Matlab通信系统仿真实验报告

合集下载

通信网络基础实验报告基于MATLABSIMULINK设计ASKPSKFSK通信仿真系统以及Simulink编程的优点和不足

通信网络基础实验报告基于MATLABSIMULINK设计ASKPSKFSK通信仿真系统以及Simulink编程的优点和不足

通信网络基础实验实验报告姓名:学号:班级:实验名称:通信网络系统仿真设计与实现实验目的:1、学习MATLAB软件,掌握MATLAB-SIMULINK模块化编程。

2、理解并掌握通信网络与通信系统的基本组成及其工作方式。

实验环境:1、软件环境:Windows2000/XP2、硬件环境:IBM-PC或兼容机实验学时:4学时、必做、综合实验实验内容:1、ASK调制解调的通信仿真系统;2、PSK调制解调的通信仿真系统:3、FSK调制解调的通信仿真系统。

实验要求:1、基于MATLAB-SIMULINK分别设计一套ASK、PSK、FSK通信系统。

2、比较各种调制的误码率情况,讨论其调制效果。

实验步骤:独立自主完成分析思考:通信系统中滤波器的参数你是如何设计选择的,为什么?Simulink编程的优点和不足是什么?实验结论:1、对于ASK调制解调的通信系统调制:仿真结果显示如下:上图中CH1表示的是调制前的信号频谱,CH2表示的是ASK调制后的信号波形。

上图中第一张图是幅度调制前原始基带信号的波形,第二张图是幅度调制后通带信号的波形,第三张是解调信号的波形图。

有图可看出信道有一定的延迟。

由于在解调过程中没有信道和噪声,所以误码率相对较小,一般是由于码间串扰或是参数设置的问题,此系统的误码率为0.3636。

2、对于FSK调制解调的通信系统调制:仿真结果如下:2FSK基带调制信号频谱图CH1表示的是基带信号的功率谱,而CH2表示2FSK调制后通带信号的功率谱。

2FSK信号解调各点时间波形经过系统的仿真可以观察出系统的误码率为0.7273,如下图所示:3、对于PSK的调制解调通信系统调制:在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号. 在此用已调信号载波的0°和180°分别表示二进制数字基带信号的1 和0.用两个反相的载波信号进行调制,其方框图如下:2PSK信号调制的simulink的模型图其中Sin wave和Sin wave1是反相的载波,正弦脉冲作为信号源。

matlab软件仿真实验(信号与系统)(1)

matlab软件仿真实验(信号与系统)(1)

matlab软件仿真实验(信号与系统)(1)《信号与系统实验报告》学院:信息科学与⼯程学院专业:物联⽹⼯程姓名:学号:⽬录实验⼀、MATLAB 基本应⽤实验⼆信号的时域表⽰实验三、连续信号卷积实验四、典型周期信号的频谱表⽰实验五、傅⽴叶变换性质研究实验六、抽样定理与信号恢复实验⼀MATLAB 基本应⽤⼀、实验⽬的:学习MATLAB的基本⽤法,了解 MATLAB 的⽬录结构和基本功能以及MATLAB在信号与系统中的应⽤。

⼆、实验内容:例⼀已知x的取值范围,画出y=sin(x)的图型。

x=0:0.05:4*pi;y=sin(x);plot(y)例⼆计算y=sin(π/5)+4cos(π/4)例三已知z 取值范围,x=sin(z);y=cos(z);画三维图形。

z=0:pi/50:10*pi;x=sin(z);y=cos(z);plot3(x,y,z)xlabel('x')ylabel('y')zlabel('z')例四已知x的取值范围,⽤subplot函数绘图。

参考程序:x=0:0.05:7;y1=sin(x);y2=1.5*cos(x);y3=sin(2*x);y4=5*cos(2*x);subplot(2,2,1),plot(x,y1),title('sin(x)')subplot(2,2,2),plot(x,y2),title('1.5*cos(x)')subplot(2,2,3),plot(x,y3),title('sin(2*x)')subplot(2,2,4),plot(x,y4),title('5*cos(2*x)')连续信号的MATLAB表⽰1、指数信号:指数信号Ae at在MATLAB中可⽤exp函数表⽰,其调⽤形式为:y=A*exp(a*t) (例取 A=1,a=-0.4)参考程序:A=1;a=-0.4;t=0:0.01:10;ft=A*exp(a*t);plot(t,ft);grid on;2、正弦信号:正弦信号Acos(w0t+?)和Asin(w0t+?)分别由函数cos和sin表⽰,其调⽤形式为:A*cos(w0t+phi) ;A*sin(w0t+phi) (例取A=1,w0=2π,?=π/6) 参考程序:A=1;w0=2*pi; phi=pi/6; t=0:0.001:8;ft=A*sin(w0*t+phi);plot(t,ft);grid on ;3、抽样函数:抽样函数Sa(t)在MATLAB中⽤sinc函数表⽰,其定义为:sinc(t)=sin(πt)/( πt)其调⽤形式为:y=sinc(t)参考程序:t=-3*pi:pi/100:3*pi;ft=sinc(t/pi);plot(t,ft);grid on;4、矩形脉冲信号:在MATLAB中⽤rectpuls函数来表⽰,其调⽤形式为:y=rectpuls(t,width),⽤以产⽣⼀个幅值为1,宽度为width,相对于t=0点左右对称的矩形波信号,该函数的横坐标范围由向量t决定,是以t=0为中⼼向左右各展开width/2的范围,width的默认值为1。

通信系统仿真实验报告

通信系统仿真实验报告

通信系统仿真实验报告摘要:本篇文章主要介绍了针对通信系统的仿真实验,通过建立系统模型和仿真场景,对系统性能进行分析和评估,得出了一些有意义的结果并进行了详细讨论。

一、引言通信系统是指用于信息传输的各种系统,例如电话、电报、电视、互联网等。

通信系统的性能和可靠性是非常重要的,为了测试和评估系统的性能,需进行一系列的试验和仿真。

本实验主要针对某通信系统的部分功能进行了仿真和性能评估。

二、实验设计本实验中,我们以MATLAB软件为基础,使用Simulink工具箱建立了一个通信系统模型。

该模型包含了一个信源(source)、调制器(modulator)、信道、解调器(demodulator)和接收器(receiver)。

在模型中,信号流经无线信道,受到了衰落等影响。

在实验过程中,我们不断调整系统模型的参数,例如信道的衰落因子以及接收机的灵敏度等。

同时,我们还模拟了不同的噪声干扰场景和信道状况,以测试系统的鲁棒性和容错性。

三、实验结果通过实验以及仿真,我们得出了一些有意义的成果。

首先,我们发现在噪声干扰场景中,系统性能并没有明显下降,这说明了系统具有很好的鲁棒性。

其次,我们还测试了系统在不同的信道条件下的性能,例如信道的衰落和干扰情况。

测试结果表明,系统的性能明显下降,而信道干扰和衰落程度越大,系统则表现得越不稳定。

最后,我们还评估了系统的传输速率和误码率等性能指标。

通过对多组测试数据的分析和对比,我们得出了一些有价值的结论,并进行了讨论。

四、总结通过本次实验,我们充分理解了通信系统的相关知识,并掌握了MATLAB软件和Simulink工具箱的使用方法,可以进行多种仿真。

同时,我们还得出了一些有意义的结论和数据,并对其进行了分析和讨论。

这对于提高通信系统性能以及设计更加鲁棒的系统具有一定的参考价值。

通信原理实验教程(MATLAB)

通信原理实验教程(MATLAB)

实验教程目录实验一:连续时间信号与系统的时域分析-------------------------------------------------6一、实验目的及要求---------------------------------------------------------------------------6二、实验原理-----------------------------------------------------------------------------------61、信号的时域表示方法------------------------------------------------------------------62、用MATLAB仿真连续时间信号和离散时间信号----------------------------------73、LTI系统的时域描述-----------------------------------------------------------------11三、实验步骤及内容--------------------------------------------------------------------------15四、实验报告要求-----------------------------------------------------------------------------26 实验二:连续时间信号的频域分析---------------------------------------------------------27一、实验目的及要求--------------------------------------------------------------------------27二、实验原理----------------------------------------------------------------------------------271、连续时间周期信号的傅里叶级数CTFS---------------------------------------------272、连续时间信号的傅里叶变换CTFT--------------------------------------------------283、离散时间信号的傅里叶变换DTFT -------------------------------------------------284、连续时间周期信号的傅里叶级数CTFS的MATLAB实现------------------------295、用MATLAB实现CTFT及其逆变换的计算---------------------------------------33三、实验步骤及内容----------------------------------------------------------------------34四、实验报告要求-------------------------------------------------------------------------48 实验三:连续时间LTI系统的频域分析---------------------------------------------------49一、实验目的及要求--------------------------------------------------------------------------49二、实验原理----------------------------------------------------------------------------------491、连续时间LTI系统的频率响应-------------------------------------------------------492、LTI系统的群延时---------------------------------------------------------------------503、用MATLAB计算系统的频率响应--------------------------------------------------50三、实验步骤及内容----------------------------------------------------------------------51四、实验报告要求-------------------------------------------------------------------------58 实验四:调制与解调以及抽样与重建------------------------------------------------------59一、实验目的及要求--------------------------------------------------------------------------59二、实验原理----------------------------------------------------------------------------------591、信号的抽样及抽样定理---------------------------------------------------------------592、信号抽样过程中的频谱混叠----------------------------------------------------------623、信号重建--------------------- ----------------------------------------------------------624、调制与解调----------------------------------------------------------------------------------645、通信系统中的调制与解调仿真---------------------------------------------------------66三、实验步骤及内容------------------------------------------------------------------------66四、实验报告要求---------------------------------------------------------------------------75 实验五:连续时间LTI系统的复频域分析----------------------------------------------76一、实验目的及要求------------------------------------------------------------------------76二、实验原理--------------------------------------------------------------------------------761、连续时间LTI系统的复频域描述--------------------------------------------------762、系统函数的零极点分布图-----------------------------------------------------------------773、拉普拉斯变换与傅里叶变换之间的关系-----------------------------------------------784、系统函数的零极点分布与系统稳定性和因果性之间的关系------------------------795、系统函数的零极点分布与系统的滤波特性-------------------------------------------806、拉普拉斯逆变换的计算-------------------------------------------------------------81三、实验步骤及内容------------------------------------------------------------------------82四、实验报告要求---------------------------------------------------------------------------87 附录:授课方式和考核办法-----------------------------------------------------------------88实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间和离散时间信号的MATLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。

Matlab实验报告

Matlab实验报告

实 验 内 容
<设计性实验> 1、对于连续信号 x(t)=1+cos(2πft),其中 f=5kHz,分别以采样频率 fs=6 kHz 和 fs=12kHz 对其 进行采样, (1)分别绘出对应的采样信号。 (2)对信号进行傅里叶变换,绘出对应的曲线。 (3)在 simulink 仿真环境下,设计系统框图,观察信号的频谱成分。 实验源程序: (1)采样 clear all; fs1=6000;fs2=12000;f=5000; dt1=1/fs1;dt2=1/fs2; t=0:0.00001:0.0005;t1=0:dt1:0.005;t2=0:dt2:0.0025; x_t=1+cos(2*pi*f*t); x_t1=1+cos(2*pi*f*t1); x_t2=1+cos(2*pi*f*t2); figure(1) subplot(3,1,1) plot(t,x_t); title('原始信号') subplot(3,1,2) plot(t1,x_t1); title('采样频率 6kHZ 的采样信号') subplot(3,1,3) plot(t2,x_t2); title('采样频率 12kHZ 的采样信号') xlabel('时间/s')
3、lpf 函数 function [t,st]=lpf(f,sf,B); df = f (2) - f (1); T = 1/df; hf = zeros(1,length(f)); bf = [ -floor(B/df):floor(B/df)] + floor(length(f)/2); hf(bf) = 1; yf = hf.*sf; [t,st]=F2T(f,yf); st = real(st);

matlab信号与系统实验报告

matlab信号与系统实验报告

matlab信号与系统实验报告Matlab信号与系统实验报告引言:信号与系统是电子工程、通信工程等领域中的重要基础课程,对于理解和应用各种信号处理技术具有重要意义。

本实验报告旨在通过使用Matlab软件,对信号与系统的基本概念和实验进行探讨和分析。

实验一:信号的基本特性分析在信号与系统的研究中,我们首先需要了解信号的基本特性。

通过Matlab软件,我们可以方便地对不同类型的信号进行分析和处理。

在本实验中,我们选择了常见的正弦信号和方波信号进行分析。

首先,我们生成了一个频率为1kHz,幅度为2V的正弦信号,并绘制了其时域波形图和频谱图。

通过观察时域波形图,我们可以看到正弦信号具有周期性和连续性的特点。

而通过频谱图,我们可以看到正弦信号在频域上只有一个峰值,说明其是单频信号。

接下来,我们生成了一个频率为1kHz,幅度为2V,占空比为50%的方波信号,并绘制了其时域波形图和频谱图。

与正弦信号不同,方波信号具有分段常值的特点。

通过频谱图,我们可以看到方波信号在频域上存在多个谐波分量,说明其是由多个频率的正弦信号叠加而成。

实验二:系统的时域响应分析在信号与系统中,系统的时域响应是描述系统对输入信号进行处理的重要指标。

通过Matlab软件,我们可以方便地分析和绘制系统的时域响应。

在本实验中,我们选择了一个一阶低通滤波器作为系统,输入信号为一个频率为1kHz,幅度为2V的正弦信号。

通过绘制输入信号和输出信号的时域波形图,我们可以观察到系统对输入信号进行了滤波处理,输出信号的幅度和相位发生了变化。

此外,我们还可以通过改变系统的参数,如截止频率和阶数,来观察系统的时域响应的变化。

通过对比不同参数下的输出信号波形图,我们可以得出不同参数对系统响应的影响。

实验三:系统的频域响应分析除了时域响应,频域响应也是描述系统特性的重要指标。

通过Matlab软件,我们可以方便地进行系统的频域响应分析。

在本实验中,我们选择了一个二阶巴特沃斯低通滤波器作为系统,输入信号为一个频率为1kHz,幅度为2V的正弦信号。

MATLAB实验报告

MATLAB实验报告
注: 式1、式2在仿真中,无限积分范围被近似在-T/2<t<T/2、-Bs<f<Bs内。
仿真程序:
I. 傅里叶正变换的m函数
II. 傅里叶反变换的m函数
图像:
正变换图像:
反变换图像:
二、能量信号的能量谱密度仿真
【例二】(矩形脉冲的能量谱密度) 宽度为 的矩形脉冲的表达式为
g(t)=
其能量谱密度为
Eg(f)= =
参考仿真程序:
图像:
图像:
三、信号通过线性系统
若线性系统的输入是x(t),输出是y(t),则输出与输入的关系可以用卷积来描述y(t)= (式4),其中h(t)是系统的单位冲激相应。
在离散时间和截短的情况下,式4对应到离散卷积
仿真中更为简便的做法是借助频域关系来实现滤波
Y(y)=H(f)X(f)
【例三】(矩形脉冲通过巴特沃斯低通滤波器) 将一个宽为 =1ms的矩形脉冲通过一个3dB带宽为500Hz的6阶巴特沃思滤波器。矩形脉冲的主瓣带宽为1khz。仿真中设置的时间分辨率为1/32ms,频谱分辨率为1/64khz,抽样率为fs=32khz,总观察时间为T=64ms。参考仿真程序:图像:心得体会:
通过此次仿真实验实验中,我学会了如何使用MATLAB建立脚本文件实现函数之间的调用
也学到了通信原理中周期函数的频谱使用MATLAB仿真实现,收获了傅里叶正变换与傅里叶反变换图像十分清晰可见,有助于我对傅里叶变换更加深入地学习。有信号能量密度的仿真图像可知傅里叶反变换与傅里叶正变换是不同的。信号通过线性系统是傅里叶正变换为不规则的频谱,傅里叶反变换时为规则的矩形谱。不管怎么样自己动手做出来的收获就是不一样。
一、周期信号的频谱仿真
虽然Matlab中有许多现成的频域分析工具,如fft、ifft等,但对通信原理的学习者来说,直接进行傅里叶变换更为直观。为此,我们用Matlab提供的函数为基础,编制了两个m函数t2f.m及f2t.m。t2f是傅里叶正变换,对应

移动通信仿真实验-MATLAB仿真

移动通信仿真实验-MATLAB仿真

2012级移动通信仿真实验——1234567 通信S班一、实验目的:(1)通过利用matlab语言编程学会解决移动通信中基本理论知识的实验分析和验证方法;(2)巩固和加深对移动通信基本理论知识的理解,增强分析问题、查阅资料、创新等各方面能力。

二、实验要求:(1)熟练掌握本实验涉及到的相关知识和相关概念,做到原理清晰,明了;(2)仿真程序设计合理、能够正确运行;(3)按照要求撰写实验报告(基本原理、仿真设计、仿真代码(m文件)、仿真图形、结果分析和实验心得)三、实验内容:1、分集技术在Rayleigh衰落信道下的误码率分析内容要求:1)给出不同调制方式(BPSK/MPSK/QPSK/MQAM任选3种,M=4/8/16)在AWGN和Rayleigh衰落环境下的误码率性能比较,分析这些调制方式的优缺点;2)给出Rayleigh衰落信道下BPSK在不同合并方式(MRC/SC/EGC)和不同路径(1/2/3)时的性能比较,分析合并方式的优缺点;3)给出BPSK在AWGN和Rayleigh衰落信道下1条径和2条径MRC合并时理论值和蒙特卡洛仿真的比较。

3、直接扩频技术在Rayleigh衰落信道下的误码率分析内容要求:1)m-序列、Gold序列和正交Gold序列在AWGN信道下的QPSK误码率分析;2)m-序列、Gold序列和正交Gold序列在Rayleigh信道下的QPSK误码率分析;3)m-序列在AWGN和Rayleigh信道下的QPSK误码率分析;4)m-序列Rayleigh信道下不同调制方式MQAM(M=4/8/16)时的误码率分析。

四、实验数据1、基于MATLAB中的BPSK误码性能研究BPSK(Binary Phase Shift Keying )即双相频移键控,是把模拟信号转换成数据值的转换方式之一。

利用偏离相位的复数波浪组合来表现信息键控移相方式的一种。

本实验将简要介绍BPSK调制方式的特点,调制解调方法,以及在Matlab中在AWGN信道中的误码性能。

通信原理MATLAB验证低通抽样定理实验报告

通信原理MATLAB验证低通抽样定理实验报告

通信原理实验报告一、实验名称MATLAB验证低通抽样定理二、实验目的1、掌握抽样定理的工作原理。

2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。

同时训练应用计算机分析问题的能力。

3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。

它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。

4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。

三、实验步骤及原理1、对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。

2、设连续信号的的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。

四、实验内容1、画出连续时间信号的时域波形及其幅频特性曲线,信号为x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)2、对信号进行采样,得到采样序列,画出采样频率分别为10Hz,20 Hz,50 Hz时的采样序列波形;3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。

4、对信号进行谱分析,观察与3中结果有无差别。

5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。

五、实验仿真图(1) x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)的时域波形及幅频特性曲线。

clear;close all;dt=0.05;t=-2:dt:2x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(2,1,2)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');grid;(2)采样频率分别为10Hz时的采样序列波形, 幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;clear;close all;dt=0.1;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0);x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2;fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形')xlabel('t')subplot(3,2,2)title('原始频域波形')xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401))title('恢复后的信号');xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|');xlabel('f1');grid;(3)采样频率分别为20 Hz时的采样序列波形,幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;clear;close all;dt=0.05;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2;fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形')xlabel('t')subplot(3,2,2)plot(f2,abs(Y2))title('原始频域波形')xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401))title('恢复后的信号');xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|');xlabel('f1');grid;(4)采样频率分别为50 Hz时的采样序列波形,幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;;clear;close all;dt=0.02;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0);x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2; fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形') xlabel('t')subplot(3,2,2)plot(f2,abs(Y2))title('原始频域波形') xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形') xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|'); xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401)) title('恢复后的信号'); xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|'); xlabel('f1');grid;六、实验结论实验中对模拟信号进行采样,需要根据最高截止频率Fmax,按照采样定理的要求选择采样频率的两倍,即 Fs>2Fmax。

Matlab通信系统仿真实验报告

Matlab通信系统仿真实验报告

Matlab通信原理仿真学号:*******姓名:圣斌实验一 Matlab 基本语法与信号系统分析一、 实验目的:1、掌握MATLAB 的基本绘图方法;2、实现绘制复指数信号的时域波形。

二、 实验设备与软件环境:1、实验设备:计算机2、软件环境:MATLAB R2009a三、 实验内容:1、MATLAB 为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。

MATLAB 程序如下:x = -pi:0.1:pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x ,y1绘图title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x ,y2绘图xlabel('time'),ylabel('y')%第二幅图横坐标为’time ’,纵坐标为’y ’运行结果如下图:-1-0.500.51plot(x,y1)-1-0.500.51timey2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图:MATLAB程序如下:x=-pi:.1:pi;y1=sin (x);y2=cos (x);figure (1);%subplot (2,1,1);plot (x,y1);title ('plot (x,y1)');grid on%subplot (2,1,2);plot (x,y2);xlabel ('time');ylabel ('y')subplot(1,2,1),stem(x,y1,'r') %绘制红色的脉冲图subplot(1,2,2),stem(x,y1,'g') %绘制绿色的误差条形图运行结果如下图:3、一个复指数信号可以分解为实部和虚部两部分。

Matlab仿真DSB-SC信号与双极性不归零码通信原理实验报告二实验

Matlab仿真DSB-SC信号与双极性不归零码通信原理实验报告二实验

通信原理实验报告二实验题目:Matlab仿真DSB-SC信号与双极性不归零码一、实验内容1、将模拟信号m(t)=sin2πf m t与载波c(t)=sin2πf c t相乘得到双边带抑制载波调幅DSB-SC信号,设fc=6fm,fm=1k.(1)请画出DSB-SC信号时域,频域波形(2)分析模拟信号如何进行离散化(3)从时域和频域分析信号波形,并观察不同的时域或频域分辨率对信号有无影响,为什么。

2、写出双极性不归零码信号产生及其功率谱密度,图形表示,并结合理论进行分析二、实验目的1、DSB-SC信号仿真(1)进一步理解双边带抑制载波调幅信号的产生过程。

(2)理论联系实际通过实验仿真,获得双边带抑制载波调幅信号时域与频域的波形。

(2)练习matlab软件的使用,掌握常用函数的用法,以及M文件的用法,编写程序,仿真实现DSB-SC信号。

2、双极性不归零码仿真(1)充分理解双极性不归零码信号的产生原理,通过实验仿真实现信号。

(2)进一步熟悉MATLAB编程语言的结构与特点,为充分掌握MATLAB打下基础。

三、实验原理1、DSB-SC信号仿真时域采样定理:当时间信号函数f(t)的最高频率分量为f M时,f(t)的值可由一系列采样间隔小于或等于1/2f M的采样值来确定,即采样点的重复频率f≥2f M频域采样定理:对于时间上受限制的连续信号f(t)(即当│t│>T时,f(t)=0,这里T =T2-T1是信号的持续时间),若其频谱为F(ω),则可在频域上用一系列离散的采样值来表示,只要这些采样点的频率间隔。

(1)调制信号产在数字信号通信快速发展以前主要是模拟通信,由于为了合理使用频带资源,提高通信质量,需要使用模拟调制技术,通常连续波的模拟调制是以正弦波为载波的调制方式,他分为线性调制和非线性调制。

线性调制是指调制后的信号频谱为调制信号频谱的平移或线性变换,而非线性调制则没有这个性质。

线性调制器的一般模型如下图所示。

移动通信课程设计实验报告-利用matlab进行m序列直接扩频仿真.

移动通信课程设计实验报告-利用matlab进行m序列直接扩频仿真.

目录一、背景 (4)二、基本要求 (4)三、设计概述 (4)四、Matlab设计流程图 (5)五、Matlab程序及仿真结果图 (6)1、生成m序列及m序列性质 (6)2、生成50位随机待发送二进制比特序列,并进行扩频编码 (7)3、对扩频前后信号进行BPSK调制,观察其时域波形 (9)4、计算并观察扩频前后BPSK调制信号的频谱 (10)5、仿真经awgn信道传输后,扩频前后信号时域及频域的变化 (11)6、对比经信道前后两种信号的频谱变化 (12)7、接收机与本地恢复载波相乘,观察仿真时域波形 (14)8、与恢复载波相乘后,观察其频谱变化 (15)9、仿真观察信号经凯萨尔窗低通滤波后的频谱 (16)10、观察经过低通滤波器后无扩频与扩频系统的时域波形 (17)11、对扩频系统进行解扩,观察其时域频域 (18)12、比较扩频系统解扩前后信号带宽 (19)13、比较解扩前后信号功率谱密度 (20)14、对解扩信号进行采样、判决 (21)15、在信道中加入2040~2050Hz窄带强干扰并乘以恢复载波 (24)16、对加窄带干扰的信号进行低通滤波并解扩 (25)17、比较解扩后信号与窄带强干扰的功率谱 (27)六、误码率simulink仿真 (28)1、直接扩频系统信道模型 (28)2、加窄带干扰的直扩系统建模 (29)3、用示波器观察发送码字及解扩后码字 (30)4、直接扩频系统与无扩频系统的误码率比较 (31)5、不同扩频序列长度下的误码率比较 (32)6、扩频序列长度N=7时,不同强度窄带干扰下的误码率比较 (33)七、利用Walsh码实现码分多址技术 (34)1、产生改善的walsh码 (35)2、产生两路不同的信息序列 (36)3、用两个沃尔什码分别调制两路信号 (38)4、两路信号相加,并进行BPSK调制 (39)5、观察调制信号频谱,并经awgn信道加高斯白噪和窄带强干扰 (40)6、接收机信号乘以恢复载波,观察时域和频域 (42)7、信号经凯萨尔窗低通滤波器 (43)8、对滤波后信号分别用m1和m2进行解扩 (44)9、对两路信号分别采样,判决 (45)八、产生随机序列Gold码和正交Gold码 (47)1、产生Gold码并仿真其自相关函数 (48)2、产生正交Gold码并仿真其互相关函数 (50)九、实验心得体会 (51)直接序列扩频系统仿真一、背景直接序列扩频通信系统(DSSS)是目前应用最为广泛的系统。

MATLAB通信系统仿真实验报告

MATLAB通信系统仿真实验报告

MATLAB通信系统仿真实验报告实验一、MATLAB的基本使用与数学运算目的:学习MATLAB的基本操作,实现简单的数学运算程序。

内容:1-1 要求在闭区间[0,2π]上产生具有10个等间距采样点的一维数组。

试用两种不同的指令实现。

运行代码:x=[0:2*pi/9:2*pi]运行结果:1-2 用M文件建立大矩阵xx=[ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.91.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.92.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.93.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9]代码:x=[ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.91.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.92.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.93.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9]m_mat运行结果:1-3已知A=[5,6;7,8],B=[9,10;11,12],试用MATLAB分别计算A+B,A*B,A.*B,A^3,A.^3,A/B,A\B.代码:A=[5 6;7 8] B=[9 10;11 12] x1=A+B X2=A-B X3=A*B X4=A.*B X5=A^3 X6=A.^3 X7=A/B X8=A\B运行结果:1-4任意建立矩阵A,然后找出在[10,20]区间的元素位置。

程序代码及运行结果:代码:A=[12 52 22 14 17;11 10 24 03 0;55 23 15 86 5 ] c=A>=10&A<=20运行结果:1-5 总结:实验过程中,因为对软件太过生疏遇到了些许困难,不过最后通过查书与同学交流都解决了。

例如第二题中,将文件保存在了D盘,而导致频频出错,最后发现必须保存在MATLAB文件之下才可以。

MATLAB仿真AM调制解调 无线通信实验报告

MATLAB仿真AM调制解调  无线通信实验报告

无线通信实验报告院系名称:信息科学与工程学院专业班级:电信班学生姓名:学号:授课教师:2014 年11 月 6 日实验一 高斯衰落信道建模一、基本原理QPSK 信号可以看成是对两个正交的载波进行多电平双边带调制后所得信号的叠加,因此可以用正交调制的方法得到QPSK 信号。

QPSK 信号的星座如图4.1.1所示:图1.1 QPSK 信号星座图从AWGN 信道中,在一个信号区间内接收到的带宽信号可以表示为()()()()()cos(2)()sin(2)m m c c s c r t u t n t u t n t f t n t f t ππ=+=+-这里()c n t 和()s n t 是加性噪声的两个正交分量。

可以将这个接收信号与1()()cos(2)T c t g t f t ψπ=,2()sin(2)T c g t f t ψπ=-给出的1()t ψ和2()t ψ作相关,两个相关器的输出产生受噪声污损的信号分量,它们可表示为22()m s s s m m r s n n n M Mππξξ=+=++ 式中c n 和s n 定义为 1()()2c T c n g t n t dt ∞-∞=⎰ 1()()2s T s n g t n t dt ∞-∞=⎰ 这两个正交噪声分量()c n t 和()s n t 是零均值,互不相关的高斯随机过程。

这样,()()0c s E n E n ==和()0c s E n n =。

c n 和s n 的方差是 220()()2c s N E n E n == 最佳检测器将接收信号向量r 投射到M 个可能的传输信号向量{m s }之一上去,并选取对应于最大投影的向量。

据此,得到相关准则为(,)m m C r s r s =•,m=0,1,…,M-1由于全部信号都具有相等的能量,因此,对数字相位调制一种等效的检测器标准是计算接收信号向量r=(c r ,s r )的相位为 arctan s r cr r θ= 并从信号集{m s }中选取其相位最接近r θ的信号。

matlab与通信仿真实验报告

matlab与通信仿真实验报告

matlab与通信仿真实验报告《Matlab与通信仿真实验报告》摘要:本实验报告通过使用Matlab软件进行通信仿真实验,对通信系统的性能进行了评估和分析。

首先介绍了通信系统的基本原理和模型,然后利用Matlab软件搭建了通信系统的仿真模型,并进行了实验验证。

通过实验结果的分析,得出了通信系统的性能指标,为通信系统的设计和优化提供了重要参考。

一、引言通信系统是现代信息社会中不可或缺的基础设施,它承载着各种类型的信息传输和交换。

通信系统的性能直接影响着信息传输的质量和效率,因此对通信系统的性能评估和分析具有重要意义。

Matlab软件是一种功能强大的科学计算软件,它提供了丰富的工具和函数库,可以用于通信系统的建模、仿真和分析。

本实验报告将利用Matlab软件进行通信系统的仿真实验,对通信系统的性能进行评估和分析。

二、通信系统的基本原理和模型通信系统由发送端、信道和接收端组成,发送端将信息转换成电信号发送出去,经过信道传输后,接收端将电信号转换成信息。

通信系统的性能评估主要包括信号传输质量、误码率、信噪比等指标。

在本实验中,我们将以常见的调制解调技术为例,建立通信系统的仿真模型。

三、Matlab软件在通信系统仿真中的应用Matlab软件提供了丰富的工具和函数库,可以用于通信系统的建模、仿真和分析。

在本实验中,我们将利用Matlab软件搭建通信系统的仿真模型,包括信号调制、信道传输、信号解调等过程。

通过Matlab软件的仿真实验,我们可以得到通信系统的性能指标,如误码率、信噪比等。

四、实验结果分析通过Matlab软件进行通信系统的仿真实验,我们得到了一系列实验结果。

通过对实验结果的分析,我们可以评估通信系统的性能,比如误码率随信噪比的变化规律、不同调制方式的性能比较等。

这些实验结果对于通信系统的设计和优化具有重要的参考价值。

五、结论本实验报告利用Matlab软件进行通信系统的仿真实验,对通信系统的性能进行了评估和分析。

MATLAB通信建模实验仿真实验报告

MATLAB通信建模实验仿真实验报告

实验1:上采样与内插一、实验目的1、了解上采样与内插的基本原理和方法。

2、掌握上采样与内插的matlab程序的设计方法。

二、实验原理上采样提高采样频率。

上采样使得周期降低M倍,即新采样周期Tu和原有采样周期Ts的关系是T u=T s/M,根据对应的连续信号x(t),上采样过程从原有采样值x(kT s)生成新采样值x(kT u)=x(kT s/M)。

操作的结果是在每两个采样值之间放入M-1个零值样点。

更实用的内插器是线性内插器,线性内插器的脉冲响应定义如下:上采样值x(kT u)=x(kT s/M)通过与线性内插器的脉冲响应的卷积来完成内插。

三、实验内容仿真正弦波采样和内插,通过基本采样x(k),用M=6产生上采样x u(k),由M=6线性内插得到样点序列x i(k)。

四、实验程序% File: c3_upsampex.mM = 6; % upsample factorh = c3_lininterp(M); % imp response of linear interpolatort = 0:10; % time vectortu = 0:60; % upsampled time vectorx = sin(2*pi*t/10); % original samplesxu = c3_upsamp(x,M); % upsampled sequencesubplot(3,1,1)stem(t,x,'k.')ylabel('x')subplot(3,1,2)stem(tu,xu,'k.')ylabel('xu')xi = conv(h,xu);subplot(3,1,3)stem(xi,'k.')ylabel('xi')% End of script file.% File: c3_upsample.mfunction out=c3_upsamp(in,M)L = length(in);out = zeros(1,(L-1)*M+1); for j=1:Lout(M*(j-1)+1)=in(j); end% End of function file.% File: c3_lininterp.m function h=c3_lininterp(M) h1 = zeros(1,(M-1)); for j=1:(M-1) h1(j) = j/M; endh = [0,h1,1,fliplr(h1),0]; % End of script file.四、 实验结果012345678910x0102030405060x u01020304050607080-11x i实验二:QPSK、16QAM信号的散点图、正交、同相分量波形图一、实验目的1、了解QPSK、16QAM调制的基本原理。

通信原理MATLAB仿真实验指导书V1.1

通信原理MATLAB仿真实验指导书V1.1

leansmall@
表 5 MATLAB 特殊运算 符号 : ; , () [] {} 5.MATLAB的一维、二维数组的寻访 表6 子数组访问与赋值常用的相关指令格式 指令格式 A(r,c) A(r,:) A(:,c) A(:) A(i) A(r,c)=Sa A(:)=D(:) 指令功能 数组A中r指定行、c指定列之元素组成的子数组 数组A中r指定行对应的所有列之元素组成的子数组 数组A中c指定列对应的所有行之元素组成的子数组 数组A中各列元素首尾相连组成的“一维长列”子数组 "一维长列"子数组中的第i个元素 数组A中r指定行、c指定列之元素组成的子数组的赋值 数组全元素赋值,保持A的行宽、列长不变,A、D两组元素 总合应相同 构成向量、矩阵 构成单元数组 功能说明示例 1:1:4;1:2:11 分隔行 分隔列 符号 . .. … % ! = 注释 调用操作 系统命令 用于赋值 功能说明 示例
4.MATLAB变量与运算符 变量命名规则如下: (1) 变量名可以由英语字母、数字和下划线组成
Leansmall Lin
第 3 页
2013-4-26
通信原理 Matlab 仿真实验指导书 V1.1
leansmall@
(2) 变量名应以英文字母开头 (3) 长度不大于 31 个 (4) 区分大小写 MATLAB中设置了一些特殊的变量与常量,列于下表。 表1 MATLAB的特殊变量与常量 变量名 ANS i或j pi eps realmax 功能说明 默认变量名,以应答 最近一次操作运算结果 虚数单位 圆周率 浮点数的相对误差 最大的正实数 变量名 realmin INF(inf) NAN(nan) nargin nargout 功能说明 最小的正实数 无穷大 不定值(0/0)

Matlab程序设计仿真训练实验报告

Matlab程序设计仿真训练实验报告

Matlab程序设计仿真训练实验报告设计题目:物体碰撞运动建模专业;通信工程班级:三班姓名:张乐学号:201100805524报告时间:2012.06指导老师:蔡益红实验目的:了解matlab的基本特点与功能,基本掌握matlab的功能解决数学物理的相关问题。

实验环境MATLAB 7.9I、题目:质量为m的小球以速度正面碰撞质量为M的静止小球,假设碰撞是完全弹性的,即没有能量损失,求碰撞后两球的速度,及它们与两球质量比K =M/m的关系并对结果进行分析。

II、程序简介根据小球碰撞过程中的机械能守恒和动量守恒,写出两个方程,然后解出两个小球各自的速度表达式,再把已知参量代入到速度表达式即可求的小球完全弹性碰撞后的速度;其中,跟据两个小球的质量关系K=M/m,可以分析两个小球的质量跟碰撞后的速度u和v的方向和大小关系。

III、程序依据(机械能守恒)0.5*m*V^2-0.5*m*u^2-0.5*M*v^2=0(动量守恒)m*V-m*u-M*v=0求解方程的:u=V*(m-M)/(m+M);v=2*V*m/(m+M);代入K=M/m得:u=V*(1-k)/(1+k);v=2*V/(1+k);IV、程序代码syms u v;>>[x,y]=solve('0.5*m*V^2-0.5*m*u^2-0.5*M*v^2=0','m*V-m*u-M*v=0'); >> x=vpa(x,4);>> y=vpa(y,4);>>>> clear>> syms u v;>>[x,y]=solve('0.5*m*V^2-0.5*m*u^2-0.5*M*v^2=0','m*V-m*u-M*v=0'); >> x=vpa(x,4)x =V-(1.0*(M*V - 1.0*V*m))/(M + m)>> y=vpa(y,4)y =(2.0*V*m)/(M + m)当以K=M/m计算时:syms u v;>> [u,v]=solve('V-u-K*v=0','V^2-u^2-K*v^2=0');>> u=vpa(u,4)u =V(V - 1.0*K*V)/(K + 1.0)>> v=vpa(v,4)v =(2.0*V)/(K + 1.0)VI、函数图象x=0.1:0.1:10;>> y=2./(1+x)-1;>> z=2-2./(1+x);>>plot(x,y,x,z)V、数据分析当K=1时,两小球的质量相等,由公式的V1=0,V2=V0,即碰撞后质量为m的小球静止,质量为M的小球以速度大小V0,方向不变往前运动;当K>1时,碰后由速度表达式的V1为负,即速度反向,V2沿速度V0的方向运动;当K<1时,碰后由速度表达式得,两个小球均沿V0的方向运动,且V1的速度小于V2的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab通信原理仿真学号: 2142402 姓名:圣斌实验一 Matlab 基本语法与信号系统分析一、 实验目的:1、掌握MATLAB 的基本绘图方法;2、实现绘制复指数信号的时域波形。

二、 实验设备与软件环境:1、实验设备:计算机2、软件环境:MATLAB R2009a三、 实验内容:1、MATLAB 为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。

MATLAB 程序如下:x = -pi:0.1:pi;y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x ,y1绘图title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x ,y2绘图xlabel('time'),ylabel('y')%第二幅图横坐标为’time ’,纵坐标为’y ’运行结果如下图:-1-0.500.51plot(x,y1)-1-0.500.51timey2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图:MATLAB程序如下:x=-pi:.1:pi;y1=sin (x);y2=cos (x);figure (1);%subplot (2,1,1);plot (x,y1);title ('plot (x,y1)');grid on%subplot (2,1,2);plot (x,y2);xlabel ('time');ylabel ('y')subplot(1,2,1),stem(x,y1,'r') %绘制红色的脉冲图subplot(1,2,2),stem(x,y1,'g') %绘制绿色的误差条形图运行结果如下图:3、一个复指数信号可以分解为实部和虚部两部分。

实际通信信道并不能产生复指数信号,但可以用复指数信号描述其他基本信号,因此在通信系统分析和仿真中复指数信号起到十分重要的作用。

从严格意义上讲,计算机并不能处理连续信号。

在MATLAB中,连续信号是用信号在等时间间隔点的采样值来近似表示的。

当采样间隔足够小时,就可以比较好的近似连续信号。

例如绘制复指数信号时域波形的MATLAB实现如下。

MATLAB程序如下:function sigexp(a,s,w,t1,t2)%本函数实现绘制复指数信号时域波形%a:复指数信号幅度%s:复指数信号频率实部%w:复指数信号频率虚部%t1,t2:绘制波形的时间范围t=t1:0.01:t2;theta=s+j*w;fc=a*exp(theta*t);real_fc=real(fc);imag_fc=imag(fc);mag_fc=abs(fc);phase_fc=angle(fc);subplot(2,2,1);plot(t,real_fc);title('ʵ²¿');xlabel('t');axis([t1,t2,-(max(mag_fc)+0.2),max(mag_fc)+0.2]); subplot(2,2,2)plot(t,imag_fc);title('Ð鲿');xlabel('t');axis([t1,t2,-(max(mag_fc)+0.2),max(mag_fc)+0.2]); subplot(2,2,3)plot(t,mag_fc);title('Ä£');xlabel('t')axis([t1,t2,0,max(mag_fc)+0.5]);subplot(2,2,4);plot(t,phase_fc);title('Ïà½Ç');xlabel('t');axis([t1,t2,-(max(phase_fc)+0.5),max(phase_fc)+0.5]);在命令行中输入sigexp(3,-0.3,5,0,5),得到下图:t tt t四、实验感受通过这次实验课的学习,我对MATLAB有了基本的认识,掌握了MATLAB的基本绘图方法,实现了绘制复指数信号的时域波形。

通过将课堂知识用于实践操作,理解了MATLAB的仿真能力,学以致用,对书本知识有了更深的理解,激发了学习的兴趣。

实验二模拟信号的数字传输一、实验目的:实现PCM的采样、量化和编码。

二、实验设备与软件环境:1、实验设备:计算机2、软件环境:MATLAB R2009a三、实验内容:1、输入信号为一频率为10Hz的正弦波,管擦对于统一输入信号有不同的抽样频率是,恢复信号的不同形态。

抽样仿真框图:(1)当抽样频率大于信号频率的两倍时,设置如下:Sine Wave模块设置:“Pulse Generator”模块设置:“Analog Filter Design”模块设置:“Gain”模块设置系数为10;Scope显示原始波形为:Scope1显示频率为30Hz的抽样信号波形为Scope2显示抽样后信号的波形为Scope3显示通过低通滤波器后恢复的信号波形为(2)当抽样频率等于信号频率的两倍时,抽样频率为20Hz,“Pulse Generator”模块的“Period”设置为0.05,恢复信号波形为(3)当抽样频率小于信号抽样频率的两倍时,抽样频率为5Hz,“Pulse Generator”模块的“period”设置为0.2,恢复信号波形如下图所示2、设输入信号抽样值为+1270个量化单位,按照A律13折线特性编成8位码。

量化单位指以输入信号归一化值的1/2048为单位。

MATLAB程序如下。

clear allclose all。

x=+1270;if x>0out(1)=1;elseout(1)=0;endif abs(x)>=0 & abs(x)<16out(2)=0;out(3)=0;out(4)=0;step=1;st=0;elseif 16<=abs(x) & abs(x)<32out(i,2)=0;out(3)=0;out(4)=1;step=1;st=16;elseif 32<=abs(x) & abs(x)<64out(2)=0;out(3)=1;out(4)=0;step=2;st=32;elseif 64<=abs(x) & abs(x)<128out(2)=0;out(3)=1;out(4)=1;step=4;st=64;elseif 128<=abs(x) & abs(x)<256out(2)=1;out(3)=0;out(4)=0;step=8;st=128;elseif 256<=abs(x) & abs(x)<512out(2)=1;out(3)=0;out(i,4)=1;step=16;st=256;elseif 512<=abs(x) & abs(x)<1024out(2)=1;out(3)=1;out(i,4)=0;step=32;st=512;elseif 1024<=abs(x) & abs(x)<2048out(2)=1;out(3)=1;out(4)=1;step=64;st=1024;elseout(2)=1;out(3)=1;out(4)=1;step=64;st=1024;endif(abs(x)>=2048)out(2:8)=[1 1 1 1 1 1 1];elsetmp=floor((abs(x)-st/step));t=dec2bin(tmp,4)-48; %º¯Êýdec2binÊä³öµÄÊÇASCII×Ö·û´®£¬48¶ÔÓ¦0out(5:8)=t(1:4)endout=reshape(out,1,8)四、实验感受:在这次实验过程中,我更深的理解了以PCM为代表的编码调制技术,实现了PCM的采样、量化、编码过程,将连续变化的模拟信号转变为数字信号,收获很大,课堂知识和实验相互印证,加深了我的理解。

实验三数字信号基带传输实验一、实验目的:1、基于MATLAB实现双极性归零码的代码与绘图;2、绘制眼图。

二、实验设备与软件环境:1、实验设备:计算机2、软件环境:MATLAB R2009a三、实验内容:1、用双极性归零码来表示二元信息序列100110000101,画出波形示意图。

MATLAB程序如下:function y=drz(x)%本函数实现将输入的一段二进制代码编为相应的双极性归零码输出%输入x为二进制码,输出y为编出的双极性归零码t0=300;t=0:1/t0:length(x); %定义对应的时间序列for i=1:length(x) %进行码型变换if(x(i)==1) %若输入信息为1for j=1:t0/2y(t0/2*(2*i-2)+j)=1; %定义前半时间值为1y(t0/2*(2*i-1)+j)=0; %定义后半时间值为0end;elsefor j=1:t0/2 %反之,输入信息为0y(t0/2*(2*i-2)+j)=-1; %定义前半时间值为-1y(t0/2*(2*i-1)+j)=0; %定义后半时间值为0end;end;endy=[y,x(i)]; %给序列y加上最后一位,便于作图M=max(y);m=min(y);subplot(2,1,1);plot(t,y);grid on;axis([0,i,m-0.1,M+0.1]);title('1 0 0 1 1 0 0 0 0 1 0 1');程序运行结果如下:-1-0.500.51 1 0 0 1 1 0 0 0 0 1 0 1-1-0.8-0.6-0.4-0.200.20.40.60.81 1 0 0 1 1 0 0 0 0 1 0 12、产生一个二进制随机方波序列,画出通过升余弦滤波器滤波后,方波的高频分量成分滤掉后绘出的眼图。

相关文档
最新文档