五年级奥数-行程问题(一)ppt课件

合集下载

五年级奥数---行程问题-列方程解行程问题

五年级奥数---行程问题-列方程解行程问题

行程问题的定义
两个运动物体从两地出发,相向而行,经过一段时间相遇。
行程问题的分类
相遇问题
两个运动物体从两地出发,同向而行,经过一段时间后快的追上慢的。
追及问题
两个运动物体从同一点出发,反向而行,经过一段时间后相遇。
环形运动问题
运动物体的速度、时间、路程之间的关系。
运动物体的初始状态(速度、路程)。
详Hale Waihona Puke 描述公交车相遇问题THANKS
谢谢您的观看
运动物体的运动状态(速度、时间、路程)。
行程问题的基本要素
列方程解行程问题的基本思路
02
仔细阅读题意
标明已知量和未知量
画出示意图
画图分析
列方程
根据等量关系,列出方程式子。常用的方程有路程=速度×时间、路程=时间×速度等。
确定等量关系
在行程问题中,一般存在时间、路程和速度三个变量,根据题目所求,确定等量关系。
顺水速度和逆水速度
顺水行程 = 顺水速度 × 顺水时间
逆水行程 = 逆水速度 × 逆水时间
顺水行程和逆水行程
对于同一艘船,船在静水中的速度是一定的,所以船速不会随着水速的变化而变化。
对于不同的船,由于船本身的结构、质量、形状等因素,船速可能会有所不同,因此船速会随着水速的变化而变化。
船速和水速的关系
列车进站和出站问题
行程问题在实际生活中的应用
07
VS
在行程问题中,最佳路线问题是最常见的问题之一。这类问题的关键在于利用数学工具,如线段图和数量关系,来寻找最短或最快的路线。
详细描述
在实际生活中,最佳路线问题可以应用于多种场景,如物流运输、旅游路线规划和城市交通规划等。例如,物流运输中需要选择最短的路线将货物从起点运到终点,而旅游路线规划则需要寻找一条涵盖多个旅游景点的最短或最快路线。

小学五年级奥数教学课件ppt:行程问题

小学五年级奥数教学课件ppt:行程问题

分析 :
二人相遇时,甲比乙多行15×2=30(千米), 说明二人已行30÷6=5(小时),上午8时至中 午12时是4小时,所以甲的速度是: 15÷(5-4)=15(千米)。 因此,东西两村的距离是
15×(5-1)=60(千米) 上午8时至中午12时是4小时。 15×2÷6=5(小时) 15÷(5-4)=15(千米) 15×(5-1)=60(千米)
3,学校运来一批树苗,五(1)班的40个同学都去参 加植树活动,如果每人植3棵,全班同学都能植这批树 苗的一半还多20棵。如果这批树苗全部给五(1)班的 同学去植,平均每人植多少树?
例3、 甲、乙二人上午8时同 时从东村骑车到西村去,甲 每小时比乙快6千米。中午12 时甲到西村后立即返回东村, 在距西村15千米处遇到乙。 求东、西两村相距多少千米?
3,甲、乙二人上午7时同时从A地去B地,甲每小时 比乙快8千米。上午11时甲到达B地后立即返回,在 距B地24千米处与乙相遇。求A、B两地相距多少千米?
例4、甲、乙两车早上8点分别 从A、B两地同时出发相向而行, 到10点时两车相距112.5千米。 两车继续行驶到下午1点,两车 相距还是112.5千米。A、B两地 间的距离是多少千米?
练习一
1,小玲每分钟行100米,小平每分钟行80米, 两人同时从学校和少年宫出发,相向而行,并 在离中点120米处相遇。学校到少年宫有多少米? 2,一辆汽车和一辆摩托车同时从甲、乙两地相 对开出,汽车每小时行40千米,摩托车每小时 行65千米,当摩托车行到两地中点处时,与汽 车还相距75千米。甲、乙两地相距多少千米? 3,甲、乙二人同时从东村到西村,甲每分钟行 120米,乙每分钟行100米,结果甲比乙早5分钟 到达西村。东村到西村的路程是多少米?
间不断往返送信。如果鸽子从同学们出发到相遇共 飞行了30千米,而甲队同学比乙队同学每小时多走 0.4千米,求两队同学的行走速度。

数学奥数行程问题(共17张ppt)优秀课件

数学奥数行程问题(共17张ppt)优秀课件

小明每分钟走100米,小红每分钟走80米, 两人同时同地向相反方向走去。5分钟后 小明转向追小红,当小明追上小红时,两 人各走了多少米?
本题求的问题是两人各走了多少米。所用时间有两部分,一是先行 的5分钟,二是小明从转身开始追上小红所用的时间。求出各自行的 时间乘以各自的速度即可。
小明从转身开始追上小红用的时间:
轿车和货车同时从两地对开,3小时后在距中点 12千米处相遇,由此可见轿车3小时比货车多行 12x2=24 (千米)。 轿车比货车多行: 12x2=24 (千米) 轿车比货车每小时多行驶:24 ÷3=8 (千米)
3、 张、李、赵三人都从甲地到乙地,上午6时,张、李 二人一起从甲地出发,张每小时走5千米,李每小时走4千 米。赵上午8时才从甲地出发,傍晚6时赵、张同时到达乙 地,那么赵追上李的时间是几时?


1
5



































































张比赵早出发2小时,张先走了5 x 2=10(千米),上 午8时到傍晚6时共10小时,用10个小时追上10千米, 赵每小时追10+10=1 (千米),因此,赵的速度是每 小时走5+1=6(千米)。李比赵也早出发2小时,先走 了4x2=8 (千米),赵要追上8千米,需要8÷(6-4) =4(小时), 8+4=12 (时),因此,赵追上李的时间是 中午12点。

五年级奥数:行程问题

五年级奥数:行程问题

1。

某商场一二层有一个自动扶梯。

1)一共有60级台阶,电梯的速度是2级/秒。

若小明在扶梯上匀速的每秒走1级,那么多久能到达地面?2)一共60级台阶,电梯每秒向上走2级,若小明逆着扶梯走,走了1分钟才走下扶梯,求小明的速度是多少?3)在乘电动扶梯的同时小明继续向上走需12秒到达楼上,如果小明站着不动乘电动扶梯向上走需15秒到达楼上,那么电动扶梯不动时,小明徒步沿扶梯上楼等多少秒?2。

在地铁车站中,从站台到地面架设有向上的自动扶梯,小强从下到上,如果每秒向上迈两级台阶,那么50秒后到达站台:如果每秒向上迈三级台阶,那么走过40秒到达站台。

自动扶梯有多少级台阶?3。

从A地到B地的公交站,每10分钟发一趟公交车,每辆公交车的速度是600米/分。

1)小明在某车站5点10分看见一辆公交经过,那么他看到下一辆公交经过会是几点?2)在A地B地之间,相同方向行驶的两车之间的距离是客少?3)小明在途中跑步,速度是200米/分,那么,他每隔客久会迎面通到——辆公交车?4。

某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车,他发现每隔15分钟有一辆公共汽车追上他,每隔10分钟有一辆公共汽车迎面驶来擦身而过,问公共汽车每隔多少分钟发车一辆?小刚以每分钟50米的速度离家上学,走了2分钟后,他发现这样走下去就要迟到8分钟;于是改为每分钟60米的速度前进,结果提早5分钟到校.问小刚家到学校的路程()米.答案:如果在准时到达的时间内,用每分钟50米的速度将会少行50×8=400米;如果前2分钟也按每小时60米的速度行走,将会多行(60—50)×2+60×5=320米,两次相差320+400=720米;速度差为:60—50=10米;那么原来准时到达的时间为:720÷10=72(分钟);小刚从家到学校要走:50×(72+8)=4000(米);据此解答.解:(60—50)×2+60×5=320(米),(50×8+320)÷(60-50),=720÷10,=72(分钟);50×(72+8)=4000(米);答:小刚家到学校的路程4000米.故答案为:4000.相遇问题(1)艾迪和薇儿两人分别以每小时6千米和每小时4千米的速度行走,若他们从A、B两地同时出发,相向而行,5小时后相遇,则A. B两地相距多少千米?(2)甲车和乙车分别以每小时70千米,每小时50千米的速度从相距480干米的两地向对方的出发地前进,多久后他们会相遇?(3)八戒和悟空两家相距255干米,两人同时骑车,从家出发相对而行,3小时后相遇.已知:悟空每小时行60干米,则八戒每小时行多少干米?追及问题(1)一天,去上学的艾迪发现薇儿在他前面150米处,于是以每分钟80米的速度向她追去,已知:薇儿每分钟走50米,问:艾迪多长时间能追上薇儿呢?(2)一天,艾迪发现薇儿在他前面某个地方,于是他以每分钟80米的速度向她追去,5分钟后追上,已知薇儿每分钟走60米,问:艾迪刚开始和薇儿的距离是多少米?(3)甲、乙二人都要从北京去天津,甲行驶10干米后乙才开始出发,甲每小时行驶55千米,乙行了2小时追上了甲,问:乙每小时行多少千米?流水行船问题(1)一只小船在静水中的速度内毎小时25千米。

五年级奥数-一行程问题追击问题(课堂PPT)

五年级奥数-一行程问题追击问题(课堂PPT)
13
2,甲乙丙三人从A到B,甲乙一起从A出发, 甲每小时走6千米,乙每小时走4千米。4小时 后丙骑自行车从A出发,用2小时就追上乙, 再用几小时就能追上甲?
14
3,甲乙丙三人行走的速度分别为60米,80米 ,100米。甲乙两人在B同时同向出发,丙从A 同时同向出发去追甲乙,丙追上甲以后又过了 10分钟才追上乙。求AB两地的路程。
15
例5 、 甲、乙、丙三人步行的
速度分别是每分钟100米、90 米、75米。甲在公路上A处, 乙、丙在公路上B处,三人同
时出发,甲与乙、丙相向而行。 甲和乙相遇3分钟后,甲和丙 又相遇了。求A、B之间的距 离。
16
分析:
甲和乙相遇后,再过3分钟甲又能和丙相遇, 说明甲和乙相遇时,乙比丙多行: (100+75)×3=525米。 而乙每分钟比丙多行: 90-75=15米, 多行525米需要用: 525÷15=35分钟。 35分钟甲和乙相遇,说明A、B两地之间的距 离是: (100+90)×35=6650米。
(3)、甲乙两人以每分钟60米的速度同时同地步行出 发,走15分钟后甲返回原地取东西,而乙继续前进。甲 取东西用去5分钟的时间,然后改骑自行车以每分钟360 米的速度追乙,甲汽
地,要行360千米。开始按计划 以每小时45千米的速度行驶,途 中因汽车故障修车2小时。因为 要按时到达乙地,修好车后必须 每小时多行30千米。汽车是在离 甲地多远处修车的?
11
甲乙丙三人都从A地到B地,早晨六点,甲乙 两人一起从A出发,甲每小时走5千米,乙每 小时走4千米。丙早上八点才从A出发,傍晚 六点,甲和丙同时到达B,问丙什么时候追上 乙的?
12
1,客车,货车,小轿车都从A到B。货车和客 车一起从A出发,货车每小时行50千米,客车 每小时60千米。2小时后小轿车才从A出发。 12小时后小轿车追上了客车,问小轿车在出发 后几小时追上货车?

五年级奥数行程问题(1)

五年级奥数行程问题(1)

行程问题(1)
1.一列火车长180米,全车通过一座桥需要40秒钟,这列火车每秒行15米,求这座桥的长度.
2.一辆汽车从甲地出发到300千米外的乙地去,前120千米的平均速度为40千米/时,要想使这辆汽车从甲地到乙地的平均速度为50千米/时,剩下的路程应以什么速度行驶?
3.小红和小强同时从家里出发相向而行。

小红每分走52米,小强每分走70米,二人在途中的A处相遇。

若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。

小红和小强两人的家相距多少米?
4.甲,乙两站相距300千米,每30千米设一路标,早上8点开始,每5分钟从甲站发一辆客车开往乙站,车速为60千米每小时,早上9点30分从乙站开出一辆小汽车往甲站,车速每小时100千米,已知小汽车第一次在某两相邻路标之间(不包括路标处)遇见迎面开来的10辆客车,问:从出发到现在为止,小汽车遇见了多少辆客车?
5.甲乙两港之间相距360千米,一轮船往返共用35个小时,顺水比逆水快5个小时,现有一机帆船静水船速为每小时12千米,求它往返两港的时间?
6.晶晶每天早上步行上学,如果每分钟走60米,则要迟到5分钟,如果每分钟走75米,则可提前2分钟到校.求晶晶到校的路程?。

五年级 奥数行程问题

五年级 奥数行程问题

第二讲行程(1)相遇问题知识链接:相遇问题是研究两个物体共同走一段路程的运动。

可分为相向,相背,环行运动等相遇问题。

行程问题基本数量关系式:路程=速度×时间相遇问题基本关系式:速度和×相遇时间=相遇路程相遇路程÷相遇时间=速度和相遇路程÷速度和=相遇时间超级课堂1. 甲乙两车同时从两地相对开出,经过5小时后相遇。

甲车每小时行70千米,乙车每小时行65千米,问:甲,乙两地相距多少千米?2. 甲,乙两人同时从两地出发,相向而行,距离是50千米。

甲每小时走3千米,乙每小时走2千米。

甲带一只狗,每小时跑5千米,这只狗同甲一起出发,当它碰到乙后便转回头跑向甲…如此下去,直到两人碰到头为止。

问这只狗一共跑了多少千米?3. 甲,乙两辆货车分别同时从A,B两个城市相向开出,甲车每小时行60千米,乙车每小时行50千米,两车在距离两城中点25千米处相遇。

那么A,B两个城市间的路程是多少千米?4. A,B两城相距60千米,甲,乙两人都骑自行车从A城同时出发,甲比乙每小时慢4千米,乙到B城当即折返,于距B城12千米处与甲相遇,那么甲的速度是多少?5. 客车和货车早上8时分别从甲,乙两个城市同时出发相向而行,到上午10时两车相距120千米,两车继续行驶到下午1时,两车又相距120千米,那么甲,乙两城之间路程是多少千米?6. A,B两地相距1100米,甲从A地,乙从B地同时出发,相向而行,甲每分钟行90米,乙每分钟行70米,第一次在C处相遇,AC之间距离是多少米?相遇后继续前进,分别到达A,B两地后立即返回,第二次相遇于D处,CD之间的距离是多少米?超级练习1. 电气机车和磁悬浮列车各一列,从相距298千米的两面地同时相向而行,磁悬浮列车的速度比电气机车的速度的5倍还快20千米每小时,半小时后两车相遇。

则电气机车和磁悬浮列车的速度分别是多少?2. 两支部队从相距50千米的甲,乙两地同时相对而行,一名通信员骑车以每小时20千米的速度在两支部队间不断往返联络。

人教版数学五年级上册综合行程问题课件(共26张PPT)

人教版数学五年级上册综合行程问题课件(共26张PPT)
7
两地相距多少千米? 乙车行了全程的: 3 =3
3+2 5
两人共行:3 + 4 =41 >1
5 7 35
AB相距:120÷(3 + 4 -1)=700(千米)
57
答:两地相距700千米。
变式1、小新和小芳两车分别从A、B两地同时相向而行,速度比是5:3,小新
行了全程的
3 7
后又行了66千米,正好与小芳相遇。A、B两地相距多少千米?
变式6、小东的船以25千米/时的速度顺流行驶,突然发现前方120千米处 有一顶帽子,请问小东的船经过多长时间才能遇到帽子?
120÷25=4.8(小时) 答:小东的船经过4.8小时才能遇到水壶。
相遇时,速度比=路程比=5:3 相遇时,小新行了全程的:5+53=58 全程:66÷(58 - 37)=336(千米) 答:两地相距336千米。
平均速度 平均速度≠速度的平均值 平均速度=总路程÷总时间 ※设数法:设题目已知的速度的最小公倍数为路程
练习2、新东方小学组织学生去爬山,上山的路程有6千米,小新上山平均每分 钟走30米,下山按原路返回,平均每分钟走60米,他上山和下山的平均速度 是多少? 6千米=6000米 上山时间:6000÷30=200(分) 下山时间:6000÷60=100(分) 总路程:6000×2=12000(米) 平均速度:12000÷(200+100)=40(米/分) 答:上山和下山的平均速度是40米/分。
第1次相遇,两人合走1个全程,小芳走:80米 第2次相遇,两人合走3个全程,小芳走:80×3=240(米) A、B两地的距离:(240+160)÷2=200(米) 答:A、B两地的距离为200米。
变式4、小东和小芳驾车同时从A地开出去往B地,小芳先到达B地后立即返 回,两人第一次在离A地95千米处迎面相遇。相遇后继续前进,小东到达B 地后也立即返回,两人第二次在离B地25千米处迎面相遇。求A、B两地间 的距离是多少千米?

苏教版五年级下册——行程问题 ——奥数类

苏教版五年级下册——行程问题  ——奥数类

行程问题(四)
【知识分析】
在环形跑道上,反向而行相当于是相遇问题,同向而行相当于是追赶问题
【例题解读】
例1 陈丹和林龙分别以不同速度,在周长为500米的环形跑道上跑步,林龙的速度是每分钟180米,(1)如果两人从同一地点同时出发,反向跑步,75秒时第一次相遇,求陈丹的速度,(2)若两人以上面的速度从同一地点同时出发同向而行,陈丹跑多少圈后才能第一次追上林龙?
【分析】(1)两人相遇就是合起来走一个全程,因此
500÷(75÷60)—180=220米
(2)陈丹第一次追上林龙,也就是比林龙多跑一圈,所以
500÷(220—180)=12.5分
220×12.5÷500=5.5圈
【经典题型练习】
1、程程和海峰分别以不同的速度,在周长为400米的环形跑道上跑步,程程的速度是每分
钟180米,海峰的速度是每分钟200米,如果两人从同一地点同时出发同向而行,海峰跑多少圈后才能第一次追上程程?
2、有一条长80米的环形走廊,兄妹两人同时从同一地点同一方向出发,妹妹以每秒1米的
速度步行,哥哥以每秒5米的速度奔跑,在哥哥第二次追上妹妹时,花了多少秒?。

五年级奥数-一行程问题问题

五年级奥数-一行程问题问题
(1)、甲、乙、丙三人行走的速度分别是每分钟60 米、80米、100米。甲、乙二人在B地,丙在A地与 甲、乙二人同时相向而行,丙和乙相遇后,又过2分 钟和甲相遇。求A、B两地的路程。 (2)、甲、乙、丙三人行走的速度分别是每分钟60 米、80米、100米。甲、乙二人从B地同时同向出发, 丙从A地同时同向去追甲和乙。丙追上甲后又经过10 分钟才追上乙。求A、B两地的路程。 (3)、A、B两地相距1800米,甲、乙二人从A地出 发,丙同时从B地出发与甲、乙二人相向而行。已知 甲、乙、丙三人的速度分别是每分钟60米、80米和 100米,当乙和丙相遇时,甲落后于乙多少米?
3,甲乙丙三人行走的速度分别为60米,80米 ,100米。甲乙两人在B同时同向出发,丙从A 同时同向出发去追甲乙,丙追上甲以后又过了 10分钟才追上乙。求AB两地的路程。
例5 、 甲、乙、丙三人步行的
速度分别是每分钟100米、90 米、75米。甲在公路上A处, 乙、丙在公路上B处,三人同
时出发,甲与乙、丙相向而行。 甲和乙相遇3分钟后,甲和丙 又相遇了。求A、B之间的距 离。
分析:
甲和乙相遇后,再过3分钟甲又能和丙相遇, 说明甲和乙相遇时,乙比丙多行: (100+75)×3=525米。 而乙每分钟比丙多行: 90-75=15米, 多行525米需要用: 525÷15=35分钟。 35分钟甲和乙相遇,说明A、B两地之间的距 离是: (100+90)×35=6650米。
练习五
60÷24=2.5小时, 所以2.5小时后小轿车能追上中巴车。
练习一
(1)、一辆摩托车以每小时80千米的速度去追赶前
面30千米处的卡车,卡车行驶的速度是每小时65千米。 摩托车多长时间能够追上?
(2)、兄弟二人从100米跑道的起点和终点同时出发, 沿同一方向跑步,弟弟在前,每分钟跑120米;哥哥在 后,每分钟跑140米。几分钟后哥哥追上弟弟?

五年级奥数:行程问题

五年级奥数:行程问题

五年级奥数:行程问题(总14页) -本页仅作为预览文档封面,使用时请删除本页-行程问题(一)讨论有关物体运动的速度、时间、路程三者关系的应用题叫做行程应用题。

行程问题的主要数量关系是:路程=速度×时间如果用字母s表示路程,t表示时间,v表示速度,那么,上面的数量关系可用字母公式样表示为:s=vt。

行程问题内容丰富多彩、千变万化。

主要有一个物体的运动和两个或几物体的运动两大类。

两个或几个物体的运动又可以分为相遇问题、追及问题两类。

这一讲我们学习一个物体运动的问题的一些简单的相遇问题。

例题与方法:例1.小明上学时坐车,回家时步行,在路上一共用了90分。

如果他往返都坐车,全部行程需30分。

如果他往返都步行,需多少分?例2.甲、乙两城相距280千米,一辆汽车原定用8小时从甲城开到乙城。

汽车行驶了一半路程,在中途停留30分。

如果汽车要按原定时间到达乙城,那么,在行驶后半段路程时,应比原来的时速加快多少?例3.一列火车于下午1时30分从甲站开出,每小时行60千米。

1小时后,另一列火车以同样的速度从乙站开出,当天下午6时两车相员。

甲、乙两站相距多少千米?例4.苏步青教授是我国著名的数学家。

一次出国访问,他在电车上碰到了一位外国数学家,这位外国数学家出了一道题目让苏步青做,题目是:甲、乙两人同时从两地出发,相向而行,距离是100千米。

甲每小时行6千米,乙每小时行4千米。

甲带着一只狗,狗每小时行10千米。

这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。

这只狗一共走了多少千米?苏步青略加思索,就把正确答案告诉了这位外国数学家。

小朋友们,你能解答这道题吗?例5.甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两辆汽车在距中点32千米处相遇。

东、西两地相距多少千米?练习与思考:1.小王、小李从相距50千米的两地相向而行,小王下午2时出发步行,每小时行千米。

小学五年级奥数教学课件ppt:行程问题共20页文档

小学五年级奥数教学课件ppt:行程问题共20页文档

谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来t:行程问题 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。

小学奥数行程问题之相遇 (1)

小学奥数行程问题之相遇 (1)

王牌例题1
甲、乙两人同时分别从两地骑车相向而行,甲每小时 行20千米,乙每小时行18千米。两人相遇时距全程中 点3千米。求全程长多少千米?
相遇时,甲超过中点3千米,乙离中点3千米,所以 甲比乙多行了6千米,甲每个小时比乙多行2千米, 说明相遇时甲行了3小时,同样乙也行了3小时。 相遇时间=3×2÷(20-18)=3小时 全程 (20+18)×3=114(千米)
疯狂操练2 1、甲乙两艘轮船分别从A、B两港同时出发 相向而行,甲船每小时行驶18千米,乙船 每小时行驶15千米,经过6小时两艘轮船途 中相遇,两地间的水路长多少千米? 解:甲乙的速度和:15+18=33(千米/小时) 两地间水路长:33×6=198(千米) 答:两地间的水路长198千米。
疯狂操练2 2、甲乙两车分别从相距480千米的A、B两城 同时出发,相向而行,已知甲车从A城到B城 需6小时,乙车从B城到A城需12小时,两车 出发后多少小时相遇?
速度1×时间1+速度2×时间2=总路程 路程1 + 路程2 = 总路程
(70+60)×4=520
(速度1+速度2)×相遇时间=总路程
(速度和)×相遇时间=总路程
第一讲 行程问题(相遇)
1.什么是相遇? 两个人 + 相向而行 路程=速度×时间 2.相遇问题基本公式 共行路程=速度和×相遇时间
共行路程÷相遇时间=速度和 共行路程÷速度和=相遇时间
疯狂操练3
1、小冬和小刚两人在环形跑道上以各自不同的不 变速度跑步,如果两人同时从同地相背而行,小 刚跑6分钟后两人第一次相遇,小冬跑一周要8分 钟,小刚跑一周要几分钟? 解:小刚跑6分钟的路程小冬只要跑8-6=2(分钟) 小刚用的时间是小冬的6÷2=3(倍) 小刚跑一周要8×3=24(分钟) 6÷(8-6)×8=24(分钟) 答:小刚跑一周要24分钟。

小学五年级奥数教学课件ppt:行程问题共20页

小学五年级奥数教学课件ppt:行程问题共20页
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
16、业余生活要ቤተ መጻሕፍቲ ባይዱ意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
小学五年级奥数教学课件ppt:行程 问题
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
END

五年级奥数---行程问题

五年级奥数---行程问题

行程问题一.多人行程问题1.小红和小强同时从家里出发相向而行.小红每分走52米,小强每分走70米,二人在途中的A处相遇.若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇.小红和小强两人的家相距多少米?由于小红的速度不变,行驶的路程也不变,所以小红行驶的时间也不变,即小强第二次比第一次少行了4分钟,小强第二次行驶的时间是(70×4)÷(90-70)=14分,因此第一次两人相遇时间是18分,距离是(52+70)×18=2196(米).2.李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。

0.5小时后,营地老师闻讯前来迎接,每小时比李华多走1.2千米,又经过了1.5小时,张明从学校骑车去营地报到。

结果3人同时在途中某地相遇。

问:张明每小时行驶多少千米?老师出发时和李华相距20.4-4×0.5=18.4千米,再过18.4÷(4+4+1.2)=2小时相遇,相遇地点距学校2×4+2=10千米,张明行驶的时间为0.5小时,因此张明的速度为10÷0.5=20千米/时。

二.两次相遇甲、乙两车分别同时从A 、B 两地相对开出,第一次在离A 地95 千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B 地25 千米处相遇.求A 、B 两地间的距离.三. 多次相遇四. 火车过桥五.流水行船六.环形跑道1.在400米的环形跑道上,A、B两点相距100米,。

甲、乙两人分别从A、B两点同时出发,按照逆时针方向跑步,甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟。

那么,甲追上乙需要的时间是多少秒?假设没有休息那么100/(5—4)=100秒钟在100/5=20秒100/20-1=4(次)100+4*10=140秒2.小明在360米的环形跑道上跑一圈,已知他前半时间每秒跑5米,后半时间每秒跑4米,为他后半路程用了多少时间?x÷4=(360-x)÷5×=160(360÷2-160)÷5+160÷4=44分七.简单相遇甲、乙两人同时从两地相向而行。

行程(一) 相遇追及(多次)、电车问题

行程(一) 相遇追及(多次)、电车问题

行程(一)相遇追及(多次)、电车问题一、知识地图简单相遇追及匀速直线行程多次相遇追及(包括火车过桥)发车间隔问题多次相遇追及环形线路行程(包括钟表问题)⎧⎨⎩⎧⎪⎨⎪⎩变速直线行程(求平均速度)流水行船不同参照系的行程自动扶梯行程中的比例关系其他类型(正、反比例运用)相遇点变化问题二、基础知识在历年“小升初”考试和各类小学奥数竞赛试题中,“行程问题”都占有很大的比重。

同时也是小学奥数专题中的难点,“行程问题”经常作为一份试卷中的压轴难题出现,提高解决“行程问题”的能力不仅能帮助在小升初考试和各类数学竞赛中取得优异成绩,还能为今后初中阶段数学、物理学科的学习打下良好的基础。

(一)典型的相遇和追及所有行程问题是围绕“⨯路程=速度时间”这一条基本关系式的展开,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系,在这里:=⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;这两组关系式中“路程和”或“路程差”实际上对应的是相遇或追及问题中的原始(初始)距离,我们可以通过图示来理解。

追及问题BA乙甲路程差(原始距离)BA相遇问题乙甲路程和(原始距离)(二) 多次相遇追及通过图示介绍直线上的相遇和追及的规律 这部分内容涉及以下几个方面:1 求相遇次数2 求相遇地点3 由相遇地点求全程“线段示意图”和“折线示意图”是解行程问题特别是多次相遇问题的重要方法。

举个例子:假设A 、B 两地相距6000米,甲从A 地出发在AB 间往返运动,速度为6千米/小时,乙从B 出发,在AB 间往返运动,速度为4千米/小时。

我们可以依次求出甲、乙每次到达A 点或B 点的时间。

为了说明甲、乙在AB 间相遇的规律,我们可以用“折线示意图”来表示。

GF E D C时间行程乙甲2400米6小时6小时5小时4.5小时4小时3小时1.5小时2小时1小时第六次相遇第五次相遇第四次相遇第三次相遇第二次相遇第一次相遇72分钟72分钟72分钟72分钟72分钟36分钟0BA折线示意图能将整个行程过程比较清晰的呈现出来:例如AD表示的是,甲从A地出发运动到B地的过程,其中D点对应的时间为1小时,表示甲第一次到达B点的时间为1小时,BF表示乙从B地出发到达A地的过程,F点对应的时间为1.5小时,表示乙第一次到达A 地的时间为1.5小时,AD与BF相交于C点,对应甲、乙的第一次相遇事件,同样的G点对应是甲、乙的第二次相遇事件。

举一反三-五年级奥数分册~第28周 行程问题(一)

举一反三-五年级奥数分册~第28周  行程问题(一)

第28周行程问题(一)专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。

行程问题的主要数量关系是:路程=速度×时间。

知道三个量中的两个量,就能求出第三个量。

例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇,东、西两地相距多少千米?分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。

两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8(千米)。

64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。

32×2÷(56-48)=8(小时)(56+48)×8=832(千米)答:东、西两地相距832千米。

1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。

学校到少年宫有多少米?2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。

甲、乙两地相距多少千米?3,甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村。

东村到西村的路程是多少米?例2 快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。

此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。

(40×3-25×2-7)÷3=21(千米)答:慢车每小时行21千米。

苏教版五年级奥数 第1讲 行程问题(1)讲义

苏教版五年级奥数 第1讲  行程问题(1)讲义

第20讲行程问题讲义专题简析行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。

行程问题的主要数量关系是:路程=速度×时间。

知道三个量中的两个量,就能求出第三个量。

例1、甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

东、西两地相距多少千米?练习1.甲、乙两汽车同时从两地出发,相向而行。

甲汽车每小时行50千米,乙汽车每小时行55千米,两车在距中点15千米处相遇。

求两地之间的路程是多少千米?2.一辆汽车和一辆摩托车同时从A、B两城相对开出,汽车每小时行60千米,摩托车每小时行70千米,当摩托车行到两城中点处时,与汽车还相距30千米。

求A、B两城之间的距离?3.下午放学时,小红从学校回家,每分钟走100米,同时,妈妈也从家里出发到学校去接小红,每分钟走120米,两人在距中点100米的地方相遇,小红家到学校有多少米?例2、快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?练习1.兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?2.汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?3.学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。

如果这批树苗全部给五(1)班的同学去植,平均每人植多少棵树?例3、甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。

求东、西两村相距多少千米?练习1.甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完整版课件
11
例4、甲、乙两车早上8点分别 从A、B两地同时出发相向而行, 到10点时两车相距112.5千米。 两车继续行驶到下午1点,两车 相距还是112.5千米。A、B两地 间的距离是多少千米?
完整版课件
12
分析与解答:
从上午10点到下午1点甲乙共行了
112.5×2=225千米,
甲乙的速度和是:
(56+48)×8=832(千米)
答:东、西两地相距832千米。
完整版课件
4
练习一
1,小玲每分钟行100米,小平每分钟行80米,两 人同时从学校和少年宫出发,相向而行,并在离 中点120米处相遇。学校到少年宫有多少米? 2,一辆汽车和一辆摩托车同时从甲、乙两地相 对开出,汽车每小时行40千米,摩托车每小时行 65千米,当摩托车行到两地中点处时,与汽车还 相距75千米。甲、乙两地相距多少千米? 3,甲、乙二人同时从东村到西村,甲每分钟行 120米,乙每分钟行100米,结果甲比乙早5分钟 到达西村。东村到西村的路程是多少米?
行程问题(一)
主讲:刘文峰
完整版课件
Hale Waihona Puke 1专题简析:行程应用题是专门讲物体运动的速 度、时间、路程三者关系的应用题。 行程问题的主要数量关系是:
路程=速度×时间。
知道三个量中的两个量,就能求出 第三个量。
完整版课件
2
例1 、甲、乙两车同时从东、
西两地相向开出,甲车每小 时行56千米,乙车每小时行 48千米。两车在距中点32千 米处相遇,东、西两地相距 多少千米?
完整版课件
10
练习三
1,甲、乙二人同时从A地到B地,甲每分钟走250米, 乙每分钟走90米。甲到达B地后立即返回A地,在离B 地3.2千米处与乙相遇。A、B两地间的距离是多少千 米? 2,小平和小红同时从学校出发步行去小平家,小平 每分钟比小红多走20米。30分钟后小平到家,到家后 立即原路返回,在离家350米处遇到小红。小红每分 钟走多少米? 3,甲、乙二人上午7时同时从A地去B地,甲每小时 比乙快8千米。上午11时甲到达B地后立即返回,在距 B地24千米处与乙相遇。求A、B两地相距多少千米?
答:慢车每小时行21千米。
完整版课件
7
练习二
1,兄弟二人同时从学校和家中出发,相向而行。哥哥 每分钟行120米,5分钟后哥哥已超过中点50米,这时 兄弟二人还相距30米。弟弟每分钟行多少米?
2,汽车从甲地开往乙地,每小时行32千米。4小时后, 剩下的路比全程的一半少8千米,如果改用每小时56千 米的速度行驶,再行几小时到达乙地?
完整版课件
3
分析 解答:
从图中可以看出,两车相遇时,甲车比乙车多行了
32×2=64(千米)。两车同时出发,为什么甲车
会比乙车多行64千米呢?因为甲车每小时比乙车多
行56-48=8(千米)。64里包含8个8,所以此时两
车各行了8小时,东、西两地的路程只要用
(56+48)×8就能得出。
32×2÷(56-48)=8(小时)
完整版课件
14
例5 、甲、乙两车早上8时分 别从A、B两地同时相向出发, 到10时两车相距112.5千米。 两车继续行驶到下午1时,两 车相距还是112.5千米。A、B 两地间的距离是多少千米?
完整版课件
15
分析 :
从10时到下午1时共经过3小时,3小时里,甲、乙 两车从相距112.5千米到又相距112.5千米,共行: 112.5×2=225千米。 两车的速度和是:225÷3=75千米。 从早上8时到10时共经过2小时,2小时共行: 75×2=150千米, 因此,A、B两间的距离是: 150+112.5=262.5千米。
完整版课件
16
练习五
1,甲、乙两车同时从A、B两地相向出发,3小时后, 两车还相距120千米。又行3小时,两车又相距120千米。 A、B两地相距多少千米?
2,快、慢两车早上6时同时从甲、乙两地相向开出, 中午12时两车还相距50千米。继续行驶到14时,两车 又相距170千米。甲、乙两地相距多少千米?
3,学校运来一批树苗,五(1)班的40个同学都去参 加植树活动,如果每人植3棵,全班同学都能植这批树 苗的一半还多20棵。如果这批树苗全部给五(1)班的 同学去植,平均每人植多少树?
完整版课件
8
例3、 甲、乙二人上午8时同 时从东村骑车到西村去,甲 每小时比乙快6千米。中午12 时甲到西村后立即返回东村, 在距西村15千米处遇到乙。 求东、西两村相距多少千米?
225÷3=75千米,
从早上8点到上午10点,甲乙共行了:
75×2=150千米,
A、B两地间的距离是:
150+112.5=262.5千米。
完整版课件
13
练习四
1,甲、乙两车同时从A、B两地相向出发,3小时后, 两车还相距120千米;又行3小时,两车又相距120千 米。A、B两地相距多少千米? 2,东、西两村相距36千米,甲、乙二人同时从东西 两村相向出发,3小时后,丙骑车从东村出发去追甲, 结果三人同时在某地相遇。已知甲每小时行4千米, 乙每小时行5千米,求丙的速度。 3,两队同学同时从相距30千米的甲、乙两地相向出 发,一只鸽子以每小时20千米的速度在两队同学之间 不断往返送信。如果鸽子从同学们出发到相遇共飞行 了30千米,而甲队同学比乙队同学每小时多走0.4千 米,求两队同学的行走速度。
完整版课件
9
分析 :
二人相遇时,甲比乙多行15×2=30(千米), 说明二人已行30÷6=5(小时),上午8时至中 午12时是4小时,所以甲的速度是: 15÷(5-4)=15(千米)。 因此,东西两村的距离是 15×(5-1)=60(千米) 上午8时至中午12时是4小时。 15×2÷6=5(小时) 15÷(5-4)=15(千米) 15×(5-1)=60(千米)
完整版课件
5
例2 、快车和慢车同时从甲、
乙两地相向开出,乙车每小时 行40千米,经过3小时,快车已 驶过中点25千米,这时快车与 慢车还相距7千米。慢车每小时 行多少千米?
完整版课件
6
分析 与解答:
快车3小时行驶40×3=120(千米),这时 快车已驶过中点25千米,说明甲、乙两地 间路程的一半是: 120-25=95(千米)。 此时,慢车行了95-25-7=63(千米), 因此慢车每小时行63÷3=21(千米)。 (40×3-25×2-7)÷3=21(千米)
相关文档
最新文档