蛋白质复性

合集下载

蛋白质复性ProteinRefolding

蛋白质复性ProteinRefolding

第十章蛋白质复性Protein RefoldingOff-pathwayk I k A U I NAk N On-pathway 蛋白质体外复性的主要挑战:操作条件抑制聚集体生成,提高复性收率。

主要影响因素l变性剂浓度(脲、盐酸胍)l氧化还原剂浓度、比例l pHl蛋白质稳定剂(甘油、海藻糖…)l蛋白质浓度l杂质种类和含量l变性剂浓度(脲、盐酸胍)l蛋白质聚集抑制剂(聚乙二醇、表面活性剂…)l盐的种类、浓度l混合效率l温度体外复性研究的核心问题1、模仿体内蛋白质折叠过程:构建适于蛋白质正确折叠的环境,设计能够促进蛋白质正确折叠、抑制折叠中间体聚集的折叠助剂2、发挥体外折叠的独特优势:构建体内不可能存在的独特环境,实现高效复性和分离纯化:色谱、反胶团、膜、双水相系统、沉淀……降低变性蛋白质溶液中变性剂的浓度,创造适宜的氧化还原环境(氧化还原电位),可引发蛋白质折叠复性;基本条件:-变性剂浓度:盐酸胍< 2 mol/L脲< 4 mol/L-GSH/GSSG 4/0.4 mmol/L ~ 5/5 mmol/L (例)ü直接稀释、透析、流加4.1 稀释复性复性缓冲液变性液蛋白质变性剂水、助剂Refolding bufferDenatured proteinPumpMagnetic stirrer 37 o C提高复性收率,且终浓度较高。

蛋白质复性特点-稀释复性小结低浓度下进行复性操作有利于提高活性收率;浓度提高则聚集体生产速度加快,复性收率下降;流加复性有利于实现高浓度下的高收率复性;存在适宜的变性剂浓度,使复性收率最大;抑制聚集体的生成,是提高复性收率的关键!In vivo protein folding体内折叠:是在一系列折叠酶、分子伴侣和水解酶的辅助下完成的。

F. Baneyx, M. Mujacic: Nature Biotechnology, 2004, 22: 1399折叠助剂(Folding aids)l蛋白质体内折叠是在各种折叠调解因子(modulators)和蛋白酶的共同作用下完成的;l调解因子:分子伴侣(chaperones)和折叠酶(foldases)体外蛋白质复性的策略l体外复性应模仿体内折叠过程。

蛋白质变性与复性

蛋白质变性与复性

蛋白质相互作用与复合物分离
蛋白质变性
利用变性剂分离和纯化蛋白质复合物 中的各个组分,有助于研究蛋白质之 间的相互作用和复合物的组成。
蛋白质复性
在研究蛋白质相互作用和复合物分离 后,通过复性技术将蛋白质恢复其天 然状态,可用于进一步的功能和结构 研究。
蛋白质优化与改造
蛋白质变性
通过蛋白质变性技术可以去除非必需的氨基酸残基或引入突 变,从而优化蛋白质的稳定性、活性或选择性。
蛋白质复性
复性后的蛋白质可用于进一步的功能和结构研究,以验证优 化和改造的效果。
人工酶设计与合成
蛋白质变性
在人工酶设计与合成过程中,利用变性技术可以去除天然酶中的非必需部分,提 高酶的活性和选择性。
蛋白质复性
复性后的酶可用于催化特定化学反应,以验证人工酶的活性和效果。
生物制药与疫苗开发
蛋白质变性
医疗领域
改进蛋白质检测和诊断技术,提高疾病诊断的准 确性和效率,为患者提供更好的医疗服务。
感谢您的观看
THANKS
蛋白质变性与复性
目录
CONTENTS
• 蛋白质变性 • 蛋白质复性 • 蛋白质变性与复性的应用 • 蛋白质变性与复性的研究进展 • 蛋白质变性与复性的挑战与前景
01 蛋白质变性
定义
蛋白质变性是指蛋白质在某些物理和 化学因素作用下,其特定的空间构象 被破坏,导致理化性质发生改变,生 物学活性丧失的现象。
复性后的蛋白质溶解度增加,有利于其在溶液中的稳 定性。
Байду номын сангаас
03 蛋白质变性与复性的应用
蛋白质结构与功能关系
蛋白质变性
通过改变蛋白质的理化条件,使其空间构象发生改变,从而改变其生物学活性。 有助于研究蛋白质的结构与功能关系,深入了解蛋白质在生物体内的生理作用。

蛋白质复性名词解释

蛋白质复性名词解释

蛋白质复性名词解释蛋白质是由氨基酸组成的生物大分子,是构成生物体各种组织和器官的重要成分。

蛋白质的功能多样,可以参与生物体内的酶催化、结构支持、运输、通信、能量存储、免疫防御等重要生理过程。

蛋白质的复性是指它的折叠状态和三维结构。

蛋白质synthesized 是在生物体内通过一系列复杂的生物化学反应合成的,但它不是以线性链的形式存在,而是经过折叠和组装形成复杂的三维结构。

这个过程被称为蛋白质的折叠,而折叠之后形成的三维结构就是蛋白质的复性。

蛋白质的复性是非常关键的,因为它决定了蛋白质的功能和稳定性。

如果蛋白质的复性受到破坏,它可能失去原有的生物活性和功能。

例如,当蛋白质的复性受到变性剂(如酸、碱、高温等)的作用时,蛋白质的结构可能会发生改变,导致其在生物体内无法正常发挥作用。

蛋白质的折叠和复性是一个自发的过程,在正常生理条件下,蛋白质可以自行正确地折叠成其稳定的复性。

但有时蛋白质的折叠过程会出现错位或失败,导致其形成不正确的复性。

这种情况下,被称为蛋白质的错折,错误复性的蛋白质可能会失去原有的功能,甚至产生有害的效应。

蛋白质折叠和复性的控制是一个复杂的过程,涉及到多个层面的调节。

通常,蛋白质的折叠主要由其氨基酸序列所决定,不同氨基酸之间的相互作用力(如氢键、离子相互作用、范德华力等)在折叠过程中扮演重要的角色。

此外,还有一些蛋白质专门参与蛋白质折叠和复性的分子辅助工具,如分子伴侣和分子伴侣辅助因子等,它们能够帮助蛋白质正确折叠和达到稳定的复性。

总之,蛋白质的复性是指其折叠和组装成稳定的三维结构的过程,它对蛋白质的功能和稳定性起着关键作用。

探索蛋白质复性的机制对于理解生物大分子的结构与功能具有重要意义,也对于研究蛋白质相关疾病和开发药物具有重要价值。

蛋白的变性和复性

蛋白的变性和复性

蛋白的变性和复性蛋白的变性和复性变性:蛋白质的空间结构是体现生物功能的基础,蛋白质折叠则是形成空间结构的过程。

蛋白质一级结构决定其高级结构的著名学说, 认为蛋白质折叠是受热力学因素控制的. 天然蛋白质处于能量最低(即热力学最稳定)的状态. 一般来说, 天然蛋白质的结构是相对稳定的, 结构的稳定性也是其保持生物个体功能和物种的相对稳定所要求的.蛋白质担负着复杂的生化反应, 同时在生物合成以后, 蛋白质本身也经历着繁杂的生理过程. 蛋白质自翻译以后, 还需进行一系列的翻译后过程, 包括跨膜转运、修饰加工、折叠复性、生化反应、生物降解等. 这些过程似乎都伴随着蛋白质的结构转换, 不但受蛋白质肽链自身的热力学稳定性所控制, 而且还受动力学过程控制.变性原因:蛋白质因受某些物理或化学因素的影响,分子的空间构象被破坏,从而导致其理化性质发生改变并失去原有的生物学活性的现象称为蛋白质的变性作用(denaturation)。

变性作用并不引起蛋白质一级结构的破坏,而是二级结构以上的高级结构的破坏,变性后的蛋白质称为变性蛋白。

引起蛋白质变性的因素很多,物理因素有高温、紫外线、X-射线、超声波、高压、剧烈的搅拌、震荡等。

化学因素有强酸、强碱、尿素、胍盐、去污剂、重金属盐(如Hg2+、Ag+、Pb2+等)三氯乙酸,浓乙醇等。

不同蛋白质对各种因素的敏感程度不同。

蛋白质变性后许多性质都发生了改变,主要有以下几个方面:(一)生物活性丧失蛋白质的生物活性是指蛋白质所具有的酶、激素、毒素、抗原与抗体、血红蛋白的载氧能力等生物学功能。

生物活性丧失是蛋白质变性的主要特征。

有时蛋白质的空间结构只有轻微变化即可引起生物活性的丧失。

(二)某些理化性质的改变蛋白质变性后理化性质发生改变,如溶解度降低而产生沉淀,因为有些原来在分子内部的疏水基团由于结构松散而暴露出来,分子的不对称性增加,因此粘度增加,扩散系数降低。

(三)生物化学性质的改变蛋白质变性后,分子结构松散,不能形成结晶,易被蛋白酶水解。

蛋白复原实验报告

蛋白复原实验报告
八、实验总结
本实验通过观察蛋白质变性及复性的现象,了解了蛋白质的性质。实验结果表明,蛋白质在一定条件下会发生变性,失去原有的生物活性,但在一定条件下可以复性,恢复原有的生物活性。蛋白质具有可溶性、变性和复性的特性,可用于生物制品的生产和应用。
五、实验结果与分析
1. 蛋白质变性实验
鸡蛋清蛋白溶液在加入硫酸铵后,出现白色沉淀,说明蛋白质变性。牛血清白蛋白溶液在加入氯化钠后,出现白色沉淀,说明蛋白质变性。
2. 蛋白质复性实验
鸡蛋清蛋白溶液在加入氢氧化钠后,白色沉淀逐渐消失,溶液变澄清,说明蛋白质复性。牛血清白蛋白溶液在加入蒸馏水后,白色沉淀逐渐消失,溶液变澄清,说明蛋白质复性。
3. 蛋白质鉴定实验
(1)取两支试管,分别加入等量的鸡蛋清蛋白溶液和牛血清白蛋白溶液。
(2)向第一支试管中加入碘液,观察颜色变化。
(3)向第二支试管中加入双缩脲试剂,观察颜色变化。
(4)取两支试管,分别加入等量的鸡蛋清蛋白溶液和牛血清白蛋白溶液。
(5)向第一支试管中加入酚酞指示剂,观察颜色变化。
(6)向第二支试管中加入酚酞指示剂,观察颜色变化。
三、实验材料
1. 蛋白质溶液:鸡蛋清蛋白溶液、牛血清白蛋白溶液。
2. 变性剂:硫酸铵、氯化钠。
3. 复性剂:蒸馏水、氢氧化钠。
4. 试剂:碘液、双缩脲试剂、酚酞指示剂。
5. 仪器:烧杯、试管、酒精灯、移液器、显微镜等。
四、实验步骤1. 蛋白质来自性实验(1)取两支试管,分别加入等量的鸡蛋清蛋白溶液和牛血清白蛋白溶液。
3. 蛋白质鉴定实验
鸡蛋清蛋白溶液加入碘液后,溶液变蓝,说明含有蛋白质。牛血清白蛋白溶液加入碘液后,溶液变蓝,说明含有蛋白质。鸡蛋清蛋白溶液加入双缩脲试剂后,溶液变紫,说明含有蛋白质。牛血清白蛋白溶液加入双缩脲试剂后,溶液变紫,说明含有蛋白质。鸡蛋清蛋白溶液加入酚酞指示剂后,溶液变红,说明含有蛋白质。牛血清白蛋白溶液加入酚酞指示剂后,溶液变红,说明含有蛋白质。

名词解释蛋白质的复性

名词解释蛋白质的复性

名词解释蛋白质的复性蛋白质的复性:现象与意义在生物化学领域中,蛋白质的复性是一个广泛而重要的研究课题。

复性是指蛋白质经历一系列空间结构和功能的调整,重建其原有的三维结构以及所能发挥的功能。

本文将探讨蛋白质复性的现象、机制以及其在生物体内的意义。

1. 蛋白质的复性现象复性是蛋白质遭受外部环境的一系列不良条件(如高温、极酸或极碱性条件、化学变性剂等)后,通过一定机制修复并重获原有结构与功能的过程。

在这个过程中,蛋白质的一级、二级和三级结构受到损伤,导致其失去正常功能。

蛋白质的复性可以发生在细胞内部和细胞外部。

在细胞内,复性通常由分子伴侣和分子伴侣系统促进,如分子伴侣热休克蛋白HSP70、HSP90等。

这些分子伴侣通过与蛋白质相互作用,引导失去结构的蛋白质重新折叠成正确的形式,并防止其在复性过程中发生聚集。

2. 蛋白质的复性机制复性过程涉及多个事件和步骤,其中最为关键的是解聚和折叠。

解聚是指复性过程中产生的不正常和不稳定的蛋白质聚集体分解为单体。

这个步骤由分子伴侣和其他调节蛋白质负责。

折叠是指蛋白质通过一系列无序到有序的结构变化,重新将其折叠成正确的三维构象。

折叠的过程中,分子伴侣系统与其他辅助蛋白质(如折叠辅助酶和蛋白激酶等)相互作用,协助和促进正确的二级和三级结构的形成。

此外,糖基化也被认为是蛋白质复性的关键机制之一。

在糖基化过程中,糖链与特定氨基酸残基结合,形成糖蛋白复合物。

这种复合物不仅能帮助维持蛋白质的稳定性,还可促进正确的折叠。

3. 蛋白质复性的意义蛋白质的复性在维持生物体内正常的生理功能中起着至关重要的作用。

在细胞内,复性可以防止异常蛋白质的聚集和沉积,减轻内环境的毒性。

此外,蛋白质复性还与许多重要的生物过程密切相关。

例如,蛋白质折叠失常与多种神经性疾病,如阿尔茨海默病和帕金森病相关。

了解复性过程可以帮助我们深入了解这些疾病的发生机制,并为研发相关的治疗方法提供新的思路。

另外,蛋白质复性也对生物技术领域具有重要意义。

蛋白质复性技术

蛋白质复性技术

一、基本原理
• (4)色谱复性:在色谱的过程中实现复性, 称为色谱复性法。优点在于,色谱固定相 对变性蛋白质吸附性能低,甚至完全消除, 变性蛋白质在脱离变性剂的环境发生聚集, 产生沉淀。提高复性质量和活性收率。在 蛋白质复性 的同时可使目的蛋白质与杂质 蛋白质分离,达到复性和纯化的双重效果。
一、基本原理
蛋白质复性
一、基本原理
1、包含体 • 是指以大肠杆菌为宿主细胞的基因表达产物由 于不能分泌到细胞外,而在细胞内聚集形成的 没有生物活性的固体颗粒。 • 一般含有50%以上的重组蛋白,其余为核糖体 元件、RNA聚合酶、内毒素、外膜蛋白ompC、 ompF和ompA等,环状或缺口的质粒DNA,以 及脂体、脂多糖等,大小为0.5-1um,具有很 高的密度(约1.3mg/ml),无定形,呈非水溶 性,只溶于变性剂如尿素、盐酸胍等。
一、基本原理
• (2)洗涤:为了除去包含体上粘附的杂质, 如膜蛋白或核酸,应用洗涤液洗涤包含体, 通常用低浓度的变性剂,过高浓度的尿素或 盐酸胍会使包含体溶解,如2M尿素洗涤。 此外可以用温和去垢剂洗涤去除膜碎片和 膜蛋白。
一、基本原理
• (3)溶解:一般用强的变性剂如尿素、盐 酸胍通过离子间的相互作用,打断包含体 蛋白质分子内和分子间的各种化学键,使 多肽伸展,一般来讲,盐酸胍优于尿素, 因为盐酸胍是较尿素强的变性剂,它能使 尿素不能溶解的包含体溶解,而且尿素分 解的异氰酸盐能导致多肽链的自由氨基甲 酰化,特别是在碱性pH值下长期保温时。
一、基本原理
3、蛋白质复性
• 由于包含体中的重组蛋白缺乏生物学活性, 加上剧烈的处理条件,使蛋白的高级结构 破坏,因此重组蛋白的复性特别必要。 通去除还原剂使二硫键正常形成。
一、基本原理

蛋白质的复性

蛋白质的复性

加变性剂溶解
除变性剂复性。
(2)机械破碎 膜分离可溶性蛋白
变性溶解包含体 除变性剂复性。
(3) 化学破碎(加变性剂) 出除变性剂复性。
离心除细胞碎片
蛋白质复性
路线1的特点:
方法(1):利用了包含体与细胞破碎片的密度 差,用离心法将包含体与细胞碎片和可溶性性蛋 白质分开,获得包含体,再对包含体溶解后,复 性,摆脱大量的杂蛋白,核酸,热原,内毒素等 杂质。 优点:分离步骤简单; 缺点:经几次离心后,才能除去大部分细胞碎片, 加工时间长。
蛋白质复性
预防包含体形成的方法
2. 通过改变、优化培养条件增加表达产物的可溶性. 为了使外源蛋白在E.coli细胞中可溶性,人们在培养条件的 优化方面进行了多方面的探索。
(II)利用丰富培养基,可使T4噬菌体的脱氧胞苷酸 脱氨酶的基因进行可溶性表达,表达量占细胞可 溶性蛋白总量的20%,而在最低培养基中,此酶 以包含体形式表达。
蛋白质复性
蛋白质复性的主要步骤:
破碎细胞
分离出包含体
溶解包含体
目标构建的构型复原 纯度的蛋白。
对复性蛋白进行纯化获得高
包含体颗粒内并不一定多是表达产物,也可能含有其
他杂物,核酸,脂类,杂蛋白等.
蛋白质复性
主要蛋白质复性的基本步骤和联合实验如下:
(1)机械破碎(高压匀浆,高速珠磨法)
离心法提取出包含体
蛋白质复性
基因表达系统一般分为真核表达系统和原核表达系统。由 于真核表达系统如酵母、昆虫细胞、哺乳动物细胞等产生 的重组蛋白价格高、产量低,而且操作复杂、产品周期长, 而原核表达系统培养成本低、生长快、表达量高、基因操 作方便,因此,目前它们仍是基因工程的主要表达系统, 特别是大肠杆菌。

蛋白的变性和复性

蛋白的变性和复性

蛋白的变性和复性变性:蛋白质的空间结构是体现生物功能的基础,蛋白质折叠则是形成空间结构的过程。

蛋白质一级结构决定其高级结构的著名学说, 认为蛋白质折叠是受热力学因素控制的. 天然蛋白质处于能量最低(即热力学最稳定)的状态. 一般来说, 天然蛋白质的结构是相对稳定的, 结构的稳定性也是其保持生物个体功能和物种的相对稳定所要求的.蛋白质担负着复杂的生化反应, 同时在生物合成以后, 蛋白质本身也经历着繁杂的生理过程. 蛋白质自翻译以后, 还需进行一系列的翻译后过程, 包括跨膜转运、修饰加工、折叠复性、生化反应、生物降解等. 这些过程似乎都伴随着蛋白质的结构转换, 不但受蛋白质肽链自身的热力学稳定性所控制, 而且还受动力学过程控制.变性原因:蛋白质因受某些物理或化学因素的影响,分子的空间构象被破坏,从而导致其理化性质发生改变并失去原有的生物学活性的现象称为蛋白质的变性作用(denaturation)。

变性作用并不引起蛋白质一级结构的破坏,而是二级结构以上的高级结构的破坏,变性后的蛋白质称为变性蛋白。

引起蛋白质变性的因素很多,物理因素有高温、紫外线、X-射线、超声波、高压、剧烈的搅拌、震荡等。

化学因素有强酸、强碱、尿素、胍盐、去污剂、重金属盐(如Hg2+、Ag+、Pb2+等)三氯乙酸,浓乙醇等。

不同蛋白质对各种因素的敏感程度不同。

蛋白质变性后许多性质都发生了改变,主要有以下几个方面:(一)生物活性丧失蛋白质的生物活性是指蛋白质所具有的酶、激素、毒素、抗原与抗体、血红蛋白的载氧能力等生物学功能。

生物活性丧失是蛋白质变性的主要特征。

有时蛋白质的空间结构只有轻微变化即可引起生物活性的丧失。

(二)某些理化性质的改变蛋白质变性后理化性质发生改变,如溶解度降低而产生沉淀,因为有些原来在分子内部的疏水基团由于结构松散而暴露出来,分子的不对称性增加,因此粘度增加,扩散系数降低。

(三)生物化学性质的改变蛋白质变性后,分子结构松散,不能形成结晶,易被蛋白酶水解。

12 蛋白质复性

12 蛋白质复性

复性有关理论
两个理论都认同:蛋白质的折叠是蛋白质自身分 子内作用的结果,是由于暴露在溶液中的疏水侧链的 疏水作用而互相靠近,形成了具有特定三维空间结构 的蛋白质分子。 按拓扑学观点认为:虽然蛋白质内部基团相互作 用复杂,使得不同蛋白质的折叠复性过程不相同,但 不同蛋白质多肽链穿越空间的形式可能会是相同或类 似。实验中也发现,蛋白质拓扑结构的氨基酸序列不 改变对蛋白质的折叠速度等参数影响很很少。因此, 该理论认为,蛋白质的折叠过程的许多参数及其折叠 机理可能与蛋白质的拓扑结构有密切关系。
包涵体加工流程
机械破碎法
包涵体提 取


去除细胞碎片 ( 膜蛋白和脂类等)
如何对包涵体蛋白进行高效体外复性以获得活性产品是生物工程产业化 的一个难题
包涵体的洗涤
• 为除去包涵体上粘附的杂质,应用洗涤液洗涤包涵体沉淀 • 常用去污剂Triton X-l00或脱氧胆酸钠和低浓度变性剂(如 2mol/L尿素或盐酸胍等,注意:过高浓度的尿素或盐酸胍 会使包涵体溶解)洗涤以除去脂类和膜蛋白。 • 如:50mM Tris-HCl, pH7.0-8.5, 2M尿素,1mM EDTA
• 3)变性剂浓度和复性时间
• 在高浓度变性剂存在时,蛋白质主要以U存在(6mol/L 盐酸胍、 8mol/L Urea等);在中间浓度时(较低浓度的盐酸胍和 Urea),主要以I存在,即能抑制蛋白质分子间的疏水相互作 用,又不会妨碍蛋白质分子内疏水相互作用的形成。
• 由于I向N转化是一个慢的过程,当蛋白质在此时放置较长的一 段时间,I就可以慢慢地向N转化
包涵体形成的几种可能性
研究发现:低表达时很少形成包涵体,表达量越高越易形成 包涵体。 1)少量蛋白产生时是可溶的,表达量过高,积聚量超过其 在细胞内溶解度时沉淀; 2)合成速度太快,以至于没有足够的时间进行折叠,二硫 键不能正确配对; 3)蛋白产生量过多,所需其他成分(如折叠酶和一系列翻译 后修饰酶及分子伴侣等)不足; 4)重组蛋白的氨基酸组成,一般说来含硫氨基酸越多、Pro 含量越高越容易形成包涵体。 5)重组蛋白所处的环境:发酵温度高时容易形成包涵体。 6)丰富的培养基有利于活性蛋白质的表达,当培养条件不 佳时,容易形成包涵体。

蛋白质复性的条件及影响因素

蛋白质复性的条件及影响因素

蛋白质复性的条件及影响因素王 雪 宋长征山东省医学科学院医药生物技术研究中心(济南,250062) 摘要 蛋白质复性是一个过程,存在中间阶段,此阶段的各种相互作用力决定了蛋白质能否复性。

蛋白质复性要求有一定的条件,如pH、温度、离子强度、蛋白质浓度等。

另外多种添加剂能促进蛋白质复性,其中包括表面活性剂、低浓度变性剂、分子伴侣蛋白和各种氧化还原对,但对于不同蛋白质,因其结构及理化特性不同,采取不同复性方法,可以使其达到最佳复性效果。

关键词 蛋白质; 结构与复性 蛋白质是一种具有复杂的空间立体结构的大分子物质,易受外界条件的影响发生变性。

随着基因工程技术的发展,许多实验通过将目的蛋白基因转入原核或真核表达体系进行表达的方法,得到需要的蛋白质,这大大丰富了蛋白质的来源。

但这些蛋白质,由于表达体系本身的原因,或实验过程的处理,多以无活性的形式存在,需要进行复性。

因此,对蛋白质复性的研究必然的成为从基础的实验室生物工程研究到最终临床应用过程中不可避免的一步。

本文将目前国内外对各种蛋白质复性方面的研究作一综述。

1 蛋白质的结构与复性蛋白质在一定的氨基酸顺序的基础上形成非常复杂的空间立体结构,其组成中的氨基酸本身的特性是蛋白质高级结构形成的决定因素和结构基础,尤其是处于关键部位的氨基酸,对蛋白质的生物学功能有根本的影响,例如镰刀型红细胞贫血症中血红蛋白氨基酸的变化。

因此,能达到复性的蛋白质变性应是在保持氨基酸的基本种类和顺序不变的基础上,由于其他因素的影响而引起的分子高级结构的变化,如α2螺旋、β2折叠结构的增减,肽链的变性舒展,杂乱结构的增多,从而使蛋白质正常的生物学活性丧失。

蛋白质稳定性与组成中的氨基酸种类有关系,例如含有巯基的氨基酸,最常见的是半胱氨酸,会降低蛋白质在高温条件下的稳定性,尤其在某些金属离子,Cu+、Zn2+等存在时,蛋白质对空气中的氧更为敏感,而易发生不可逆变性[1],在此基础上,有人通过用丝氨酸、丙氨酸替换活跃的半胱氨酸的方法来提高蛋白质的稳定性[2],这当然要在不影响蛋白质的生物学活性的基础上才有意义。

蛋白质复性

蛋白质复性
常需更长的复性操作时间




选用复性方法的原则:在包含体蛋白质的复性中, 若利用盐酸胍或尿素溶解包含体,应首先考虑通 过调节盐酸胍或尿素的浓度来获得满意的复性效 果。只有在复性效果不佳的情况下才考虑其他添 加剂。 表面活性剂、添加剂的去除是必须考虑的问题。

蛋白质复性(二)
本章内容

包含体的形成和性质 包含体的纯化和溶解 稀释复性、辅助因子的作用 分子伴侣和人工分子伴侣
本章重点



蛋白质复性的概念 包含体的概念及性质 蛋白质折叠的简化动力学模型(形成的机理) 包含体体内抑制策略 包含体分离纯化的一般方法和步骤 包含体的溶解方法 稀释复性的原理 蛋白质复性中常用的辅助因子及其作用

1.稳定天然态蛋白质的结构,降低错误 折叠蛋白质的稳定性
如甘油

2.提高折叠中间体或伸展肽链的溶解度 (稳定性)
如低浓度变性剂、聚乙二醇(PEG)、表面活 性剂
辅助蛋白质复性的稀释添加剂
分类 低浓度变性剂 氨基酸 表面活性剂 物质名称 盐酸胍(0.5-2mol/L) 尿素(1-4mol/L) L-精氨酸 聚乙二醇 Triton X-100 十二烷基磺酸钠 十六烷基三甲基溴化胺 月桂醇麦芽糖苷 吐温 磷脂




4 蛋白质复性(了解)




1961年,Anfinsen发现,在自由能驱动下, 变性后的牛胰核糖核酸酶(RNase A)可在体外 通过空气氧化自发形成正确的二硫键。 提示了蛋白质一级结构和高级结构的关系。 蛋白质的一级结构含有其折叠成熟所需的全部 信息,变性的蛋白质在一定条件下可以完全自 发地恢复活性。 变性蛋白质溶解在高浓度变性剂中,降低变性 剂浓度至非变性浓度范围,就可引发蛋白质折 叠复性。

蛋白质复性方法及其注意事项

蛋白质复性方法及其注意事项

蛋白质复性方法及其注意事项蛋白前期准备(1)查阅目标蛋白相关文献,了解其等电点,标签等注意点。

(2)如果目标蛋白易降解,可在纯化时加1-2mMDTT,全程低温,及时处理。

(3)透析Buffer的选择可参考文献。

蛋白复性包涵体:在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不溶性的结构称为包涵体(Inclusion Bodies,IB)。

在E.coli中累积的重组蛋白会迅速地以包涵体形式被沉淀出来,这些包涵体蛋白是丧失生物活性的不可溶的错误折叠蛋白的聚集体。

包涵体的处理一般包括这么几步:包涵体的洗涤、溶解、纯化及复性。

如果过表达蛋白在包涵体中,那么通常有两个选择可以考虑:(1)退一步,优化表达条件;(2)接受包涵体并采取策略来将蛋白溶解以及复性。

这里主要考虑第二种方案。

包涵体的洗涤破碎细胞都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入蛋白酶抑制剂等,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。

洗涤Buffer:50mM Tris-HCl(pH8.0), 2mM EDTA, 2mM DTT,150mM NaCl, 1% Triton X-100, 1mg/ml Leupeptin, 1mg/ml Pepstatin,1mM TCEP。

超声时用40-60ml裂解液,因为我们的超声仪很适合用100ml小烧杯,装40-60ml裂解液,这样能让超声头离液面不高不低,不会洒出来.菌多就延长超声时间(全程冰浴)。

包涵体的溶解1、对于尿素和盐酸胍的选择:尿素和盐酸胍属中强度变性剂,易经透析和超滤除去。

它们对包涵体氢键有较强的可逆性变性作用,所需浓度尿素8-10M,盐酸胍6-8M。

尿素溶解包涵体较盐酸胍慢而弱,溶解度为70-90%,尿素在作用时间较长或温度较高时会裂解形成氰酸盐,对重组蛋白质的氨基进行共价修饰,但用尿素溶解具有不电离,呈中性,成本低,蛋白质复性后除去不会造成大量蛋白质沉淀以及溶解的包涵体可选用多种色谱法纯化等优点,故目前已被广泛采用。

第10章 蛋白质复性

第10章 蛋白质复性

几种常见的工艺路线(一)
机械破碎 (高压匀浆、高速珠磨) 高压匀浆、高速珠磨)
离心提取出包含体
加变性剂溶解
除变性剂复性
特点是利用了包含体与细胞碎片的密度差, 特点是利用了包含体与细胞碎片的密度差,用 离心法将包含体与细胞碎片和可溶性蛋白质分 开,获得了干净的包含体,再对包含体溶解复 获得了干净的包含体, 这样首先就摆脱了大量的杂蛋白、核酸、 性。这样首先就摆脱了大量的杂蛋白、核酸、 热原、内毒素等杂质, 热原、内毒素等杂质,使后面的分离纯化简单 从这个角度上讲, 了。从这个角度上讲,包含体的形成对分离纯 化亦有好处。 化亦有好处。 缺点是要经过几次离心才能除去大部分的细胞 碎片,加工时间较长。 碎片,加工时间较长。
目标蛋白的复性
蛋白质复性:以包含体形式表达的蛋白, 蛋白质复性:以包含体形式表达的蛋白,需要在分离回收 包含体后,溶解包含体使其肽链伸展, 包含体后,溶解包含体使其肽链伸展,然后在合适的溶液 环境下使目标蛋白质恢复天然构型和活性, 环境下使目标蛋白质恢复天然构型和活性,这一过程成为 蛋白质复性。 蛋白质复性。 常用复性方法: 常用复性方法: 1、稀释复性:将蛋白质溶液稀释,降低变性剂浓度。 、稀释复性:将蛋白质溶液稀释,降低变性剂浓度。 2、添加剂辅助复性:添加具有抑制蛋白质聚集体的生成。 、添加剂辅助复性:添加具有抑制蛋白质聚集体的生成。 3、分子伴侣辅助复性:抑制蛋白质错误折叠和聚集。 、分子伴侣辅助复性:抑制蛋白质错误折叠和聚集。 4、反胶团复性:反胶团溶解变性蛋白质,将变形蛋白质分子 、反胶团复性:反胶团溶解变性蛋白质, 彼此分割开,阻止分子间相互作用。 彼此分割开,阻止分子间相互作用。 5、色谱复性:利用色谱技术将蛋白质与变性剂分开,同时凝 、色谱复性:利用色谱技术将蛋白质与变性剂分开, 胶的网络结构阻滞蛋白质分子间的相互作用。 胶的网络结构阻滞蛋白质分子间的相互作用。

蛋白质复性方法及其注意事项

蛋白质复性方法及其注意事项

蛋白质复性方法及其注意事项蛋白前期准备(1)查阅目标蛋白相关文献,了解其等电点,标签等注意点。

(2)如果目标蛋白易降解,可在纯化时加1—2mMDTT,全程低温,及时处理。

(3)透析Buffer的选择可参考文献。

蛋白复性包涵体:在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不溶性的结构称为包涵体(Inclusion Bodies,IB)。

在E.coli中累积的重组蛋白会迅速地以包涵体形式被沉淀出来,这些包涵体蛋白是丧失生物活性的不可溶的错误折叠蛋白的聚集体。

包涵体的处理一般包括这么几步:包涵体的洗涤、溶解、纯化及复性。

如果过表达蛋白在包涵体中,那么通常有两个选择可以考虑:(1)退一步,优化表达条件;(2)接受包涵体并采取策略来将蛋白溶解以及复性。

这里主要考虑第二种方案。

包涵体的洗涤破碎细胞都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入蛋白酶抑制剂等,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。

洗涤Buffer:50mM Tris-HCl(pH8。

0), 2mM EDTA,2mM DTT,150mM NaCl,1%Triton X—100,1mg/ml Leupeptin,1mg/ml Pepstatin,1mM TCEP。

超声时用40-60ml裂解液,因为我们的超声仪很适合用100ml小烧杯,装40-60ml裂解液,这样能让超声头离液面不高不低,不会洒出来。

菌多就延长超声时间(全程冰浴)。

包涵体的溶解1、对于尿素和盐酸胍的选择:尿素和盐酸胍属中强度变性剂,易经透析和超滤除去。

它们对包涵体氢键有较强的可逆性变性作用,所需浓度尿素8—10M,盐酸胍6—8M。

尿素溶解包涵体较盐酸胍慢而弱,溶解度为70-90%,尿素在作用时间较长或温度较高时会裂解形成氰酸盐,对重组蛋白质的氨基进行共价修饰,但用尿素溶解具有不电离,呈中性,成本低,蛋白质复性后除去不会造成大量蛋白质沉淀以及溶解的包涵体可选用多种色谱法纯化等优点,故目前已被广泛采用。

蛋白质复性

蛋白质复性

重组包涵体蛋白质复性邹平基因工程技术的发展掀开了人类生命科学研究的崭新篇章,开辟了现代生物工业发展的新纪元。

重组DNA技术为大规模生产目标蛋白质提供了可能,E.coli以其易于操作、遗传背景清楚、发酵成本低和蛋白表达水平高等优点,是生产重组蛋白的首选表达系统。

但外源基因在E.coli中的高表达常常导致包涵体的形成,如何高效地复性包涵体蛋白是基因工程技术面临的一个难题。

随着人类基因组计划的完成和蛋白组计划的实施,人们将会更多地面临这一问题的挑战。

一、包涵体蛋白1、包涵体的形成包涵体主要是因为在重组蛋白的表达过程中缺乏某些蛋白质折叠的辅助因子,而无法形成正确的次级键等原因形成的;也可能是外源基因合成速度太快,没有足够的时间进行折叠、二硫键不能正确的配对、过多的蛋白间的非特异性结合、蛋白质无法达到足够的溶解度等;重组蛋白质的一级结构也与包涵体形成有关,一般说含硫氨基酸越多越易形成包涵体,而脯氨酸的含量明显与包涵体的形成呈正相关;重组蛋白所处的环境不适,发酵温度高或胞内pH接近蛋白的等电点时易形成包涵体。

2、减少包涵体形成的策略降低重组菌的生长温度,是减少包涵体形成的最常用的方法。

低生长温度降低了无活性聚集体形成的速率和疏水相互作用;细菌生长缓慢溶氧水平低,也可减少包涵体的形成。

在培养重组菌中供给丰富的培养基,创造最佳培养条件,如供氧充足、合适pH等,以减少包涵体的形成。

添加可促进重组蛋白质可溶性表达的生长添加剂,增加细胞的渗透压。

在低的诱导剂条件下培养重组菌,减少重组蛋白表达量,也可减少包涵体的形成。

利用硫氧还蛋白融合表达或与目标蛋白共表达,得到可溶性目的蛋白。

筛选合适的宿主菌,使表达的重组蛋白可溶。

3、包涵体破菌、分离、洗涤常用高压匀化或机械、化学和酶相结合的方法破碎含包涵体的宿主菌细胞 ,再将破碎液通过低速离心或过滤除去可溶蛋白后获得包涵体。

包涵体中除了目的蛋白外还含有脂类、脂多糖、核酸和杂蛋白等成分,而这些成分会影响包涵体蛋白的复性,故去折叠前应洗涤包涵体,以去除杂质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18
作业

什么是包含体、包含体的复性? 蛋白质复性的一般过程或步骤? 请描述蛋白质折叠的动力学模型? 什么是分子伴侣和人工分子伴侣?
19
16
人工分子伴侣复性机理

首先利用表面活性剂分子捕获变性蛋白质, 完全抑制蛋白质的折叠和分子间疏水作用;
然后添加环糊精。环糊精的内腔疏水,对表 面活性剂具有吸附作用,从而将伸展肽链表 面的表面活性剂分子快速剥离,引发蛋白质 的折叠。
17

人工分子伴侣优点

操作简单方便 添加剂成本低廉 复性效率较高 与盐酸胍可协同作用,实现高浓度蛋白 质的高收率复性典型的人工Fra bibliotek侣系统为:
表面活性剂(如CTAB)/环糊精(CD)
15
CTAB和CD



CTAB 十六烷基三甲基溴化铵 别称:西曲溴铵、 溴烷铵 分子式 C16H33(CH3)3NBr 分子量 364.446 熔点: 250-237℃ 水溶性 13 g/L (20°C) CD(cyclodextrin)
HSP在分子进化上高度保守,并广泛分布于 微生物、植物、动物等各种生物体内。
3


蛋白质的折叠主要有两种方式:一种是自发 折叠,另外一种是其他蛋白辅助折叠。
多数情况下,新生肽链在细胞内没法完成自 发折叠。

4
2 分子伴侣

1978年Laskey等发现; 1987年Ellis提出普遍意义分子伴侣; 1993年Ellis对分子伴侣做了更为确切的定义,
通常操作条件下,对低浓度蛋白质复性效果 好
11

GroEL的作用机理图示
12
13
分子伴侣的优缺点

优点:复性收率可达80%-100%; 缺点:应用成本高; 对低浓度蛋白质复性辅助效果好
改进:固定化分子伴侣或其肽片断以便 重复使用; 利用色谱柱可进行高浓度蛋白质复性

14
人工分子伴侣

概念:人工开发的,模拟天然分子伴侣辅 助作用的复性系统。
分子伴侣:是一类相互之间有关系的蛋白,它们的 功能是帮助其他含多肽结构的物质在体内进行正确 的非共价的组装,并且不是组装完成的结构在发挥 其正常的生物功能时的组成部分。
5
分子伴侣

Molecular chaperones
实为热休克蛋白质,HSP(heat shock protein)

6
分子伴侣功能
蛋白质复性(三)
本章内容


包含体的形成和性质 包含体的纯化和溶解 稀释复性、辅助因子的作用 分子伴侣和人工分子伴侣
1
课堂重点



分子伴侣及人工分子伴侣的概念 典型代表 GroEL/GroES CTAB/CD 作用机理 复性过程的要求与选择
2
热休克蛋白(HSP)

概念:细胞或生物体在一定时间(几小时、几 分钟、甚至几秒钟)内遭受高于其正常生长温 度8~12℃以上的温度时,新合成的或含量增 加的一类蛋白质。

抑制蛋白质伸展肽链错误折叠和聚集
促进肽链折叠成天然活性肽 在体内和体外都有作用


7
分子伴侣的分类和分布
8

研究最多的是:源于大肠杆菌的 chaperonin家族的GroEL和GroES
9
分子伴侣的空间结构
10
GroEL的作用机理

蛋白质折叠过程中,GroEL结合伸展的肽链 或折叠的中间态,并在ATP和GroES的存在 下,水解ATP释放蛋白质和能量,促进折叠 复性
相关文档
最新文档