北师大版数学七年级上册2、2数轴
北师大版七年级数学上册第二章有理数2.2数轴
广州 16.6°C
济南 -C
解:16.6°C>2.3°C>-3.2°C>-5.6°C>-16.8°C
6.观察数轴,找出符合下列要求的数。 (1)最大的负整数; (2)最小的正整数;
解: (1)最大的负整数是-1 (2)最小的正整数1
7.下列说法正确的是 (3) (5) (6)(填序号) (1)数轴上的点只能表示整数; (2)数轴上的点只能表示分数; (3)数轴是一条直线; (4)数轴上找不到即不表示正数,也不表示负数的数; (5)所以有理数都可以用数轴上的点来表示; (6)数轴上的一个点只能表示一个数。
课本:29页,第2,3,5题
1、认识数轴,会画完整的数轴,会用数轴 上的点表示有理数。 2、会利用数轴比较有理数的大小。
1. 具有相反意义 2. 大,小; 3. 正数,负数 4. 分数
1. 我们通常用正数和负数表示 具有相反意义的量; 2. 正数都比零 大 ,负数都比零 小 ; 3. 零既不是 正数 ,也不是 负数 ; 4. 整数和 分数 统称为有理数.
1.用“<”“>”或“=”填空. 0 > -2 ; -3 < 1; -0.1 < 0.1; 0.03 > -100; -9 < -5.
2.在数轴 上与原点距离2个单位长度的点表示的数有 个,为 2,-2.
3.在数轴上,原点及原点右边的点表示的数是( D ) A.正数; B.负数; C.正整数; D.非负数.
4.如果点A表示-3,将A向右移动7个单位长度,那
么终点表示的数是 4
;
如果点A表示3,将A向左移动7个单位长度,再向右
移动5个单位长度,那么终点表示的数是 1
;
5.下表是某年1月份我国几个城市的平均气温,请将 各城市按平均气温从高到底顺序排列.
北师大版数学七年级上册2.2《数轴》教学设计
北师大版数学七年级上册2.2《数轴》教学设计一. 教材分析《数轴》是北师大版数学七年级上册第二章第二节的内容。
数轴是中学数学中重要的概念之一,是实数与几何相结合的桥梁。
通过数轴,学生可以直观地理解实数的性质,如大小比较、距离、相反数等。
同时,数轴也是解决方程、不等式等问题的重要工具。
二. 学情分析七年级的学生已经学习了有理数,对实数的概念有一定的了解。
但在实际操作中,部分学生可能对数轴的理解仍存在困难,如数轴的表示方法、数轴上的点与实数的关系等。
因此,在教学过程中,需要注重引导学生从实际操作中理解数轴的概念,并能运用数轴解决实际问题。
三. 教学目标1.理解数轴的概念,掌握数轴的表示方法。
2.能正确地在数轴上表示数,判断两个实数的大小关系。
3.理解数轴上的点与实数的一一对应关系,能运用数轴解决实际问题。
四. 教学重难点1.数轴的概念及其表示方法。
2.数轴上的点与实数的关系。
3.运用数轴解决实际问题。
五. 教学方法采用问题驱动法、情境教学法和小组合作学习法。
通过设置问题情境,引导学生主动探究数轴的概念及其应用;利用数轴模型,让学生在实际操作中理解数轴的性质;小组讨论,培养学生的团队协作能力。
六. 教学准备1.准备数轴模型或挂图,以便学生在课堂上直观地理解数轴。
2.准备与数轴相关的问题案例,用于引导学生探究和解决实际问题。
3.准备PPT,用于展示数轴的相关概念和例题。
七. 教学过程1.导入(5分钟)利用数轴模型或挂图,引导学生观察数轴,提出问题:“数轴是什么?数轴上的点与实数有什么关系?”让学生回顾数轴的基本概念。
2.呈现(15分钟)通过PPT展示数轴的定义和表示方法,讲解数轴上的点与实数的一一对应关系。
同时,给出一些例子,让学生判断两个实数的大小关系。
3.操练(15分钟)让学生分组进行讨论,每组选取一个实数,然后在数轴上表示出来。
接着,让学生判断其他组表示的实数与自己的实数的大小关系。
最后,各组汇报讨论成果。
北师大版七上数学2.2《数轴》知识点精讲
知识点总结数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素")②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
数轴:规定了原点.正方向和单位长度的直线.注意:⑴原点.正方向.单位长度称为数轴的三要素,三者缺一不可.⑵单位长度和长度单位是两个不同的概念,前者指所取度量单位的长度,后者指所取度量单位的名称,即单位长度是一条人为规定的代表“1’的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,则不能再改变.⑶数轴的画法及常见错误分析①画一条水平的直线;②在这条直线上适当位置取一实心点作为原点:③一般确定向右的方向为正方向,用箭头表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的单位长度要一致.2.数轴画法的常见错误举例:3.有理数与数轴的关系:1.一切有理数都可以用数轴上的点表示出来.2.在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.正数都大于0,负数都小于0,正数大于一切负数.注意:数轴上的点不都代表有理数,如π.4.利用数轴比较有理数的大小:数轴上右边的数总大于左边的数.因此,正数总大于零,负数总小于零,正数大于负数。
做一做(1)规定了______、______和______的______叫数轴。
(2)所有的有理数都能用数轴上的______来表示。
(3)数轴上,表示-3的点到原点的距离是______个单位长,与原点距离为3个单位长的点表示的数是______。
北师大版七年级数学上册:2.2数轴(教案)
1.讨论主题:学生将围绕“数轴在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
我也在思考,如何在接下来的课程中更好地帮助学生突破难点。可能我需要设计更多的互动环节,比如让学生们上台来亲自操作数轴,讲解他们的思考过程。这样不仅能够加深他们对知识的理解,还能锻炼他们的表达能力和逻辑思维。
此外,学生在小组讨论中分享的成果也让我收获颇丰。他们从不同的角度看待问题,提出了许多有创意的想法。这让我意识到,作为教师,我要更多地倾听学生的声音,给他们提供展示自己的平台。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与数轴相关的实际问题,如如何用数轴表示银行账户的存款和取款。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,使用数轴来模拟解决一个简单的一元一次方程。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
-数轴上的数的大小比较:学生应掌握数轴上数的大小关系,了解左边的数总是小于右边的数。
-数轴在求解方程和不等式中的应用:学生需要学会使用数轴来表示方程的解集,以及不等式的解集。
-举例:
-解释数轴上的点3.5与实数3.5的对应关系。
-比较数轴上-2和2.5的大小,并说明原因。
-利用数轴求解方程x-2=0,以及不等式x>3。
在实践活动中,我鼓励学生们分成小组讨论数轴在日常生活中的应用,并进行了实验操作。这个环节中,学生们积极参与,热烈讨论,展示了他们对数轴应用的探索和理解。但我也注意到,有些小组在操作过程中还是遇到了一些困难,尤其是在解决一些稍微复杂的问题时。这说明学生们在将理论知识应用到实际问题中还需要更多的练习和指导。
新北师大版七年级数学上册课件第二章2 数轴 (共41张PPT)
题型一 利用数轴确定点的位置 例6 如图2-2-6,数轴上的A,B,C三点所表示的数分 别为a,b,c,其中AB=BC,如果点A到原点的距离最大, 点B到原点的距离最小,那么该数轴的原点0的位置应该 点B,C之间且靠近点B的地方 在___________________________.
图2-2-6
第二章 有理数及其运算
2 数轴
数轴的定义和画法 定义 数轴规 定了原 点、正 方向和 数 单位长 轴 度的直 线叫作 数轴 画法 (1)“画”——画一条水平直线 (2)“取”——在数轴上取一点 表示原点 图示 _________
(3)“选”——选择向右的方向为
正方向,用箭头表示出来,再选 取适当的长度作为单位长度
确定数轴上的点与有理数的对应关系时, 易忽略有理数的符号 例5 如图2-2-5,数轴上的点A,B分别表示有理数3和2,C是线段AB的中点,求点C所表示的数.
图2-2-5
解:由已知条件可知点A,B之间的距离是5个单位长度. 因为C是线段AB的中点,所以BC=5÷2=2.5,所以由点 B向左找到距离点B为2.5个单位长度的点C的位置.因为
没有原点,单位长度不统一,负数排列错误,标负数 时忘记负号.
(1)数轴是数形结合的典型代表,即数轴把数与直线 (数量和图形)形象地联系起来,有了数轴,所有的有理
数都可以用数轴上的点表示出来,数轴上的点也可以通过
数的大小来确定出它的位置. (2)一般地,设a是一个正数,则数轴上表示数a的点 在原点的右边,与原点的距离是a个单位长度,那么表示 数-a的点在原点的左边,与原点的距离是a个单位长度.
2-2-1是每隔两个单位长度取一点.
图2-2-1 (3)在数轴上,正数和负数分别位于原点的两侧,正 数在原点的右边,负数在原点的左边
七年级数学上册2.2数轴课件北师大版
结论:
1.相反数: 只有 符号 不同的两个数. 具有相反意义的量。
2.从数轴上看: 相反数位于数轴的 两侧 ,且
到原点的距离 相等 .
3|2
画出数轴,并在数轴上画出表示下列各数的点:
-4,3.5, -1.5, 0 , 2.5.
再按数轴上从左到右的顺序,将这些数重新 排列起来.
数轴上两个点表示的数,右边的总比左边的大; 正数大于0,负数小于0,正数大于负数.
【变式2】如图,点A表示的数是4,那么点B表示的 【数变是式3-】6 在数. 轴上点A表示-4,如果把原点O向负方向
移动1.5个单位,那么在新数轴上点A表示的数是( )
B
A
A.
B.
C.
D.
0
51
-4
2
21 2
C
21 2
三 利用数轴比较有理数的大小 活动1:把温度计平放,从左到右观察刻度,我们能 发现什么?
解:点A表示1.5;点B表示-0.5;点C表示-3; 点D表示3;点E表示-2.
例2 画出数轴,并用数轴上的点表示下列各数: -312,4,-1.5,212,0,1.8,-2.
解:如图所示.
练一练
1.数轴上表示-2的点在原点的(左)侧,距原点的 距离是(2个单位长度 ),表示-6的点在原点的 ( 左 )侧,距原点的距离是(6个单位长度 ).
1.问题1: 比较下列每组数的大小, 并说明理由. ⑴-2 和 +6; ⑵0和 -1.8; ⑶-1.5和 -4;(4)3.8,-4.1,-3.
2.问题2:写出三对非零的相反数,在数轴上将 它们表示出来,并比较其中三个负数的大小.
3.问题三: 在数轴上距原点3个单位长度的点 表示什么数?与表示数2的点距离3个单位的 数是多少?
北师大版七年级数学上册《2.2数轴》
北师大版七年级数学上册《2.2数轴》一. 教材分析北师大版七年级数学上册《2.2数轴》这一节的内容主要包括数轴的定义、特点、表示方法以及数轴上的距离和相反数等概念。
通过这一节的学习,使学生能够理解数轴的概念,掌握数轴的基本性质,能够利用数轴表示有理数,并能够解决一些与数轴相关的问题。
二. 学情分析学生在进入七年级之前,已经学习了有理数的概念和运算,对数有一定的认识。
但是,对于数轴这一概念,他们可能是初次接触,因此需要通过具体的生活实例和实际操作来帮助他们理解和掌握。
同时,学生可能对于数轴上的距离和相反数等概念有一定的困惑,需要老师进行详细的讲解和解释。
三. 说教学目标1.知识与技能目标:学生能够理解数轴的定义和特点,掌握数轴上的表示方法,能够利用数轴表示有理数。
2.过程与方法目标:通过实际操作和生活实例,学生能够理解数轴的概念,并能够解决一些与数轴相关的问题。
3.情感态度与价值观目标:学生能够体验数学与生活的紧密联系,增强对数学的兴趣和信心。
四. 说教学重难点1.教学重点:数轴的定义、特点、表示方法以及数轴上的距离和相反数等概念。
2.教学难点:数轴上的距离和相反数的理解,以及如何利用数轴解决实际问题。
五. 说教学方法与手段1.教学方法:采用讲授法、演示法、实践法、讨论法等,通过教师的讲解和学生的实际操作,使学生能够理解和掌握数轴的概念和性质。
2.教学手段:利用多媒体课件、数轴模型、黑板等教学工具,帮助学生直观地理解和掌握数轴的知识。
六. 说教学过程1.导入:通过生活实例,如比较身高、赛跑等,引导学生思考如何用数学工具来表示和比较这些量,从而引入数轴的概念。
2.讲解:讲解数轴的定义、特点和表示方法,通过数轴模型和多媒体课件,使学生直观地理解数轴的结构和作用。
3.实践:让学生亲自动手画出数轴,并尝试表示一些有理数,通过实践加深对数轴的理解。
4.讨论:让学生分组讨论数轴上的距离和相反数等概念,教师进行指导和解答。
北师大版数学七年级上册2.2《数轴》参考教案
第二章有理数及其运算2. 数轴一、学生起点分析一方面,小学里已经接触到在“射线”上用点来表示数和读出或写出“射线”上的点所表示的数,对数与点的这种对应关系有了初步的了解,上一节课又学习了有理数的概念,为数轴概念的建立和进一步学习数轴上的点与有理数的对应关系积累的必要的学习经验,具备了“表示”的基本技能和基本方法,这是学生的知识技能基础.从另一方面看,日常生活中常见的用温度计度量温度,用弹簧称(刻度在直线上)称重量等,都已为学生学习数轴概念打下了生活经验基础,是学生便于理解数轴概念.二、学习任务分析本节课要求学生掌握数轴三要素,会画数轴,准确说出数轴上的点表示的有理数、并把每一个有理数用数轴上的点表示出来;并会借助数轴功能来比较有理数的大小。
数轴概念是中学数学中数形结合的起点,数形结合是帮助学生理解数学、学好数学的重要思想方法.从现在开始,在教学与学习中更应该提醒学生注重数形结合是数学教学与学习的重要指导思想,本章后面的有理数的有关性质和运算都是结合数轴进行的,由此可见这一课时学生学好数轴概念的重要性.数轴是用“长度”度量各类量的抽象,日常生活中常见的用温度计度量温度,用弹簧称(刻度在直线上)称重量等,都已为学生学习数轴概念打下了基础.本节是初步理解数形结合的思想方法,通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础.为此,本节课的教学目标是:1、知识与技能:①掌握数轴的三要素,会画数轴;②会指出数轴上的点表示的有理数;并能把有理数在数轴上用点准确的表示出来;③数轴上点的大小关系,能利用数轴比较有理数的大小.2、过程与方法:培养学生的观察、比较、分析、抽象、概括的逻辑思维能力和动手能力,初步培养学生数形结合的数学思想方法和意识.3、情感与态度:通过数轴与生活实物对应对比,激发学生兴趣,通过规范画图,培养学生细致准确习惯,扶植勇于探究的精神.三、教学过程设计本节课设计了六个教学环节:①情境导入、适时点题;②问题探究、形成策略;③动手操作、探索新知;④小试牛刀、自我检测;⑤快乐课堂、思维晋级;⑥师生归纳,布置作业。
北师大版数学七年级上册2.2《数轴》教案
北师大版数学七年级上册2.2《数轴》教案一. 教材分析《数轴》是北师大版数学七年级上册第二章第二节的内容。
数轴是数学中的重要概念,是实数与几何之间联系的桥梁。
通过数轴,学生可以直观地理解实数的大小关系、相反数、绝对值等概念。
本节内容为学生提供了数形结合的工具,为后续的代数运算和函数学习打下基础。
二. 学情分析七年级的学生已经掌握了实数的基本概念,对相反数、绝对值有一定的了解。
但他们对数轴的认识还比较模糊,需要通过实例和操作来加深理解。
此外,学生可能对数轴上点的表示方法、实数的分类等知识点有疑问,需要教师进行解释和引导。
三. 教学目标1.知识与技能:使学生了解数轴的定义、特点,学会在数轴上表示实数,理解数轴与实数的关系。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生数形结合的思维方式。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的抽象思维能力。
四. 教学重难点1.重点:数轴的定义、特点,数轴上点的表示方法。
2.难点:数轴与实数的关系,实数的分类。
五. 教学方法采用问题驱动、合作探究的教学方法。
通过设置问题,引导学生观察、操作、思考,培养学生数形结合的思维方式。
同时,鼓励学生互相交流、讨论,提高学生的合作能力。
六. 教学准备1.准备数轴教具和实物模型,以便学生直观地理解数轴。
2.准备练习题和测试题,以便巩固所学知识。
七. 教学过程1.导入(5分钟)利用数轴教具和实物模型,引导学生观察数轴的特点,提问:“数轴是什么?”、“数轴有什么作用?”等问题,激发学生的兴趣,引发学生的思考。
2.呈现(10分钟)教师通过讲解和演示,介绍数轴的定义、特点,以及数轴上点的表示方法。
同时,引导学生理解数轴与实数的关系,解释实数的分类。
3.操练(10分钟)学生分组进行数轴操作,包括在数轴上表示给定的实数、判断两个实数的大小关系等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成练习题,教师选取部分题目进行讲解和分析,巩固数轴知识。
北师大版数学七上2-2数轴 教学设计
七上 2-2 数轴【课标与教材分析】:课标要求使学生初步理解数形结合的思想方法;能利用数轴比较有理数的大小;使学生认识数轴,会用数轴上的点表示有理数;教材本课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,然后学生借助直观的数轴来比较有理数的大小。
数轴不仅是学生学习绝对值的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。
同时,也是学习直角坐标系的基础;数轴是形象直观表示数的一种方法,在数字问题和生活实际中有着广泛应用,掌握好本节内容对今后学习和生活有着积极意义.【学情分析】:学生已经知道的:小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.学生想知道的:什么是数轴及数轴的作用学生能自己解决的:通过类比温度计可以得到数轴的概念【教学目标】:知识技能:使学生认识数轴,会用数轴上的点表示有理数;数学思考:使学生初步理解数形结合的思想方法问题解决:能利用数轴比较有理数的大小;情感态度:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。
【教学重点】:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.【教学难点】:利用数轴比较有理数的大小。
【教学方法】:观察归纳、讲练结合、自主学习与合作交流结合【教学媒体】:学案导学与多媒体课件相结合【教学评价】:本节课采用从生活中的经验引入数学问题,极大地调动了学生探究兴趣,采用学生主动探究数轴的设计画法从而规范数轴三要素,学生的知识发生发展自然合理,易于理解.在例题的解决上注重给与时间和空间,反复训练,注重掌握.注重学生的注重探究欲自主发展,主动的获取知识和技能,观察归纳规律,这样对学生能力的提高非常有帮助.由于学生刚入初中,对有理数的学习上有一个过程,所以题例设计大致是按从易到难的顺序排列的,面向全体学生,从多个角度.采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方法,使学生对数轴任意两点之间的大小关系理解进一步的加强以及对相反数概念的理解.在老师的引导下,学生自主提问,互相点评练习解决,以促使更多的学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围.这样会促使学生的对数学知识和数学思想方法得到一个较好掌握.【教学过程】:一、知识链接:1、从学生原有认知结构提出问题(1).小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?(2).用“射线”能不能表示有理数?为什么?(3).你认为把“射线”做怎样的改动,才能用来表示有理数呢?二、自主学习、合作探究:问题一:(自主学习3分钟,交流2分钟)日常生活中的温度计如何读呢?概念形成阅读课本27页第一段后,请总结数轴三要素:_______ ,________ ,______________.跟踪训练:(概念辨析)问题二:下列各图表示数轴是否正确?为什么?创设问题情境,激发学生学习热情,发现生活中的数学.通过问题1和问题2的解决, 学生感受到点与数之间的关系,从而由点表示数的感性认识上升到理性认识.学以致用:例1画一个数轴,并在数轴上画出表示下列各数的点:-5,32,0,5,-32,-4让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?从而得出数轴的三要素:原点、正方向、单位长度.例2指出数轴上A,B,C,D各点分别表示什么数数轴上已知点所表示的有理数,是由“形”到“数”的思维过程.问题三:(1)任何一个有理数都可以用数轴上的一个点表示吗?(2)2与-2,7与-7有什么相同点与不同点?在数轴上画出表示这几个有理数的点,观察它们在数轴上的位置有什么关系?比较后归纳、描述并交流。
北师大版七年级上册2.2《数轴》解答题专题
北师大版七年级上册 2.2《数轴》解答题专题一、解答题1. 在图所示的数轴上表示下列各数:0,1.5,3,,-1,并用“>”把这些数连接起来.2. 某水利勘测队,要对一东西走向的河流进行勘测,第一天沿河岸向上游行走 5.5 km,第二天又向上游行走 4.3km.第三天因计划有变,该勘测队开始向下游行走,第三天向下游行走4.8km,第四天又向下游行走 3.2km,你知道四天后,该勘测队在出发点的上游还是下游吗?距离出发点多远?3. 如图,一只蚂蚁从点O(原点)出发,它先向右爬了2个单位长度到达点A,再向右爬3个单位长度到达B,然后向左爬9个单位长度到达点 C.(1)写出A,B,C三点表示的数;(2)如果从点C再向右爬3个单位长度,请说出此时蚂蚁的具体位置.4. 画出数轴并找出表示下列各数的点.,,,,.5. 指出图中数轴上点分别表示的有理数.6. 如图,数轴上有三个点A,B,C,请回答:(1)将点B向左移动3个单位长度后,三个点所表示的数谁最小?是多少?(2)将点A向右移动4个单位长度后,三个点所表示的数谁最小?是多少?(3)将点C向左移动6个单位长度后,这时点B所表示的数比点C所表示的数大多少?(4)怎样移动A,B,C中的两个点,才能使三个点表示的数相同?有几种移动方法?7. 数学课上老师让同学们进行画数轴比赛,甲、乙、丙、丁四位同学画出的数轴如图所示:请你当裁判,谁获胜了?8. 一条笔直的马路上,依次有5个卡通人,他们站立的位置在数轴上依次用点表示,如图:(1)点和所表示的有理数是什么?(2)点和间的距离为多少?(3)怎样移动点,使它先到达,再到达,请用文字说明;(4)若原点是一休息游乐所,则5个卡通人到休息游乐所的总路程为多少?9. 一点P从数轴上表示-2的点A开始移动,第一次先由点A向左移动1个单位长度,再向右移动2个单位长度;第二次先由点A向左移动2个单位长度,再向右移动4个单位长度;第三次先由点A向左移动3个单位长度,再向右移动6个单位长度;….(1)写出第一次移动后点P在数轴上表示的数;(2)写出第二次移动后点P在数轴上表示的数;(3)写出第三次移动后点P在数轴上表示的数;(4)写出按上述规律第n次移动后点P在数轴上表示的数.10. 已知A,B两点在数轴上的位置如图所示,设点对应的数分别为.(1)点C在什么位置时,?(2)点C在什么位置时,?(3)点C在什么位置时,?(4)点C在什么位置时,?11. 老师不小心把一瓶墨水洒在了如图1的数轴上,你能帮助老师把这条数轴补充完整吗?并在补好的数轴上标出你喜欢的一个正整数、一个正分数、一个负分数、一个负整数.12. 如图,一只蚂蚁从原点O出发,它先向右爬2个单位长度到达点A,再向右爬3个单位长度到达点B,然后向左爬9个单位长度到达点 C.(1)写出A,B,C三点表示的数.(2)如果从点C再向右爬3个单位长度,请问:此时蚂蚁在什么位置?13. 如图,在数轴上有A,B,C三个点,请回答:(1)将A点向右移动3个单位长度,点C向左移动5个单位长度,它们各自表示什么数?(2)移动A,B,C中的两个点,使得三个点表示的数相同,有几种移动方法?14. 某人从A地向东走10米到达B地,然后向西走4米到达C地,又向东走7米到达D地,问此人现在在A地的哪个方向?距A地多远?15. 比较与的大小.16. 观察图中的5个图形,指出哪条数轴正确,错误的错在哪里.17. 如图,指出数轴上A,B,C,D,E各点分别表示什么数.18. 小林家、晓颖家与新华书店在一条东西走向的公路的同一侧,小林家(点A)在新华书店(点O)西边 2 km处,晓颖家(点B)在距离新华书店 4 km处.(1)以新华书店为原点,向东的方向为正方向,1 km为单位长度,在数轴上表示出小林家、晓颖家及新华书店的位置;(2)根据所画的数轴说说晓颖家位于小林家什么方向及晓颖家距离小林家多少千米.19. 如图,有一根木棒在数轴上水平移动,当A点移动到B点时,B点所表示的数为20;当B点移动到A点时,A点所表示的数为5(单位:cm),由此可得木棒的长为多少厘米?20. 李老师从拉面的制作过程受到启发,设计了一个数学问题:如图,在数轴上截取从原点到1的对应点的线段AB,对折后(点A与B重合)再均匀地拉成1个单位长度的线段,这一过程称为一次操作(如在第一次操作后,原线段AB上的,均变成,变成1).那么在线段AB上(除A,B)的点中,在第二次操作后,求恰好被拉到与1重合的点所表示的数之和.21. 一天,小红去问曾当过数学老师,现在退休在家的邻居爷爷的年龄,爷爷说:“我若是你现在这么大,你还要37年才出生呢;你若是我现在这么大,我已经是老寿星了,131岁了,哈哈!”小红纳闷了,邻居爷爷到底是多少岁呢?现在你能借助于“数轴”这个工具解决这个问题吗?22. 如图,圆的周长为4个单位长度,在圆的四等分点处标上“四”“季”“平”“安”,先让“四”所对应的圆周上的点与数轴上的-1所对应的点重合,再让圆在数轴上向右做无滑动滚动.(1)数轴上20所对应的点会与文字________所对应的圆周上的点重合;(2)数轴上的数2015所对应的点会与文字________所对应的圆周上的点重合.23. 在数轴上有三个点A,B,C分别表示-,0,1,按要求回答:(1)将A点向右移动4个单位长度后,三个点中哪个点表示的数最大?是多少?(2)将C点向左移动个单位长度后,三个点中哪个点表示的数最小?是多少?(3)怎样移动A,B,C中的两个点,才能使三个点表示的数相同,有几种方法?请写出一种.24. 已知数轴上有A和B两点,A,B之间的距离是1,点A与原点O的距离为3,那么所有满足条件的点B与原点O的距离之和是多少?25. 在一条“直”的流水线上有5个机器人,它们站立的位置在数轴上依次用点,,,,表示,如图.(1)怎样将点移动,使它先到达,再到达,请用文字语言说明;(2)若原点是零件的供应点,则5个机器人分别到达供应点取货的总路程是多少?(3)将零件的供应点设在何处,才能使5个机器人分别到达供应点取货的总路程最短?最短路程是多少?北师大版七年级上册 2.2《数轴》解答题专题参考答案1. 【答案】表示题中各数的点的位置如图所示:可以得到各数的大小关系为.2. 【答案】设出发点为原点,向上游走为正,每个单位长度表示,画出数轴,如图所示. 利用数轴分析得,四天后,勘测队在出发点的上游,距离出发点 1.8 km.3.(1) 【答案】点A表示2,点B表示5,点C表示.(2) 【答案】蚂蚁在原点左边1个单位长度处.4. 【答案】如图所示.5. 【答案】点表示,点表示或-1.5,点表示或0.5,点表示3,点表示或4.5.6.(1) 【答案】将点B向左移动3个单位长度后,点B表示的数为-2-3=-5,而点A表示-4,点C表示3,故点B表示的数最小,是-5;(2) 【答案】将点A向右移动4个单位长度后,点A表示的数为-4+4=0,而点B表示-2,点C表示3,故点B表示的数最小,是-2;(3) 【答案】将点C向左移动6个单位长度后,点C表示的数为3-6=-3,而点B表示-2,点B所表示的数比点C所表示的数大1;(4) 【答案】共有三种移动方法:①点A向右移动2个单位长度,点C向左移动5个单位长度;②点A向右移动7个单位长度,点B向右移动5个单位长度;③点B向左移动2个单位长度,点C向左移动7个单位长度.7. 【答案】甲所画的数轴,方向不正确且单位长度不一致;乙所画的数轴,单位长度不一致;丙所画的数轴,-1,-2的位置颠倒了;只有丁所画的数轴正确,所以丁获胜了.8.(1) 【答案】,.(2) 【答案】7.(3) 【答案】先将点向左移动一个单位长度到达点,再向右移动8个单位长度到达点.(4) 【答案】17.5 3 2 2 5=17.9.(1) 【答案】第一次移动后点P在数轴上表示的数是-1;(2) 【答案】第二次移动后点P在数轴上表示的数是0;(3) 【答案】第三次移动后点P在数轴上表示的数是1;(4) 【答案】按照上述规律,第n次移动后点P在数轴上表示的数为n-2.10.(1) 【答案】点C在原点和A之间时,.(2) 【答案】点C在两点之间时,.(3) 【答案】点C在点左侧时,.(4) 【答案】点C在点的右侧时,.11. 【答案】画出完整的数轴,如图,-2与2之间的中点是原点.12.(1) 【答案】点A表示2,点B表示5,点C表示-4.(2) 【答案】蚂蚁在原点的左边1个单位长度,即-1的位置.13.(1) 【答案】移动后,点A表示0,点C表示-2.(2) 【答案】有三种移法:①点A不动,点B向左移动2个单位长度,点C向左移动6个单位长度;②点B不动,点A向右移动2个单位长度,点C向左移动4个单位长度;③点C不动,点A向右移动6个单位长度,点B向右移动4个单位长度.14. 【答案】设A地是原点,向东为正方向,以1米为一个单位长度,由图可知此人现在在A地的正东方向,距A地13米.15. 【答案】方法一(作差法):∵,∴,∴.方法二:∵,,又∵,∴,∴.16. 【答案】①错误,错在单位长度不一致,-1到0的距离应与0到1的距离相等.②错误,无原点.③错误,无正方向.④正确.⑤错误,数在负方向上的单位排列错误.17. 【答案】A表示的数是3,B表示的数是,C表示的数是0,D表示的数是-3,E表示的数是-4.18.(1) 【答案】以数轴的负方向表示西,小林家、晓颖家及新华书店的位置如图①②所示.(2) 【答案】如果晓颖家在新华书店西边,则她家位于小林家西边,距离小林家2km;如果晓颖家在新华书店东边,则她家位于小林家东边,距离小林家6km.19. 【答案】本题运用了数形结合的思想.由图知木棒的长的3倍是20-5=15(cm),则此木棒的长为15÷3=5cm.20. 【答案】第一次操作后,原线段AB上的,均变成.第二次操作后,恰好被拉到与1重合的点所表示的数是和,所以它们的和是 1.21. 【答案】如图所示,借助数轴,把小红与爷爷的年龄差看成木棒AB,小红像爷爷现在这么大时,看成A点移动到B点,此时B点所表示的数为131.爷爷像小红现在这么大时,看成B点移动到A点,此时A点所表示的数为-37.所以可知爷爷比小红大(131+37)÷3=56(岁),可知爷爷的年龄为131-56=75(岁).22.(1) 【答案】季【解析】刚开始圆位于-1所对应的点正上方,先将圆向右滚动到0所对应的点处,如图所示.,没有余数,所以数轴上的20所对应的点应与文字“季”所对应的圆周上的点重合.(2) 【答案】四【解析】的余数是3,所以数轴上2015所对应的点应与文字“四”所对应的圆周上的点重合.23.(1) 【答案】A点向右移动4个单位长度后表示的数是-,>1>0,所以A点表示的数最大,是.(2) 【答案】C点向左移动个单位长度后表示的数是1--,-<-<0,所以A点表示的数最小,是-.(3) 【答案】有三种方法,如将A点向右移动个单位长度,将B点向右移动1个单位长度.24. 【答案】因为点A与原点O的距离为3,所以点A所表示的数为3或-3.当点A表示的数为3时,因为A,B之间的距离是1,所以点B表示的数为4或2,所以点B到原点的距离分别是4,2;当点A表示的数为-3时,因为A,B之间的距离是1,所以点B表示的数为-4或-2,所以点B到原点的距离分别是4,2.所以,所有满足条件的点B与原点的距离之和为4+2+4+2=12.25.(1) 【答案】点先向左移动2个单位,再向右移动6个单位.(2) 【答案】,所以5个机器人分别到达供应点取货的总路程为12个单位.(3) 【答案】当数轴上只有两个点(机器人)时,供应点设在两点之间的任意位置都行,路程之和等于两点之间的距离,当有三个点(机器人)时,供应点设在中间的那一点处最合适,这样路程之和等于两端的点之间的距离.由此得到规律:当点数(机器人数)为奇数时,供应点应设在从左往右数第个点处的位置;当是偶数时,供应点应设在从左往右数第个点与第个点之间的位置,所以供应点设在处可使总路程最短,最短总路程为个单位.第11页共11页。
北师大版初中数学七年级上册《2.2 数轴》同步练习卷(含答案解析
北师大新版七年级上学期《2.2 数轴》同步练习卷一.选择题(共29小题)1.数轴上到表示﹣2的点距离为3的点表示的数为()A.﹣5B.±5C.1或﹣5D.±12.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是()A.m<﹣1B.n>3C.m<﹣n D.m>﹣n 3.如图图中数轴画法不正确的有()A.2个B.3个C.4个D.5个4.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0B.a﹣b<0C.a•b>0D.>05.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为()A.2013B.2014C.2015D.20166.﹣3的相反数是()A.3B.﹣3C.D.﹣7.如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是()A.点B与点D B.点A与点C C.点A与点D D.点B与点C 8.在数轴上,与表示数﹣5的点的距离是2的点表示的数是()A.﹣3B.﹣7C.±3D.﹣3或﹣79.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④10.如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点B C.点C D.点D11.﹣(﹣2)等于()A.﹣2B.2C.D.±212.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6B.6C.0D.无法确定13.数轴上的点A到原点的距离是3,则点A表示的数为()A.3或﹣3B.6C.﹣6D.6或﹣6 14.若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.15.如图,在数轴上点M表示的数可能是()A.1.5B.﹣1.5C.﹣2.4D.2.416.如图,数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点所表示的数分别是﹣5和6,则线段BD的中点所表示的数是()A.6B.5C.3D.217.已知a、b、c三个数在数轴上对应点的位置如图所示,下列几个判断:①a <c<b;②﹣a<b;③a+b>0;④c﹣a<0中,错误的个数是()A.1B.2C.3D.418.如果a与﹣2互为相反数,那么a等于()A.﹣2B.2C.﹣D.19.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等20.如图,点O、A、B在数轴上,分别表示数0、1.5、4.5,数轴上另有一点C,到点A的距离为1,到点B的距离小于3,则点C位于()A.点O的左边B.点O与点A之间C.点A与点B之间D.点B的右边21.相反数不大于它本身的数是()A.正数B.负数C.非正数D.非负数22.如图所示,圆的周长为4个单位长度.在圆的4等分点处标上0,1,2,3,先让圆周上的0对应的数与数轴的数﹣1所对应的点重合,再让数轴按逆时针方向绕在该圆上.那么数轴上的﹣2007将与圆周上的数字()重合.A.0B.1C.2D.323.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1B.3C.±2D.1或﹣3 24.a,b互为相反数,下列各数中,互为相反数的一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)25.已知如图:数轴上A,B,C,D四点对应的有理数分别是整数a,b,c,d,且有c﹣2a=7,则原点应是()A.A点B.B点C.C点D.D点26.已知数轴上的A点到原点的距离是2,那么在数轴上到A点的距离是3的点所表示的数有()A.1个B.2个C.3个D.4个27.的相反数是()A.2016B.﹣2016C.D.28.若a,b互为相反数,则下列各对数中不是互为相反数的是()A.﹣2a和﹣2b B.a+1和b+1C.a+1和b﹣1D.2a和2b 29.若M﹣1的相反数是3,那么﹣M的值是()A.+2B.﹣2C.+3D.﹣3二.填空题(共7小题)30.小明不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是.31.已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是.32.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为.33.数轴上到原点的距离等于4的数是.34.已知m,n互为相反数,则3+m+n=.35.数轴上有三点A,B,C,且A,B两点间的距离是3,B,C两点的距离是1.若点A表示的数是﹣2,则点C表示的数是.36.若2(a+3)的值与4互为相反数,则a的值为.三.解答题(共9小题)37.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B 两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.38.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A、B是数轴上的点,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是.(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是.(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是,A、B两点间的距离是.39.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油 1.5升,那么这辆货车此次送货共耗油多少升?40.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?41.化简:(1)+(﹣0.5)(2)﹣(+10.1)(3)+(+7)(4)﹣(﹣20)(5)+[﹣(﹣10)](6)﹣[﹣(﹣)].42.若a﹣5和﹣7互为相反数,求a的值.43.化简下列各式+(﹣7)=,﹣(+1.4)=,+(+2.5)=,﹣[+(﹣5)]=;﹣[﹣(﹣2.8)]=,﹣(﹣6)=,﹣[﹣(+6)]=.44.已知A、B两地相距50米,小乌龟从A地出发前往B地,第一次它前进1米,第二次它后退2米,第三次再前进3米,第四次又向后退4米…,按此规律行进,如果A地在数轴上表示的数为﹣16.(1)求出B地在数轴上表示的数;(2)若B地在原点的右侧,经过第七次行进后小乌龟到达点P,第八次行进后到达点Q,点P、点Q到A地的距离相等吗?说明理由?(3)若B地在原点的右侧,那么经过100次行进后,小乌龟到达的点与点B之间的距离是多少?45.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N 移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?请你画出示意图,求出村长爷爷和美羊羊现在的年龄,并说明解题思路.北师大新版七年级上学期《2.2 数轴》同步练习卷参考答案与试题解析一.选择题(共29小题)1.数轴上到表示﹣2的点距离为3的点表示的数为()A.﹣5B.±5C.1或﹣5D.±1【分析】数轴上,与表示﹣2的点距离为3的点可能在﹣2的左边,也可能在﹣2的右边,再根据左减右加进行计算.【解答】解:若要求的点在﹣2的左边,则有﹣2﹣3=﹣5;若要求的点在﹣2的右边,则有﹣2+3=1.所以数轴上到﹣2点距离为3的点所表示的数是﹣5或1.故选:C.【点评】此题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.2.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是()A.m<﹣1B.n>3C.m<﹣n D.m>﹣n【分析】根据数轴可以判断m、n的大小,从而可以解答本题.【解答】解:由数轴可得,﹣1<m<0<2<n<3,故选项A错误,选项B错误,∴m>﹣n,故选项C错误,选项D正确,故选:D.【点评】本题考查数轴,解答本题的关键是明确数轴的特点,利用数形结合的思想解答.3.如图图中数轴画法不正确的有()A.2个B.3个C.4个D.5个【分析】根据数轴的定义对各选项进行逐一分析即可.【解答】解:(1)没有正方向,数轴画法不正确;(2)单位不统一,数轴画法不正确;(3)缺少单位长度,数轴画法不正确;(4)单位不统一,数轴画法不正确;(5)符合数轴的定义,数轴画法正确.故选:C.【点评】本题考查的是数轴,熟知规定了原点、正方向、单位长度的直线叫做数轴是解答此题的关键.4.有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A.a+b<0B.a﹣b<0C.a•b>0D.>0【分析】根据a,b两数在数轴的位置依次判断所给选项的正误即可.【解答】解:∵﹣1<a<0,b>1,∴A、a+b>0,故错误,不符合题意;B、a﹣b<0,正确,符合题意;C、a•b<0,错误,不符合题意;D、<0,错误,不符合题意;故选:B.【点评】考查数轴的相关知识;用到的知识点为:数轴上左边的数比右边的数小;异号两数相加,取绝对值较大的加数的符号.5.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为()A.2013B.2014C.2015D.2016【分析】数轴上两点间的距离等于表示这两点的数的差的绝对值.【解答】解:2014﹣(﹣1)=2015,故A,B两点间的距离为2015.故选:C.【点评】本题考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.6.﹣3的相反数是()A.3B.﹣3C.D.﹣【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.7.如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是()A.点B与点D B.点A与点C C.点A与点D D.点B与点C 【分析】根据数轴上表示数a的点与表示数﹣a的点到原点的距离相等,即可解答.【解答】解:由数轴可得:点A表示的数为﹣2,点D表示的数为2,根据数轴上表示数a的点与表示数﹣a的点到原点的距离相等,∴点A与点D到原点的距离相等,故选:C.【点评】此题主要考查了数轴,关键是掌握互为相反数的两个数,它们分别在原点两旁且到原点距离相等.8.在数轴上,与表示数﹣5的点的距离是2的点表示的数是()A.﹣3B.﹣7C.±3D.﹣3或﹣7【分析】符合条件的点有两个,一个在﹣5点的左边,一个在﹣5点的右边,且都到﹣5点的距离都等于2,得出算式﹣5﹣2和﹣5+2,求出即可.【解答】解:数轴上距离表示﹣5的点有2个单位的点表示的数是﹣5﹣2=﹣7或﹣5+2=﹣3.故选:D.【点评】本题主要考查了数轴,当要求的点在已知点的左侧时,用减法;当要求的点在已知点的右侧时,用加法.9.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【分析】数轴可知b<0<a,|b|>|a|,求出ab<0,a﹣b>0,a+b<0,根据以上结论判断即可.【解答】解:∵从数轴可知:b<0<a,|b|>|a|,∴①正确;②错误,∵a>0,b<0,∴ab<0,∴③错误;∵b<0<a,|b|>|a|,∴a﹣b>0,a+b<0,∴a﹣b>a+b,∴④正确;即正确的有①④,故选:B.【点评】本题考查了数轴,有理数的乘法、加法、减法等知识点的应用,关键是能根据数轴得出b<0<a,|b|>|a|.10.如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点B C.点C D.点D【分析】根据图示得到点P所表示的数,然后求得﹣的值即可.【解答】解:如图所示,1<p<2,则<<1,所以﹣1<﹣<﹣.则数轴上与数﹣对应的点是C.故选:C.【点评】本题考查了数轴,根据图示得到点P所表示的数是解题的关键.11.﹣(﹣2)等于()A.﹣2B.2C.D.±2【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣(﹣2)=2,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6B.6C.0D.无法确定【分析】根据数轴上点的位置,利用相反数定义确定出B表示的数即可.【解答】解:∵数轴上两点A,B表示的数互为相反数,点A表示的数为﹣6,∴点B表示的数为6,故选:B.【点评】此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.13.数轴上的点A到原点的距离是3,则点A表示的数为()A.3或﹣3B.6C.﹣6D.6或﹣6【分析】先设出这个数为x,再根据数轴上各点到原点的距离进行解答即可.【解答】解:设这个数是x,则|x|=3,解得x=+3或﹣3.故选:A.【点评】本题考查的是数轴的特点,熟知数轴上各点到原点的距离的定义是解答此题的关键.14.若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.【分析】先根据相反数的意义列出方程,解方程即可.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选:C.【点评】此题是解一元一次方程,主要考查了相反数的意义,一元一次方程的解法,掌握相反数的意义是解本题的关键.15.如图,在数轴上点M表示的数可能是()A.1.5B.﹣1.5C.﹣2.4D.2.4【分析】根据数轴上点M的位置,可得点M表示的数.【解答】解;点M表示的数大于﹣3且小于﹣2,A、1.5>﹣2,故A错误;B、﹣1.5>﹣2,故B错误;C、﹣3<﹣2.4<﹣2,故C正确;D、2.4>﹣2,故D错误.故选:C.【点评】本题考查了数轴,数轴上点的位置关系是解题关键.16.如图,数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点所表示的数分别是﹣5和6,则线段BD的中点所表示的数是()A.6B.5C.3D.2【分析】首先设出BC,根据2AB=BC=3CD表示出AB、CD,求出线段AD的长度,即可得出答案.【解答】解:设BC=6x,∵2AB=BC=3CD,∴AB=3x,CD=2x,∴AD=AB+BC+CD=11x,∵A,D两点所表示的数分别是﹣5和6,∴11x=11,解得:x=1,∴AB=3,CD=2,∴B,D两点所表示的数分别是﹣2和6,∴线段BD的中点表示的数是2.故选:D.【点评】题目考查了数轴的有关概念,利用数轴上的点、线段相关性质,考察学生对数轴知识的掌握情况,题目难易程度适中,适合学生课后训练.17.已知a、b、c三个数在数轴上对应点的位置如图所示,下列几个判断:①a <c<b;②﹣a<b;③a+b>0;④c﹣a<0中,错误的个数是()A.1B.2C.3D.4【分析】先根据在数轴上,右边的数总比左边的数大,得出b<a<0<c,|b|>|a|,|b|>|c|,再由相反数、有理数的加减法法则得出结果.【解答】解:由数轴可得:b<a<0<c,|b|>|a|,|b|>|c|,①a<c<b,错误;②﹣a<b,错误;③a+b>0,错误;④c﹣a<0,错误;错误的个数为4个,故选:D.【点评】本题考查了数轴,利用了有理数的乘法,有理数的加法,有理数的减法,有理数的大小比较.18.如果a与﹣2互为相反数,那么a等于()A.﹣2B.2C.﹣D.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣2的相反数是2,那么a等于2.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.19.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等【分析】根据相反数的定义去判断各选项.【解答】解:A、+a和﹣(﹣a)互为相反数;错误,二者相等;B、+a和﹣a一定不相等;错误,当a=0时二者相等;C、﹣a一定是负数;错误,当a=0时不符合;D、﹣(+a)和+(﹣a)一定相等;正确.故选:D.【点评】本题考查了相反数的定义及性质,在判定时需注意0的界限.20.如图,点O、A、B在数轴上,分别表示数0、1.5、4.5,数轴上另有一点C,到点A的距离为1,到点B的距离小于3,则点C位于()A.点O的左边B.点O与点A之间C.点A与点B之间D.点B的右边【分析】根据题意分析出点C表示的实数是2.5,然后确定点C的位置.【解答】解:∵点C到点A的距离为1∴所以C点表示的数为0.5或2.5又∵点C到点B的距离小于3∴点C表示的实数为2.5即点C位于点A和点B之间.故选:C.【点评】这道题主要考查实数和数轴上的点是一一对应的关系,根据实数确定位置.21.相反数不大于它本身的数是()A.正数B.负数C.非正数D.非负数【分析】设这数是a,得到a的不等式,求解即可;也可采用特殊值法进行筛选.【解答】解:设这个数为a,根据题意,有﹣a≤a,所以a≥0.故选:D.【点评】理解相反数的定义.实数a的相反数为﹣a;同时要理解不大于、不小于、非负数、非正数的含义.22.如图所示,圆的周长为4个单位长度.在圆的4等分点处标上0,1,2,3,先让圆周上的0对应的数与数轴的数﹣1所对应的点重合,再让数轴按逆时针方向绕在该圆上.那么数轴上的﹣2007将与圆周上的数字()重合.A.0B.1C.2D.3【分析】由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,1,2,3,则分别与圆周上表示数字0,3,2,1的点重合.【解答】解:∵﹣1﹣(﹣2007)=2006,2006÷4=501…2,∴数轴上表示数﹣2007的点与圆周上表示2的数字重合.故选:C.【点评】把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.23.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1B.3C.±2D.1或﹣3【分析】此题可借助数轴用数形结合的方法求解.在数轴上,与表示数﹣1的点的距离是2的点有两个,分别位于与表示数﹣1的点的左右两边.【解答】解:在数轴上,与表示数﹣1的点的距离是2的点表示的数有两个:﹣1﹣2=﹣3;﹣1+2=1.故选:D.【点评】注意此类题应有两种情况,再根据“左减右加”的规律计算.24.a,b互为相反数,下列各数中,互为相反数的一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)【分析】依据相反数的定义以及有理数的乘方法则进行判断即可.【解答】解:A、a,b互为相反数,则a2=b2,故A错误;B、a,b互为相反数,则a3=﹣b3,故a3与b5不是互为相反数,故B错误;C、a,b互为相反数,则a2n=b2n,故C错误;D、a,b互为相反数,由于2n+1是奇数,则a2n+1与b2n+1互为相反数,故D正确;故选:D.【点评】本题考查了相反数和乘方的意义,明确只有符号不同的两个数叫做互为相反数,还要熟练掌握互为相反数的两个数的偶数次方相等,奇次方还是互为相反数.25.已知如图:数轴上A,B,C,D四点对应的有理数分别是整数a,b,c,d,且有c﹣2a=7,则原点应是()A.A点B.B点C.C点D.D点【分析】先根据c﹣2a=7,从图中可看出,c﹣a=4,再求出a的值,进而可得出结论.【解答】解:∵c﹣2a=7,∴从图中可看出,c﹣a=4,∴c﹣2a=c﹣a﹣a=4﹣a=7,∴a=﹣3,∴b=0,即B是原点.故选:B.【点评】本题为条件开放性题目,有利于培养同学们的发散思维能力.26.已知数轴上的A点到原点的距离是2,那么在数轴上到A点的距离是3的点所表示的数有()A.1个B.2个C.3个D.4个【分析】本题要先对A点所在的位置进行讨论,得出A点表示的数,然后分别讨论所求点在A的左右两边的两种情况,即可得出答案.【解答】解:∵数轴上的A点到原点的距离是2,∴点A可以表示2或﹣2.(1)当A表示的数是2时,在数轴上到A点的距离是3的点所表示的数有2﹣3=﹣1,2+3=5;(2)当A表示的数是﹣2时,在数轴上到A点的距离是3的点所表示的数有﹣2﹣3=﹣5,﹣2+3=1.故选:D.【点评】注意:到数轴上一个点的距离是定值的点可以在该点的左侧,也可以在该点的右侧.27.的相反数是()A.2016B.﹣2016C.D.【分析】直接利用相反数的定义分析得出答案.【解答】解:∵﹣+=0,∴﹣的相反数是.故选:C.【点评】此题主要考查了相反数的定义,正确把握定义是解题关键.28.若a,b互为相反数,则下列各对数中不是互为相反数的是()A.﹣2a和﹣2b B.a+1和b+1C.a+1和b﹣1D.2a和2b【分析】若a,b互为相反数,则a+b=0,根据这个性质,四个选项中,两个数的和只要不是0的,一定不是互为相反数.【解答】解:∵a,b互为相反数,∴a+b=0.A中,﹣2a+(﹣2b)=﹣2(a+b)=0,它们互为相反数;B中,a+1+b+1=2≠0,即a+1和b+1不是互为相反数;C中,a+1+b﹣1=a+b=0,它们互为相反数;D中,2a+2b=2(a+b)=0,它们互为相反数.故选:B.【点评】本题考查了互为相反数的意义和性质:只有符号不同的两个数互为相反数,0的相反数是0;一对相反数的和是0.29.若M﹣1的相反数是3,那么﹣M的值是()A.+2B.﹣2C.+3D.﹣3【分析】根据只有符号不同的两个数互为相反数,可得关于M的方程,根据解方程,可得M的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【解答】解:由M﹣1的相反数是3,得M﹣1=﹣3,解得M=﹣2.﹣M=2,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.二.填空题(共7小题)30.小明不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是﹣11.【分析】根据数轴的单位长度,判断墨迹盖住部分的整数,然后求出其和.【解答】解:由图可知,左边盖住的整数数值是﹣2,﹣3,﹣4,﹣5;右边盖住的整数数值是0,1,2;所以他们的和是﹣11.故答案为:﹣11.【点评】此题考查数轴,掌握数轴上数的排列特点是解决问题的关键.31.已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是7.【分析】先利用点A、B表示的数计算出AB,再计算出BC,然后计算点C到原点的距离即可得到C点表示的数.【解答】解:∵点A,B表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)32.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为.【分析】根据题意,得第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,则跳动n次后,即跳到了离原点的处,依此即可求解.【解答】解:第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,…则跳动n次后,即跳到了离原点的处,则第5次跳动后,该质点到原点O的距离为.故答案为:.【点评】考查了数轴,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题注意根据题意表示出各个点跳动的规律.33.数轴上到原点的距离等于4的数是±4.【分析】根据从原点向左数4个单位长度得﹣4,向右数4个单位长度得4,得到答案.【解答】解:与原点距离为4的点为:|4|,∴这个数为±4.故答案为:±4.【点评】本题考查的是数轴的知识,灵活运用数形结合思想是解题的关键,解答时,要正确理解绝对值的概念.34.已知m,n互为相反数,则3+m+n=3.【分析】根据互为相反数的两个数的和等于0可得m+n=0,然后代入代数式进行计算即可得解.【解答】解:∵m,n互为相反数,∴m+n=0,∴3+m+n=3+0=3.故答案为:3.【点评】本题考查了相反数的定义,是基础题,熟记互为相反数的两个数的和等于0是解题的关键.35.数轴上有三点A,B,C,且A,B两点间的距离是3,B,C两点的距离是1.若点A表示的数是﹣2,则点C表示的数是0或2或﹣4或﹣6.【分析】先确定点B表示的数,再确定点C表示的数,即可解答.【解答】解:∵A,B两点间的距离是3,点A表示的数是﹣2,∴点B表示的数为1或﹣5,当点B表示的数为1时,B,C两点的距离是1,则点C表示的数为:0或2;当点B表示的数为﹣5时,B,C两点的距离是1,则点C表示的数为:﹣4或﹣6;故答案为:0或2或﹣4或﹣6.【点评】本题考查了数轴,掌握两点之间的距离计算方法是解决问题的关键.36.若2(a+3)的值与4互为相反数,则a的值为﹣5.【分析】根据相反数的意义,可得答案.【解答】解:由题意,得2(a+3)+4=0,解得a=﹣5,故答案为:﹣5.【点评】本题考查了相反数,利用相反数的意义是解题关键.三.解答题(共9小题)37.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B 两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.【分析】(1)根据左减右加可求点B所对应的数;(2)先根据时间=路程÷速度,求出运动时间,再根据列出=速度×时间求解即可;(3)分两种情况:运动后的B点在A点右边4个单位长度;运动后的B点在A 点左边4个单位长度;列出方程求解即可.【解答】解:(1)﹣2+4=2.故点B所对应的数;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,。
七年级数学上册 第二章第二节《数轴》课件 北师大版
1 +3,-4, 4
,-1.5
|
|
1
-1.5
4
-4 -3 -2 -1 0 1 2 3 4
任何一个有理数都可以用数轴上 的一个点来表示.
例题
例1 指出数轴上A,B,C,D各点分别表示什么数.
A DC
B
-2 -1 0 1 2 3
解: 点A表示 -2; 点B表示2; 点C表示0; 点D表示-1;
想一想
数轴
温度计
Байду номын сангаас
5℃
0℃
-10 ℃
数轴
01
1. 画一条水平直线,在直线上取一点0 (叫 原点,origin), 2. 选取一长度作为单位长度(unit length), 3. 规定直线上向右的方向为正方向(positive direction),就得到了数轴(number axis).
讨论下列数轴画得对错?
越来越大
-3 -2 -1 0 1 2 3
数轴上两个点表示的数,右边的总比左边的大. 正数大于0, 负数小于0, 正数大于负数.
小结
数轴的三要素
原点
正方向
单位长度
数轴的引入,使我们能用直观图形来理解数的 有关概念,这就是“数”与“形”的结合,数形结 合是一种重要的方法,我们应注意掌握.
作业
习题2.2
-2与2有什么相同点和不同点?他们 在数轴上的位置有什么关系?
-2 -1 0 1 2 3
相反数
如果两个数只有符号不同,那么称其中一个 数为另一个数的相反数(opposite number).
0的相反数是0. 一般地,数a的相反数是-a 这里a表示任意的一个数,可以是正数、负数、或者0.
北师大版数学7年级上册教案2.2 数轴
2 数轴【教学目标】知识与技能使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示.过程与方法在探索数轴画法的过程中,鼓励学生类比、猜想,初步理解数与形的结合. 情感、态度与价值观向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想.【教学重难点】重点:初步理解数形结合的思想方法,正确掌握数轴的画法和用数轴上的点表示有理数. 难点:正确理解有理数与数轴上点的对应关系.【教学过程】一、复习引入师:在上课之前老师先提几个问题,看大家学得怎么样?1.有理数包括哪些数?0是正数还是负数?2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些?(直尺、弹簧秤等)数学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零. 演示从温度计抽象成数轴,激发学生学习的兴趣,使学生受到把实际问题抽象成数学问题的启发,同时把类比的思想方法贯穿于概念的形成过程.二、讲授新课1.师:请学生阅读课本第27页,思考并讨论:(1)25 ℃用正数________表示;0 ℃用数________表示;零下10 ℃用负数________表示;(2)数轴要具备哪三个要素?(3)原点表示什么数?原点右方表示什么数?原点左方表示什么数?(4)表示+2的点在什么位置?表示-3的点在什么位置?(5)原点向右0.5个单位长度的A 点表示什么数?原点向左112个单位长度的B 点表示什么数?2.数轴的画法.师生共同总结画数轴的步骤:第一步:画一条直线(通常是水平的直线),在这条直线上任取一点O ,叫做原点,用这点表示数0(相当于温度计上的0 ℃);第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来).相反的方向就是负方向(相当于温度计0 ℃以上为正,0 ℃以下为负);第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右边取一点表示1,0与1之间的长就是单位长度(相当于温度计上1 ℃占1小格的单位长度).在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,…,从原点向左,每隔一个单位长度取一点,它们依次表示-1,-2,-3,….3.数轴的定义.规定了原点、正方向和单位长度的直线叫做数轴.原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的选择、单位长度大小的确定,都是根据需要人为规定的,此外,直线也不一定是水平的.动态演示各种类型的数轴.认识和掌握判断一条直线是不是数轴的依据.4.数轴上的两个点,左边的点表示的数与右边的点表示的数的大小关系.数轴上的两个点表示的数,右边的总比左边的大,正数大于0,负数小于0,正数大于负数.三、例题讲解师:同学们,下面我们一起来做几个例题.【例1】 判断下图中所画的数轴是否正确,如果不正确,指出错在哪里.分析:原点、正方向、单位长度,数轴的这三个要素缺一不可.解:都不正确.(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致.【例2】 如图,数轴上点A ,B ,C ,D 分别表示什么数?解:点A 表示-2,点B 表示2,点C 表示0,点D 表示-1.【例3】 把下面各小题中的数分别表示在三条数轴上:(1)2,-1,0,-323,+3.5; (2)-5,0,+5,15,20;(3)-1500,-500,0,500,1000.解:略.【例4】 借助数轴回答下列问题:(1)有没有最小的正整数?有没有最大的正整数?如果有,把它标出来;(2)有没有最小的负整数?有没有最大的负整数?如果有,把它标出来.解:观察数轴易知:(1)有最小的正整数,它是1,没有最大的正整数;(2)没有最小的负整数,有最大的负整数,它是-1.四、课堂小结教师引导学生小结:1.数轴是非常重要的数学工具,它使数和直线上的点建立了一一对应的关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但反过来并不是数轴上的所有点都表示有理数.2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确.3.数轴上两个点表示的数,右边的点表示的数比左边的点表示的数大.正数大于0,负数小于0,正数大于负数.。
北师大版七年级上册数学第二章:有理数及运算讲义(二)2.2数轴(无答案)
第二章:有理数(二)2.2数轴1.数轴(1)定义:规定了原点、正方向和单位长度的直线叫做数轴,如图.①数轴有三要素:原点、正方向、单位长度,三者缺一不可;②原点的选定,单位长度大小的确定,都是根据实际需要“规定”的.通常取向右的方向为正方向. (2)数轴的画法画一条数轴的步骤可概括为:一画、二定、三选、四标. ①画直线:就是先画一条直线,一般画成水平的直线;②定原点:通常原点选在你所画直线居中的位置,若问题中负数的个数较多时,原点选得靠右些;正数的个数较多时,原点选得靠左些.③选正方向:通常取原点向右的方向为正方向,并选取适当的长度为单位长度,将表示刻度的点用短竖线表示.④标数:在数轴上依次标出1,2,3,4,0,-1,-2,-3,-4等各点,相应的数0,±1,±2,…写在数轴的下方;将需要在数轴上表示出的数或字母写在数轴的上方,相应的点表示为实心小圆点.要是在数轴上用到30,那得标多少单位啊! 适当的长度有两层含义:①可取实际1 cm 作为一个单位长度,也可以取2 cm 或其他实际数据作为一个单位长度; ②一个单位长度可表示1,也可表示10或更多!如图所示就能做到啦!【例1】四位同学画数轴如下图所示,你认为正确的是( ) A .B .C .D .2.有理数与数轴上的点的关系任何一个有理数都可以用数轴上的一个点来表示,即每个有理数都对应数轴上的一个点.(1)表示正数的点都在原点的右侧;(2)表示负数的点都在原点的左侧;(3)表示0的点就是原点. 【思考】数轴上是否只能表示有理数?能不能表示无理数,比如π?【例2】画出数轴并在数轴上标出表示下列有理数的点并用“<”将这些数连起来: 1.5, —2, 2, —2.5, 92, 23, 0;【例3】在数轴上表示下列各点,并写出这些点所对应的数. (1)在原点的左侧,距离原点3个单位长度; (2) 在原点的右侧,距离原点3个单位长度; (3) 在原点的左侧,距离原点0.5个单位长度; (4) 在原点的右侧,距离原点0.5个单位长度.【例4】如图,分别指出数轴上A 、B 、C 、D 、E 各点所表示的数.点技巧 “数形结合”思想(1)根据已知数在数轴上标出对应点,分三步:①画数轴;②确定点,并用实心小圆点描出;③标数,即在实心小圆点的上方标出所表示的数.(2)根据数轴上的点读数,原点表示0,原点向右为正数,原点向左为负数.都体现了“数形结合”的思想.3.利用数轴比较有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.(2)正数大于0,负数小于0,正数大于负数.(3)多个有理数比较大小:①把各个数在数轴上表示出来;②根据各数在数轴上的顺序,用“<”或“>”连接.析规律 两个有理数比较大小的方法 分情况比较:①若两数同号(都为正数或都为负数),数轴上左边的数<右边的数; ②若两数异号,则正数>0>负数.【例5】比较下列这组数的大小,并用“<”连接起来.-412,12,1,-2, 3, 0,-0.5.【例6】 有理数a ,b 在数轴上的位置如图所示,试用“=”“>”或“<”填空:a __________0,b __________0,a __________b .4.数轴上点的移动(1)相对于原点的移动:从原点向右a (a >0)个单位长度,则表示的数是a ;从原点向左a (a >0)个单位长度,则表示的数是-a .(2)两个相对点的移动:点A 相对于点B 向右移动或向左移动一定的距离,最后表示的数要看点A 移动结束时对应点距离原点的距离和位置.【例7】一探险队要沿着一东西走向的河流进行考察,第一天沿河岸向上游走了5 km ,第二天又向上游走了4.3 km ,第三天开始计划有变,向下游走了4.8 km ,第四天又向下游走了3 km ,你知道第四天之后,该探险队在出发点的上游还是下游吗?距离出发点多远?5.利用数轴求数轴上的点表示的数在数学里,数与形是密切联系的,数轴的引进使有理数与直线上的点联系了起来,利用数轴可以比较容易地写出数轴上某区域中的整数、正整数、负整数等.如,写出大于-5而小于3的所有整数.可以先画出数轴,在数轴上标出-5与3这两个点,再在这两个点之间找出满足题意的整数-4,-3,-2,-1,0,1,2即可.DC BA 【例8】小红做题时,不小心把墨水洒在了数轴上,如图所示,请根据图中的数值,写出墨迹盖住的所有整数.【题组训练】:1.如图所示,正确的数轴是( )2.若a ,b ,c 在数轴上的位置如图所示,则a ,b ,c 所表示的数是( ) A . a ,b ,c 均为正数 B .a ,b ,c 均为负数 C . a ,b 是正数,c 是负数 D .a ,b 是负数,c 是正数3.数轴上点A 表示-4,如果把原点O 向正方向移动1个单位,那么在新数轴上点A 表示的数是( ) A.-5, B.-4 C.-3 D.-24.若有理数m >n ,在数轴上点M 表示数m ,点N 表示数n ,则( ) A .点M 在点N 的右边 B .点M 在点N 的左边 C .点M 在原点右边,点N 在原点左边 D .点M 和点N 都在原点右边5.将一刻度尺沿着数轴的正方向正放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0 cm ”和“15 cm ”分别对应数轴上的6.3-和x ,则( )A 、109<<xB 、 1110<<xC 、 1211<<xD 、 1312<<x6.A 、B 两点在数轴上,点A 表示的数是2,若线段AB 的长为3,则点B 所表示的数为______7.数轴上表示整数的点称为整点,某数轴的单位长度是1cm ,若在这个数轴上随意画一条长为2013cm 的线段AB ,则线段AB 盖住的整点的个数是 。
北师大版七年级上册《2.2数轴》课时练习含答案解析
北师大版数学七年级上册第二章第二节数轴课时练习一、选择题(共10题)1.下列说法错误的是()A.没有最大的正数,却有最大的负整数B.数轴上离原点越远,表示数越大C. 0大于一切非负数D.在原点左边离原点越远,数就越小答案:B解析:解答:在数轴上离原点越远表示的数不一定越大,原点的左边越远数越小,原点的右边越远数越大,故答案为B选项.分析:考查数轴上的数的大小,原点的两边情况不同,右边是越来越大,左边是越来越小2.下列结论正确的有()个:①规定了原点,正方向和单位长度的直线叫数轴②最小的整数是0 ③正数,负数和零统称有理数④数轴上的点都表示有理数A.0B.1C. 2 D .3答案:B解析:解答:①是数轴的定义是正确的;②最小的整数不是0;③正有理数,负有理数和零统称为有理数;④数轴上的点表示所有的实数;故正确的只有一个.分析:考查数轴和正负数的基础知识.3.在数轴上,A点和B点所表示的数分别为-2和1,若使A点表示的数是B点表示的数的3倍,应把A点()A.向左移动5个单位B.向右移动5个单位C.向右移动4个单位D.向左移动1个单位或向右移动5个单位答案:B解析:解答:数轴上的点和数是一一对应的,现在A点和B点所表示的数分别为-2和1,若使A点表示的数是B点表示的数的3倍,那么A点应该表示的数是3,从—2到3需要向右移动5个单位,故答案为B选项分析:考查数轴的知识,数轴上的点和数是一一对应的.4. 点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长到B时,点B所表示的实数是()A.2B.—6C.2或—6D.不能确定答案:C解析:解答:动点A向右移动4各单位长度的时候到达B点时,此时的B点表示为2;当动点A向左移动4各单位长度的时候到达B点时,此时的B点表示为—6.分析:考查数轴的知识,数轴上的点和数是一一对应的,注意移动时候要分清是向左还是向右移动.5.在数轴上,如果A点在B点的右侧,那么A、B两点所表示的数的大小关系是()A.A大于BB.A小于BC.A等于BD.不能确定答案:A解析:解答:数轴上的点和实数是一一对应的,越靠右数越大,所以A大于B,选择A选项.分析:考查数轴的知识,数轴上的点和数是一一对应的,沿着数轴向右逐渐增大.6.在数轴上距离原点上的距离是2个单位长度的点表示的数是()A.2B.2或—2C.—2D.不能确定答案:B解析:解答:原点的左边距离原点是2个单位长度的点是—2,同理原点的右边距离原点是2个单位长度的点是2,故答案选择B选项分析:注意到原点距离相等的点有两个,左边一个右边一个7.在数轴上原点以及原点左边的数表示()A.零和正数B.正数C.负数D.零和负数答案:D解析:解答:根据数轴的定义我们可知原点表示零,左边的数小于零应该是负数,故答案选择D选项分析:数轴上的点和实数是一一对应的,原点表示零,左边是负数,右边是正数.8.从数轴上看0表示的是()A.最小的整数B.最大的负数C.最小的有理数D.最小的非负数答案:D解析:解答:从数轴上看0表示的分析:数轴上的点和实数是一一对应的,原点表示零,左边是负数,右边是正数.9.数轴上的点A,在原点的右侧且到原点的距离等于6,那么A所表示的数是()A.6B.—6C.6或—6D.不能确定答案:A解析:解答:在数轴上原点的右侧表示的是正数,到原点的距离是6的点应该是6,故答案是A.分析:数轴上的点和实数是一一对应的,原点表示零,左边是负数,右边是正数.10.数轴上表示—4的点在原点的()A.右侧B.左侧C.原点上D.不能确定答案:B解析:解答:根据数轴的定义我们可知原点表示零,左边的数小于零应该是负数,故答案选择B选项分析:数轴上的点和实数是一一对应的,原点表示零,左边是负数,右边是正数.二、填空题(共10题)11. 规定了原点、正方向和________的直线叫做数轴.答案:单位长度解析:解答:根据数轴的定义我们可知数轴包括原点、正方向和单位长度分析:考查数轴的定义.__________12. 在数轴上离开原点4个长度单位的点表示的数是_答案:4或—4解析:解答:到原点距离相等的点有两个,左边一个右边一个,所以答案为4或是—4.分析:考查到原点一定距离的数13.数轴上与原点之间的距离小于5的表示整数的点共有_______个答案:9解析:解答:本题就是大于0小于5的整数有几个,可知有四个,它们是1、2、3、4、0、—1、—2、—3、—4;分析:考查数轴上大于一个数小于另一个数的整数点有几个.14.在数轴上,点B表示-11,点A表示10,那么离开原点较远的是______点答案:B解析:解答:A点到原点的距离是11,B点到原点的距离是10,所以离开远点较远的是B 点分析:考查数轴上的点到原点的距离的大小,注意距离没有正负.__________ 15.在数轴上点M表示—2.5,那么与M点相距4个单位长度的点表示的数是_答案:—6.5或1.5解析:解答:和M点相距4个单位长度的点有两个,左边一个右边一个,通过计算可知是—6.5或1.5.分析:考查数轴上的点到一个点点的距离的一定时有几个符合条件,注意可能是左边也可能使右边.16.在数轴上原点右侧的离原点越远的点表示的数越___________答案:大解析:解答:数轴上的点在原点的右边离原点越远表示的数越大分析:考查数轴上的数的大小分布情况17.原点左侧的离原点越远的点表示的数越_________答案:小解析:解答:数轴上的点在原点的左边边离原点越远表示的数越小,因为左边是负数.分析:考查数轴上的数的大小分布情况18.到原点的距离不大于3的整数有个答案:7解析:解答:到原点的距离不大于3的整数左边和右边都有,它们是—1、—2、—3、0、1、2、3;一共7个整数.分析:考查数轴上的数到原点的距离大小的分布情况19.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是_____答案:—2解析:解答:把表示3的点沿着数轴向负方向移动5各单位,就是3—5=—2.分析:考查数轴上的数左右移动的情况,向左是减向右是加20. 在数轴上,表示-7的点在原点的侧答案:左解析:解答:在数轴上原点的左侧是负数,原点的右侧是正数.分析:考查数轴上的正负数分居原点的两侧,左边是负数右边是正数三、解答题(共5题)21. 写出数轴上比-5大的所有负整数答案:—4、—3、—2、—1解析:解答:本题是求大于—5小于0的负整数,可知他们是—4、—3、—2、—1.分析:考查数轴上比一个数大又比另一个数小的整数点22. 写出数轴上比6小的所有非负整数答案:5、4、3、2、1、0解析:解答:本题是求小于6大于等于0的整数,可知他们是5、4、3、2、1、0;注意非负整数包括0.分析:考查数轴上比一个数大又比另一个数小的整数点23. 写出数轴上所有大于-4,且小于2的整数;答案:—3、—2、—1、0、1解析:解答:本题是求小于2大于—4的整数,可知他们是—3、—2、—1、0、1;注意整数包括0.分析:考查数轴上比一个数大又比另一个数小的整数点24.写出数轴上所有大于-10,且小于-7的整数答案:—9、—8解析:解答:本题是求大于—10小于—7的整数,可知他们是—9、—8;注意整数包括负整数分析:考查数轴上比一个数大又比另一个数小的整数点25.画图表示一个点从数轴上的原点开始向右移动3个单位长度,再向左移动2个单位长度;这时表示什么数?答案:1解析:解答:本题是从原点向右移动3个单位长度是加3,再向左移动两个单位长度是减2,所以最后表示的点是1分析:考查数轴上点移动时右加左减。
北师大版七年级数学上册第二章2.2数轴专题复习练习
北师大版七年级数学上册第二章2.2 数轴专题复习练习1、数轴上点A表示数字6,点B表示数字﹣4(1)画数轴,并在数轴上标出点A与点B;(2)数轴上一动点C从点A出发,沿数轴的负方向以每秒2个单位长度的速度移动,经过4秒到达点E,数轴上另一动点D从点B出发,沿数轴的正方向以每秒1个单位长度的速度移动,经过8秒到达点F,求出点E与点F所表示的数,并在第(1)题的数轴上标出点E,点F;(3)在第(2)题的条件下,在数轴上找出点H,使点H到点E距离与点H到点F距离之和为8,请在数轴上直接标出点H.(不需写出求解过程)2、大家知道|5|=|5﹣0|,它在数轴上表示5的点与原点之间的距离,又知式子|6﹣3|它在数轴上的意义表示6的点与表示3的点之间的距离.即点A,B在数轴上分别表示数a,b,则A,B两点之间的距离可表示为:|AB|=|a﹣b|,根据以上信息,回答下列问题.(1)数轴上表示﹣2和5的两点之间的距离是 .(2)点A,B在数轴分别表示x和﹣1,若|AB|=2,求x的值.(3)直接写出|x﹣2|+|x﹣4|的最小值及相应的x的取值范围.(4)已知|x|≤1,|y|≤1,且k=|x+y|+|y+1|+|2y﹣x﹣4|,求k的最大值和最小值.3、如图,数轴上一动点A从原点出发,在数轴上进行往返运动,运动情况如下表.运动次数运动路程(记向右为正)第1次x第2次3﹣2x2第3次2(x2+1)第4次﹣(9﹣x)当2<x<4,回答下列问题:(1)第2次运动的方向是向 运动(填“左”或“右”);(2)通过计算,在数轴上确定点A第3次运动后的大概位置;(3)经历4次运动后,若点A想回到原点,则需要再向 (填“左”或“右”)运动,运动的距离是 ;(4)求点A在这4次运动过程中运动距离的总和.4、对于数轴上的A、B、C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“至善点”.例如:若数轴上点A、B、C 所表示的数分别为1、3、4,则点B是点A、C的“至善点”.(1)若点A表示数﹣2,点B表示数2,下列各数、0、1、6所对应的点分别C1、C2、C3、C4,其中是点A、B的“至善点”的有 (填代号);(2)已知点A表示数﹣1,点B表示数3,点M为数轴上一个动点:①若点M在点A的左侧,且点M是点A、B的“至善点”,求此时点M表示的数m;②若点M在点B的右侧,点M、A、B中,有一个点恰好是其它两个点的“至善点”,求出此时点M表示的数m.5、已知在纸面上画有一根数轴,现折叠纸面.(1)若﹣1表示的点与1表示的点重合,则3表示的点与数 表示的点重合;(2)若﹣1表示的点与3表示的点重合,回答以下问题:①6表示的点与数 表示的点重合;②若数轴上A、B两点之间的距离为d(点A在点B的左侧,d>0),且A、B两点经折叠后重合,则用含d的代数式表示点B在数轴上表示的数是 .6、如图,一辆货车从超市出发,向东走了3千米到达小颖家,继续走了2千米到达小亮家,然后向西走了9.5千米到达小明家,最后回到超市.(1)以超市为原点,以向东方向为正方向,用1个单位长度表示1千米,请你画出数轴,并在数轴上表示出小颖、小亮、小明家的位置;(2)小明家距小颖家多远?(3)货车一共行驶了多少千米?8、已知数轴上有ABC三点,分别表示有理数﹣12,﹣5,5,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,其中PA表示点P到A的距离,PB表示点P与点B的距离,PC表示P到点C的距离.(1)当t<7时,用含t的代数式分别表示PA,PB,PC;(2)当P运动到点B与点C之间时,①PA+PB是定值,②PC+PB是定值这两个说法中有一个说法是正确的,请指出哪个说法是正确的,并说明理由.9、如图1,已知数轴上有三点A、B、C,它们对应的数分别为a、b、c,且c﹣b=b﹣a;点C对应的数是10.(1)若BC=15,求a、b的值;(2)如图2,在(1)的条件下,O为原点,动点P、Q分别从A、C同时出发,点P向左运动,运动速度为2个单位长度/秒,点Q向右运动,运动速度为1个单位长度/秒,N为OP的中点,M为BQ的中点.①用含t代数式表示PQ、MN;②在P、Q的运动过程中,PQ与MN存在一个确定的等量关系,请指出它们之间的关系,并说明理由.10、小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M,N所表示的数分別为0,12.将一枚棋子放置在点M处,让这枚棋子沿数轴在线段MN上往复运动(即棋子从点M出发沿数轴向右运动,当运动到点N处,随即沿数轴向左运动,当运动到点M处,随即沿数轴向右运动,如此反复…).并且规定棋子按照如下的步骤运动:第1步,从点M开始运动t个单位长度至点Q1处;第2步,从点Q1继续运动2t个单位长度至点Q2处;第3步,从点Q2继续运动3t个单位长度至点Q3处….例如:当t=3时,点Q1,Q2,Q3,的位置如图2所示.解决如下问题:(1)如果t=4,那么线段Q1Q3= ;(2)如果t<4,且点Q3表示的数为3,那么t= ;(3)如果t≤2,且线段Q2Q4=2,那么请你求出t的值.11、已知A、B、C为数轴上三点,若点C到点A的距离是点C到点B的距离的2倍,则称点C是(A,B)的奇异点,例如图1中,点A表示的数为﹣1,点B表示的数为2,表示1的点C到点A的距离为2,到点B的距离为1,则点C是(A,B)的奇异点,但不是(B,A)的奇异点.(1)在图1中,直接说出点D是(A,B)还是(B,C)的奇异点;(2)如图2,若数轴上M、N两点表示的数分别为﹣2和4,①若(M,N)的奇异点K在M、N两点之间,则K点表示的数是 ;②若(M,N)的奇异点K在点N的右侧,请求出K点表示的数.(3)如图3,A、B在数轴上表示的数分别为﹣20和40,现有一点P从点B出发,向左运动.若点P到达点A停止,则当点P表示的数为多少时,P、A、B中恰有一个点为其余两点的奇异点?12、定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是10,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为﹣7,点N所表示的数为2.(1)点E,F,G表示的数分别是﹣3,6.5,11,其中是【M,N】美好点的是 ;写出【N,M】美好点H所表示的数是 .(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?13、如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O 运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计意图 第一环节 创设情境,引入课题 创设问题情 教师通过课件演示温度计读数,并且让学生回答以下问题: 境 , 激 发 学 生 问题 1:温度计是我们日常生活中用来测量温度的重要工具, 学 习 热 情 , 发 你会读温度计吗?请你尝试读出图中三个温度计所表示的温度? 现生活中的数 学.通过问题 1 和问题 2 的 解决, 学生感 受到点与数之 间的关系,从 而由点表示数 的感性认识上 升到理性认 识. 让学生在讨论 问题 2:在一条东西向的马路上,有一个汽车站,汽车站东 3 的基础上动手 m 和 7.5m 处分别有一棵柳树和一棵杨树,汽车站西 3 m 和 4.8m 处 操作,在操作 分别有一棵槐树和一根电线杆,试画图表示这一情境. 的基础上归纳 (四人小组为单位讨论并回答教师的问题) 出:可以表示 第二环节 合作交流,探索新知 有理数的直线 学生回答由上述两问题得到什么启发?你能用一条直线上的 必须满足什么 点表示有理数吗? 条件?从而得 出数轴的三要 素:原点、正 方向、单位长 度. 第三环节 动手练习,归纳总结 学生回答问题,动手训练 通过练习,得 1 出结论.正有 问题 1: +3,-4, ,-1.5,0 分别在数轴的什么位置? 理数是用原点 4 问题 2:指出数轴上 A, B, C, D 各点分别表示什么数? 右 边 的 点 表 示,负有理数 是用原点左边 的点表示,0 问题 3: 画出数轴,并用数轴上的点表示下列各数: 用原点表示. 3 3 所以任何一个 , -5, 0, 5, -4, 有理数都可以 2 2 问题 4:2 与-2 有什么相同点与不相同点?它们在数轴上的位 用数轴上的一 3 3 个点来表示. 置有什么关系? 与 ,5 与-5 呢? 问题 2 是 2 2 数轴上已知点 所表示的有理 第四环节 仔细观察,发现规律 数, 是由 “形”
学生观察数轴并回答问题: 到“数”的思 问题 1:数轴上的两个点,右边点表示的数与左边点表示的数 维过程. 有怎样的大小关系? 问题 3பைடு நூலகம்是 问题 2:正数、负数在数轴的什么位置?判断它们的大小? 给定的数用数 利用结论练习:比较下列每组数的大小,并说明理由. 轴上的点来表 3 示, 是由 “数” ⑴-2 和 +6;⑵0 和 -1.8;⑶ 和 -4. 到“形”的思 2 思考数轴的应用价值,观察数轴上两个点所表示的数的大小 维 过 程 . 它 们 情况.得出结论:数轴上两个点所表示数,右边的总比左边的大. 从两个侧面体 正数大于 0,负数小于 0,正数大于负数.通过练习,借助数轴比 现出数形结合 较数的大小. 思想. 问题 4 是 第五环节 加强练习,巩固提高 使学生通过观 1、写出三对非零的相反数,在数轴上将它们表示出来,并 察特例,总结 比较其中三个负数的大小. 出相反数的概 2、在数轴上距原点 2 个单位长度的点表示什么数? 念,以及互为 学生基本能准确的把有理数用数轴上的点表示出来.在比较 相反数的两数 数的大小时,出现错误,例如:把 -5﹤-3﹤-2 写成 -3﹥-5﹤-2, 在数轴上的位 教学中应及时纠正. 置关系,从数 和形两个侧面 第六环节 归纳小结,强化思想 理解相反数. 师生共同总结这节课的知识内容,让学生畅所欲言谈这节课收 一方面巩 获. 固新学内容, 第七环节 布置作业 另一方面为讨 1、在数轴上把下列各数的相反数表示出来,并比较它们的大 论相反数的性 小. 质和绝对值的 4 5 概念作准备. 7 , ,-3.5 ,0 , 把所学知 3 4 2、比较下列每组数的大小 识条理化,学 (1) -10 ,-7 (2) -3.5,1 生把自己在本 1 1 节课的收获说 (3) , (4) 3.8,-4.1,-3.9 出来和大家共 2 4 3、 (1)点 A 在数轴上距原点 3 个单位长度,且位于原点左侧, 享,在知识、 若将 A 向右移动 4 个单位 能力和情感上 长度,在向左移动 1 个单位长度,此时 A 点所表示的是什么数? 都有所发展. (2)B 点所表示的数是 A 点开始时所表示数的相反数做同 样的移动以后, B 点表示 什么数? 教后 几点困惑:1、本节知识点多,学生掌握困难。2、画数轴时正方向经常被 随笔 遗忘。3、两负数比较大小经常与正数的混淆。