大同矿区GPS控制网设计实例

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 大同矿区GPS控制网设计实例

3.1 任务来源及工作量

大同矿区为全国最大的煤炭企业大同矿物局所属,并且预测煤炭储量丰富,工业前景可观。但是该矿区原有测量控制网为90年代建立,历经十几年的采矿影响,认为破坏及地貌变化,使原有控制点大部分失去控制作用,使得服务于日常生产的多项测量工作难以正常进行,远远不能满足矿山生产和工程建设的需要。因此,该矿区急需建立新的测量控制网。

该网不但要满足日常采矿生产需要,而且还要顾及远景规划及预测区,控制面积约600 KM2,测量范围(如图3-1)为:

图3-1 已知点分布图

东至:550km(大同矿区独立坐标系)

南至:4415km

西至:534km

北至:4439km

3.2 测区概况

大同矿区位于山西省大同市西南,地跨大同、朔州两市,地处东经112度53分─113度12分,北纬39度55分─40度零8分,距市区12。5公里,辖区与大同市南郊区交叉,总面积约90平方公里,号称百里矿区。区内为平缓的丘陵地貌,西南高,东北低。尖口山最高,标高1835.9米,口泉沟最低,标高1093.6米。境内主要山脉有七峰山、鸡爪山、大钟山、马武山等;主要河流有口泉河、十里河,均为季节性河流。该区厂矿企业主要分布在口泉─黑流水(口泉沟),马军营─燕子山(云岗沟)两条狭长的山沟里。

通往矿区的铁路有大同—王村、大同—燕子山两条矿区专用线,各煤矿集运站都分散在两条专用线周围。以横穿矿区东西向的109国道、沿矿区东侧穿行的南北向大运公路为骨干线,配以矿区内专用公路,交通十分方便。

矿区供水水源以第四系潜水为主,现有大同市的白马城水源地以及时庄水源地,供水量严重不足,需另找新的水源。矿区电源主要来自大同市第一热电厂和神头电厂。

矿区现有生产煤矿55处,其中国有重点煤矿18处,设计能力3645万吨/年。截至1996年末,大同矿区保有探明储量386。43亿吨,其中生产矿井保有储量77。41亿吨。

矿区原有国家二等三角网8个,经野外踏勘,发现有3个已明显被破坏或受采动影响;现只有代家沟、孙家沟、羊坊、怀仁、土台山5个点的标石保存完好(如图3-1)。设计采用的是比例尺为1:10000的大同矿区航摄地形图。1989年航摄,1992年成图,1994年缩编成图。地形图采用1985国家高程基准,等高距为5米。

3.3 布网方案

3.3.1 技术设计的依据与基准设计

1)技术设计的依据

2001年国家质量技术监督局发布的<<全球定位系统(GPS)测量规

范>>(CH2001-92)。

2)基准设计

GPS测量获得的是GPS基线向量,它属于WGS—84坐标系的三维坐标差,而实际需要的是国家坐标系或地方独立坐标系的坐标。因此需要结合测区概况和已有资料(图3-1),进行GPS网的基准设计。

根据大同矿区近期发展与远景规划相结合的战略目标,按照现阶段矿区建设的需要,采用大同矿区独立坐标系,中央子午线经度为112°30′,投影面与54北京坐标系相同而建立的坐标系统。

3.3.2 方案设计的技术分析

1)等级确定

根据中华人民共和国测绘行业标准《全球定位系统城市测量技术规程》、《煤矿测量规程》和大同矿区的具体情况,确定该测区可建立D级GPS网[10],有关技术要求见表3-1:

表3-1 基本技术要求

2)技术设计

I.时段设计

根据规范对D级网的要求,采用快速静态相对定位,时段长度根据边长而定,具体时间见表3-6。

GPS网的时段设计有点连式、边连式和网连式三种基本方法。点连式所构成的图形几何强度太弱;网连式布网冗赘,工作量太大;边连式布网有太多的非同步闭合条件,工作量适中。根据D级GPS网的要求我们采用边点结合的混合式布网方法。

II.观测方法

GPS网的观测采用载波相位快速静态相对定位模式,作业仪器采用4台

Timble5700双频GPS接受机,它的标称精度可达5 mm±1ppm,满足精度要求。作业方法是:将GPS四套接收机设备分别安置在网中四边形的各个端点上,对基线边同步观测4颗卫星。这种模型的特点是:观测过的基线边构成一个闭合图形,便于观测成果的检验,从而提高观测成果的可靠性和GPS网平差后的精度。[9]

3.3.3 GPS网的设计及施测方法

1) GPS网的设计

I.设计原则

① GPS网一般应采用独立观测边构成闭合图形,如三角形、多边形或附合线路,以增加检核条件,提高网的可靠性。

②GPS网作为测量控制网,其相邻点间基线向量的精度,应分布均匀。

③GPS网点应尽量与原有地面控制点相结合。重合点一般不少于3个(不足时应联测),且在网中分布均匀,以可靠地确定GPS网与地面之间的转换参数。

④GPS网点应考虑与水准点重合,而非重合点,一般应根据要求以水准测量(或相当精度的测量方法)进行联测,或在网中布设一定密度的水准联测点。

⑤为了便于GPS的测量观测和水准联测,减少多路径影响,GPS网点一般应设在视野开阔和交通便利的地方。

⑥为了便于用经典方法联测或扩展,可在GPS网点附近布设一通视良好的方位点以建立联测方向,方向点与观测站距离一般应大于300米。

⑦GPS网必须由非同步独立观测边构成若干个闭合环或附和线路。各级GPS网中每个闭合环或附和线路中的边数应符合表3-2的规定。

表3-2 最简独立闭合环或附和线路边数的规定[7]

II 方案设计(图中1-20为同步环)

图3-2 方案设计一

图3-3 方案设计二

3.3.4 方案比较

A 基本特征值比较

根据R. A sany 提

出的公式计算GPS

网的主要特征值:

C= nm/N

式中C为观测时段

数,n为网的总点数, m为每点设站数,N为接受机数。在网中:

总基线数: J总=C*N*(N-1)/2

必要基线数:J必= n-1

独立基线数:J独=C*(N-1)

多余基线数:J多=C*(N-1)-(n-1)[2]

总体可靠性指标=J多/J独

计算的两个方案的主要特征值见表3-3:

表3-3 两个方案的主要特征值

相关文档
最新文档