统计学第五章
统计学第五章(变异指标)

峰态及其度量
峰态定义
峰态是指数据分布的尖峭程度或扁平程度。在统计学中,峰态通常通过峰态系数 来度量。
峰态系数
峰态系数是描述数据分布峰态程度的一个统计量,通常表示为K。当K=3时,分 布呈正态分布,峰度适中;当K>3时,分布呈尖峰分布,即比正态分布更尖峭; 当K<3时,分布呈平峰分布,即比正态分布更扁平。
方差
要点一
定义
方差是在概率论和统计方差衡量随机 变量或一组数据时离散程度的度量, 用来度量随机变量和其数学期望(即 均值)之间的偏离程度。
要点二
计算公式
方差s^2=[(x1-x)^2+(x2x)^2+......(xn-x)^2]/n(x为平均数)。
要点三
性质
方差越大,说明随机变量取值越离散; 方差刻画了随机变量的取值对于其数学 期望的离散程度;若X的取值比较集 中,则方差D(X)较小,若X的取值比较 分散,则方差D(X)较大;因此,D (X)是刻画X取值分散程度的一个 量,它是衡量取值分散程度的一个尺 度。
变异系数的计算
01
注意事项
02
当数据集包含极端值时,变异系数可能会受到影响。
03
对于非正态分布的数据,变异系数的解释需谨慎。
变异系数的应用
比较不同数据集的离散程度
通过比较不同数据集的变异系数,可以评估它们 的相对波动程度。
在质量控制中的应用
通过计算产品质量的变异系数,计学第五章变异指
目
CONTENCT
录
• 变异指标概述 • 变异系数 • 极差、四分位差与平均差 • 标准差与方差 • 偏态与峰态的度量 • 变异指标在统计分析中的应用
01
变异指标概述
统计学原理第五章

第五章综合指标学习要点:了解各种指标的概念及作用,掌握相对指标、平均指标的特点及计算方法,变异指标的计算方法。
§1、总量指标§2、相对指标§3、平均指标§4、变异指标学习知识点:前言:1、总量指标是反映社会经济现象发展的总规模、总水平的综合指标。
将总体单位数相加或总体单位标志值相加,就可以得到说明在一定时间、空间条件下某种现象总体的总规模、总水平的指标,即总量指标。
如:2010年年年末为1339724852亿,反映是我国人口的总规模。
总量指标的作用:第一、总量指标可以用来反映一个国家的基本国情国力,反映一个地区、一个部门或一个单位的人力、物力和财力,是人们对客观事物认识的起点。
第二、总量指标可以用来作为制定政策、制定计划和实行科学管理的基本依据,也是检查政策、计划执行情况,反映社会经济活动绝对效果的重要指标。
第三、总量指标可以用来研究客观现象的数量表现及其发展的变化趋势。
第四、总量指标是计算相对指标和平均指标的基础。
一、总量指标的种类:1、按其反映现象总体内容的不同:• 总体单位总量(简称单位总量):指总体内所有单位的总数,表示总体本身规模的大小。
对于一个确定的统计总体,其总体单位总量是唯一确定的。
• 总体标志总量(简称标志总量):指总体中各单位标志值总和。
对于确定的统计总体,标志总量不是唯一的,而是随着标志的不同可计算不同的标志。
• 例:我们研究某市三级医院的基本情况,则全市三级医院的总数量是总体单位总量,而全部三级医院职工总人数、全部三级医院职工工资总额等就是总体指标总量。
2、按反映时间状况的不同,可分为时期指标和时点指标。
• 时期指标指反映某社会经济现象在一段时间活动结果的总量指标,它反映的是一段时间连续发生变化过程。
如产品总量、货物运输量、商品销售量、国内生产总量等。
• 时点指标是反映社会经济现象在某一时间(瞬间)状况上的总量指标。
如人口数、职工数、设备台数等。
第五章概率与概率分布

P( A)
事件A发生的次数m 重复试验次数n
m n
英语字母出现频率
space 0.2 ; I 0.055 ; C 0.023 ; G 0.011 ; Q 0.001 ; E R U B Z 0.105 ; T 0.072 ; 0.054 ; S 0.052 ; 0.0225 ; M 0.021 ; 0.0105 ; V 0.008 ; 0.001 O H P K 0.0654 ; 0.047 ; 0.0175 ; 0.003 ; A D Y X 0.063 ; 0.035 ; 0.012 ; 0.002 ; N 0.059 L 0.029 W 0.012 J 0.001
一、概率(Probability)的定义
概率:0-1之间的数,衡量事件A发生可能 性(机会)的数值度量。记P(A) •Probability: A value between 0 and 1, inclusive, describing the relative possibility (chance or likelihood) an event will occur.
P ( A) A包 含 的 可 能 结 果 (偶 数 ) 全部可能结果 3 6
实际与理论分析不符时,实际中可能作弊。
如:河北银行人员为买奖券,盗2000万并没中大奖。
西安彩票中心人员中奖率极高,结果是作弊。
例:已知有148名学生统计表
专业
性别
男 女
金融学院 工商学院 经济学院 会计学院 15 15 22 14 30 12 25 15
摘自:概率论与数理统计简明教程1988》李贤平 卞国瑞 立鹏,高等教育出版社
吴
大量统计的结果,用于破解密码
美国正常人血型分布
统计学 第五章

第五章 抽样推断抽样推断定义:是一种非全面调查,是按随机原则,从总体中抽取一部分单位进行调查,并以其结果对总体某一数量特征作出估计和推断的一种统计方法。
(一) 总体和样本在抽样推断中面临两个不同的总体,即全及总体和样本总体,全及总体也叫母体,简称总体。
全及总体的单位数用N 表示全及总体⎪⎩⎪⎨⎧⎩⎨⎧属性总体有限总体无限总体变量总体样本总体又叫抽样总体、子样,简称样本,样本总体的单位数称样本容量,用n 表示。
(二) 参数和统计量参数亦称全及指标,由于全及总体是唯一确定的,故根据全及总体计算的参数也是个定值 对于属性总体,可以有如下参数,全及总体成数p ,全及总体标准差)(2p p σσ方差 属性总体标准差:()p p p-=1σ统计量即样本指标设样本总体有n 个变量:n x x x x ,...,,,321 则:样本平均数 nx x ∑=(三) 样本容量与样本个数样本容量是指一个样本所包含的单位数,用n 来表示,一般地,样本单位数达到或超过30个的样本称为大样本,而在30个以下称为小样本。
社会经济统计的抽样推断多属于大样本,而科学实验的抽样观察则多取小样本。
样本个数又称样本可能数目,是指从全及总体中可能抽取的样本的个数。
一个总体可能抽取多少样本,与样本容量大小有关,也与抽样的方法有关。
在样本容量确定之后,样本的可能数目便完全取决于抽样方法。
抽样误差是抽样调查自身所固有的,不可避免的误差,虽然不能消除这种误差,但有办法进行计算,并能对其加以控制。
抽样平均误差越大,表示样本的代表性越低;抽样平均误差越小,表示样本的代表性越高。
在重复简单随机抽样时,样本平均数的抽样分布有数学期望值E(a)=a(a代表全及总体平均数,即X)X⇔。
样本平均数的平均数=总体平均数抽样平均误差=抽样标准误差=样本平均数的标准差(它反映抽样平均数与总体平均数的平均误差程度)例题:某班组4个工人的月工资(N=4)分别是:1400元,1500元,1600元,1700元,现用重复简单随机抽样的方法从全及总体中抽选出容量大小为2的样本(n=2),求抽样平均误差?解:全及总体平均工资)(15501700160015001400元=+++=X全及总体标准差()4500002=-=∑NX Xσ抽样平均误差x μ=nnσσ=2=)(0569.792*450000元=例题:某班组4个工人的月工资(N=4)分别是:1400元,1500元,1600元,1700元,现用不重复简单随机抽样的方法从全部总体中抽选容量大小为2的样本(n=2),求抽样平均误差?解:全及总体平均工资)(155041700160015001400元=+++==∑NXX全及总体标准差()4500002=-=∑NX Xσx μ=⎪⎭⎫ ⎝⎛--∙12N n N n σ=)(55.6414244*250000元=--∙例题:某电子元件厂,生产某型号晶体管,按正常生产试验,产品中属于一级品的占70%,现在从10000件晶体管中,抽取100件进行抽查检验,求一级品率的抽样平均误差? 解:已知:P=0.7 , P(1-P)=0.21在重复抽样的情况下,抽样平均误差为:()np p p -=1μ=%58.410021.0=在不重复抽样的情况下,抽样平均误差为:()⎪⎭⎫⎝⎛-∙-=N n n p p p 11μ=%56.410000*********.0=⎪⎭⎫ ⎝⎛-∙参数估计()()⎪⎪⎩⎪⎪⎨⎧→-==+≤≤是概率度是置信度,极限误差)样本指标总体指标极限误差—(样本指标区间估计:求不高的情况准确程度与可靠程度要点估计:适用于推断的t t F t F P α1例题:已知某车间某产品的合格率在某个置信度下的估计区间是(85%,95%),还已知样本容量为100,求置信度?解:显然p p ∆-=85%,p p ∆+=95%,即p=90%,p ∆=5%p ∆=μ⋅t μpt ∆=⇒=()()67.1100%901%90%51=-∙=-∆np p p ()t F =0.9052即置信度为90.51% ★求置信度,只需要求出t影响抽样数目的因素⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∆样本单位不重置抽样可以少抽些单位,抽样需要多抽一些样本、在同等条件下,重置单位,则反之值越大,则多抽些样本、概率度则反之单位,的值大可以少抽些样本)、允许误差(极限误差越多,则反之值越大,必要抽样数目、总体标准差4321t x σ例题:某城市组织职工家庭生活抽样调查,职工家庭平均每户每月收入的标准差为11.50元,要求把握程度为95.45%,允许误差为1元,问需抽选多少户? 解:()t F =0.95452=⇒t , 元元,150.11=∆=x σxt n 222∆=σ=()户529150.1142=∙。
统计学教程 第五章

经济、管理类 基础课程
统计学
样本相关系数的计算公式
r
( x x )( y y ) (x x ) ( y y)
2
2
或化简为 r
10 - 13
n xy x y n x x n y y
2 2 2 2
10 - 4
经济、管理类 基础课程
变量间的关系
统计学 (相关关系correlation relationship)
1. 变量间关系不能用函数关 y 系精确表达 2. 一个变量的取值不能由另 一个变量唯一确定 3. 当变量 x 取某个值时,变 量 y 的取值可能有几个 4. 各观测点分布在直线周围 x
10 - 5
经济、管理类 基础课程
变量间的关系
统计学 (相关关系correlation relationship)
相关关系的例子
居民消费支出(y)与收入(x)之间的关系
商品销售额(y)与广告费支出(x)之间的关系
粮食亩产量(y)与施肥量(x1) 、降雨量(x2) 、 温度(x3)之间的关系 子女身高 (y)与父母身高(x)之间的关系 收入水平(y)与受教育程度(x)之间的关系
估计标准误差越小,回归模型拟合的越好。但 是作为判断和评价标准,估计标准完成不如判定 系数。
10 - 32
【例】根据上例中的数据,配合人均消费 金额对人均国民收入的回归方程 统计学
时间
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 10 - 33
b0 和 b1 称为模型的参数
经济、管理类 基础课程
统计学基础第五章时间数列

statistics
统计学——第五章时间数列
解:根据上面计算资料再计算第三季度的月平均库存额为:
an-1 an a1 a2 a2 a3 … 2 2 a 2 n 1 an a1 a2 an-1 2 2 n 1
700 900 900 1000 2 2 4 1
均衡的期末登记排列。通常将前者称为间隔相等的间断 时点数列,后者称为间断不等的间断时点数列。
statistics
统计学——第五章时间数列
间隔相等的间断时点数列的平均发展水平的计算公式:
an1 an a1 a2 a2 a3 2 2 a 2 n 1 an a1 a2 an-1 2 2 n 1
statistics
统计学——第五章时间数列
(3)分子、分母由一个时期数列和一个时点数列对比组成 相对数时间数列。
a a 1 a 2 a n 1 a n c b0 bn b1 b n 1 b 2 2
(分子为时期数列,分母为时点数列) a0 an a 1 a 2 a n 1 a 2 或 2 c b1 b n 1 b n
可见,该商场2006年的第三、第四季度的月平均销售 额大于第一、第三季度的月平均销售额。 statistics
统计学——第五章时间数列
2.依据时点数列计算序时平均数
连续时点数列 时点数列 间断时点数列 间隔不等的间断时点数列 间隔相等的间断时点数列
statistics
统计学——第五章时间数列
(1)连续时点数列的序时平均数。
5-4所示,试求第一季度的平均完成率。 表5-4 某厂某年第一季度各月商品销售额 计划完成情况统计表 目 1月 200 210 105 2月 240 260 105 3月 250 280 112 statistics
《统计学》第5章 假设检验

假设不成立时,即拒绝原假设时备以选择的假设,通常用H1 表示。备择
假设和原假设互斥,如在例5.1中,原假设是“2022 年全国城市平均
PM2.5 浓度与2018 年相比没有显著差异”,那么备择假设就是“2022
年全国城市平均PM2.5 浓度与2018 年相比存在显著差异”。相应的统计
小越好。但是,在一定的样本容量下,减少犯第I类错误的概率,就会
使犯第II类错误的概率增大;减少犯第II类错误的概率,会使犯第I类
错误的概率增大。增加样本容量可以使犯第I类错误的概率和犯第II类
错误的概率同时减小,然而现实中资源总是有限的,样本量不可能没有
限制。因此,在给定的样本容量下,必须考虑两类可能的错误之间的权
易被否定,若检验结果否定了原假设,则说明否定的理由是充分的。
第四章 参数估计
《统计学》
16
5.1 假设检验的基本原理
(四) P值法
假设检验的另一种常用方法是利用P值(P-value) 来确定检验决策。P值
指在原假设0 为真时,得到等于样本观测结果或更极端结果的检验统计
量的概率,也被称为实测显著性水平。P值法的决策规则为:如果P值大
1.96) 中。这里−1.96和1.96 称为临界值,区间(−1.96, 1.96) 两侧的
区域则被称为拒绝域。基于样本信息,可以计算得到相应的z检验统计量
值,已知ҧ = 46,0 = 53, = 14 , n = 100 = −5
14/10
第四章 参数估计
《统计学》
14
5.1 假设检验的基本原理
犯第I 类(弃真) 错误的概率 也称为显著性水平(Significance level),
统计学第五章

2-分布
(性质和特点)
• 1. 期望为:E(2)=n,
•
方差为:D(2)=2n(n为自由度)
• 2. 可加性:
•
若U和V为两个独立的2分布随机变量,
U~2(n1),V~2(n2),则U+V这一随机变量服从 自由度为n1+n2的2分布
• 3. 当 n 时, 2分布的极限分布是正态
分布
不同自由度的2-分布
(central limit theorem)
从均值为,方差为 2的一个任意总体中抽取容量
为n的样本,当n充分大时,样本均值的抽样分布近 似服从均值为μ、方差为σ2/n的正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
x
中心极限定理
(2)系统抽样的评价 ——操作上简便易行 ——如果总体是按有关标志进行排列的话,可以提 高样本的代表性,改进抽样精度 ——对估计量方差的估计比较困难
4、整群抽样(cluster random sampling) (1)整群抽样的概念
整群抽样是指将总体分成群,从中随机抽取 若干群,群中的所有单位构成样本
E(x)
2 x
2
n
样本比例的分布
(proportion)
1. 总体(或样本)中具有某种属性的单位与全部单位 总数之比
– 不同性别的人与全部人数之比
– 合格品(或不合格品) 与全部产品总数之比
2. 总体比例可表示为
N0 或 1 N1
N
N
3. 样本比例可表示为
4.
p n0 或 1 p n1
2. 一种理论概率分布
统计学第5章抽样推断

任 何 抽 样 误 差 因 素 。 即 用 x直 接 代 表 X , 用 p 直 接 代 表 P。
例 在 全 部 产 品 中 , 抽 取 100件 进 行 仔 细 检 查 , 得 到 平 均 重 量 x1002克 , 合 格 率 p98% , 我 们 直 接 推 断 全 部 产 品 的 平 均 重 量 X 1002克 , 合 格 率 P 98% 。
(1)
2
n
(1 )
12 2 (1
100
) 1.19 (千克 )
x
n
N
100 10000
(2) 若以概率 95.45%(t 2)保证,该农场 10000 亩小麦的平均
亩产量的可能范围为:
X : x 400 2 1.19 x
X (: 397 .62 ,402.38 ) (3) 若以概率 99.73%(t 3)保证,该农场 10000 亩小麦的平均
在重复抽样情况下:
p (1 p )
p
n
在不重复抽样情况下:
p (1 p ) n
(1 )
p
n
N
例
某玻璃器皿厂某日生产15000只印花玻璃 杯,现按重复抽样方式从中抽取150只进行 质量检验,结果有147只合格,其余3只为不 合格品,试求这批印花玻璃杯合格率(成数) 的抽样平均误差。
N15000n150
二、区间估计
根据样本指标和抽样误差去推断全及 指标的可能范围,它能说清楚估计的准 确程度和把握程度。
总体平均数和总体成数的估计
X :(x x, x x)
1的概率保证下:x tx
P:(pp, pp)
1的概率保证下: p tp
统计学课件05第5章抽样与参数估计

反映样本数据的集中趋势和平均水平。
样本方差
定义
样本方差是每个样本数据与样本均值差的平方和的平均值,即 $s^2 = frac{1}{n} sum_{i=1}^{n} (x_i - overline{x})^2$。
计算方法
先计算每个样本数据与样本均值的差,然后将差平方,最后求和平 均。
作用
反映样本数据的离散程度和波动情况。
样本量的确定
根据调查目的和精度要求确定样 本量:精度要求越高,需要的样
本量越大。
根据总体规模和抽样方法确定样 本量:总体规模越大,需要的样 本量越大;分层或整群抽样较简 单随机抽样需要的样本量更大。
根据调查资源确定样本量:资源 有限时,需要在满足调查目的和 精度要求的前提下,合理确定样
本量。
02 参数估计
大数定律的数学表达
设随机变量X1,X2,...,Xn是相互独立的,且具有相同的分布函数F(x),则对于任意正实数ε,有 lim(n->∞)P(|X1+X2+...+Xn/n-E(X))/ε)=0,其中E(X)是随机变量X的期望值。
大数定律的实例
在抛硬币实验中,随着实验次数的增加,正面朝上的频率将趋近于0.5。
中心极限定理
中心极限定理定义
中心极限定理是指在大量独立同分布的随机变量中,不论 这些随机变量的分布是什么,它们的平均值的分布总是趋 近于正态分布。
中心极限定理的数学表达
设随机变量X1,X2,...,Xn是相互独立的,且具有相同的分布 函数F(x),则对于任意实数x,有lim(n->∞)P(∑Xi≤x)=∫(∞->x)F(t)dt。
样本分布的性质
无偏性
如果样本统计量的数学期 望等于总体参数,则该统 计量是无偏的。
统计学第五章(变异指标)

值或组中值 出现的次数
数
整理ppt
19
【例B】计算下表中某公司职工月工资的标准差。
月工资(元) 组中值(元)X 职工人数(人)f
300以下
250
208
300~400
350
314
400~500
450
382
500~600
550
456
600~700
650
305
700~800
750
237
800~900
850
78
900以上
950
20
合计
—
整理ppt
2000
20
解:
x 2 5 20 0 8 9 5 2 0 0 104 55 .9 29 元 5 2 0
2000 2000
25052.925220895052.925220
2000
56386.0519156.97元
2000
即该公司职工月工资的标准差为167.9元。
本节基本结构
变异指标
极差
平均差
标准差 变异系数
整理ppt
1
第五节 变异指标的计算与应用
某班三名同学三门课程的成绩如下: 单位:分
课 程
语文 数学 英语 总成绩 平均成绩
学生
甲 60 65 70 195
65
乙 65 65 65 195
65
丙 55 65 75 195
65
请比较三名同学学习整理成ppt 绩的差异。
5
5
n
AD i1 xi x 440558750558
n
5
46893.6元
5
即该售货小组5个人销售额的平均差为93.6元。
统计学 第五章 动态数列

例
某商业企业2010年第二季度某商品库存 资料如下,求第二季度的月平均库存额
时间 3月末 4月末 5月末 6月末
库存量(百件)
66
72
64
68
解:第二季度的月平均库存额为:
66 68 72 64 2 2 67.67百件 a 4 1
※间隔不相等 时,采用加权序时平均法
一季 度初 二季 度初
af 解:a f
780 9 784 6 786 7 783 9 783(人) 9679
②由间断时点数列计算
一季 度初 二季 度初 三季 度初
不是逐日记录,而 是每隔一段时间登 记一次,表现为期 初或期末值
四季 度初 次年一 季度初
※间隔相等 时,采用首末折半法
时期数列
时期数列特点:
数列中各个指标数值是可加的; 数列中每个指标数值的大小随 着时期的长短而变动; 数列中每个指标数值通常通过连 续不断的登记而取得。
时点数列
在绝对数动态数列中,如果 各项指标都是反映某种现象在某 一时点上(瞬间)所处的数量水 平,这种绝对数动态数列就称为 时点数列。 如 表 4-1 中 所 列 的 我 国 20022008年全国人口年末数。
增速 3.8 9.2 14.2 13.5 12.6 10.5 9.6 8.8 7.8 7.1 8.0
例
某市职工2006-2010年年平均工资 单位:元
年份 年平均工资
2006 10663
2007 11425
2008 12059
2009 14147
2010 15420
三、动态数列的编制原则
时期长短应该统一 总体范围应该一致
⑵ a、b均为时点数列时
统计学第5章 假设检验

假设检验
第 5 章
假设检验
• 5.1 假设检验的基本问题 • 5.2 一个总体参数的检验 • 5.3 两个总体参数的检验(自学)
5.1
假设检验的基本原理
一、假设的陈述 二、两类错误与显著性水平 三、统计量与拒绝域 四、利用P值进行决策
假设检验的基本概念
在实际工作中常会遇到这样的问题: (1)某药物在改进工艺后的疗效是否有提高? (2)假定总体服从某种分布是否成立? 如何通过抽检的样本对上述问题做出判断? 此时常常作出适当的假设,然后进行试验或 观测,得到统计样本,构造统计方法进行判断,以 决定是否接受这个假设。
1. 基本原理
小概率推断原理: 0 α 0.05 小概率事件 (概率接近0的事件),在一次试验中,实际上可认为 不会发生(这是人们长期积累起的普遍经验!).
2. 基本思想方法
采用概率性质的反证法: 先提出假设H0 , 再根 据一次抽样所得到的样本值进行计算. 若导致小 概率事件发生,则否认假设H0 ;否则,接受假设H0 . 下面结合实例来说明假设检验的基本思想.
H0 :π ≤30%
H1 :π >30%
提出假设 (练习)
• 某厂生产的化纤的纤度服从正态分布,纤 维纤度的标准均值为1.04。某天测得25根 纤维的纤度均值为x=1.39,检验与原来设 计的标准均值相比是否有所变化,要求的 显著性水平为α =0.05,则假设形式为: •
H0 :μ =1.04
H1 :μ ≠1.04
假设检验的基本思想
抽样分布 这个值不像 我们应该得 到的样本均 值 ... ... 如果这是 总体的假设 均值 = 50 H0
... 因此我们 拒绝假设 = 50
20
统计学5章

有数学期望值 E ( x ) = a a 代表全及总体平均数) (
设总体变量有 N 个:X1,X2,… , XN,则
样本容量为 n:x1 , x2 , … , xn , 则:
X1 X 2 X N X= N
x1 x2 xn x = n
∵ ∴ =
2 x
x1, x2,…, xn相互独立
1 n2 E x1 X
2
E x2 X
2
E xn X
2
2
E ( xi X )( x j X ) i j
=
1 n2 1 n2
E ( x X )2 E x X 1 2 E X X
对于属性总体来说则有如下对应样本指标: 设样本总体 n 个单位中有 n1 个单位具有某种属性, n0 个单位不具有某种属性,且n1 +n0 = n 。则:
n1 p n n0 n n1 q 1 p n n
样本标准差
s
p1 p
(二)参数和统计量
(三)样本容量与样本个数
样本容量是指一个样本所包含的单位数,用 n 来 表示。一般地讲,样本单位数达到或超过30个的样本 称为大样本,而在30个以下称为小样本。 样本个数又称样本可能数目,是指从全及总体中
二、抽样推断的几个基本概念
抽样推断的几个基本概念(见图5-1)。
图5-1 抽样推断的几个基本概念
(一) 总体和样本
在抽样推断中面临两个不同的总体,即 全及总体和样本总体(见图5-2)。
图5-2 全及总体和样本总体关系示意
(一) 总体和样本
统计学课件第五章 统计指数

p0q1
p0
q0
表示(
p0
D
q0
)
A、商品价格变动引起销售额变动的绝对额
B、商品价格和销售量的变动引起销售额变动 的绝对额
C、价格不变的情况下,销售量变动的绝对额
D、价格不变的情况下,销售量变动引起销售 额变动的绝对额
第五章 统计指数
36
练习
某市几种主要副食品调整价格前后资料如下:
第五章 统计指数
37
(1)各商品零售物价个体指数:
K p1
p1 p0
0.4 0.3
133.33%
K p2
p1 p0
2.44 2.20
110.91%
K p3
p1 p0
1.92 1.80
106.67%
K p4
p1 p0
7.60 6.80
111.76%
第五章 统计指数
如何反映三种商品销售量的综合变动情况?
第五章 统计指数
17
计算个体销售量指数如下:
k甲
q 1
q
600件 480件
125%
0
k乙
q 1
q
600千克 500千克
120%
0
k丙
q 1
q
180米 200米
90%
0
第五章 统计指数
18
一、编制综合指数的原理
1、引入 同度量因素 ,使不能直接加总的
K p
p1q1 p0q1
一、编制综合指数的原理
二、综合指数的具体编制
《统计学》-第5章-习题答案

第五章方差分析思考与练习参考答案1.试述方差分析的基本思想。
解答:方差分析的基本思想是,将观察值之间的总变差分解为由所研究的因素引起的变差和由随机误差项引起的变差,通过对这两类变差的比较做出接受或拒绝原假设的判断的。
2.方差分析有哪些基本假设条件?如何检验这些假设条件? 解答:(1)在各个总体中因变量都服从正态分布;(2 )在各个总体中因变量的方差都相等;(3)各个观测值之间是相互独立的。
正态性检验:各组数据的直方图/峰度系数、偏度系数/Q-Q图,K-S检验*等方差齐性检验:计算各组数据的标准差,如果最大值与最小值的比例小于2:1,则可认为是同方差的。
最大值和最小值的比例等于 1.83<2。
也可以采用Levene检验方法。
独立性检验:检查样本数据获取的方式,确定样本之间无相关性。
3.对三个不同专业的学生的统计学成绩进行比较研究,每个专业随机抽取6人。
根据数据得到的方差分析表的部分内容如表5-21。
请完成该表格。
如果显著性水平a=0.05,能认为三个专业的考试成绩有显著差异吗?表5-21不同专业考试成绩的方差分析表解答:表不同专业考试成绩的方差分析表查f分布可知,p(F< 0.9067964)= 0.7952296,在显著性水平a=0.05时,不能拒绝原假设,认为三个专业的成绩无显著差异。
根据以下背景资料和数据回答4-7题。
为测试A、B、C、D、E五种节食方案,一位营养学家选择了50名志愿者随机分成五组,每组采用一种方案测量两个月后每个人的降低的体重,得到的实验数据如表5-22。
表5-22不同节食方案的降低的体重(公斤)序号 万案A 万案B 万案C 万案D 万案E1 6.5 2.9 8 5.1 11.52 11.6 5.5 11.9 2.5 13.23 7.7 4.3 8.5 1.5 114 8.7 3.6 8.9 2.2 13.15 8.4 3.9 9.1 1.4 13.86 4.1 6.7 11.4 3.1 12.8 7 8.7 4.5 12.6 5.4 12 8 6.6 1.7 12.4 1.9 11.5 9 7.1 6.59.4 4.1 14.6 108.9 5.4 10.6 3.6 13.74.不同节食方案的实验效果的描述统计资料如表5-23。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结
• • • • 1.抽样分布和抽样误差 2.标准误 3.参数估计:点估计和区间估计 4.相对危险度
最佳选择题
• • • • • 1.B 2.D 3.C 4.A 5.B
简答题
问题一:样本均数的抽样分布有何 特点?
• 1.各样本均数未必等于总体均数; • 2.各样本均数间存在差异; • 3.样本均数的分布围绕着总体均数呈现中间 多,两边少,左右基本对称,近似服从正 态分布; • 4.样本均数的变异范围较之原变量的变异范 围小; • 5.随着样本含量的增大,样本均数的变异范 围逐渐缩小。
问题六:RR和OR有何区别与联系。
• OR与RR都是指暴露者的疾病危险性为非暴 露者疾病危险性的多少倍。 • 但是RR多用于队列研究 • OR用于病例对照研究,因其不能计算发病 率,所以也不能计算相对危险度。只能用 OR作为反应关联强度的指标。 • 在不同患病率和发病率情况下,OR与RR有 差别,但患病率很低(如≤1%)时,OR是 RR的极好近似值。
问题二:样本均数的标准误的意义是什 么?与标准差有何区别和联系?
• 反映样本均数间的离散程度,也反映样本均数与相应总体 均数间的差异,因而说明了均数抽样误差的大小。
• 标准差和标准误都是变异指标,但它们之间有区别,也有 联系。 • 区别: 前者是表示均数变异的指标,后者是表示观察值变 异的指标。 • 联系: 标准差,标准误均为变异指标,当样本含量n不变时, 标准误与标准差成正比。
问题三:用同一份样本指标去估计 总体参数的95%可信区间与99%可 信区间,两者比较,哪一个估计的 精确性好?为什么?
• 95%可信区间的精确性好于99%可信区间。 因为可信区间由95%提高到99%,可信区 间由窄变宽,估计的精度下降。
问题四:如何运用抽样误差规律对 总体参数进行估计?
• 参数估计有点估计和区间估计。 • 点估计:用相应样本统计量直接作为其总 体参数的估计值。 • 区间估计:按预先给定的概率(1-α)所确 定的包含未知总体参数的一个范围。
计算分析题
计算题
第二题
• 29%-60%
第四题
• 查表:x=30 20.2~42.8 个/100ml
第五题
• 解:已知单位时间内脉冲数符合poisson分 布,x=490,正态近似法,该放射性同位素 平均每30分钟脉冲数的95%可信区间为
•谢谢第六节 案例Fra bibliotek论问题一
• 根据数据算出男女性血红蛋白含量95%的 可信区间 • 男:(133.8,135.2) • 女:(116.3,118.9) • 男女组的标准值高于于95%可信区间上限 • 且男性可信区间下限高于女性可信区间上 限。
问题二
• 如何估计男女性血红蛋白含量的总体均数 和参考值范围。两者有何区别? • 由第一题可知: • 男:(133.8,135.2) • 女:(116.3,118.9) • 参考值范围: • 男:(120.6,148.4) • 女:(97.6,137.6)