
若题目的条件和结论明显能体现几何特征及意义,则考虑利用图形性质来
解决.
若题目的条件和结论能体现一种明确的函数,则可首先建立目标函数,再
代数法 求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不
第八章
平面解析几何
突破2 圆锥曲线中的最值、范围问题
目录
Contents
01
练习 练透好题 精准分层
突破2
圆锥曲线中的最值、范围问题
命题点1 最值问题
例1 [2023全国卷甲]已知直线 x -2 y +1=0与抛物线 C : y 2=2 px ( p >0)交于 A , B
两点,| AB |=4 15 .
.
例1
训练1
例2
训练2
返回目录
突破2
圆锥曲线中的最值、范围问题
又 · =( x 3 -1, y 3 )·( x 4 -1, y 4 )= x 3 x 4 -( x 3 + x 4 )+1+ y 3 y 4 =0,
所以
2
2

4−2
2
+1+
4

=0,化简得 m 2 + k 2 +6 km =4.
(2)若动点 P 与双曲线 C 的两个焦点 F 1, F 2的距离之和为定值(大于| F 1 F 2|),且
cos
1
∠ F 1 PF 2的最小值为- ,求动点 P 的轨迹方程.
9
[解析]
2
2
由椭圆定义得 P 点轨迹为椭圆,可设其轨迹方程为 2 + 2 =1( a > b >0),

圆锥曲线中的最值和定值问题

圆锥曲线中的最值和定值问题

N
A
M
o
C
B y=m
x
二、定值 策略三:先确定再验证求解定值问题
例3、如图,已知椭圆的中心在原点,一个长轴端点为P(0,-2),
离斜率为k1
,
k2的直y线PA,
PB,交椭圆
于点A, B。
(1)求椭圆的方程; (2)若k1k2 2,探究:
直线AB是否经过定点?
B
o Ax
20
结论:1、利用平行线间的距离可以有效解决; 2、利用三角换元,视角独特
一、最值
5、如果x,y满足 4x2 9 y2 36 ,则 | 2x 3 y 12 | 的最大值为_________
结论:数形结合,灵活运用知识是关键
一、最值
6、(2011年北京卷19) 已知椭圆 x2 y2 1 ,过点(m,0)作圆 x2 y2 1的
A
(09辽宁.文22)
o
x
F
E
二、定值 策略二:分析代数式结构求解定值问题
例2、如图,在平面直角坐标系xoy中,过定点C(0,p)作直线 与抛物线x2 2 py( p 0)相交于A, B。是否存在垂直于y轴的直 线l,使得l被以AC为直径的圆截得的弦长恒为定值?若存在,
求出l的方程;若不存在,请说明理由。 y
最小值为________。
2b2
| PF1 | | PF2 | 1 cos
结论:| PF1 | | PF2 |的最大值 a 2
| PF1 | | PF2 |的最小值 b2
一、最值
x2 y2
3、已知椭圆
25
9
1上一点为M,点A(2,2)是椭
圆内一点,F1 , F2 为它的左右焦点,则 | MA | | MF2 | 的

圆锥曲线最值问题及练习

圆锥曲线最值问题及练习

圆锥曲线最值问题及练习中学数学最值问题遍及代数、三角,立体几何及解析几何各科之中,且与生产实际联系密切,最值问题有两个特点:①覆盖多个知识点(如二次曲线标准方程,各元素间关系,对称性,四边形面积,解二元二次方程组,基本不等式等)②求解过程牵涉到的数学思想方法也相当多(诸如配方法,判别式法,参数法,不等式,函数的性质等)计算量大,能力要求高。

1回到定义2 2例1已知椭圆—y =1,A(4,25 95点,P是椭圆上任一点,求:(1)求一4(2)求|PA|+|PB的最小值和最大值。

略解:(1)A为椭圆的右焦点。

作PQ丄右准线于点Q,则由椭圆的第二定义= 4,| PQ| 5二5| PA| ■ | PBH PQ | | PB | •问题转化为在椭圆上找一点P,使其到点B和右准线的距离之和最4小,很明显,点P应是过B向右准线作垂线与椭圆的交点,最小值为17。

(2)由椭圆的第一定义,设C为椭圆的左焦点,则|PA|=2a-|PC| •••|P\|+|PB|=2a-|PC|+|PB|=10+(|PB||PC|)根据三角形中,两边之差小于第三边,当P运动到与B、C成一条直线时,便可取得最大和最小值。

即-|BC|< |PB| -|PC^|BC|当P到P"位置时,|PB卜|PC|=|BC||PX|+|PB有最大值,最大值为10+|BC|=10 ' 2'、10 ;当P到P"位置时,|PB卜|PC|=-|BC||P\|+|PB有最小值,最小值为10-|BC|=10 -2、10。

回到定义的最值解法同样在双曲线、抛物线中有类似应用。

(2)中的最小值还可以利用椭圆的光学性质来解释:从一个焦点发出的光线经过椭圆面反射后经过另一焦点,而光线所经过的路程总是最短的。

2、利用闭区间上二次函数最值的求法例2、在抛物线y =4x2上求一点,使它到直线y=4x-5的距离最短。

1 24(t ——)2 +42.171当t 匕时,d min4 ,17,故所求点为(-,1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线最值问题及练习中学数学最值问题遍及代数、三角,立体几何及解析几何各科之中,且与生产实际联系密切,最值问题有两个特点:①覆盖多个知识点(如二次曲线标准方程,各元素间关系,对称性,四边形面积,解二元二次方程组,基本不等式等)②求解过程牵涉到的数学思想方法也相当多(诸如配方法,判别式法,参数法,不等式,函数的性质等)计算量大,能力要求高。

1、回到定义例1、已知椭圆221259x y +=,A (4,0),B (2,2)是椭圆内的两点,P 是椭圆上任一点,求:(1)求5||||4PA PB +的最小值; (2)求|PA|+|PB|的最小值和最大值。

略解:(1)A 为椭圆的右焦点。

作PQ ⊥右准线于点Q,则由椭圆的第二定义||4||5PA e PQ ==,∴5||||||||4PA PB PQ PB +=+.问题转化为在椭圆上找一点P ,使其到点B 和右准线的距离之和最小,很明显,点P 应是过B 向右准线作垂线与椭圆的交点,最小值为174。

(2)由椭圆的第一定义,设C 为椭圆的左焦点,则|PA|=2a-|P C| ∴|P A|+|PB|=2a-|PC|+|PB|=10+(|PB | -|PC|)根据三角形中,两边之差小于第三边,当P 运动到与B 、C 成一条直线时,便可取得最大和最小值。

即-|BC|≤|PB| -|PC|≤|BC|.当P 到P"位置时,|PB| -|PC|=|BC|,|P A|+|PB|有最大值,最大值为10+|BC|=10+当P 到P"位置时,|PB| -|PC|=-|B C|,|P A|+|PB |有最小值,最小值为10-|BC|=10-回到定义的最值解法同样在双曲线、抛物线中有类似应用。

(2)中的最小值还可以利用椭圆的光学性质来解释:从一个焦点发出的光线经过椭圆面反射后经过另一焦点,而光线所经过的路程总是最短的。

2、利用闭区间上二次函数最值的求法例2、在抛物线24x y =上求一点,使它到直线y=4x -5的距离最短。

解:设抛物线上的点)4,(2t t P ,点P 到直线4x-y -5=0的距离174)21(41754422+-=+-=t t t d当21=t 时,174min =d ,故所求点为)1,21(。

例3、已知一曲线x y 22=,(1)设点A的坐标为)0,32(,求曲线上距点A 最近的点P的坐标及相应的距离 |P A|;(2)设点A 的坐标为(a,0)a ∈R,求曲线上点到点A 距离最小值d ,并写出d=f(a)的函数表达式。

解:(1)设M(x ,y)是曲线上任意一点,则x y 22= )0(≥x31)31(2)32()32(22222++=+-=+-=x x x y x MA ∵ x ≥094min2=MA∴ 所求P 点的坐标是(0,0),相应的距离是32=AP(2)设M (x,y)是曲线上任意一点,同理有x a x y a x MA 2)()(2222+-=+-=)12()]1([2-+--=a a x 0≥x综上所述,有⎪⎩⎪⎨⎧-=aa d 12)1a ()1a (时当时当<≥3、运用函数的性质例4、在△ABC 中,A ∠,B ∠,C ∠的对边分别为a,b,c,且c=10,34cos cos ==a b B A ,P为△ABC 内切圆上动点,求点P 到顶点A,B ,C的距离的平方和最大值与最小值。

解:由B A A B A A ABa b B A 2sin 2sin 0sin cos cos sin sin sin cos cos =⇒=-⇒== ∵134≠=a b ∴ B A 22-=π ∴△AB C为Rt △由C=10,且34=a b 知 a =6 b=8 设△ABC 内切圆半径为r ,如图建立直角坐标系,则Rt △ABC 的内切圆M 的方程为:4)2()2(22=-+-y x 设圆M 上动点P (x,y )(40≤≤x ),则P 点到顶点A ,B,C 的距离的平方和为:222222222)6()8(x y y x y x PC PB PA ++-+++-=++=10012163322+--+=y x y x 764])2()2[(322+--+-=x y x =88-4x∵点P 在内切圆M上,40≤≤x ,于是88088max =-= 721688min =-=例5、直线m:y =kx+1和双曲线x 2-y 2=1的左支交于A,B 两点,直线L 过点P(-2,0)和线段AB 的中点M,求L 在y轴上的截距b 的取值范围。

略解:设A (x 1,y 1),B(x 2,y 2),M(x0,y 0),将y=k x+1代入x 2-y 2=1得(1-k 2)x 2-2kx-2=0,由题意,△>0且x 1+x 2<0,x 1x 2>0,解之得1k<<且M221(,)11k k k--,又由P(-2,0),M,Q(0,b )共线,得22211122221b k k k k k -==-+++-,即2222b k k =-++ 下面可利用函数f(k)=-2k2+k+2在上是减函数,可得22b b <->。

例6、已知P是椭圆2214x y +=在第一象限内的点,A (2,0),B (0,1),O 为原点,求四边形OAPB 的面积的最大值。

略解:设P (2c os θ,sin θ),(0<θ<л/2),点P 到直线AB:x+2y=2的距离|)2|5d πθ+--==≤=4、判别式法例7、定长为3的线段AB 的两个端点在抛物线x y =2上移动,记线段AB 的中点为M ,求点M 到y 轴的最短距离,并求此时点M 的坐标。

解:设点A 、B 的坐标分别为),(11y x ,),(22y x ,那么211y x =,222y x =①由题意,得2122122)()(3y y x x -+-= ②,又A B的中点M(x,y)到y 轴的距离为122x x x +=③,将① ③ 代入② 整理得02432)(42221221=--++x x y y y y ④,∵ 21y y 为实数,故 △=0)243(44422≥--⨯-x x 又∵ x>0得45≥x ⑤,当45=x 时,△=0 由④解得4121-=y y ⑥,2214522122)(212221221=-⨯=-=++=+x y y y y y y ,可得221=+y y ⑦,由 ⑥,⑦可得1y ,2y ,由①即得相应的1x ,2x 。

故AB的中点M 距y 轴最短距离为450=x ,且相应的中点坐标为)22,45(或)22,45(-。

法二:121x y = 222x y = 212221x x y y -=-∴ yx x y y k 212121=--=∴ 221222122))(41(9)]()2(1[3y y y y y y -+=⇒-+= ∵ 2221212y y x x x +=+= ① 212y y y += ②由①-②2得212242y y y x -=- ③ ①+③得2212)(44y y y x -=- ④④代入①得 4551924419422≥⇒=-≥++=x y y x 当且仅当1441922+=+y y 212=y 22±=y 时等式成立。

∴ 45min =x )22,45(±M 说明:此法即为下面的基本不等式法。

5、利用基本不等式例8、已知椭圆2214x y +=,F 1,F 2为其两焦点,P 为椭圆上任一点。

求:(1)|PF 1||PF 2|的最大值;(2)|PF 1|2+|PF 2|2的最小值。

略解:设|PF 1|=m ,|PF 2|=n,则m +n =2a=4,|PF 1||PF 2|=mn ≤22m n +⎛⎫⎪⎝⎭=4.|PF 1|2+|PF 2|2=(|PF 1|+|P F2|)2-2|PF 1||PF 2|≥42-2×4=8 参考练习:1、 过椭圆E:22221x y a b+=(a>b >0)上的动点P 向圆O:x2+y2=b 2引两条切线PA ,PB ,切点分别为A,B ,直线AB 与x 轴、y 轴分别交于M,N 两点。

求△M ON的面积的最小值。

(3b a)2、 设椭圆的中心在原点,长轴在x 轴上,离心率为32e =,已知点P(0,3/2)到这个椭圆上的点的最远距离为7,求这个椭圆方程,并求椭圆上到点P 的距离等于7的点的坐标。

(2214x y +=,所求点为1(3,)2±-)3、P为椭圆2221x y a +=上的一个动点,它与长轴端点不重合,2a ≥,点F 1和F 2分别是双曲线2221x y a-=的左右焦点,ф=∠F1PF 2, (1)求tg ф的表达式;(用a 及描述P位置的一个变量来表示) (2)当a固定时求ф的最小值ф0;(3)当a 在区间[2,3]上变化时,求ф0的取值范围。

(2022021(1)1a y tg a y φ+=--+,20211a arctg a φπ+=--,02[,2]3arctg πφ∈) 4、已知抛物线的方程为212yx m =-+,点A 、B及P (2,4)均在抛物线上,且直线PA 、PB 的倾斜角互补.ﻫ (1)求证:直线AB 的斜率为定值;(2)ﻫ (2)当直线AB 在y 轴上的截距为正时,求△PAB 面积的最大值.(最大值为6439,当b=163时取到。

)。

相关文档
最新文档