离散数学期末复习

合集下载

离散数学期末复习习题

离散数学期末复习习题

离散数学一、选择题1△O Y C3A^Q un ㊉iv1.设:P:张三可以作这件事,Q:李四可以作这件事,命题“张三或李四都可以做这件事”的符号化为()A、PVQB、PVi QC、P—QD、-P V -Q2.谓词公式V x(P(x)V m yR(y))fQ(x)中量词V x的作用域是()A. V x(P(x) V3yR(y))B.P(x)C. (P(x) V3yR(y)) D,P(x), Q(x)3.若个体域为整体域,下列公式中哪个值为真?()A. V x 3y(x+y=0)B. 3y V x(x+y=0)C. V x V y(x+y=0)D. n 3x 3y(x+y=0)4.空集①的幂集P (①)的基数是()A. 1B.2C.3D.45.设R、S是集合A上的任意关系,则下面命题是真命题的是()。

A.若R、S是自反的,则R・S是自反的B.若R、S是反自反的,则R・S是反自反的C.若R、S是对称的,则R・S是对称的D.若R、S是传递的,则R・S是传递的6.集合 A={1, 2,…,10}上的关系 R={(x, y)|x+y=10 且x, y£A},则 R 的性质为()A.自反的B.对称的C.传递的,对称的口.非自反的,传递的7.含有5个结点,3条边的不同构的简单图有()A.2个B.3个C.4个D.5个8.设G (n, m),且G中每个结点的度数不是K就是K+1,则G中度数为K的结点数()A.2/nB.n(n+1)C.nkD.n(k+1)-2m9.设谓词P(x) :x是奇数,Q(x):x是偶数,谓词公式m(x) (P(x) AQ(x))在下面哪个论域中是可满足的。

()A自然数集 B整数集 C实数集 D以上均不成立10.设C(x): x是运动员,G(x): x是强壮的。

命题“没有一个运动员不是强壮的”可符号化为()A. n V x(C(x) A n G(x))B. iV xOx) — G(x))C. _|m x(C(x)A_|G(x))D. im x(C(x) - 1 G(x))11.设集合 M={x|f (x) =0}, N={x|g (x) =0},则方程 f (x)・g (x) =0 的解集是()A.MANB.MUNC.M ㊉ ND.M-N12.设A=/"a}},下列选项错误的是()A. {a} e p(A)B. {a}U p(A)C. {{a}} e p(A)D. {{a}} e p(A)13.设A={1,2,3,4,5},p{<i,j>|i<j,i,j £ A}则 p 逆的性质是()A.对称的B.自反的C.反对称的D.反自反,反对称,传递的14.设R和S是集合A上的等级关系,则RUS的对称性()A. 一定成立B.一定不成立C.不一定成立D.不可能成立15. K4中含有3条边的不同构生成子图有()A.1个B.3个C.4个D.2个16.设G=<V,E>为无向图,u,v £V,若u,v连通,则()A.d(u,v)>0B.d(u,v)=0C.d(u,v)<0D.d(u,v)三0二、填空题1.命题公式I(P-Q)的主析取范式为(),主合取式的编码表示为().2.设Q(x): x是奇数,Z(x): x是整数,则语句“不是所有整数都是奇数”所对应的谓词公式为()。

离散数学期末复习题(6套)

离散数学期末复习题(6套)

《离散数学》期末考试题(A)一、填空题(每小题3分,共15分)1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1.设A , B 是集合,若A B A =-,则(A)B = ∅ (B) A = ∅ (C)=⋂B A ∅ (D)A B A =⋂2.谓词公式)())()((x R y yQ x P x ∧∃→∀中量词x ∀的辖域为(A))())()((x R y yQ x P x ∧∃→∀ (B))()(y yQ x P ∃→(C))())()((x R y yQ x P ∧∃→ (D))()(y yQ x P ∃→和)(x R3.任意6阶群的子群的阶一定不为(A)4 (B)6 (C)2 (D)34.设n 是正整数,则有限布尔代数的元素个数为(A)2n (B)4n (C)n 2 (D)2n5.对于下列序列,可构成简单无向图的度数序列为(A)3, 3, 4, 4, 5 (B)0, 1, 3, 3, 3 (C)1, 1, 2, 2, 3 (D)1, 1, 2, 2, 2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设N N N :⨯→f ,)1,()(+=x x x f ,则f 是满射. () 2. 5男5女圆桌交替就座的方式有2880种. () 3. 设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. () 4. 任何树都至少2片树叶. ()5. 无向图G 有生成树的充要条件是G 为连通图. ( )四、(10分)设C B A ,,和D 是集合,证明)()()()(D B C A D C B A ⨯-⨯⊆-⨯-,并举例说明上式中不能将⊆改为 = .五、(15分)设N 是自然数集合,定义N 上的关系R 如下:y x R y x +⇔∈),(是偶数,1.证明R 是N 上的等价关系.2.求出N 关于等价关系R 的所有等价类.3.试求出一个N 到N 的函数f ,使得)}()(,N ,|),{(y f x f y x y x R =∈=.六、(10分)在实数集合R 中证明下列推理的有效性:因为R 中存在自然数,而所有自然数是整数,所以R 中存在整数.七、(10分)设R 是实数集合,令}0,R ,|),{(≠∈=a b a b a G ,定义G 上的运算如下: 对于任意G d c b a ∈),(),,(,),(),(),(b ad ac d c b a +=⋅,证明),(⋅G 是非Abel 群.八、(10分)若简单平面图G 的节点数7=n 且边数15=m ,则G 是连通图,试证明之.《离散数学》期末考试题(B)一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =∅},则-A ∅ = ( ),-A {∅} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当n 为( )时,n K 是欧拉图.二、单选题(每小题3分,共15分)1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1-⋃R R 是A 上的(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立2.由2个命题变元p 和q 组成的不等值的命题公式的个数有(A)2 (B)4 (C)8 (D)163.设p 是素数且n 是正整数,则任意有限域的元素个数为(A)n p + (B)pn (C)n p (D)pn4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是(A)有界格 (B)分配格 (C)有补格 (D)布尔格5.3阶完全无向图3K 的不同构的生成子图有(A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( )2.命题联结词→不满足结合律. ( )3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“⋅8”的逆元为4. ( )4.整环不一定是域. ( )5.任何),(m n 平面图的面数2+-=n m r . ( )四、(10分)设B A f →:且C B g →:,若g f 是单射,证明f 是单射,并举例说明g 不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v .八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(C)一、填空题(每小题3分,共15分)1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3,1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号).(1)q q p p →→∧)(;(2))(q p p ∨→;(3))(q p p ∧→;(4)q q p p →∨∧⌝)(;(5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 设A , B , C 是集合,则下述论断正确的是( ).(A)若A ⊆ B , B ∈ C ,则A ∈ C . (B)若A ⊆ B , B ∈ C ,则A ⊆ C .(C)若A ∈ B , B ⊆ C ,则A ∈ C . (D)若A ∈ B , B ⊆ C ,则A ⊆ C .2. 设R ⊆ A ⨯ A ,S ⊆ A ⨯ A ,则下述结论正确的是( ).(A)若R 和S 是自反的,则R ⋂ S 是自反的.(B)若R 和S 是对称的,则S R 是对称的.(C)若R 和S 是反对称的,则S R 是反对称的.(D)若R 和S 是传递的,则R ⋃ S 是传递的.3.在谓词逻辑中,下列各式中不正确的是( ).(A))()())()((x xB x xA x B x A x ∀∨∀=∨∀(B))()())()((x xB x xA x B x A x ∀∧∀=∧∀(C))()())()((x xB x xA x B x A x ∃∨∃=∨∃(D)),(),(y x xA y y x yA x ∀∃=∃∀4. 域与整环的关系为( ).(A)整环是域 (B)域是整环 (C)整环不是域 (D) 域不是整环5.设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为( ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.设f : Z → Z ,x x x f 2||)(-=,则f 是单射. ( )2.设ϕ是群G 1到群G 2的同态映射,若G 1是Abel 群,则G 2是Abel 群. ( )3.设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. ( )4.元素个数相同的有限布尔代数都是同构的. ( )5.设G 是n (n ≥ 11)阶简单图,则G 或G 是非平面图. ( )四、(15分)设A 和B 是集合,使下列各式(1)A B A =⋂; (2)A B B A -=-;(3)A A B B A =-⋃-)()(成立的充要条件是什么,并给出理由.五、(10分) 设S 是实数集合R 上的关系,其定义如下∈=y x y x S ,|),{(R 且是3y x -是整数}, 证明: S 是R 上的等价关系. 六、(10分) 求谓词公式)))()(()(()(x xD y yC y B x xA ∀→∃⌝→→∃的前束范式.七、(10分) 若n 个人,每个人恰有3个朋友,则n 必为偶数,试证明之.八、(10分) 利用生成函数求解递归关系⎩⎨⎧=-+=-2)1(211a n a a n n .《离散数学》期末考试题(D)一、填空题(每小题3分,共15分)1. 设|A | = 5, |B | = 2, 则可定义A 到B 的函数( )个,其中有( )单射,( )个满射.2. 令G (x ): x 是金子,F (x ): x 是闪光的,则命题“金子都是闪光的,但闪光的未必是金子”符号化为( ).3. 设X 是非空集合,则X 的幂集P (X )关于集合的⋃运算的单位元是( ),零元是( ),P (X )关于集合的⋂运算的单位元是( ).4. 不同构的5阶无向树有( )棵.5. 对于n 阶完全无向图K n , 当n 为( )时是Euler 图,当n ≥ ( )时是Hamilton 图,当n ( )时是平面图.二、单选题(每小题3分,共15分)1. 幂集P (P (P (∅))) 为( )(A){{∅}, {∅, {∅}}}. (B){∅, {∅, {∅}}, {∅}}.(C){ ∅, {∅, {∅}}, {{∅}}, {∅}} (D){ ∅, {∅, {∅}}}.2. 设R 是集合A 上的偏序关系,则1-⋃R R 是( ).(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上答案都不对3. 下列( )组命题公式是不等值的.(A))(B A →⌝与B A ⌝∧. (B) )(B A ↔⌝与)()(B A B A ∧⌝∨⌝∧.(C))(C B A ∨→与C B A →⌝∧)(. (D))(C B A ∨→与)(C B A ∨∧⌝.4.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.5.4阶完全无向图4K 中含3条边的不同构的生成子图有(A)3 (B)4 (C)5 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.函数的复合运算“ ”满足结合律. ( )2. {→⌝,}是最小功能完备联结词集合. ( )3. 实数集R 关于数的乘法运算“⋅”阿贝尔群. ( )4. 任意有限域的元素个数为2n . ( )5. 设G 是n (n 为奇数)简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(10分)设A 和B 是集合,使B B A =-成立的充要条件是什么,并给出理由.五、(10分) 设R 和S 是集合A 上的对称关系,证明S R 对称的充要条件是R S S R =.六、(15分)分别利用(1)等值演算法和(2)真值表求命题公式))(())((r q p p q r A ∨→→→∨⌝=的主析取范式和主合取范式.七、(10分) 设G 是(n , m )无向图,若n m ≥,证明G 中必存在圈.八、(10分) 在初始条件f (1) = c 下,求解递归关系bn n f n f +⎪⎭⎫ ⎝⎛=22)(,其中b ,c 为常数且kn 2=,k 为正整数.《离散数学》期末考试题(E)一、填空题(每小题3分,共15分)1.设A = {2, {3}, 4, a }, B = {1, 3, 4, {a }}, 则{3}( )A ,{a }( )B ,{{a }}( )B .2. 设A = {1, 2, 3, 4, 5}上的关系R = {(1, 2), (3, 4), (2, 2)}, S = {(4, 2), (2, 5), (3, 1), (1, 3)}, 则=S R { }, =R S { }, =R R { }.3. gcd(36, 48) = ( ),lcm(36, 48) = ( ).4.任意有限布尔代数)1,0,,,,(⋅+B 均与集合代数( )同构,其元素个数为( ).5. 不同构的5阶无向树有( )棵,不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1. 在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.2. 设A = {1, 2, 3}, 下图分别给出了A 上的两个关系R 和S ,则S R 是( )关系.(A)自反. (B)对称. (C)传递. (D)等价.3.令T (x ): x 是火车,B (x ): x 是汽车,F (x , y ): x 比y 快,则“某些汽车比所有的火车慢”符号化为( ).(A)()()),()()(y x H x T x y B y →∀∧∃.(B)()()),()()(y x H x T x y B y ∧∀→∃.(C)()()),()()(y x H x T y B y x ∧→∃∀.(D)()()),()()(y x H x T x y B y →∀→∃.4. 整数集合Z 关于数的加法“+”和数的乘法“⋅”构成的代数结构(Z, +, ⋅)是( ). 1 1 22 3 3G S G R(A)域(B)域和整环(C)整环(D) 有零因子环G≅,则称G为自补图. 5阶不同构的自补图5.设G是简单图,G是G的补图,若G个数为( ).(A)0. (B)1. (C)2. (D)3.三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. { ∅, {∅}} ∉P(P({∅})). ( )2. 非空1元及2元联结词集合的个数为29-1. ( )3. 群可分为Abel群和非Abel群. ( )4. 元素个数相同的有限域都是同构的. ( )5. 设G是简单图,则G或G是连通图. ( )四、(15分)设C,:, 若gf 是单射,证明f是单射,并举例说明g→:f→gBBA不一定是单射.五、(10分)设A = {a, b, c, d}上的关系R = {(a, b), (b, d), (c, c), (a, c)}, 画出R的关系图,并求出R的自反闭包r(R)、对称闭包s(R)和传递闭包t(R).六、(10分)用CP规则证明下列推理.⌝∨→∨(.⇒),(⌝),→pqssrqrqp→七、(10分)求谓词公式))xyByAxA∀→∨∀∧⌝∃的前束范式.zC((x()))(z(()八、(10分)任意6个人中,一定有3个人彼此认识或有3个人彼此不认识.《离散数学》期末考试题(F)一、填空题(每小题3分,共15分)1. 设A = {1, 2, 3, {1, 2}, {3}}, B = {2, {2,3}, {1}} , 则A–B = { }, B–A = { }, A⊕B = { }.2. 实数集合R关于加法运算“+”的单位元为( ), 关于乘法运算“⋅”的单位元为( ), 关于乘法运算“⋅”的零元为( ).3. 令Z(x): x是整数,O(x): x是奇数,则“不是所有整数都是奇数”符号化为( ).4. 有限域的元素个数为( ), 其中( )且( ).5. 设G 是(7, 15)简单平面图,则G 一定 ( )连通图,其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 函数的复合运算“ ”满足( )(A)交换律. (B)结合律. (C)幂等律. (D)消去律.2. 设集合A 中有4个元素,则A 上的等价关系共有( )个.(A)13 (B)14 (C)15 (D)163.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.4. 下列偏序集,( )是格.5. 不同构的(5, 3)简单无向图有( )个.(A)4 (B)5 (C)3 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A ,B ,C 是集合,若C A B A ⊕=⊕, 则B = C . ( )2. 逻辑联结词“→”满足结合律. ( )3. 设 (L , ≤)是偏序集,若L 的任意非空子集均存在上确界和下确界,则(L , ≤)是格.( )4. 在同构意义下,有限布尔代数只有,,,),((⋂⋃X P ∅, X ). ( )5. 设G 是简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(15分) 设C B g B A f →→:,:, 若g f 是满射,证明g 是满射,并举例说明f 不一定是满射.五、(10分) 在整数集合Z 上定义关系R 如下:对于任意∈y x , Z ,y y x x R y x +=+⇔∈22),(.判断R 是否具有自反性、反自反性、对称性、反对称性及传递性.六、(10分)利用真值表求命题公式)())(q p q p A ⌝→↔→⌝=的主析取范式和主合取范式.七、(10分)证明:在至少两个人的人群中,必有两个人有相同个数的朋友.八、(10分)将6阶完全无向图K 6的边随意地涂上红色或蓝色,证明:无论如何涂法,总存在红色的K 3或蓝色的K 3.(ps :答案见离散数学期末复习题(6套)答案文档)。

离散数学期末考试复习题及参考答案

离散数学期末考试复习题及参考答案
A. B. C. D.
参考答案: B
6、 设 A. 代数系统 B. 半群 C. 群
,*为普通乘法,则<S,*>是( )
D. 都不是
参考答案: A
7、 设S={0,1},*为普通乘法,则< S , * >是( ) A. 半群,但不是独异点 B. 只是独异点,但不是群 C. 群 D. 环,但不是群
参考答案: B
A. B. C. D.
参考答案: B
3、 命题“有的人喜欢所有的花”的逻辑符号化为( ) 设D:全总个体域,F(x):x是花,M(x) :x是人,H(x,y):x喜欢y
A. B. C. D.
参考答案: D
4、 下列等价式成立的有( )
A. B. C. D.
参考答案: D
5、 下列公式是重言式的有( )
5、 ( )设S={1,2},则S在普通加法和乘法运算下都不封闭。 参考答案: 正确
8、 谓词公式
中的x是( )
A. 自由变元
B. 约束变元
C. 既是自由变元又是约束变元
D. 既不是自由变元又不是约束变元
参考答案: C
9、 设
是一个有界格,如果它也是有补格,只要满足( )
A. 每个元素都至少有一个补元
B. 每个元素都有多个补元
C. 每个元素都无补元
D. 每个元素都有一个补元
参考答案: A
10、 一棵无向树T有4度、3度、2度的分枝点各1个,其余顶点均为树叶,则T中有( )片树叶
A. 3 B. 4 C. 5 D. 6
参考答案: C
11、 设
A. {{1,2}} B. {1,2 } C. {1} D. {2}
参考答案: A
,则有( )

离散数学期末复习

离散数学期末复习

一、填空20%(每空2分):1.若对命题P 赋值1,Q 赋值0,则命题Q P ↔的真值为 。

2.命题“如果你不看电影,那么我也不看电影”(P :你看电影,Q :我看电影)的符号化为3.公式))(()(S Q P Q P ⌝∧⌝∨∧∨⌝的对偶公式为4.图 的对偶图为5.若关系R 是等价关系,则R 满足 性质。

6.关系R 的传递闭包t (R) = 。

7.代数系统>*<,A 是群,则它满足8.设>⊗⊕<>∙+<,,,,B A 和是两代数系统,f 是从>⊗⊕<>∙+<,,,,B A 到的同态映射,则f 具有 性质。

9.树T 的边数e 与点数v 有关系 。

二、选择10%(每小题2分):1.如果解释I 使公式A 为真,且使公式B A →也为真,则解释I 使公式B 为( )。

A 、真;B 、假;C 、可满足;D 、与解释I 无关。

2.设{}b a A ,=,则P (A )×A = ( )。

A 、A ;B 、P (A );C 、{}><><><><><><>Φ<>Φ<b A a A b b a b b a a a b a ,,,,},{,},{,},{,},{,,,, ;D 、{}><><><><><><>Φ<>Φ<A b A a b b b a a b a a b a ,,,,}{,,}{,,}{,,}{,,,,,。

3.设集合A ,B 是有穷集合,且n B m A ==,,则从A 到B 有( )个不同的双射函数。

A 、n ;B 、m ;C 、!n ;D 、!m 。

4.设K = {e , a , b , c},>*<,K 是Klein 四元群,则元素a 的逆元为( )。

自考离散数学期末复习

自考离散数学期末复习

1.5 最小联结词组与范式
主范式 定义1.5.5 n个命题变元的析取式,称作布尔析取或大项,其中每个变元与
它的否定不能同时存在,但两者必须出现仅且出现一次。 例如:2个命题变元P和Q,其大项为:
P˅Q, P˅¬Q, ¬P˅Q, ¬P˅¬Q 3个命题变元P,Q和R,其大项为: P˅Q˅R, P˅Q˅¬R, P˅¬Q˅R, P˅¬Q˅¬R, ¬P˅Q˅R, ¬P˅Q˅¬R, ¬P˅¬Q˅R, ¬P˅¬Q˅¬R
离散数学期末复习
1.1 命题概念
命题:具有唯一真值的陈述句
1.1 命题概念
练习:
1.下列句子为命题的是( D )
A.全体起立!
B. X=0
C. 我在说谎
D.张三生于1886年的春天
2.下列句子不是命题的是( D )
A.中华人民共和国的首都是北京 B.张三是学生
C.雪是黑色的
D.太好了!
1.2 复合命题与联结词
常用的联结词 (3)析取 定义1.2.3 两个命题P, Q的析取是个复合命题,记作P∨Q。 ∨称作析取联结词, 与自然语言中的“或”有些相似 例4 王强是这次校运动会的跳高或100米短跑的冠军。
设P: 王强是这次校运动会的跳高冠军; Q:王强是这次校运动会的100米短跑的冠军。
所以本例可描述为: P∨Q
设P: 我有就学机会; Q:我必用功读书。
所以本例可描述为: P→Q
1.2 复合命题与联结词
常用的联结词 (4)条件 P→Q的真值
当且仅当P的真值为T,Q的真值为F时,P→Q 为F.其余情况,P∨Q为T
PQ TT TF FT FF
P→Q T F T T
1.2 复合命题与联结词
常用的联结词 (5)双条件 定义1.2.6 给定两个命题P, Q,其复合命题P↔Q称作双条件命题,读作P当

离散数学期末复习

离散数学期末复习

离散数学内容总结第一篇数理逻辑第1章 命题逻辑求命题公式的主析取范式及主合取范式例 求的主析取范式及主合取范式。

例 求(P→Q)R的主析取范式及主合取范式。

例 求命题公式的主析取范式和主合取范式。

例 求公式A=(pq)r的主析取范式与主合取范式。

例 求的主析取范式。

判断公式类型例 用等值演算法判断公式q (pq)的类型例判断下列命题公式的类型(永真式、永假式、可满足式),方法不限。

(1)(2)证明例 证明:例 证明:例 推证:Q∧(P→Q)P例 前提:,结论:。

该结论是否有效?请说明原因。

在命题逻辑中构造下面推理的证明:例如果小张守第一垒并且小李向B队投球,则A队获胜。

或者A队未获胜,或者A队成为联赛的第一名。

小张守第一垒。

A队没有成为联赛的第一名。

因此小李没有向B队投球。

例一个公安人员审查一件盗窃案,已知下列事实:(1)甲或乙盗窃了录像机;(2)若甲盗窃了录像机,则作案时间不能发生在午夜前;(3)若乙的证词正确,则午夜时屋里灯光未灭;(4)若乙的证词不正确,则作案时间发生在午夜前;(5)午夜时屋里灯光灭了。

根据以上事实,推断谁是盗窃犯。

(在命题逻辑中构造推理证明。

)例 如果今天是周一,则要进行离散数学或C语言程序设计两门课中一门课的考试。

如果C语言程序设计课的老师有会,则不考C语言程序设计。

今天是周一,C语言程序设计课的老师有会,所以进行离散数学课的考试。

例 若明天是星期一或星期三,我就有课。

若有课,今天必须备课。

我今天没备课。

所以,明天不是星期一和星期三。

例 若明天是周一或周二,小华就要考试。

若要考试,今天必须复习。

小华今天没复习。

所以,明天不是周一和周二。

例如果A工作努力,B或C将生活愉快。

如果B生活愉快,那么A将不努力工作。

如果D愉快,则C将不愉快。

所以,如果A工作努力,D将不愉快。

第2章 谓词逻辑求谓词公式的前束范式例 求谓词公式的前束范式例求公式∀x F(x)∧∃x G(x)的前束范式。

《离散数学》方世昌的期末复习知识点总结

《离散数学》方世昌的期末复习知识点总结

《离散数学》方世昌的期末复习知识点总结1.集合论-集合的定义和运算:交、并、差、补、反转。

子集与真子集的概念。

-集合的基数:有限集、无限集、可数集、不可数集的定义与特性。

-集合的运算律:交换律、结合律、分配律、幂等律、吸收律。

-集合的等价关系:等价关系的定义和性质,等价关系的划分和等价类。

2.逻辑与命题关系-命题与命题符号:命题的定义、真值表和含有逻辑连接词的复合命题。

-命题逻辑:命题的蕴涵、等价、否定、充分条件和必要条件。

-谓词逻辑:命题的全称量词、存在量词及其关系。

-命题逻辑推理:假言推理、析取推理、拒取推理、类比推理等。

3.图论-图的基本概念与术语:顶点、边、邻接、路径、回路、连通、子图、生成树等。

-图的分类:无向图、有向图、简单图、多重图、完全图。

-图的矩阵表示:邻接矩阵、关联矩阵、度矩阵等。

-图的遍历算法:深度优先、广度优先。

-图的最短路径算法:迪杰斯特拉算法、弗洛伊德算法。

4.代数系统与半群-代数结构:代数系统的定义、代数公理、代数性质。

-半群:半群的定义与性质,封闭性、结合律和单位元。

-半群的子半群与同态:子半群的概念,同态映射的定义与性质。

-有限半群与无限半群:有限半群的定义和性质,无限半群的特点与例子。

5.数论与代数-整数与整数集合的性质:整数的除法原理、整除、公约数、最大公约数和最小公倍数。

-同余关系与同余类:同余关系的定义、同余类的性质、同余关系的基本定理。

-质数与素数:质数的定义、素数的性质、素数的判定方法。

-线性同余方程:线性同余方程的解法、同余方程的应用。

以上仅是《离散数学》中的部分重要知识点总结,该教材还包括很多其他内容,如排列组合、概率论、布尔代数等等。

期末复习时,建议从教材中选取一些重点章节进行深入学习和复习,同时要进行大量的习题训练,加深对知识点的理解和掌握。

祝你在期末考试中取得好成绩!。

离散数学期末复习题库

离散数学期末复习题库

数理逻辑一、选择题。

1、下列选项中是原子命题的是()A、霍金去世了。

B、霍金是物理学家,也是科普作家。

B、霍金的《时间简史》你看过吗?D、我看过《时间简史》,但没有看懂。

2、下列命题中,()不是真命题。

A、海水是咸的当且仅当雪是白色的B、如果1+1=2,那么7+8>16C、若太阳从西边落下,则2是奇数D、夏天冷当且仅当冬天热3、下列句子不是命题的是()A.雪是黑色的。

B.江西师大是一座工厂。

C.好大的雪啊!D.若7+8>16,则三角形有4条边。

4、下列句子是命题的是()A.我正在说谎。

B.X < 0。

C.好大的雪啊!D.如果x大于3,则x2大于9。

5、下列句子是命题的是()A.我正在说谎。

B.X < 0。

C.好大的雪啊!D.如果x大于3,则x2大于9。

6、下列联结词中不是完备的是()A、{,,⌝∨∧} B、{,⌝∨} C、{,∨∧} D、{,⌝∧}7、下列选项中哪一个是复合命题?()x>。

A、我不去看电影。

B、如果3x>,那么29C、我正在说谎。

D、把大象放进冰箱需要多少步?8、公式()P Q RP Q R=()→⌝∨的成假解释是(,,)B、(,,)T F FT F T D、(,,) T T T B、(,,)T T F C、(,,)9、下列选项中是合式公式的是()A 、3a b c ++=B 、P Q R <+C 、R Q P ∧⌝D 、R Q P ∧∨⌝10、下列公式不是永真公式的是( )C 、P P → B 、P P ↔ C 、 P P ∨⌝D 、P P ∧⌝ 11、下列公式 ( )为重言式.A .⌝P ∧⌝Q ↔P ∨QB .(Q →(P ∨Q)) ↔(⌝Q ∧(P ∨Q))C .(P →(⌝Q →P))↔(⌝P →(P →Q))D .(⌝P ∨(P ∧Q)) ↔Q12、 设A (x ):x 是人,B (x ):x 是工人,则命题“有人是工人”可符号化为( ).A .(∃x)(A(x)∧B(x))B .(∀x)(A(x)∧B(x))C .┐(∀x)(A(x) →B(x))D .┐(∃x)(A(x)∧┐B(x))13、下列是真命题的有( )A 、;B 、;C 、;D 、。

(完整word版)离散数学复习提纲(完整版)

(完整word版)离散数学复习提纲(完整版)

《离散数学》期末复习大纲(完整版)(含例题和考试说明)一、命题逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法.2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。

3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法.4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。

5、掌握命题逻辑的推理理论。

[疑难解析]1、公式类型的判定判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。

具体方法有两种,一是真值表法,二是等值演算法。

2、范式求范式,包括求析取范式、合取范式、主析取范式和主合取范式。

关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个.3、逻辑推理掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法). 例1.试求下列公式的主析取范式:(1)))()((P Q Q P P ⌝∨⌝⌝∧→→;(2))))((R Q Q P P →⌝∨→⌝∨())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧⌝∨⌝=∧∧∨⌝∨⌝=原式解Q P P P Q P P Q P ∨⌝=∨⌝∧∨⌝=∧∨⌝=)()()())(())((Q P P Q Q P ∧∨⌝∨∨⌝∧⌝=)()()(Q P Q P Q P ∧∨∧⌝∨⌝∧⌝=)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→⌝∨→⌝∨解)()()()(R Q P R Q P R Q P R Q P R Q P ∧⌝∧∨∧∧⌝∨⌝∧∧⌝∨∧⌝∧⌝=∨∨=)()()(R Q P R Q P R Q P ∧∧∨⌝∧∧∨⌝∧⌝∧∨)2.用真值表判断下列公式是恒真?恒假?可满足?(1)(PP )Q (2)(P Q)Q (3)((P Q)(Q R ))(P R) 解:(1) 真值表 P QP P P (P P)Q 0 01 0 1 0 11 0 0 1 00 0 1 1 1 0 0 0因此公式(1)为可满足.(2) 真值表P Q P Q (P Q) (P Q)Q0 0 1 0 00 1 1 0 01 00 1 01 1 1 0 0因此公式(2)为恒假。

离散数学 期末复习 复习材料

离散数学 期末复习 复习材料
证明R是X上的等价关系,
并求由该等价关系所产生的1的等价类[1]R和5的等 价类[5]R。
证明:①.对aX,均有(a-a)/3=0z成立,即<a,a> R, 所以,R是自反的。
②. 对a,b X如果 <a,b> R,则有(a-b)/3=kz成立, 于是(b-a)/3=-kz成立,即<b,a> R,所以,R具有对 称性。
二、典型题例讲解
例1 有向图G=<V,E>如下图所示,分别求: (1). G的邻接矩阵。 (2).利用邻接矩阵求G中到的长度为3的通路条数。
并写出v1到v4的长度为3的路径。
谢谢大家!!
5) 逆关系 ✓ 定义
6) A上关系的性质 ✓ 自反、反自反、对称、反对称、传递性 ✓ 如何从关系图和关系矩阵来判别。
7) 关系的闭包 ✓ 自反闭包r(R)、对称闭包s(R) 、传递闭包 t(R) ✓ 关系闭包的性质与应用
8) 等价关系 ✓ 概念:判断及证明。典型例子:同余关系 ✓ 等价类与性质 ✓ 划分,划分与等价关系的转换
⑦ P(c)┑Q(c)
T,⑥,UI
⑧ ┑P(c)
T,⑤⑦,拒取式
⑨ x┒P(x)
T,⑧,EG
故,原推证成立,证毕。
第三部分 集合
期 末复习
一、本章主要内容 1) 集合及其运算
a) 集合与元素 b) 集合之间的关系:包含与相等 c) 特殊集合:空集、全集、幂集 d) 集合的运算:并、交、差、补、对称差 e) 基本集合恒等式:与谓词逻辑基本恒等式类
3) 谓词逻辑的等值演算 a. 谓词逻辑的基本等值式 b) 谓词逻辑等值演算的换名规则 c) 谓词逻辑的前束范式
4) 谓词逻辑的推理理论 a) 推理的形式结构

离散数学期末复习题

离散数学期末复习题

离散数学期末复习题第一章集合论一、判断题(1)空集是任何集合的真子集. ( 错 )(2){}φ是空集. ( 错 ) (3){}{}a a a },{∈ ( 对 ) (4)设集合{}{}{}{}AA 22,1,2,1,2,1⊆=则. ( 对 ) (5)如果B A a ⋃∉,则A a ∉或B a ∉. ( 错 )解 B A a ⋃∉则B A B A a ⋂=⋃∈,即A a ∈且B a ∈,所以A a ∉且B a ∉(6)如果A ∪.,B A B B ⊆=则 ( 对 )(7)设集合},,{321a a a A =,},,{321b b b B =,则},,,,,{332211><><><=⨯b a b a b a B A ( 错 )(8)设集合}1,0{=A ,则}1},0{,0},0{,1,,0,{><><><><=φφρ是A2到A 的关系. ( 对 )解 A 2}},1{},0{,{A φ=, =⨯A A 2}1,,0,,1},1{,0},1{,1},0{,0},0{,1,,0,{><><><><><><><><A A φφ(9)关系的复合运算满足交换律. ( 错 )(10).条件具有传递性的充分必要上的关系是集合ρρρρA = ( 错 )(11)设.~,上的传递关系也是则上的传递关系是集合A A ρρ ( 对 ) (12)集合A 上的对称关系必不是反对称的. ( 错 )(13)设21,ρρ为集合A 上的等价关系, 则21ρρ⋂也是集合A 上的等价关系( 对 )(14)设ρ是集合A 上的等价关系, 则当ρ>∈<b a ,时, ρρ][][b a = ( 对 )(15)设21,ρρ为集合 A 上的等价关系, 则 ( 错 )二、单项选择题(1)设R 为实数集合,下列集合中哪一个不是空集 ( A )A. {}R x x x ∈=-且,01|2 B .{}R x x x ∈=+且,09|2C. {}R x x x x ∈+=且,1|D. {}R x x x ∈-=且,1|2(2)设B A ,为集合,若φ=B A \,则一定有 ( C )A. φ=B B .φ≠B C. B A ⊆ D. B A ⊇(3)下列各式中不正确的是 ( C )A. φφ⊆ B .{}φφ∈ C. φφ⊂ D. {}}{,φφφ∈ (4)设{}}{,a a A =,则下列各式中错误的是 ( B )A. {}A a 2∈ B .{}A a 2⊆ C. {}A a 2}{∈ D. {}Aa 2}{⊆ (5)设{}2,1=A ,{}c b a B ,,=,{}d c C ,=,则)(C B A ⨯为 ( B ) A. {}><><c c ,2,1, B .{}><><c c ,2,,1C. {}><><2,,,1c cD. {}><><2,,1,c c(6)设{}b A ,0=,{}3,,1b B =,则B A 的恒等关系为 ( A ) A. {}><><><><3,3,,,1,1,0,0b b B .{}><><><3,3,1,1,0,0C. {}><><><3,3,,,0,0b bD. {}><><><><0,3,3,,,1,1,0b b(7)设{}c b a A ,,=上的二元关系如下,则具有传递性的为 ( D )A. {}><><><><=a b b a a c c a ,,,,,,,1ρB . {}><><=a c c a ,,,2ρC. {}><><><><=c b a b c c b a ,,,,,,,3ρD. {}><=a a ,4ρ(8)设ρ为集合A 上的等价关系,对任意A a ∈,其等价类[]ρa 为 ( B )A. 空集; B .非空集; C. 是否为空集不能确定; D. }|{A x x ∈.(9)映射的复合运算满足 ( B )A. 交换律 B .结合律 C. 幂等律 D. 分配律(10)设A ,B 是集合,则下列说法中( C )是正确的.A .A 到B 的关系都是A 到B 的映射B .A 到B 的映射都是可逆的C .A 到B 的双射都是可逆的D .B A ⊂时必不存在A 到B 的双射(11)设A 是集合,则( B )成立.A .A A #22#=B .A X X A⊆↔∈2 C .{}A2∈φ D .{}AA 2∈ (12)设A 是有限集(n A =#),则A 上既是≤又是~的关系共有(B ).A .0个B .1个C .2个D .n 个三、填空题1. 设}}2,1{,2,1{=A ,则=A2____________.填}}},2,1{,2{}},2,1{,1{},2,1{}},2,1{{},2{},1{,{2A A φ=2.设}}{,{φφ=A ,则A 2= . 填}}},{{},{,{2A A φφφ=3.设集合B A ,中元素的个数分别为5#=A ,7#=B ,且9)(#=⋃B A ,则集合B A ⋂中元素的个数=⋂)(#B A .34.设集合}4,1001|{Z x x x x A ∈≤≤=的倍数,是,}5,1001|{Z x x x x B ∈≤≤=的倍数,是,则B A 中元素的个数为 .405.设 },{b a A =, ρ 是 A2 上的包含于关系,,则有ρ= .},,},{,}{},{,},{,}{},{,,,}{,,}{,,,{><><><><><><><><><A A A b b b A a a a A b a φφφφφ6.设21,ρρ为集合 A 上的二元关系, 则=21ρρ .~1~2ρρ7.集合A 上的二元关系ρ为传递的充分必要条件是 .ρρρ⊆8. 设集合{}{}><><==0,2,2,02,1,01ρ上的关系A 及集合A 到集合{}4,2,0=B 的关系=2ρ{><b a ,|><b a ,A b a B A ∈⨯∈,且∩}=21,ρρ 则B ___________________. 填 }2,2,0,2,2,0,0,0{><><><><四、解答题1. 设 A d c b a A },,,,{=上的关系 },,,,,,,,,,,,,,,{><><><><><><><><=c d d c a b b a d d c c b b a a ρ(1)写出ρ的关系矩阵;(2)验证ρ是A 上的等价关系;(3)求出A 的各元素的等价类。

离散数学期末考试最新复习题 最新资料

离散数学期末考试最新复习题 最新资料

离散复习一一、数理逻辑要点1:命题公式和真值表小项和大项、主析取范式和主合取范式永真式和推理证明1. n 个命题变元,共可组成 个命题公式(wff );可组成 个真值结果不同的命题公式;可组成 个主析取范式、 个主合取范式、 个主异或范式、 个主等值范式。

2. 因子项P Q R ∧⌝∧是简单 取式,若原公式中仅此三个变元,则将其称为 项;其角标表示为 ;对应角标的大项用公式表示出来是 。

3.对任一指派,为什么mi 和mj 不能同时为真?为什么Mi 和Mj 不能同时为假?这里i ≠j 。

4.P Q P Q ⌝∨⌝→↔⌝求公式()()的主析取和主合取范式。

5.,A B A C B C,A B A B A B A C B C ∨⇔∨⇔∧⇔∧⇔⌝⇔⌝⇔如果是否有?若是否有?如果,是否有?6.张三说李四在说谎,李四说王五在说谎,王五说张三、李四都在说谎,问张三、李四、王五3个人到底谁在说真话,谁说假话。

7.用推理规则论证下述问题:我或者去北京,或者去广州。

如果去北京,就去长城。

去了长城,就不能参加运动会。

所以,如果我参加了运动会,那么我去了广州。

要点2:量化断言和命题的关系量词辖域、自由变元和约束变元谓词永真式、推理规则及推理证明1. 设D={0,1},P(0,0)=0,P(0,1)=1,P(1,0)=0;P(1,1)=1,则公式 (∀x)(∃y)P(x, y)可量化为 ,且可得该公式的真值结果为 ;(∃x) (∀y) P(x, y)可量化为 ,可得该公式的真值结果为 。

2.∀∧∃⌝证明公式xP(x)y P(y)是永假式。

3. xQ ∧∀⇒∃∧证明P(x)(x)x(P(x)Q(x))。

4. 符号化下列命题,并推证其结论:任何人如果他喜欢步行,他就不喜欢乘汽车,每一个人或者喜欢汽车,或者喜欢骑自行车。

有的人不爱骑自行车,因而有的人不爱步行。

二、集合论(集合、二元关系、函数)要点:集合与其子集、空集合和全集、集合运算集合与关系、关系运算二元关系图、哈斯图、偏序关系等价关系、等价类、划分如何定义一个函数特殊函数类、置换函数1. 运算{φ, {φ}}-{φ}的值为 。

(完整word版)离散数学-期末复习题及答案

(完整word版)离散数学-期末复习题及答案

课程名称:《离散数学》一、单项选择题1、 (D)。

下列句子是命题的为 。

A 、这朵花多好看呀!B 、明天下午有会吗?C 、5y x >+D 、地球外的星球上也有人。

2、 (A)。

李平不是不聪明,而是不用功。

p:李平聪明q:李平用功。

符号化为 。

A 、 q )p (⌝⌝⌝∧ B 、 q p ⌝⌝∧ C 、 q )p (∧⌝⌝ D 、q )p (⌝⌝⌝∨ 3、 (A)。

与)q p (∨⌝命题公式等值的是 。

A 、q p ⌝⌝∧ B 、q p ⌝⌝∨ C 、q p ∧ D 、q)(p ∧⌝4、 (D)。

含有3个命题变项的简单和取式中一定可形成 种不同的极小项。

A 、2 B 、4 C 、6 D 、85、 (C)。

q )q p (∧→⌝此公式的类型为 。

A 、重言式B 、永真式C 、矛盾式D 、可满足式 6、 (C)。

q )q )q p ((→∧→此公式的类型为 。

A 、矛盾式B 、可满足式C 、重言式D 、永假式7、 (A)。

设A 是含有3个命题变项的公式,若它的主析取范式中含有8个极小项,则它是 。

A 、重言式B 、矛盾式C 、可满足式D 、永假式8、 (B)。

只有天下大雨,他才乘公共汽车上班.p:天下大雨q:他乘车上班,符号化为 。

A 、q p → B 、p q → C 、q p →⌝D 、p q →⌝9、 (B)。

不经一事,不长一智p:经一事q:长一智,符号化为 。

A 、p q →B 、q p ⌝⌝→C 、p q ⌝⌝→ D 、q p → 10、 (B)。

R Q P →∧⌝)(成真赋值为 。

A 、 000,001,110B 、 001,011,101,110,111C 、全体赋值D 、无11、 (B)。

公式Q P →的主析取范式为)3,1,0(∑,则公式的主合取范式为 。

A 、)2(TB 、)2(∏C 、)3,1,0(∏D 、)3,2,1,0(∏12、 (A)。

R Q P →∧⌝成假赋值为 。

离散数学期末复习题

离散数学期末复习题

离散数学期末复习题一、选择题1、永真式的否定是(2)(1) 永真式 (2) 永假式 (3) 可满足式 (4) (1)--(3)均有可能2、设P :2×2=5,Q :雪是黑的,R :2×4=8,S :太阳从东方升起,则下列真命题为(1)(1)R Q P ∧→ (2)S P R ∧→ (3)R Q S ∧→ (4) )()(S Q R P ∧∨∧。

3、设P :我听课,Q :我看小说,则命题R “我不能一边听课,一边看小说”的符号化为⑵ ⑴ P Q → ⑵Q P ⌝→(3) Q P →⌝ ⑷ P Q ⌝→⌝()P Q ⌝∧提示:()R P Q P Q ⇔⌝∧⇔→⌝4、下列表达式错误的有⑷⑴()P P Q P ∨∧⇔ ⑵()P P Q P ∧∨⇔⑶()P P Q P Q ∨⌝∧⇔∨ ⑷()P P Q P Q ∧⌝∨⇔∨5、下列表达式正确的有⑷⑴ P P Q ⇒∧ ⑵ P Q P ⇒∨ ⑶ ()Q P Q ⌝⇒⌝→⑷Q Q P ⌝⇒→⌝)(6、下列联接词运算不可交换的是(3)⑴∧ ⑵∨ (3)→ ⑷ ↔6、设D :全总个体域,F (x ):x 是花,M(x) :x 是人,H(x,y):x 喜欢y ,则命题“有的人喜欢所有的花”的逻辑符号化为⑷⑴(()(()(,))x M x y F y H x y ∀∧∃→ ⑵(()(()(,))x M x y F y H x y ∀∧∀→(3) (()(()(,))x M x y F y H x y ∃∧∃→ ⑷(()(()(,))x M x y F y H x y ∃∧∀→7、设L(x):x 是演员,J(x):x 是老师,A(x , y):x 钦佩y ,命题“所有演员都钦佩某些老师”的逻辑符号化为⑵⑴)),()((y x A x L x →∀ ⑵))),()(()((y x A y J y x L x ∧∃→∀(3) )),()()((y x A y J x L y x ∧∧∃∀ ⑷)),()()((y x A y J x L y x →∧∃∀8、谓词公式)())()((x Q y yR x P x →∃∨∀中的 x 是⑶⑴自由变元 ⑵约束变元 ⑶既是自由变元又是约束变元 ⑷既不是自由变元又不是约束变元9、下列表达式错误的有⑴⑴(()())()()x A x B x xA x xB x ∀∨⇒∀∨∀ ⑵(()())()()x A x B x xA x xB x ∃∧⇒∃∧∃(3) (()())()()x A x B x xA x xB x ∀∧⇔∀∧∀ ⑷(()())()()x A x B x xA x xB x ∃∨⇔∃∨∃10、下列推导错在⑶①)(y x y x >∃∀ P②)(y z y >∃US ① ③)(z C z > ES ②④)(x x x >∀ UG ③⑴② ⑵③ ⑶④ ⑷无11、下列推理步骤错在⑶①(,)x yF x y ∀∃ P②),(y z yF ∃US ① ③),(c z FES ② ④),(c x xF ∀ UG ③⑤),(y x xF y ∀∃ EG ④⑴①→② ⑵②→③ ⑶③→④ ⑷④→⑤12、设个体域为{a,b},则(),x yR x y ∀∃去掉量词后,可表示为⑷⑴()()()(),,,,R a a R a b R b a R b b ∧∧∧ ⑵()()()(),,,,R a a R a b R b a R b b ∨∨∨(3) ()()()()()()b b R a b R b a R a a R ,,,,∨∧∨ ⑷()()()()()()b b R a b R b a R a a R ,,,,∨∧∨ 提示:原式()()()()()()()(),,,,,,yR a y yR b y R a a R a b R b a R b b ⇔∃∧∃⇔∨∧∨二、填充题1、一个命题含有n 个原子命题,则对其所有可能赋值有2n 种。

《离散数学》期末复习

《离散数学》期末复习

《离散数学》期末复习第一篇:《离散数学》期末复习《离散数学》期末复习内容:第一章~第七章题型:一、选择题(20%,每题2分)二.填空题(20%,每题2分)三、计算题(20%,每题5分)四、证明题(20%,每题5分)五、判断题(20%,每题2分)第1章数学语言与证明方法1.1 常用的数学符号1.计算常用的数学符号式子 1.2 集合及其表示法1.用列举法和描述法表示集合2.判断元素与集合的关系(属于和不属于)3.判断集合之间的包含与相等关系,空集(E),全集(∅)4.计算集合的幂集5.求集合的运算:并、交、相对补、对称差、绝对补6.用文氏图表示集合的运算7.证明集合包含或相等方法一:根据定义, 通过逻辑等值演算证明方法二:利用已知集合等式或包含式, 通过集合演算证明1.3 证明方法概述1、用如下各式方法对命题进行证明。

π直接证明法:A→B为真π间接证明法:“A→B为真” ⇔“ ¬B→¬A为真” π归谬法(反证法): A∧¬B→0为真π穷举法: A1→B, A2→B,…, Ak→B 均为真π构造证明法:在A为真的条件下, 构造出具有这种性质的客体B π空证明法:“A恒为假” ⇒“A→B为真” π平凡证明法:“B恒为真” ⇒“A→B为真” π数学归纳法:第2章命题逻辑2.1 命题逻辑基本概念1、判断句子是否为命题、将命题符号化、求命题的真值(0或1)。

命题的定义和联结词(¬, ∧, ∨, →, ↔)2、判断命题公式的类型赋值或解释.成真赋值,成假赋值;重言式(永真式)、矛盾式(永假式)、可满足式:。

2.2 命题逻辑等值演算1、用真值表判断两个命题公式是否等值2、用等值演算证明两个命题公式是否等值3、证明联结词集合是否为联结词完备集 2.3 范式1、求命题公式的析取范式与合取范式2、求命题公式的主析取范式与主合取范式(两种主范式的转换)3、应用主析取范式分析和解决实际问题 2.4 命题逻辑推理理论1、用直接法、附加前提、归谬法、归结证明法等推理规则证明推理有效第3章一阶逻辑3.1 一阶逻辑基本概念1、用谓词公式符号命题(正确使用量词)2、求谓词公式的真值、判断谓词公式的类型 3.2 一阶逻辑等值演算1、证明谓词公式的等值式2、求谓词公式的前束范式第4章关系4.1 关系的定义及其表示1、计算有序对、笛卡儿积2、计算给定关系的集合3、用关系图和关系矩阵表示关系 4.2 关系的运算1、计算关系的定义域、关系的值域2、计算关系的逆关系、复合关系和幂关系3、证明关系运算满足的式子 4.3 关系的性质1、判断关系是否为自反、反自反、对称、反对称、传递的2、判断关系运算与性质的关系3、计算关系自反闭包、对称闭包和传递闭包 4.4 等价关系与偏序关系1、判断关系是否为等价关系2、计算等价关系的等价类和商集3、计算集合的划分4、判断关系是否为偏序关系5、画出偏序集的哈期图6、求偏序集的最大元、最小元、极小元、极大元、上界、下界、上确界、下确界7、求偏序集的拓扑排序第5章函数1.判断关系是否为函数2.求函数的像和完全原像3.判断函数是否为满射、单射、双射4.构建集合之间的双射函数5.求复合函数6.判断函数的满射、单射、双射的性质与函数复合运算之间的关系7.判断函数的反函数是否存在,若存在求反函数第6章图1.指出无向图的阶数、边数、各顶点的度数、最大度、最小度2.指出有向图的阶数、边数、各顶点的出度和入度、最大出度、最大入度、最小出度最小入出度3.根据握手定理顶点数、边数等4.指出图的平行边、环、弧立点、悬挂顶点和悬挂边5.判断给定的度数列能否构成无向图6.判断图是否为简单图、完全图、正则图、圈图、轮图、方体图7.求给定图的补图、生成子图、导出子图8.判断两个图是否同构6.2 图的连通性1.求图中给定顶点通路、回路的距离2.计算无向图的连通度、点割集、割点、边割集、割边3.判断有向图的类型:强连通图、单向连通图、弱连通图 6.3 图的矩阵表示1.计算无向图的关联矩阵2.计算有向无环图的关联矩阵3.计算有向图的邻接矩阵4.计算有向图的可达矩阵5.计算图的给定长度的通路数、回路数6.4 几种特殊的图1、判断无向图是否为二部图、欧拉图、哈密顿图第7章树及其应用 7.1 无向树1.判断一个无向图是否为树2.计算无向树的树叶、树枝、顶点数、顶点度数之间的关系3.给定无向树的度数列,画出非同构的无向树4.求生成树对应的基本回路系统和基本割集系统5.求最小生成树 7.2 根树及其应用1.判断一个有向图是否为根树2.求根树的树根、树叶、内点、树高3.求最优树4.判断一个符号串集合是否为前缀码5.求最佳前缀码6.用三种方法遍历根树第二篇:离散数学期末复习试题及答案(二)第二章二元关系1.设A={1,2,3,4},A上二元关系R={(a,b)|a=b+2},S={(x,y)|y=x+1 or y=x2} 求R⋅S,S⋅R,S⋅R⋅S,S2,S3,S⋅Rc。

离散数学期末考试复习资料

离散数学期末考试复习资料

《离散数学》课程综合复习资料一、判断题1.R1,R2是集合A上的二元关系,若R1和R2都是反自反的,则R1R2也是反自反的。

答案:√2.对任意集合A,A。

答案:×3.设<G,*>是一个群,B是G的非空子集,如果B是一个有限集,则<B,*>必定是<G,*>的子群。

答案:×4.A、B、C为任意集合,已知A⋂B=A⋂C,必须有B=C。

答案:×5.对于任意一个集合A,空集。

答案:√6.设E为全集,对任意集合A,A。

答案:×7.设A、B为任意两个集合,A答案:×8.R是集合A上的二元关系,若R是自反的,则R c也是自反的。

答案:√9.对于任意一个集合A,空集。

答案:×图是平面图。

10.K3,3答案:×11.“你去图书馆吗?”是一个命题。

答案:×12.如果有限集合A有n个元素,则其幂集p(A)有2n个元素。

答案:×13.群中可以有零元。

14.集合A的一个划分确定A的元素间的一个等价关系。

答案:√15.含有幺元的半群为独异点。

答案:√二、基本题1.将下列命题符号化:(1)只要不下雨,他就骑自行车上班。

(2)他或者骑自行车上班,或者乘公共汽车上班。

(3)有些大学生运动员是国家选手。

答案:(1)(⌝P→ Q)(2)(Q ∇ R 或 (Q∧⌝R)∨(⌝Q∧R))(3)((∃x)(P(x)∧Q(x)))2.求命题公式P∧(P→Q)的主析取范式。

答案:原式⇔P∧(⌝P∨Q)⇔(P∧⌝P) ∨ (P∧Q)⇔T∨ (P∧Q)⇔P∧Q3.求⌝(P→Q)的主合取范式。

答案:原式⇔⌝(⌝P∨Q)⇔⌝(⌝P∨Q)⇔P∧⌝Q⇔(P∨(⌝Q ∧Q))∧(⌝Q∨(⌝P∧P))⇔(P∨⌝Q)∧(P∨Q)∧(⌝P∨⌝Q)∧(P∨⌝Q)⇔(P∨⌝Q)∧(P∨Q)∧(⌝P∨⌝Q)4.设A={3,4},试构成集合P(A)⨯A。

离散数学复习要点

离散数学复习要点

《离散数学》期末考试复习要点(长期有效)第一章命题逻辑1-1 :命题、原子命题、复合命题、命题常量、命题变元1-2 :联结词否定、和取、析取、条件、双条件1-1,1-2习题(1)(3)(5)(6)1-3:翻译例题3---例题61-3 习题(1)(5)(7)1-4: 真值表,等价公式例题1—例题61-4 习题(1)1-5 所有知识,表1-5.21-5 习题(1)(6)(7)1-7:合取范式、吸取范式、小项、大项及其性质、主析取范式及其简洁式、主合取范式及其简洁式、命题公式的成真赋值例题6---例题111-7习题(4)1-8:论证过程三种方法--真值表法、直接证法、间接证法例题1(p42)例题2—例题6 表1-8.3和表1—8.41-8 习题(1)(3)(4)(5)第二章谓词逻辑2-1 :所有知识2-2:所有知识2-1,2-2习题(1)(2)2-3 例题1—例题42-3 习题(4)2-4 所有知识2-4 习题(2)(3)2-5 所有知识2-5 习题(1)(2)2-6 所有知识例题1,例题22-7 全称指定、全称推广、存在指定、存在推广。

例题1—例题32-7 习题(1)a)b)(2)a)(3)第三章集合与关系3-1 所有知识3-1 习题(4)(6)(7)(9)3-2 所有知识3-2 习题(3)(6)3-4 序偶、定理3-4.1例题13-4 习题(1)(2)(3)d)e)3-5 关系的定义,空关系,全域关系,恒等关系,关系矩阵,关系图。

例题1-例题63-5 习题(1)(2)(7)3-6 所有知识例题1—例题53-6 习题(1)3-7 复合关系,逆关系,例题1—例题43-7 习题(1)3-8 关系的闭包的定义,会求三个闭包。

例题1—例题33-8 习题(1)(2)3-9 集合的划分和覆盖的定义3-9 习题(1)3-10 等价关系的定义,等价类的概念。

商集的概念。

例题1—例题3。

3-10 习题(2)(3)3-11 相容关系的概念,相容类,最大相容类。

离散数学期末复习

离散数学期末复习

离散数学期末复习一、选择题1、以下各选项错误的选项是A、∅⊆∅B、∅⊂∅C、∅∈{ ∅}D、∅⊆{∅ }2、命题公式 (p∧q) →p 是A、矛盾式B、重言式C、可满足式D、等值式3、如果是R是A上的偏序关系,R-1是R的逆关系,那么R∪R-1是A、等价关系B、偏序关系C、全序关系D、都不是4、以下句子中那个是假命题?A、是无理数.B、2 + 5 =8.C、x + 5 > 3D、请不要讲话!5、以下各选项错误的选项是?A、∅⊆∅B、∅⊆{∅ }C、∅∈{ ∅}D、{∅ } ⊆∅6、命题公式 p→〔p∨q∨r〕是?A、重言式B、矛盾式C、可满足式D、等值式7、函数f : N→N, f(x)=x+5,函数f是A、单射B、满射C、双射D、都不是8、设D=<V,E>,那么V={a,b,c,d,e,f},R={<a,b> ,<b,c>,<a,d>,<d,e>,<f,e>},有向图D为A、强连通B、单向连通C、弱连通D、不连通的9、关系R1和R2具有反自反性,下面运算后,不能保持自反性的是A、R1⋃R2B、R1-1C、R1︒R2D、R1-R210、连通平面图G有4个结点,3个面,那么G有〔〕条边。

A、7B、6C、5D、4二、填空题1、将下面命题符号化。

设p:天冷,q:小王穿羽绒服。

只要天冷,小王就穿羽绒服.符号化为2、将下面命题符号化,设p:天冷,q:小王穿羽绒服。

因为天冷,所以小王穿羽绒服.符号化为3、将下面命题符号化,设p:天冷,q:小王穿羽绒服。

假设小王不穿羽绒服,那么天不冷.符号化为4、将下面命题符号化,设p:天冷,q:小王穿羽绒服。

只有天冷,小王才穿羽绒服.符号化为5、将下面命题符号化,设p:天冷,q:小王穿羽绒服。

除非天冷,小王才穿羽绒服.符号化为6、将下面命题符号化,设p:天冷,q:小王穿羽绒服。

除非小王穿羽绒服,否那么天不冷.符号化为7、将下面命题符号化,设p:天冷,q:小王穿羽绒服。

离散数学期末复习

离散数学期末复习

离散数学期末复习离散数学期末复习第⼀部分数理逻辑⼀、知识体系包括命题逻辑(第⼀章~第三章)和谓词逻辑(第四章、第五章),主要内容如下:(⼀) 命题逻辑1.命题、命题联结词、命题如何符号化2.命题变元、命题公式、命题公式的真值指派3.永真公式、永假公式和可满⾜公式判别⽅法:(1)真值表⽅法(2)等值演算⽅法A?)的含义及其判别4.两命题公式等值(B判别⽅法:A?是否永真(1)⽤真值表判别B(2)命题的等值演算A?)的含义及其判别5.公式A蕴含公式B(B判别⽅法:A→是否永真(1)⽤真值表判别BA→是否等值于1(2)⽤“等值演算”的⽅法判B(3)假设前件A为真,证明后件B为真(4)假设后件B为假,证明前件A为假6.范式的求取7.推理的形式证明⽅法(P规则、T规则、CP规则、基本等值式、基本蕴含式)(⼆) 第⼆章谓词逻辑1.基本述语个体、谓词、量词;命题函数,个体域,全总个体域,特性谓词。

2.谓词公式的有关概念谓词公式;量词的辖域,约束变元,⾃由变元;谓词公式,谓词公式的指派;永真公式,永假公式,可满⾜公式。

3.谓词公式间的关系谓词公式间的等值关系(A?B);谓词公式间的蕴含关系(A?B);⼀些基本的等值式;⼀些基本的蕴含式。

4.谓词演算的推理规则及⽅法在谓词演算中,命题演算的推理理论仍然成⽴,另外还⽤到与量词有关的推理规则。

全称特定化规则(US);存在特定化规则(ES);全称⼀般化规则(UG);存在⼀般化规则(EG)。

主要内容的知识结构如下:⼆、模拟题 1.⽤P 表⽰:天下⼤⾬;Q 表⽰:他乘公共汽车上班。

将“如果天下⼤⾬,他就乘公共汽车上班。

”符号化正确的是()。

A .P →QB .Q →PC .P ∧QD .P ∨Q2.下列语句中,不是命题的有()。

A .5能被2整除。

B .太阳系以外的星球上有⽣物。

C .现在开会吗?D .⼩李在宿舍⾥。

3.下列语句为命题的是()。

A.暮春三⽉,江南草长。

B.这是多么可爱的风景啊!C.⼤家想做什么,就做什么,⾏吗?D.请勿践踏草坪!4.设C (x ): x 是国家级运动员,G (x ): x 是健壮的,则命题“没有⼀个国家级运动员不是健壮的”可符号化为 ( )A .))()((x G x C x ?∧??B .))()((x G xC x ?→??C .))()((x G x C x ?→??D .))()((x G x C x ?∧??5.求命题公式)()(Q P Q P ?∨?∧∧的真值表6.证明下列各式:1))()()),()((a Q x xp a Q x p x ∧??2)Q R P Q R Q P →∨?→∧→)()()(7.⽤形式演绎法证明:1)Q S ?→是Q P ?∨?,R P →?,S R ?→的有效结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学期末复习一、选择题1、下列各选项错误的是A、B、C、{ }D、 { }2、命题公式 (p∧q) →p 是A、矛盾式B、重言式C、可满足式D、等值式3、如果是R是A上的偏序关系,R-1是R的逆关系,则R∪R-1是A、等价关系B、偏序关系C、全序关系D、都不是4、下列句子中那个是假命题?A、是无理数.B、2 + 5 =8.C、x + 5 > 3D、请不要讲话!5、下列各选项错误的是?A、B、 { }C、{ }D、{ }6、命题公式 p→(p q r)是?A、重言式B、矛盾式C、可满足式D、等值式7、函数f : N→N, f(x)=x+5,函数f是A、单射B、满射C、双射D、都不是8、设D=<V,E>,则V={a,b,c,d,e,f},R={<a,b> ,<b,c>,<a,d>,<d,e>,<f,e>},有向图D为A、强连通B、单向连通C、弱连通D 、不连通的9、关系R 1和R 2具有反自反性,下面运算后,不能保持自反性的是A 、R 1 R 2B 、R 1-1C 、R 1 R 2D 、R 1 -R 210、连通平面图G 有4个结点,3个面,则G 有( )条边。

A 、7B 、6C 、5D 、4二、填空题1、将下面命题符号化。

设 p :天冷,q :小王穿羽绒服。

只要天冷,小王就穿羽绒服.符号化为2、将下面命题符号化,设 p :天冷,q :小王穿羽绒服。

因为天冷,所以小王穿羽绒服. 符号化为3、将下面命题符号化,设 p :天冷,q :小王穿羽绒服。

若小王不穿羽绒服,则天不冷.符号化为4、将下面命题符号化,设 p :天冷,q :小王穿羽绒服。

只有天冷,小王才穿羽绒服.符号化为5、将下面命题符号化,设p:天冷,q:小王穿羽绒服。

除非天冷,小王才穿羽绒服.符号化为6、将下面命题符号化,设p:天冷,q:小王穿羽绒服。

除非小王穿羽绒服,否则天不冷.符号化为7、将下面命题符号化,设p:天冷,q:小王穿羽绒服。

小王穿羽绒服仅当天冷的时候.符号化为8、将下面命题符号化,设p:天冷,q:小王穿羽绒服。

如果天不冷,则小王不穿羽绒服.符号化为9、设p:王蓉努力学习,q:王蓉取得好成绩。

则(1)命题“只要王蓉努力学习,她就会取得好成绩。

”符号化为。

(2)命题“王蓉取得好成绩,如果她努力学习。

”符号化为。

(3)命题“只有王蓉努力学习,她才能取得好成绩。

”符号化为。

(4)命题“除非王蓉努力学习,否则她不能取得好成绩。

”符号化为。

(5)命题“假如王蓉不努力学习,她就不能取得好成绩。

”符号化为。

(6)命题“王蓉取得好成绩,仅当她努力学习了。

”符号化为。

10、公式∀xF(x)→∃xF(x)的类型为11、公式∀xF(x)→(∀x∃yG(x,y)→∀xF(x))的类型为12、公式∀xF(x)→(∀xF(x)∨∃yG(y))的类型为13、公式(F(x,y)→R(x,y))∧R(x,y)的类型14、公式∀x∃yF(x,y)→∃x∀yF(x,y)的类型为15、公式∃xF(x,y)的类型16、令F(x):x是人,G(x):x犯错误.则命题“没有不犯错误的人”符号化为17、令F(x):x是人,G(x):爱看电影.则命题“不是所有的人都爱看电影”符号化为18、公式x(M(x)F(x))的前束范式为:19、公式xF(x)xG(x)的前束范式为:20、公式xF(x)xG(x)的前束范式为21、公式xF(x)y(G(x,y)H(y))的前束范式为22、公式x(F(x,y)y(G(x,y)H(x,z)))的前束范式为23、集合A=Ø,B={1,{a,b}},C={Ø,{Ø}},D={2,2,2,3};则幂集P(A)= ;P(B)= ;P(C)= ;P(D)= ;24、设A={1,2,3}, B={a,b,c}则A B= ;B A = 。

25、设集合A={}, 则P(A)A= 。

26、设|A|=n, 则|A×A|= , A×A的子集有个. 集合A上有个不同的二元关系.27、设A={1,2}, 则E A= ;I A= 。

28、集合A={2,3,4,5,6,10,12,24},R是A上的整除关系,则R的极大元是,极小元是。

29、设A={1,2,3}上的关系 R={<1,1>,<1,2>,<1,3>,<3,3>} ,则关系R具备性质。

30、设集合A={1,2,3},关系R={<1,2>, < 2,1>, <2,3>,<3,3>}, 则自反闭包r(R)= , 对称闭包s(R)= 。

31、已知图G有10条边, 4个3度顶点, 其余顶点的度数均小于等于2, 问G至少有个顶点。

32、n阶无向完全图K n,边数m= 。

33、n阶有向完全图K n,边数m= 。

34、设无向图 G 有 10 条边, 3 度与 4 度顶点各 2 个, 其余顶点的度数均小于3, 则G 中至少有个顶点,在最少顶点的情况下, 图G 的度数列,⊿(G)= , (G)=.35、设无向图中有6 条边, 3 度与 5 度顶点各一个, 其余的都是 2 度顶点, 则该图有个顶点。

36、已知n阶连通平面图G有r个面,则G的边数m= 。

37、设A={1,2,3}上的关系 R={<1,2>,<2,3>,<3,1> } ,则R R= 。

38、设F(x):x是兔子,M(x):y是乌龟,H(x,y): x比y跑得快,则命题“兔子比乌龟跑得快”符号为三、计算题1、给出公式A= (q p) q p的真值表。

2、给出公式A= (q p) q p的真值表。

3、给出公式C= (p q) r的真值表4、用等值演算法判断公式q(p q)的类型5、求公式A=(p q)r的析取范式与合取范式。

6、求公式B=(p q)r的析取范式与合取范式。

7、求公式A=(p q)r的主析取范式与主合取范式.8、在一阶逻辑中将下面命题符号化(1) 人都爱美;(2) 有人用左手写字分别取(a) D为人类集合, (b) D为全总个体域 .9、在一阶逻辑中将下面命题符号化(1) 正数都大于负数10、在一阶逻辑中将下面命题符号化(1) 有的无理数大于有的有理数11、试画出4阶3条边的所有非同构的无向简单图12、画出所有K4的所有非同构的生成子图。

13、给定下面的图(前两个为无向图, 后两个为有向图)的集合表示, 画出它们的图形表示G1 = V1, E1, 其中, V1 = {v1, v2, v3, v4, v5}, E1 = {(v1, v2), (v2, v3), (v3, v4),(v3, v3), (v4, v5)};G2 = V2, E2, 其中 V2 = V1, E2 ={(v1, v2), (v2, v3), (v3, v4), (v4, v5), (v5, v1)};D1 = V3, E3, 其中 V3 = V1, E3 = {v1, v2, v2, v3,v3, v2, v4, v5, v5, v1}; D2 = V4, E4, 其中 V4 = V1, E4 = {v1, v2, v2, v5,v5, v2, v3, v4, v4, v3}.14、先将图中各图的顶点标定顺序, 然后写出各图的集合表示.15、写出图中各图的度数列, 对有向图还要写出出度列和入度列.16、画一个简单无向图,使它是欧拉图,但不是哈密顿图。

17、已知集合A={a, b, c, d, e, f}和关系R={<b,d>,<b,e>,<b,f>,<c,d>,<c,e>,<c,f>,<d,f>,<e,f> }∪I,请画出偏序集<A,R>的哈斯图。

A18、设A={a, b, c, d}, R={<a, a>,<a, b>,<a, c>,<b, a>,<d, b>},求R的关系矩阵 MR 和关系图 GR。

19、有向图D如图所示,写出D的邻接矩阵和可达矩阵20、设A=Z+×Z+,在A上定义二元关系R如下:<<x,y>,<u,v>>R 当且仅当xv=yu,证明R是一个等价关系。

21、求公式(P∨Q)→R的主析取范式。

22、求公式x(F(x)∧yG(x,y,z))xH(x,y,z)的前束范式。

23、已知偏序集<A,R>的哈斯图如下图所示, 试求出集合A和关系R的表达式.24、设A={1,2,3,4}, 定义A上的关和关R={<1,1>,<1,2>,<2,3>,<2,4>,<4,2>}。

求R的关系矩阵MR系图G?R(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。

相关文档
最新文档