高考数学培优 第44讲以圆锥曲线为背景的取值范围问题专题

合集下载

圆锥曲线的最值定值范围经典题型

圆锥曲线的最值定值范围经典题型

圆锥曲线最值/范围/定值/定点问题一、圆锥曲线的最值问题方法1:定义转化法①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解.例1、已知点F是双曲线x24-y212=1的左焦点,定点A的坐标为(1,4),P是双曲线右支上的动点,则|PF|+|P A|的最小值为________.方法2:数形结合(切线法)当所求的最值是圆锥曲线上的点到某条直线的距离的最值时:①求与直线平行的圆锥曲线的切线;②求出两平行线的距离即为所求的最值.例2、求椭圆x22+y2=1上的点到直线y=x+23的距离的最大值和最小值,并求取得最值时椭圆上点的坐标.方法3:参数法(函数法)①选取合适的参数表示曲线上点的坐标;②求解关于这个参数的函数最值例3、在平面直角坐标系xOy中,点P(x,y)是椭圆x23+y2=1上的一个动点,则S=x+y的最大值为________.方法4:基本不等式法①将最值用变量表示.②利用基本不等式求得表达式的最值.例4、求椭圆x23+y2=1内接矩形ABCD面积的最大值.二、圆锥曲线的范围问题方法1:曲线几何性质法①由几何性质建立关系式;②化简关系式求解.例1、已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线中ac的取值范围是________.方法2:判别式法当直线和圆锥曲线相交、相切和相离时,分别对应着直线和圆锥曲线方程联立消元后得到的一元二次方程的判别式大于零、等于零、小于零 ① 联立曲线方程,消元后求判别式;②根据判别式大于零、小于零或等于零结合曲线性质求解.例2、在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q . (1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数m ,使得向量OP →+OQ →与AB →共线?如果存在,求m 值;如果不存在,请说明理由.三、圆锥曲线的定值、定点问题 方法1:特殊到一般法根据特殊情况能找到定值(或定点)的问题① 根据特殊情况确定出定值或定点;②对确定出来的定值或定点进行一般情况的证明.例1、已知双曲线C :x 2-y 22=1,过圆O :x 2+y 2=2上任意一点作圆的切线l ,若l 交双曲线于A ,B 两点,证明:∠AOB 的大小为定值.方法2:引进参数法定值、定点是变化中的不变量,引入参数找出与变量与参数没有关系的点(或值)即是定点(或定值).① 引进参数表示变化量;②研究变化的量与参数何时没有关系,找到定值或定点例2、如图所示,曲线C 1:x 29+y 28=1,曲线C 2:y 2=4x ,过曲线C 1的右焦点F 2作一条与x 轴不垂直的直线,分别与曲线C 1,C 2依次交于B ,C ,D ,E 四点.若G 为CD 的中点、H 为BE 的中点,证明|BE |·|GF 2||CD |·|HF 2|为定值.一、圆锥曲线的最值问题答案:例1解析 如图所示,根据双曲线定义|PF |-|PF ′|=4, 即|PF |-4=|PF ′|.又|P A |+|PF ′|≥|AF ′|=5, 将|PF |-4=|PF ′|代入,得|P A |+|PF |-4≥5,即|P A |+|PF |≥9,等号当且仅当A ,P ,F ′三点共线, 即P 为图中的点P 0时成立,故|PF |+|P A |的最小值为9.故填9. 例2.解 设椭圆的切线方程为y =x +b , 代入椭圆方程,得3x 2+4bx +2b 2-2=0. 由Δ=(4b )2-4×3×(2b 2-2)=0,得b =±3.当b =3时,直线y =x +3与y =x +23的距离d 1=62,将b =3代入方程3x 2+4bx +2b 2-2=0,解得x =-233,此时y =33,即椭圆上的点⎝ ⎛⎭⎪⎫-233,33到直线y =x +23的距离最小,最小值是62; 当b =-3时,直线y =x -3到直线y =x +23的距离d 2=362,将b =-3代入方程3x 2+4bx +2b 2-2=0,解得x =233,此时y =-33,即椭圆上的点⎝ ⎛⎭⎪⎫233,-33到直线y =x +23的距离最大,最大值是362. 例3 解析 因为椭圆x 23+y 2=1的参数方程为⎩⎨⎧x =3cos φy =sin φ,(φ为参数).故可设动点P 的坐标为(3cos φ,sin φ),其中0≤φ<2π.因此S =x +y =3cos φ+sin φ=2⎝ ⎛⎭⎪⎫32cos φ+12sin φ=2sin ⎝ ⎛⎭⎪⎫φ+π3,所以,当φ=π6时,S 取最大值2.故填2. 二、圆锥曲线的范围问题答案:例1.解析 根据双曲线定义|PF 1|-|PF 2|=2a ,设|PF 2|=r , 则|PF 1|=4r ,故3r =2a ,即r =2a 3,|PF 2|=2a3.根据双曲线的几何性质,|PF 2|≥c -a ,即2a 3≥c -a ,即c a ≤53,即e ≤53.又e >1, 故双曲线的离心率e 的取值范围是⎝ ⎛⎦⎥⎤1,53.故填⎝ ⎛⎦⎥⎤1,53.例2.解 (1)由已知条件,知直线l 的方程为y =kx +2,代入椭圆方程,得x 22+(kx +2)2=1,整理得⎝ ⎛⎭⎪⎫12+k 2x 2+22kx +1=0.①由直线l 与椭圆有两个不同的交点P 和Q ,得Δ=8k 2-4⎝ ⎛⎭⎪⎫12+k 2=4k 2-2>0,解得k <-22或k >22,即k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞.(2)设P (x 1,y 1),Q (x 2,y 2),则OP →+OQ →=(x 1+x 2,y 1+y 2).由方程①,知x 1+x 2=-42k 1+2k 2.②又y 1+y 2=k (x 1+x 2)+22=221+2k 2.③由A (2,0),B (0,1),得AB→=(-2,1).所以OP →+OQ →与AB →共线等价于x 1+x 2=-2(y 1+y 2), 将②③代入,解得k =22.由(1)知k <-22或k >22, 故不存在符合题意的常数k .三、圆锥曲线的定值、定点问题答案:例1.证明 当切线的斜率不存在时,切线方程为x =±2. 当x =2时,代入双曲线方程,得y =±2, 即A (2,2),B (2,-2),此时∠AOB =90°, 同理,当x =-2时,∠AOB =90°.当切线的斜率存在时,设切线方程为y =kx +b , 则|b |1+k2=2,即b 2=2(1+k 2). 由直线方程和双曲线方程消掉y , 得(2-k 2)x 2-2kbx -(b 2+2)=0, 由直线l 与双曲线交于A ,B 两点. 故2-k 2≠0.设A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=2kb2-k 2,x 1x 2=-(b 2+2)2-k 2,y 1y 2=(kx 1+b )(kx 2+b )=k 2x 1x 2+kb (x 1+x 2)+b 2 =-k 2b 2-2k 22-k 2+2k 2b 22-k 2+2b 2-k 2b 22-k 2=2b 2-2k 22-k 2,故x 1x 2+y 1y 2=-b 2-22-k 2+2b 2-2k 22-k 2=b 2-2(1+k 2)2-k 2,由于b 2=2(1+k 2),故x 1x 2+y 1y 2=0,即OA →·OB →=0,∠AOB =90°.综上可知,若l 交双曲线于A ,B 两点,则∠AOB 的大小为定值90°. 例2.证明 由题意,知F 1(-1,0),F 2(1,0), 设B (x 1,y 1),E (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 直线y =k (x -1),代入x 29+y 28=1,得8⎝ ⎛⎭⎪⎫y k +12+9y 2-72=0,即(8+9k 2)y 2+16ky -64k 2=0,则y 1+y 2=-16k 8+9k 2,y 1y 2=-64k 28+9k 2.同理,将y =k (x -1)代入y 2=4x ,得ky 2-4y -4k =0, 则y 3+y 4=4k ,y 3y 4=-4, 所以|BE |·|GF 2||CD |·|HF 2|=|y 1-y 2||y 3-y 4|·12|y 3+y 4|12|y 1+y 2|=(y 1-y 2)2(y 1+y 2)2·(y 3+y 4)2(y 3-y 4)2=(y 1+y 2)2-4y 1y 2(y 1+y 2)2·(y 3+y 4)2(y 3+y 4)2-4y 3y 4=(-16k )2(8+9k 2)2+4×64k 28+9k 2(-16k )2(8+9k 2)2·⎝ ⎛⎭⎪⎫4k 2⎝ ⎛⎭⎪⎫4k 2+16=3为定值.。

圆锥曲线中范围与最值问题

圆锥曲线中范围与最值问题

§9.10 圆锥曲线中范围与最值问题题型一 范围问题例1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎫1,32,且短轴的两个端点与右焦点构成等边三角形.(1)求椭圆C 的方程;(2)设过点M (1,0)的直线l 交椭圆C 于A ,B 两点,求|MA |·|MB |的取值范围. 解 (1)由题意,椭圆短轴的两个端点与右焦点构成等边三角形,故c =3b ,a =b 2+c 2=2b , 即椭圆C :x 24b 2+y 2b2=1, 代入P ⎝⎛⎭⎫1,32, 可得b =1,a =2.故椭圆C 的方程为x 24+y 2=1. (2)分以下两种情况讨论:①若直线l 与x 轴重合,则|MA |·|MB |=(a -1)(a +1)=a 2-1=3;②若直线l 不与x 轴重合,设直线l 的方程为x =my +1,设点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +1,x 24+y 2=1,消去x 可得(m 2+4)y 2+2my -3=0, 则Δ=4m 2+12(m 2+4)=16(m 2+3)>0恒成立,由根与系数的关系可得y 1+y 2=-2m m 2+4,y 1y 2=-3m 2+4, 由弦长公式可得|MA |·|MB |=1+m 2·|y 1|·1+m 2·|y 2| =(1+m 2)·|y 1y 2|=3(1+m 2)m 2+4=3(m 2+4)-9m 2+4=3-9m 2+4, 因为m 2+4≥4,则0<9m 2+4≤94, 所以34≤3-9m 2+4<3. 综上所述,|MA |·|MB |的取值范围是⎣⎡⎦⎤34,3. 教师备选(2022·武汉调研)过双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 1的动直线l 与Γ的左支交于A ,B 两点,设Γ的右焦点为F 2.(1)若△ABF 2可以是边长为4的正三角形,求此时Γ的标准方程;(2)若存在直线l ,使得AF 2⊥BF 2,求Γ的离心率的取值范围.解 (1)依题意得|AF 1|=2,|AF 2|=4,|F 1F 2|=2 3.∴2a =|AF 2|-|AF 1|=2,a =1,2c =|F 1F 2|=23,c =3,b 2=c 2-a 2=2,此时Γ的标准方程为x 2-y 22=1. (2)设l 的方程为x =my -c ,与x 2a 2-y 2b2=1联立, 得(b 2m 2-a 2)y 2-2b 2cmy +b 4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2b 2cm b 2m 2-a 2,y 1y 2=b 4b 2m 2-a2, 由AF 2⊥BF 2,F 2A —→·F 2B —→=0,(x 1-c )(x 2-c )+y 1y 2=0,(my 1-2c )(my 2-2c )+y 1y 2=0⇒(m 2+1)b 4-4m 2c 2b 2+4c 2(b 2m 2-a 2)=0⇒(m 2+1)b 4=4a 2c 2⇒(m 2+1)=4a 2c 2b 4≥1 ⇒4a 2c 2≥(c 2-a 2)2,∴c 4+a 4-6a 2c 2≤0⇒e 4-6e 2+1≤0,又∵e >1,∴1<e 2≤3+22,∴1<e ≤1+2,又A ,B 在左支且l 过F 1,∴y 1y 2<0,b 4b 2m 2-a 2<0⇒m 2<a 2b 2⇒m 2+1=4a 2c 2b 4<a 2b 2+1, ∴4a 2<b 2=c 2-a 2⇒e 2>5. 综上所述,5<e ≤1+ 2.思维升华 圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.跟踪训练1 从抛物线C 1:x 2=2py (p >0)和椭圆C 2:x 2a 2+y 2b 2=1(a >b >0)上各取两点,将其坐标记录于下表中:(1)求抛物线C 1和椭圆C 2的方程;(2)抛物线C 1和椭圆C 2的交点记为A ,B ,点M 为椭圆上任意一点,求MA →·MB →的取值范围.解 (1)∵C 1:x 2=2py (p >0),当y ≠0时,x 2y=2p , 根据表格的数据验证,可知⎝⎛⎭⎫-3,94,⎝⎛⎭⎫1,14满足方程x 2=2py , 解得p =2,得抛物线C 1的方程为x 2=4y .将(0,2),⎝⎛⎭⎫5,32代入椭圆C 2:x 2a 2+y 2b 2=1(a >b >0)可得a 2=8,b 2=2, 即椭圆C 2的方程为x 28+y 22=1. (2)由⎩⎪⎨⎪⎧ x 2=4y ,x 2+4y 2-8=0,解得⎩⎪⎨⎪⎧ x 1=-2,y 1=1或⎩⎪⎨⎪⎧x 2=2,y 1=1,不妨令A (-2,1),B (2,1). 设M (x 0,y 0)是C 2:x 28+y 22=1上的动点, 则x 20=8-4y 20≥0.即得-2≤y 0≤ 2.于是有MA →·MB →=(-2-x 0,1-y 0)·(2-x 0,1-y 0)=x 20+y 20-2y 0-3 =-3y 20-2y 0+5=-3⎝⎛⎭⎫y 0+132+163. ∵-2≤y 0≤ 2.即-1-22≤-3⎝⎛⎭⎫y 0+132+163≤163. 于是-1-22≤MA →·MB →≤163. 故MA →·MB →的取值范围是⎣⎡⎦⎤-1-22,163. 题型二 最值问题例2 (2022·金昌模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点A ⎝⎛⎭⎫-1,22,短轴长为2. (1)求椭圆C 的标准方程;(2)过点(0,2)的直线l (直线l 不与x 轴垂直)与椭圆C 交于不同的两点M ,N ,且O 为坐标原点.求△MON 的面积的最大值.解 (1)依题意得(-1)2a 2+⎝⎛⎭⎫222b 2=1,而b =1, 则1a 2+12=1⇒1a 2=1-12=12⇒a 2=2, 所以椭圆C 的标准方程为x 22+y 2=1. (2)因为直线l 不与x 轴垂直,则l 的斜率k 存在,l 的方程为y =kx +2,由⎩⎪⎨⎪⎧y =kx +2,x 22+y 2=1,得(2k 2+1)x 2+8kx +6=0,因为直线l 与椭圆C 交于不同的两点M ,N ,则有Δ=(8k )2-4·(2k 2+1)·6=16k 2-24>0⇒k 2>32, 即k <-62或k >62, 设点M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8k 2k 2+1, x 1x 2=62k 2+1, 所以|MN |=1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫-8k 2k 2+12-4·62k 2+1=1+k 2·8(2k 2-3)(2k 2+1)2=1+k 2·22·2k 2-32k 2+1, 而原点O 到直线l :kx -y +2=0的距离d =2k 2+1,△MON 的面积S =12·|MN |·d =12·1+k 2·22·2k 2-32k 2+1·2k 2+1=22·2k 2-32k 2+1,令t =2k 2-3⇒2k 2=t 2+3(t >0),S =22t t 2+4=22t +4t, 因为t +4t ≥2t ·4t=4, 当且仅当t =4t ,即t =2时取“=”,此时k 2=72, 即k =±142,符合要求, 从而有S ≤224=22, 故当k =±142时, △MON 的面积的最大值为22. 教师备选(2022·厦门模拟)设椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,点A ,B ,C 分别为Γ的上、左、右顶点,且|BC |=4.(1)求Γ的标准方程;(2)点D 为直线AB 上的动点,过点D 作l ∥AC ,设l 与Γ的交点为P ,Q ,求|PD |·|QD |的最大值.解 (1)由题意得2a =|BC |=4,解得a =2.又因为e =c a =32,所以c =3,则b 2=a 2-c 2=1.所求Γ的标准方程为x 24+y 2=1. (2)方法一 由(1)可得A (0,1),B (-2,0),C (2,0),则k AC =-12, 直线AB 的方程为x -2y +2=0,设直线l 的方程为y =-12x +λ. 联立⎩⎨⎧ y =-12x +λ,x 24+y 2=1,消去y ,整理得,x 2-2λx +2λ2-2=0.①由Δ>0,得-2<λ<2,联立⎩⎪⎨⎪⎧y =-12x +λ,x -2y +2=0,解得D 的坐标为⎝⎛⎭⎪⎫λ-1,λ+12, 设P (x 1,y 1),Q (x 2,y 2), 由①知⎩⎪⎨⎪⎧ x 1+x 2=2λ,x 1x 2=2λ2-2,② 又|PD |=52|x 1-(λ-1)|, |QD |=52|x 2-(λ-1)|, 所以|PD |·|QD |=54|x 1x 2-(λ-1)(x 1+x 2)+(λ-1)2|,③ 将②代入③,得|PD |·|QD |=54|λ2-1| ,λ∈(-2,2), 所以当λ=0时,|PD |·|QD |有最大值54.方法二 设AD →=λAB →=λ(-2,-1)=(-2λ,-λ),则D (-2λ,1-λ),由点斜式,可得直线l 的方程为y -(1-λ)=-12(x +2λ), 即y =-12x -2λ+1. 联立⎩⎨⎧ y =-12x -2λ+1,x 24+y 2=1,消去y ,得x 2+(4λ-2)x +8λ2-8λ=0,①由Δ=(4λ-2)2-4×(8λ2-8λ)>0, 解得1-22<λ<1+22, 设P (x 1,y 1),Q (x 2,y 2),由①得⎩⎪⎨⎪⎧ x 1+x 2=2-4λ,x 1x 2=8λ2-8λ,② 由题意可知|PD |=52|x 1+2λ|, |QD |=52|x 2+2λ|, 所以|PD |·|QD |=54|x 1x 2+2λ(x 1+x 2)+4λ2|,③ 将②代入③得|PD |·|QD |=54|4λ2-4λ| =5|λ2-λ|,当λ=12时,|PD |·|QD |有最大值54. 思维升华 圆锥曲线中最值的求法(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决.(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立目标函数,再求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不等式法及函数的单调性法等.跟踪训练2 如图所示,点A ,B 分别是椭圆x 236+y 220=1长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,P A ⊥PF .(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于|MB |,求椭圆上的点到点M 的距离d 的最小值.解 (1)由已知可得点A (-6,0),F (4,0),设点P 的坐标是(x ,y ),则AP →=(x +6,y ),FP →=(x -4,y ),∵P A ⊥PF ,∴AP →·FP →=0,则⎩⎪⎨⎪⎧x 236+y 220=1,(x +6)(x -4)+y 2=0,可得2x 2+9x -18=0,得x =32或x =-6. 由于y >0,故x =32,于是y =532. ∴点P 的坐标是⎝⎛⎭⎫32,532. (2)由(1)可得直线AP 的方程是x -3y +6=0,点B (6,0).设点M 的坐标是(m ,0),则点M 到直线AP 的距离是|m +6|2,于是|m +6|2=|m -6|, 又-6≤m ≤6,解得m =2.由椭圆上的点(x ,y )到点M 的距离为d , 得d 2=(x -2)2+y 2=x 2-4x +4+20-59x 2=49⎝⎛⎭⎫x -922+15, 由于-6≤x ≤6,由f (x )=49⎝⎛⎭⎫x -922+15的图象(图略)可知, 当x =92时,d 取最小值,且最小值为15. 课时精练1.已知双曲线C 的焦点F (3,0),双曲线C 上一点B 到F 的最短距离为3- 2.(1)求双曲线的标准方程和渐近线方程; (2)已知点M (0,1),设P 是双曲线C 上的点,Q 是P 关于原点的对称点.设λ=MP →·MQ →,求λ的取值范围. 解 (1)设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0), ∵双曲线C 的焦点F (3,0),双曲线C 上一点B 到F 的最短距离为3-2,∴c =3,c -a =3-2,∴a =2,∴b 2=c 2-a 2=(3)2-(2)2=1,则双曲线的方程为x 22-y 2=1, 渐近线方程为y =±22x . (2)设P 点坐标为(x 0,y 0),则Q 点坐标为(-x 0,-y 0),∴λ=MP →·MQ →=(x 0,y 0-1)·(-x 0,-y 0-1)=-x 20-y 20+1=-32x 20+2. ∵|x 0|≥2,∴λ的取值范围是(-∞,-1].2.(2022·阳泉模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为22,P 是椭圆C 上的一个动点,当P 是椭圆C 的上顶点时,△F 1PF 2的面积为1.(1)求椭圆C 的方程;(2)设斜率存在的直线PF 2,与椭圆C 的另一个交点为Q .若存在T (t ,0),使得|TP |=|TQ |,求t 的取值范围.解 (1)由题意可知⎩⎪⎨⎪⎧ c a =22,12·b ·2c =1,b 2+c 2=a 2,解得⎩⎪⎨⎪⎧ a =2,b =1,c =1,故椭圆C 的方程为x 22+y 2=1. (2)设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点为N (x 0,y 0),直线PF 2的斜率为k , 由(1)设直线PQ 的方程为y =k (x -1).当k =0时,t =0符合题意;当k ≠0时,联立⎩⎪⎨⎪⎧y =k (x -1),x 22+y 2=1,得(1+2k 2)x 2-4k 2x +2k 2-2=0,∴Δ=16k 4-4(1+2k 2)(2k 2-2)=8k 2+8>0,x 1+x 2=4k 21+2k 2, ∴x 0=x 1+x 22=2k 21+2k 2, y 0=k (x 0-1)=-k 1+2k 2, 即N ⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2.∵|TP |=|TQ |,∴直线TN 为线段PQ 的垂直平分线,∴TN ⊥PQ ,即k TN ·k =-1. ∴-k 1+2k 22k 21+2k 2-t ·k =-1, ∴t =k 21+2k 2=12+1k 2. ∵k 2>0,∴1k 2>0 ,2+1k2>2, ∴0<12+1k 2<12, 即t ∈⎣⎡⎭⎫0,12.3.(2021·北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点A (0,-2),以四个顶点围成的四边形面积为4 5. (1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M ,N ,若|PM |+|PN |≤15,求k 的取值范围.解 (1)因为椭圆过A (0,-2),故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5, 故椭圆的标准方程为x 25+y 24=1. (2)设B (x 1,y 1),C (x 2,y 2),因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x 1y 1+2, 同理x N =-x 2y 2+2. 直线BC :y =kx -3,由⎩⎪⎨⎪⎧y =kx -3,4x 2+5y 2=20,可得(4+5k 2)x 2-30kx +25=0,故Δ=900k 2-100(4+5k 2)>0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2, 故x 1x 2>0,所以x M x N >0.又|PM |+|PN |=|x M +x N | =⎪⎪⎪⎪⎪⎪x 1y 1+2+x 2y 2+2=⎪⎪⎪⎪⎪⎪x 1kx 1-1+x 2kx 2-1 =⎪⎪⎪⎪⎪⎪2kx 1x 2-(x 1+x 2)k 2x 1x 2-k (x 1+x 2)+1 =⎪⎪⎪⎪⎪⎪⎪⎪50k4+5k 2-30k4+5k 225k 24+5k 2-30k 24+5k 2+1=5|k |, 故5|k |≤15,即|k |≤3,综上,-3≤k <-1或1<k ≤3.4.(2022·德州模拟)已知抛物线E :x 2=-2y ,过抛物线上第四象限的点A 作抛物线的切线,与x 轴交于点M .过M 作OA 的垂线,交抛物线于B ,C 两点,交OA 于点D .(1)求证:直线BC 过定点;(2)若MB →·MC →≥2,求|AD |·|AO |的最小值.(1)证明 由题意知,抛物线E :x 2=-2y ,则y =-12x 2,可得y ′=-x , 设A (2t ,-2t 2)(t >0),则k AM =-2t ,所以l AM :y +2t 2=-2t (x -2t ),即y =-2tx +2t 2,所以M (t ,0),又k OA =-2t 22t =-t ,所以k BC =1t, 所以l BC :y -0=1t (x -t ),即y =1tx -1, 所以直线BC 过定点(0,-1).(2)解 联立方程⎩⎪⎨⎪⎧y =1t x -1,x 2=-2y ,整理得x 2+2tx -2=0,设B (x 1,y 1),C (x 2,y 2), 则x 1+x 2=-2t,x 1x 2=-2, 则MB →·MC →=(x 1-t ,y 1)·(x 2-t ,y 2)=(x 1-t )(x 2-t )+y 1y 2=x 1x 2-t (x 1+x 2)+t 2+14x 21x 22=1+t 2≥2, 所以t 2≥1,又由|AD |=⎪⎪⎪⎪1t ·2t +2t 2-11+1t 2=2t 2+1t 2+1·t , |AO |=(2t )2+(-2t 2)2=2t 1+t 2, 所以|AD |·|AO |=2t 2+1t 2+1·t ·2t ·1+t 2 =⎝⎛⎭⎫2t 2+122-14, 因为2t 2≥2,所以当2t 2=2,即t =1时, |AD |·|AO |的最小值是6.。

高三总复习数学精品课件 圆锥曲线中的证明、范围(最值)问题

高三总复习数学精品课件 圆锥曲线中的证明、范围(最值)问题

14
【解】 (1)由题意可得ac= 23, 2c=2 3,
解得ac==2,3, 所以 b2=a2-c2=1, 故椭圆 C 的方程为x42+y2=1.
15
(2)证明:设直线 l 的方程为 y=-12x+m,P(x1,y1),Q(x2,y2). 由xy4=2+-y212=x+1,m,消去 y 得 x2-2mx+2(m2-1)=0. 则 Δ=4m2-8(m2-1)=4(2-m2)>0, 且 x1+x2=2m,x1x2=2(m2-1),
7
1.判断正误(正确的打“√”,错误的打“×”) (1)直线 y=kx(k≠0)与双曲线 x2-y2=1 一定相交. (2)与双曲线的渐近线平行的直线与双曲线有且只有一个交点. (3)直线与椭圆只有一个交点⇔直线与椭圆相切. (4)过点(2,4)的直线与椭圆x42+y2=1 只有一条切线.
(× ) (√ ) (√ )
34
技法三 目标函数法
(2020·河北九校第二次联考)椭圆xa22+by22=1(a>b>0)的左焦点为 F,短
轴长为 2
3,右顶点为
A,上顶点为
B,△ABF
的面积为3 2
3 .
(1)求椭圆的标准方程;
(2)过 A 作直线 l 与椭圆交于另一点 M,连接 MF 并延长交椭圆于点 N,当
△AMN 的面积最大时,求直线 l 的方程.
26
联立得y=1-x1mx+1, y=-4(mx+1 1)x-1,
解得点 D 的纵坐标为 yD=- -1144xx2121- +mm22+ -11. 因为点 M 在椭圆 C 上,所以x421+m2=1, 则 yD=0. 所以点 D 在 x 轴上.
27
范围(最值)问题

圆锥曲线专题:最值与范围问题的6种常见考法(解析版)

圆锥曲线专题:最值与范围问题的6种常见考法(解析版)

圆锥曲线专题:最值与范围问题的6种常见考法一、圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:1、几何法:通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;2、代数法:把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.二、最值问题的一般解题步骤三、参数取值范围问题1、利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;2、利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;3、利用隐含的不等关系建立不等式,从而求出参数的取值范围;4、利用已知的不等关系构造不等式,从而求出参数的取值范围;5、利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.题型一距离与长度型最值范围问题【例1】已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为2,点E 在椭圆上.当线段2EF 的中垂线经过1F 时,恰有21cos EF F ∠.(1)求椭圆的标准方程;(2)直线l 与椭圆相交于A 、B 两点,且||2AB =,P 是以AB 为直径的圆上任意一点,O 为坐标原点,求||OP 的最大值.【答案】(1)2212x y +=;(2)max ||OP 【解析】(1)由焦距为2知1c =,连结1EF ,取2EF 的中点N ,线段2EF 的中垂线经过1F 时,1||22EF c ∴==,221212cos ,.1,F N EF F F N F F ∠∴∴-2122,2EF a EF EF a ∴=-∴=+=∴由所以椭圆方程为2212x y +=;(2)①当l 的斜率不存在时,AB 恰为短轴,此时||1OP =;②当l 的斜率存在时,设:l y kx m =+.联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩,得到222(21)4220k x kmx m +++-=,∴△2216880k m =-+>,122421km x x k -+=+,21222221m x x k -=+.21AB x x =-=2==,化简得2222122k m k +=+.又设M 是弦AB 的中点,121222()221my y k x x m k +=++=+∴()2222222241,,||212121km m k M OM k k k m -+⎛⎫= ⎪⎝⎭+⋅++,∴()()()222222222412141||22212221k k k OM k k k k +++=⋅=++++,令2411k t += ,则244||43(1)(3)4t OM t t t t===-++++∴||1OM =- (仅当t =,又||||||||1OP OM MP OM +=+2k =时取等号).综上:max ||OP =【变式1-1】已知抛物线21:4C y x =的焦点F 也是椭圆22222:1(0)x y C a b a b+=>>的一个焦点,1C 与2C 的公共弦长为3.(1)求椭圆2C 的方程;(2)过椭圆2C 的右焦点F 作斜率为(0)k k ≠的直线l 与椭圆2C 相交于A ,B 两点,线段AB 的中点为P ,过点P 做垂直于AB 的直线交x 轴于点D ,试求||||DP AB 的取值范围.【答案】(1)22143x y +=;(2)1(0,)4【解析】(1)抛物线21:4C y x =的焦点F 为(1,0),由题意可得2221c a b =-=①由1C 与2C 关于x 轴对称,可得1C 与2C 的公共点为2,33⎛± ⎝⎭,可得2248193a b +=②由①②解得2a =,b ,即有椭圆2C 的方程为22143x y+=;(2)设:(1)l y k x =-,0k ≠,代入椭圆方程,可得2222(34)84120k x k x k +-+-=,设1(A x ,1)y ,2(B x ,2)y ,则2122834kx x k +=+,212241234k x x k -=+,即有()312122286223434k ky y k x x k k k k -+=+-=-=++,由P 为中点,可得22243()3434k kP k k -++,,又PD 的斜率为1k -,即有222314:3434k k PD y x k k k ⎛⎫--=-- ++⎝⎭,令0y =,可得2234k x k=+,即有22034k D k ⎛⎫⎪+⎝⎭可得2334PD k ==+又AB ==2212(1)34k k +=+,即有DP AB =,由211k +>,可得21011k <<+,即有104<,则有||||DP AB 的取值范围为1(0,)4.【变式1-2】已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=;(2)8【解析】(1)设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩,所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--,所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.【变式1-3】已知抛物线()2:20E x py p =>的焦点为F ,过点F 且倾斜角为3π的直线被E 所截得的弦长为16.(1)求抛物线E 的方程;(2)已知点C 为抛物线上的任意一点,以C 为圆心的圆过点F ,且与直线12y =-相交于,A B两点,求FA FB FC ⋅⋅的取值范围.【答案】(1)24x y =;(2)[)3,+∞【解析】(1)由抛物线方程得:0,2p F ⎛⎫ ⎪⎝⎭,可设过点F 且倾斜角为3π的直线为:2py =+,由222p y x py⎧=+⎪⎨⎪=⎩得:220x p --=,由抛物线焦点弦长公式可得:)12122816y y p x x p p ++=++==,解得:2p =,∴抛物线E 的方程为:24x y =.(2)由(1)知:()0,1F ,准线方程为:1y =-;设AFB θ∠=,圆C 的半径为r ,则2ACB θ∠=,FC CA CB r ===,1133sin 2224AFBSFA FB AB AB θ∴=⋅=⋅=,又2sin AB r θ=,3FA FB r ∴⋅=;由抛物线定义可知:11c CF y =+≥,即1r ≥,333FA FB FC r ∴⋅⋅=≥,即FA FB FC ⋅⋅的取值范围为[)3,+∞.题型二面积型最值范围问题20y -=与圆O 相切.(1)求椭圆C 的标准方程;(2)椭圆C 的上顶点为B ,EF 是圆O 的一条直径,EF不与坐标轴重合,直线BE 、BF 与椭圆C 的另一个交点分别为P 、Q ,求BPQ 的面积的最大值及此时PQ 所在的直线方程.【答案】(1)2219x y +=;(2)()max278BPQ S=,PQ 所在的直线方程为115y x =±+【解析】20y -=与圆O相切,则1b =,由椭圆的离心率223c e a ==,解得:29a =,椭圆的标准方程:2219x y +=;(2)由题意知直线BP ,BQ 的斜率存在且不为0,BP BQ ⊥,不妨设直线BP 的斜率为(0)k k >,则直线:1BP y kx =+.由22119y kx x y =+⎧⎪⎨+=⎪⎩,得22218911991k x k k y k -⎧=⎪⎪+⎨-⎪=⎪+⎩,或01x y =⎧⎨=⎩,所以2221819,9191k k P k k ⎛⎫-- ⎪++⎝⎭.用1k -代替k ,2229189,9k k Q k k ⎛⎫-+ ⎝+⎪⎭则21891k PB k ==+2189BQ k==+,22222111818162(1)22919(9)(19)BPQ k k k S PB BQ k k k k +=⋅=⋅=++++△342221162()162()99829982k k k k k k k k ++==++++,设1k k μ+=,则21621622764829(2)89BPQ S μμμμ∆==≤+-+.当且仅当649μμ=即183k k μ+==时取等号,所以()max278BPQ S=.即21128(()49k k kk-=+-=,1k k -=直线PQ的斜率222222291911191918181010919PQk k k k k k k k k k k k k ---+-⎛⎫++===-= ⎪⎝⎭--++PQ所在的直线方程:1y =+.【变式2-1】在平面直角坐标系xOy 中,ABC 的周长为12,AB ,AC 边的中点分别为()11,0F -和()21,0F ,点M 为BC 边的中点(1)求点M 的轨迹方程;(2)设点M 的轨迹为曲线Γ,直线1MF 与曲线Γ的另一个交点为N ,线段2MF 的中点为E ,记11NF O MF E S S S =+△△,求S 的最大值.【答案】(1)()221043x y y +=≠;(2)max 32S =【解析】(1)依题意有:112F F =,且211211262MF MF F F ++=⨯=,∴121242MF MF F F +=>=,故点M 的轨迹C 是以()11,0F -和()21,0F 为焦点,长轴长为4的椭圆,考虑到三个中点不可共线,故点M 不落在x 上,综上,所求轨迹方程:()221043x y y +=≠.(2)设()11,M x y ,()22,N x y ,显然直线1MF 不与x 轴重合,不妨设直线1MF 的方程为:1x ty =-,与椭圆()221043x y y +=≠方程联立整理得:()2234690t y ty +--=,()()22236363414410t t t ∆=++=+>,112634t y y t +=+,1129034y y t =-<+,11111122NF O S F y y O ==△,112122211112222MF E MF F S S F F y y ==⋅=△△,∴()()1112122111Δ22234NF O MF E S S S y y y y t =+=+=-=⋅=+△△令()2344u t u =+≥,则()S u ϕ====∵4u ≥,∴1104u <≤,当114u =,即0=t 时,∴max 32S =,∴当直线MN x ⊥轴时,∴max 32S =.【变式2-2】已知双曲线()222210x y a a a-=>的右焦点为()2,0F ,过右焦点F 作斜率为正的直线l ,直线l 交双曲线的右支于P ,Q 两点,分别交两条渐近线于,A B 两点,点,A P 在第一象限,O 为原点.(1)求直线l 斜率的取值范围;(2)设OAP △,OBP ,OPQ △的面积分别是OAP S △,OBP S △,OPQS ,求OPQ OAP OBPS S S ⋅△△△的范围.【答案】(1)()1,+∞;(2)).【解析】(1)因为双曲线()222210x y a a a-=>的右焦点为()2,0F ,故2c =,由222c a a =+得22a =,所以双曲线的方程为,22122x y -=,设直线l 的方程为2x ty =+,联立双曲线方程得,()222222121021420Δ0120t x y t y ty t x ty y y ⎧⎧-≠⎪-=⎪⇒-++=⇒>⇒<⎨⎨=+⎪⎪⋅<⎩⎩,解得01t <<,即直线l 的斜率范围为()11,k t=∈+∞;(2)设()11,P x y ,渐近线方程为y x =±,则P 到两条渐近线的距离1d ,2d 满足,22111212x yd d-⋅==而21221AAxy x tx ty yt⎧⎧=⎪⎪=⎪⎪-⇒⎨⎨=+⎪⎪=⎪⎪-⎩⎩,OA==21221BBxy x tx ty yt⎧⎧=⎪⎪=-⎪⎪+⇒⎨⎨=+-⎪⎪=⎪⎪+⎩⎩,OB==所以12122112221OAP OBPS S OA d OB d d dt⋅=⋅⋅⋅=-△△由()2222214202x y t y tyx ty⎧-=⇒-++=⎨=+⎩,12OPQ OFP OFQ P QS S S OF y y=+=-△△△所以,OPQOAP OBPSS S=⋅△△△,∵01t<<,∴)2OPQOAP OBPSS S∈⋅△△△.【变式2-3】已知抛物线()2:20E y px p=>的焦点为F,P为E上的一个动点,11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,且PF PQ+的最小值为54.(1)求E的方程;(2)若A点在y轴正半轴上,点B、C为E上的另外两个不同点,B点在第四象限,且AB,OC互相垂直、平分,求四边形AOBC的面积.(人教A版专题)【答案】(1)2y x=;(2)【解析】(1)作出E的准线l,方程为2px=-,作PR l⊥于R,所以PR PF=,即PR PQ+的最小值为54,因为11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,所以当且仅当P,Q,R三点共线时PR PQ+取得最小值,所以5124p+=,解得0.5p=,所以E的方程为2y x=;(2)因为AB,OC互相垂直、平分,所以四边形AOBC是菱形,所以BC x⊥轴,设点()0,2A a,所以2BC a=,由抛物线对称性知()2,B a a-,()2,C a a,由AO OB =,得2a=a =所以菱形AOBC 的边AO =23h a ==,其面积为3S AO h =⋅==题型三坐标与截距型最值范围问题【例3】已知双曲线C :()222210,0x y a b a b-=>>过点(),渐近线方程为12y x =±,直线l 是双曲线C 右支的一条切线,且与C 的渐近线交于A ,B 两点.(1)求双曲线C 的方程;(2)设点A ,B 的中点为M ,求点M 到y 轴的距离的最小值.【答案】(1)2214x y -=;(2)2【解析】(1)由题设可知2281112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得21a b =⎧⎨=⎩则C :2214x y -=.(2)设点M 的横坐标为0M x >当直线l 斜率不存在时,则直线l :2x =易知点M 到y 轴的距离为2M x =﹔当直线l 斜率存在时,设l :12y kx m k ⎛⎫=+≠± ⎪⎝⎭,()11,A x y ,()22,B x y ,联立2214x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()222418440k x kmx m -+++=,()()222264164110k m k m ∆=--+=,整理得2241k m =+联立2204x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()22241840k x kmx m -++=,则122288841km km k x x k m m+=-=-=--,则12402Mx x kx m +==->,即0km <则222216444Mk x m m==+>,即2M x >∴此时点M 到y 轴的距离大于2;综上所述,点M 到y 轴的最小距离为2.【变式3-1】若直线:l y =22221(0,0)x y a b a b -=>>的一个焦点,且与双曲线的一条渐近线平行.(1)求双曲线的方程;(2)若过点B (0,b )且与x 轴不平行的直线和双曲线相交于不同的两点M ,N ,MN 的垂直平分线为m ,求直线m 与y 轴上的截距的取值范围.【答案】(1)2213x y -=;(2)(4,)+∞.【解析】(1)直线323:33l y =-过x 轴上一点(2,0),由题意可得2c =,即224a b +=,双曲线的渐近线方程为b y x a=±,由两直线平行的条件可得b a =1a b ==,即有双曲线的方程为2213x y -=.(2)设直线1(0)y kx k =+≠,代入2213x y -=,可得22(13)660k x kx ---=,设1122(,),(,)M x y N x y ,则12122266,1313k x x x x k k +==--,MN 中点为2231,1313kk k ⎛⎫ --⎝⎭,可得MN 的垂直平分线方程为221131313k y x k k k ⎛⎫-=-- ⎪--⎝⎭,令0x =,可得2413y k =-,由223624(13)0k k ∆=+->,解得232k <,又26031k <-,解得231k <,综上可得,2031k <<,即有2413k -的范围是(4,)+∞,可得直线m 与y 轴上的截距的取值范围为(4,)+∞.【变式3-2】已知动圆C 过定点(2,0)A ,且在y 轴上截得的弦长为4,圆心C 的轨迹为曲线Γ.(1)求Γ的方程:(2)过点(1,0)P 的直线l 与F 相交于,M N 两点.设PN MP λ=,若[]2,3λ∈,求l 在y 轴上截距的取值范围.【答案】(1)24y x =;(2)⎡-⎣【解析】(1)设(,)C x y ,圆C 的半径为R ,则()()22222220R x x y =+=-+-整理,得24y x=所以Γ的方程为24y x =.(2)设1122(,),(,)M x y N x y ,又(1,0)P ,由PN MP λ=,得()()22111,1,x y x y λ-=--21211(1)x x y y λλ-=-⎧∴⎨=-⎩①②由②,得12222y y λ=,∵2211224,4y x y x ==∴221x x λ=③联立①、③解得2x λ=,依题意有0λ>(2,N N ∴-或,又(1,0)P ,∴直线l 的方程为())11y x λ-=-,或())11y x λ-=--,当[2,3]k ∈时,l 在y轴上的截距为21λ-或21λ--,21=[2,3]上是递减的,21λ≤≤-,21λ-≤-≤-∴直线l 在y轴上截距的取值范围为⎡--⎣.【变式3-3】已知两个定点A 、B 的坐标分别为()1,0-和()1,0,动点P 满足AP OB PB ⋅=(O 为坐标原点).(1)求动点P 的轨迹E 的方程;(2)设点(),0C a 为x 轴上一定点,求点C 与轨迹E 上点之间距离的最小值()d a ;(3)过点()0,1F 的直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,线段MN 的垂直平分线与x 轴交于D 点,求D 点横坐标的取值范围.【答案】(1)24y x =;(2)(),22a a d a a ⎧<⎪=⎨≥⎪⎩;(3)()3,+∞【解析】(1)设(),P x y ,()1,AP x y =+,()1,0OB =,()1,PB x y =--,()1101AP OB x y x ⋅=+⨯+⨯=+,B P =AP OB PB ⋅=,则1x +,所以2222121x x x x y ++=-++,即24y x =.(2)设轨迹E :24y x =上任一点为()00,Q x y ,所以2004y x =,所以()()222200004CQ x a y x a x =-+=-+()()20200220x a x a x =--+≥,令()()()220000220g x x a x a x =--+≥,对称轴为:2a -,当20a -<,即2a <时,()0g x 在区间[)0,∞+单调递增,所以00x =时,()0g x 取得最小值,即2min 2CQ a =,所以min CQ a =,当20a -≥,即2a ≥时,()0g x 在区间[)0,2a -单调递减,在区间[)2,a -+∞单调递增,所以02x a =-时,()0g x 取得最小值,即()22min 2244CQ a a a =--+=-,所以minCQ =,所以(),22a a d a a ⎧<⎪=⎨≥⎪⎩(3)当直线l 的斜率不存在时,此时l :0x =与轨迹E 不会有两个交点,故不满足题意;当直线l 的斜率存在时,设l :1y kx =+,()11,M x y 、()22,N x y ,代入24y x =,得2+14y y k =⨯,即2440ky y -+=,所以124y y k +=,124y y k =,121212211242y y y y x x k k k k k--+-+=+==-,因为直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,所以0∆>,得16160k ->,即1k <;又M 、N 两点在x 轴上方,所以120y y +>,120y y >,即40k>,所以0k >,又1k <,所以01k <<,所以MN 中点1212,22x x y y ++⎛⎫⎪⎝⎭,即2212,kk k ⎛⎫- ⎪⎝⎭,所以垂直平分线为22121y x k k k k ⎛⎫-=--+ ⎝⎭,令0y =,得222111152248x k k k ⎛⎫=-+=-+ ⎪⎝⎭,因为01k <<,所以11k >,所以21115248x k ⎛⎫=-+ ⎪⎝⎭在11k >时单调递增,所以22111511522134848k ⎛⎫⎛⎫-+>-+= ⎪ ⎪⎝⎭⎝⎭,即3x >,所以D 点横坐标的取值范围为:()3,+∞.题型四斜率与倾斜角最值范围问题【例4】设12F F 、分别是椭圆2214x y +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求125=4PF PF ⋅-,求点P 的坐标;(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)⎛ ⎝⎭;(2)2,2⎛⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭.【解析】(1)由题意知,2,1,a b c ===所以())12,F F ,设(,)(0,0)P m n m n >>,则22125(,),)34PF PF m n m n m n ⋅=-⋅-=+-=-,又2214m n +=,有222214534m n m n ⎧+=⎪⎪⎨⎪+-=-⎪⎩,解得1m n =⎧⎪⎨=⎪⎩,所以P ;(2)显然0x =不满足题意,设直线l 的方程为2y kx =+,设()()1122,,A x y B x y ,,22221(14)1612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,22(16)4(41)120k k ∆=-+⨯>,解得234k >,①1212221612,4141k x x x x k k +=-=++,则212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,则cos 0AOB ∠>,即0OA OB ⋅>,12120x x y y +>,所以21212121212(1)2()4x x y y y y k x x k x x +==++++2222212(1)1624(4)40414141k k k k k k k +⋅-=-+=>+++,解得204k <<,②由①②,解得322k -<<或322k <<,所以实数k的取值范围为(2,-.【变式4-1】已知椭圆:Γ22221(0x y a b a b +=>>)的左焦点为F ,其离心率22e =,过点F垂直于x 轴的直线交椭圆Γ于P ,Q两点,PQ (1)求椭圆Γ的方程;(2)若椭圆的下顶点为B ,过点D (2,0)的直线l 与椭圆Γ相交于两个不同的点M ,N ,直线BM ,BN 的斜率分别为12,k k ,求12k k +的取值范围.【答案】(1)2212x y +=;(2)()1211,,2222k k ⎛⎫⎛+∈-∞⋃-⋃+∞⎪ ⎝⎭⎝【解析】(1)由题可知2222222c e a bPQ a a b c⎧==⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩.所以椭圆Γ的方程为:2212x y +=.(2)由题可知,直线MN 的斜率存在,则设直线MN 的方程为(2)y k x =-,11(,)M x y ,22(,)N x y .由题可知2212(2)x y y k x ⎧+=⎪⎨⎪=-⎩,整理得2222(21)8820k x k x k +-+-=22222(8)4(21)(81)8(21)0k k k k ∆=--+-=-->,解得22k ⎛∈- ⎝⎭.由韦达定理可得2122821k x x k +=+,21228221k x x k -=+.由(1)知,点(0,1)B -设椭圆上顶点为A ,(0,1)A ∴,12DA k k ≠=-且12DB k k ≠=,∴()()1212121212211111k x k x y y k k x x x x -+-++++=+=+()()()221221228121212228212k k k x x k k k k x x k -⋅-++=+=+-+()242111212,,221212122k k k k k k ⎛⎫⎛=-==-∈+∞⋃-∞⋃ ⎪ +++⎝⎭⎝∴12k k +的取值范围为()11,,2222⎛⎫⎛-∞⋃-⋃+∞ ⎪ ⎝⎭⎝.【变式4-2】)已知椭圆1C 的方程为22143x y +=,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(1)求双曲线2C 的方程;(2)若直线:2l y kx =+与双曲线2C 恒有两个不同的交点A 和B ,且1OA OB ⋅>(其中O 为原点),求k 的取值范围.【答案】(1)2213y x -=(2)(()1,1-【解析】(1)由题,在椭圆1C 中,焦点坐标为()1,0-和()1,0;左右顶点为()2,0-和()2,0,因为双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点,所以在双曲线2C 中,设双曲线方程为22221x ya b-=,则221,4a c ==,所以2223b c a =-=,所以双曲线2C 的方程为2213y x -=(2)由(1)联立22213y kx y x =+⎧⎪⎨-=⎪⎩,消去y ,得()223470k x kx -++=①;消去x ,得()2223121230k y y k -+-+=②设()()1122,,,A x y B x y ,则12,x x 为方程①的两根,12,y y 为方程②的两根;21212227123,33k x x y y k k -+⋅=⋅=--,21212227123133k OA OB x x y y k k -+⋅=⋅+⋅=+>--,得23k >或21k <③,又因为方程①中,()22216384k k k ∆=-4⨯7-=-12+>0,得27k <④,③④联立得k的取值范围(()1,1⋃-⋃【变式4-3】已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.【答案】(1)24y x =;(2)最大值为13.【解析】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)[方法一]:轨迹方程+基本不等式法设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q 的轨迹方程为229525=-y x .设直线OQ 的方程为y kx =,则当直线OQ 与抛物线229525=-y x 相切时,其斜率k 取到最值.联立2,29,525y kx y x =⎧⎪⎨=-⎪⎩得22290525k x x -+=,其判别式222940525⎛⎫∆=--⨯= ⎪⎝⎭k ,解得13k =±,所以直线OQ 斜率的最大值为13.题型五向量型最值范围问题【例5】在平面直角坐标系xOy 中,已知双曲线221:142x y C -=与椭圆222:142x y C +=,A ,B分别为1C 的左、右顶点,点P 在双曲线1C 上,且位于第一象限.(1)直线OP 与椭圆2C 相交于第一象限内的点M ,设直线PA ,PB ,MA ,MB 的斜率分别为1k ,2k ,3k ,4k ,求1234k k k k +++的值;(2)直线AP 与椭圆2C 相交于点N (异于点A ),求AP AN ⋅的取值范围.【答案】(1)0;(2)()16,+∞【解析】(1)方法1:设直线():0OP y kx k =>,联立22142y kxx y =⎧⎪⎨-=⎪⎩,消y ,得()22124k x -=,所以20120k k >⎧⎨->⎩,解得202k <<,设()()1111,0,0P x y x y >>,则11x y ⎧=⎪⎪⎨⎪=⎪⎩,所以P ⎛⎫.联立22142y kxx y =⎧⎪⎨+=⎪⎩,消y ,得()22124k x +=,设()()2222,0,0M x y x y >>,则22x y ⎧=⎪⎪⎨⎪=⎪⎩,所以M ⎛⎫.因为()2,0A -,()2,0B ,所以211111221112821124224412k y y x y k k k x x x k k-+=+===-+---,222223422222821124224412ky y x y k k k x x x k k ++=+==--+--+,所以1234110k k k k k k ⎛⎫+++=+-= ⎪⎝⎭.方法2设()()1111,0,0P x y x y >>,()()2222,0,0M x y x y >>,因为()2,0A -,()2,0B ,所以11111221112224y y x yk k x x x +=+=-+-,22223422222224y y x yk k x x x +=+=-+-.因为点P 在双曲线1C 上,所以2211142x y -=,所以221142x y -=,所以1121x k k y +=.因为点Q 在椭圆线2C 上,所以2222142x y +=,所以222242x y -=-,所以2342x k k y +=-.因为O ,P ,M 三点共线,所以1212y y x x =,所以121234120x x k k k k y y +++=-=.(2)设直线AP 的方程为2y kx k =+,联立22224y kx k x y =+⎧⎨-=⎩,消y ,得()()22222184210k x k x k -+++=,解得12x =-,2224212k x k +=-,所以点P 的坐标为222424,1212k k k k ⎛⎫+ ⎪--⎝⎭,因为点P 位于第一象限,所以222420124012k k k k ⎧+>⎪⎪-⎨⎪>⎪-⎩,解得202k <<,联立22224y kx k x y =+⎧⎨+=⎩,消y ,得()()22222184210k x k x k +++-=,解得32x =-,2422412kx k -=+,所以点N 的坐标为222244,1212k k k k ⎛⎫- ++⎝⎭,所以()22222224161422444221212121214k k k k kAP AN AP AN k k k k k +⎛⎫⎛⎫+-⋅=⋅=--+⋅= ⎪⎪-+-+-⎝⎭⎝⎭,设21t k =+,则312t <<,所以22161616314(1)48384t tAP AN t t t t t ⋅===---+-⎛⎫-+ ⎪⎝⎭.因为函数3()4f x x x=+在区间31,2⎛⎫⎪⎝⎭上单调递增,所以当312t <<时,3748t t <+<,所以30841t t ⎛⎫<-+< ⎪⎝⎭,所以1616384t t >⎛⎫-+ ⎪⎝⎭,即16AP AN ⋅>,故AP AN ⋅的取值范围为()16,+∞.【变式5-1】已知O为坐标原点,椭圆2222:1(0)x yC a ba b+=>>的离心率为3,且经过点P.(1)求椭圆C的方程;(2)直线l与椭圆C交于A,B两点,直线OA的斜率为1k,直线OB的斜率为2k,且1213k k=-,求OA OB⋅的取值范围.【答案】(1)22193x y+=;(2)[3,0)(0,3]-.【解析】(1)由题意,223611caa b⎧=⎪⎪⎨⎪+=⎪⎩,又222a b c=+,解得3,a b==所以椭圆C为22193x y+=.(2)设()()1122,,,A x yB x y,若直线l的斜率存在,设l为y kx t=+,联立22193y kx tx y=+⎧⎪⎨+=⎪⎩,消去y得:()222136390+++-=k x ktx t,22Δ390k t=+->,则12221226133913ktx xktx xk-⎧+=⎪⎪+⎨-⎪=⎪+⎩,又12k k=121213y yx x=-,故121213=-y y x x且120x x≠,即2390-≠t,则23≠t,又1122,y kx t y kx t=+=+,所以()()()222222222121212221212122691133939313-+++++-+==+=+==---+k t tkx t kx t kt x x ty y t kkk ktx x x x x x tk,整理得222933=+≥t k,则232≥t且Δ0>恒成立.221212121212222122393333133313--⎛⎫⋅=+=-==⋅=⋅=-⎪+⎝⎭t tOA OB x x y y x x x x x xk t t,又232≥t,且23≠t,故2331[3,0)(0,3)⎛⎫-∈-⎪⎝⎭t.当直线l的斜率不存在时,2121,x x y y==-,又12k k=212113-=-yx,又2211193x y+=,解得2192x=则222111233⋅=-==OA OB x y x.综上,OA OB ⋅的取值范围为[3,0)(0,3]-.【变式5-2】已知双曲线22221(00)x y C a b a b-=>>:,的离心率为2,F 为双曲线的右焦点,直线l 过F 与双曲线的右支交于P Q ,两点,且当l 垂直于x 轴时,6PQ =;(1)求双曲线的方程;(2)过点F 且垂直于l 的直线'l 与双曲线交于M N ,两点,求MP NQ MQ NP ⋅⋅+的取值范围.【答案】(1)2213y x -=;(2)(],12-∞-【解析】(1)依题意,2c a =,当l 垂直于x 轴时,226b PQ a==,即23b a =,即223c a a -=,解得1a =,b =2213y x -=;(2)设:2PQ l x my =+,联立双曲线方程2213y x -=,得:()22311290m y my -++=,当0m =时,()()()()2,3,2,3,0,1,0,1P Q M N --,12MP NQ MQ NP ⋅+⋅=-,当0m ≠时,设()()()()11223344,,,,,,,P x y Q x y M x y N x y ,因为直线PQ 与双曲线右支相交,因此1229031y y m =<-,即m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,同理可得234293m y y m =-,依题意()()MP NQ MF FP NF FQ MF NF FP FQ =+⋅+=⋅+⋅⋅,同理可得,()()MQ NP MF FQ NF FP MF NF FP FQ =+⋅+⋅=⋅+⋅,而()212342111FP FQ MF NF m y y y y m ⎛⎫⋅+⋅=+++ ⎪⎝⎭,代入122931y y m =-,234293m y y m =-,()()()()()()222242224222919118163633133103133m m m m m FP FQ MF NF m m m m m m ++-+++⋅+⋅=+==----+--,分离参数得,2429663103m FP FQ MF NF m m ⋅+⋅=---+,因为3333m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,当210,3m ⎛⎫∈ ⎪⎝⎭时,由22110,3m m ⎛⎫+∈+∞ ⎪⎝⎭,()22966,61310FP FQ MF NF m m ⋅+⋅=-∈-∞-⎛⎫+- ⎪⎝⎭,所以()()2,12MP NQ MQ N FP FQ MF NF P ⋅=⋅+⋅∈∞-⋅-+,综上可知,MP NQ MQ NP ⋅⋅+的取值范围为(],12-∞-.【变式5-3】已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅uu u r uuu r的最小值.【答案】(1)24x y =;(2)32【解析】(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =.因为0p >,则2p =,所以抛物线E 的方程是24x y =.(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-.因为AB BC =,则1223x x x x -=-,得()2312x x k x x -=-,①因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k =--③将②③代入①,得()2242420x k k x k+--=,即()()322212120k k x k kk-+---=,则()()32211k xk k -=+,所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k++≥,则()()3222121k k k +≥+,从而()()3222121kk k +≥+当且仅当1k =时取等号,所以AB AC 的最小值为32.题型六参数型最值范围问题【例6】已知点()()1122,,,M x y N x y 在椭圆222:1(1)xC y a a+=>上,直线,OM ON 的斜率之积是13-,且22212x x a +=.(1)求椭圆C 的方程;(2)若过点()0,2Q 的直线与椭圆C 交于点,A B ,且(1)QB t QA t =>,求t 的取值范围.【答案】(1)2213x y +=;(2)(]1,3【解析】(1)椭圆方程改写为:2222x a y a +=,点()()1122,,,M x y N x y 在椭圆上,有222211a y a x =-,222222a y a x =-,两式相乘,得:()()()222222222241142122122a a a y y a x a x x x x x --==-++,由22212x x a +=,得222212241a y y x x =,由直线,OM ON 的斜率之积是13-,得121213y y x x =-,即222212129y y x x =,∴49a =,23a =,椭圆C 的方程为:2213x y +=.(2)过点()0,2Q 的直线若斜率不存在,则有()0,1A ,()0,1B -,此时3t =;当过点()0,2Q 的直线斜率存在,设直线方程为2y kx =+,由22213y kx x y =+⎧⎪⎨+=⎪⎩,消去y ,得()22131290k x kx +++=,直线与椭圆C 交于点,A B 两点,∴()2221249(13)36360k k k ∆=-⨯⨯+=->,得21k >设()()1122,,,A x y B x y '''',(1)QB t QA t =>,21x x t '='由韦达定理12122121212(1)13913k x x t x k x x tx k ''''-⎧+==+⎪⎪+⎨⎪⋅+'='=⎪⎩,消去1x ',得()229131441t k t ⎛⎫=+ ⎪⎝⎭+,由21k >,2101k<<,∴()2311641t t <<+,由1t >,解得13t <<,综上,有13t <≤,∴t 的取值范围为(]1,3【变式6-1】已知A 、B 分别是椭圆2222:1(0)x y C a b a b+=>>的左右顶点,O 为坐标原点,=6AB ,点2,3⎛⎫⎪⎝⎭5在椭圆C 上.过点()0,3P -,且与坐标轴不垂直的直线交椭圆C 于M 、N 两个不同的点.(1)求椭圆C 的标准方程;(2)若点B 落在以线段MN 为直径的圆的外部,求直线的斜率k 的取值范围;(3)当直线的倾斜角θ为锐角时,设直线AM 、AN 分别交y 轴于点S 、T ,记PS PO λ=,PT PO μ=,求λμ+的取值范围.【答案】(1)22195x y +=;(2)227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)4,23⎛⎫ ⎪⎝⎭【解析】(1)因为=6AB ,所以=3a ;又点2,3⎛⎫ ⎪⎝⎭5在图像C 上即()22252319b⎛⎫⎪⎝⎭+=,所以b 所以椭圆C 的方程为22195x y +=;(2)由(1)可得()3,0B ,设直线3l y kx =-:,设11(,)M x y 、22(,)N x y ,由22=-3=195y kx x y ⎧⎪⎨+⎪⎩得22(59)54360k x kx +-+=,22(54)436(59)0k k ∆=-⨯⨯+>解得23k >或23k <-①∵点()3,0B 在以线段MN 为直径的圆的外部,则0BM BN ⋅>,又12212254+=5+936=5+9k x x k x x k ⎧⎪⎪⎨⎪⎪⎩②211221212(3,)(3,)(1)3(1)()180BM BN x y x y k x x k x x ⋅=--=+-+++>,解得1k <或72k >由①②得227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)设直线3l y kx =-:,又直线的倾斜角θ为锐角,由(2)可知23k >,记11(,)M x y 、22(,)N x y ,所以直线AM 的方程是:()1133y y x x =++,直线AN 的方程是:()2233y y x x =++.令=0x ,解得113+3y y x =,所以点S 坐标为1130,+3y x ⎛⎫ ⎪⎝⎭;同理点T 为2230,+3y x ⎛⎫⎪⎝⎭.所以1130,3+3y PS x ⎛⎫=+ ⎪⎝⎭,2230,3+3y PT x ⎛⎫=+ ⎪⎝⎭,()0,3PO =.由PS PO λ=,PT PO μ=,可得:11333+3y x λ+=,22333+3y x μ+=,所以1212233y yx x λμ+=++++,由(2)得1225495k x x k +=+,1223695x k x =+,所以()()()1212121212122311333338229kx x k x x kx kx x x x x x x λμ--++-+-+=++=+++++()222254231189595254936369595k k k k k k k k ⎛⎫⋅+-- ⎪++⎝⎭=+⎛⎫++ ⎪++⎝⎭21012921k k k +=-⨯+++()()2110291k k +=-⨯++101291k =-⨯++,因为23k >,所以5131,0315k k +><<+,10142,2913k ⎛⎫-⨯+∈ ⎪+⎝⎭,故λμ+的范围是4,23⎛⎫⎪⎝⎭.【变式6-2】设A ,B 为双曲线C :22221x y a b-=()00a b >>,的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知4AB =,若直线AM ,AN 分别交直线1x =于P ,Q 两点,若()0D t ,为x 轴上一动点,当直线l 的倾斜角变化时,若PDQ ∠为锐角,求t 的取值范围.【答案】(1)2;(2){2t t <-或}4t >【解析】(1)由双曲线C :22221x y a b-=()00a b >>,可得:右焦点(),0F c ,将x c =代入2222:1(0,0)x y C a b a b -=>>中,2by a=±,当直线l 垂直于x 轴时,AMN 为等腰直角三角形,此时AF FM =,即2b ac a+=,整理得:220a ac b +-=,因为222b c a =-,所以2220a ac c +-=,方程两边同除以2a 得:220e e +-=,解得:2e =或1-(舍去),所以双曲线C 的离心率为2;(2)因为24AB a ==,所以2a =,因为2c e a ==,解得4c =,故22212b c a =-=,所以双曲线的方程为221412x y -=,当直线l 的斜率存在时,设直线l 的方程为:()4y k x =-,与双曲线联立得:()22223816120kxk x k -+--=,设()()1122,,,M x y N x y ,则212283k x x k +=-,212216123k x x k +=-,则()()()221212121244416y y k x x k x x x x =--=-++⎡⎤⎣⎦222221612321633k k k k k ⎛⎫+=-+ ⎪--⎝⎭22363k k -=-,因为直线l 过右焦点F 且与双曲线C 的右支交于,M N 两点,所以22121222816124,433k k x x x x k k ++=>=>--,解得:23k >,直线()11:22y AM y x x =++,则1131,2y P x ⎛⎫ ⎪+⎝⎭,同理可求得:2231,2y Q x ⎛⎫⎪+⎝⎭,所以11,213y D x P t ⎪+⎛⎫=- ⎝⎭,22,213y D x Q t ⎪+⎛⎫=- ⎝⎭,因为PDQ ∠为锐角,所以()()12221192202D y y x Q t x P D t ⋅=+-+>++,即()1122122109224y y x x x t x t +-+++>+,所以22222221203693161216433k k k k t k t k -⨯-++--+++>-所以21290t t +-->即()219t ->,解得2t <-或4t >;当直线l 的斜率不存在时,将4x =代入双曲线可得6y =±,此时不妨设()()4,6,4,6M N -,此时直线:2AM y x =+,点P 坐标为()1,3,同理可得:()1,3Q -,所以()1,3DP t =-,()1,3DQ t =--,因为PDQ ∠为锐角,所以2280DP DQ t t ⋅=-->,解得2t <-或4t >;综上所述,t 的取值范围{2t t <-或}4t >【变式6-3】22122:1y x C a b-=上的动点P 到两焦点的距离之和的最小值为22:2(0)C x py p =>的焦点与双曲线1C 的上顶点重合.(1)求抛物线2C 的方程;(2)过直线:(l y a a =为负常数)上任意一点M 向抛物线2C 引两条切线,切点分别为AB ,坐标原点O 恒在以AB 为直径的圆内,求实数a 的取值范围.【答案】(1)24x y =;(2)40a -<<.【解析】(1)由已知:双曲线焦距为,则长轴长为2,故双曲线的上顶点为(0,1),即为抛物线焦点.∴抛物线2C 的方程为24x y =;(2)设(,)M m a ,2111(,)4A x x ,2221(,)4B x x ,故直线MA 的方程为211111()42y x x x x -=-,即21142y x x x =-,所以21142a x m x =-,同理可得:22242a x m x =-,∴1x ,2x 是方程242a xm x =-的两个不同的根,则124x x a =,2212121()416OA OB x x x x a a ∴⋅=+=+,由O 恒在以AB 为直径的圆内,240a a ∴+<,即40a -<<.。

圆锥曲线中的最值、定值和范围问题

圆锥曲线中的最值、定值和范围问题

圆锥曲线中的最值、定值和范围问题与圆锥曲线有关的最值、定值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。

下面我们探讨与圆锥曲线有关的最值、定值和范围问题的常用方法。

一. 最值问题求解的基本策略有二:一是从几何角度考虑,当题目中的条件和结论明显体现几何特征及意义时,可用图形性质来解;二是从代数角度考虑,通过建立目标函数,求其目标函数的最值,求函数最值的常用方法有:二次函数法、基本不等式法、判别式法、定义法、函数单调性法等。

例1:如图所示,设点1F ,2F 是22132xy+=的两个焦点,过2F 的直线与椭圆相交于A 、B两点,求△1F AB 的面积的最大值,并求出此时直线的方程。

分析:12112F F B F AB F FAS S S =+ ,设11(,)A x y ,22(,)B x y ,则11212121||||||(1)2F AB F F y y y y c S =⋅-=- =设直线A B 的方程为1x ky =+代入椭圆方程得22(23)440k y ky ++-=12122244,2323k y y y y k k --⇒+==++即122||123y y k - ==+令1t =≥,∴12FA Bt tS +=12t t+(1t ≥)利用均值不等式不能区取“=”∴利用1()2f t t t=+(1t ≥)的单调性易得在1t =时取最小值1F AB S 在1t =即0k =时取最大值为3,此时直线A B 的方程为1x =例2.设椭圆方程为1422=+yx ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足OP (21=OA + )O B ,点N 的坐标为)21,21(,当l 绕点M 旋转时,求(1)动点P 的轨迹方程;(2)||N P的最小值与最大值.解(1)法1:直线l 过点M (0,1)设其斜率为k ,则l 的方程为y=kx+1.记A (x 1,y 1),B (x 2,y 2),由题设可得点A 、B 的坐标 (x 1,y 1)、 (x 2,y 2)是方程组⎪⎩⎪⎨⎧=++=14122yx kx y 的解. 将①代入②并化简得(4+k 2)x 2+2kx -3=0, 所以⎪⎪⎩⎪⎪⎨⎧+=++-=+.48,42221221k y y k k x x于是).44,4()2,2()(21222121kkk y y x x OB OA OP ++-=++=+=设点P 的坐标为(x,y ), 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y kk x 消去参数k 得4x 2+y 2-y =0 ③ 当k 不存在时,A 、B 中点为坐标原点(0,0),也满足方程③,所以点P 的轨迹方程为4x 2+y 2-y =0解法二:设点P 的坐标为(x ,y ),因A (x 1,y 1),B (x 2,y 2)在椭圆上,所以,142121=+y x ④ .142222=+y x ⑤④—⑤得0)(4122212221=-+-y y x x ,所以.0))((41))((21212121=+-++-y y y y x x x x 当21x x ≠时,有.0)(4121212121=--⋅+++x x y y y y x x ⑥并且⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-+=+=.1,2,221212121x x y y xy y y y x x x ⑦ 将⑦代入⑥并整理得 4x 2+y 2-y =0 ⑧ 当x 1=x 2时,点A 、B 的坐标为(0,2)、(0,-2),这时点P 的坐标为 (0,0)也满足⑧,所以点P 的轨迹方程为.141)21(16122=-+y x(2)由点P 的轨迹方程知.4141,1612≤≤-≤x x 即所以 127)61(3441)21()21()21(||222222++-=-+-=-+-=x xx y x NP故当41=x ,||NP 取得最小值,最小值为1;4① ②当16x =-时,||NP 取得最大值,最大值为.621对于()*,有∆=m 2+4b =10-m 2>0,所以m <<。

高中数学圆锥曲线与最值及取值范围问题(附经典例题与解析)

高中数学圆锥曲线与最值及取值范围问题(附经典例题与解析)

圆锥曲线与最值问题【知识点分析】方法一、圆锥曲线的的定义转化法借助圆锥曲线定义将最值问题等价转化为易求、易解、易推理证明的问题来处理.(1)椭圆:到两定点的距离之和为常数(大于两定点的距离)(2)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (3)抛物线:到定点与定直线距离相等。

【相似题练习】1.已知抛物线y 2=8x ,点Q 是圆C :x 2+y 2+2x ﹣8y +13=0上任意一点,记抛物线上任意一点到直线x =﹣2的距离为d ,则|PQ |+d 的最小值为( ) A .5 B .4 C .3 D .2 1.已知双曲线C :的右焦点为F ,P 是双曲线C 的左支上一点,M (0,2),则△PFM 周长最小值为 .【知识点分析】 方法二、函数法二次函数2y ax bx c =++顶点坐标为24b ac b ⎛⎫-- ⎪,1.已知F 1,F 2为椭圆C :+=1的左、右焦点,点E 是椭圆C 上的动点,1•2的最大值、最小值分别为( ) A .9,7 B .8,7 C .9,8 D .17,8【知识点分析】方法三、利用最短路径【问题1】“将军饮马”作法图形原理在直线l 上求一点P ,使P A +PB 值最小.作B 关于l 的对称点B '连A B ',与l 交点即为P .两点之间线段最短. P A +PB 最小值为A B '.【问题2】 作法图形原理在直线1l 、2l 上分别求点M 、N ,使△PMN 的周长最小.分别作点P 关于两直线的对称点P '和P '',连P 'P '',与两直线交点即为M ,N .两点之间线段最短. PM +MN +PN 的最小值为 线段P 'P ''的长.【问题3】 作法图形原理在直线1l 、2l 上分别求点M 、N ,使四边形PQMN 的周长最小.分别作点Q 、P 关于直线1l 、2l 的对称点Q '和P '连Q 'P ',与两直线交点即为M ,N .两点之间线段最短. 四边形PQMN 周长的最小值为线段P 'P ''的长.【问题4】 作法图形原理作点P 关于1l 的对称点P ',作P 'B ⊥2l 于B ,交l 于A .点到直线,垂线段最短. P A +AB 的最小值为线段P 'B 的长.l B A lPB'AB l 1l 2Pl 1l 2NMP''P'P l 1l 2N MP'Q'Q P l 1l 2P Q l 1A P'Pl 1l 2P小.【问题5】 作法图形原理A 为1l 上一定点,B 为2l 上一定点,在2l 上求点M ,在1l 上求点N ,使AM +MN +NB 的值最小.作点A 关于2l 的对称点A ',作点B 关于1l 的对称点B ',连A 'B '交2l 于M ,交1l 于N .两点之间线段最短. AM +MN +NB 的最小值为线段A 'B '的长.【相似题练习】1.已知双曲线x 2﹣y 2=1的右焦点为F ,右顶点A ,P 为渐近线上一点,则|PA |+|PF |的最小值为( )A .B .C .2D .【知识点分析】方法四、利用圆的性质【相似题练习】1.已知椭圆,圆A :x 2+y 2﹣3x ﹣y +2=0,P ,Q 分別为椭圆C 和圆A 上的点,F (﹣2,0),则|PQ |+|PF |的最小值为( ) A . B . C . D .l 2l 1ABNMl 2l 1M N A'B'AB【知识点分析】 方法五、切线法【相似题练习】1.如图,设椭圆C :+=1(a >b >0)的左右焦点为F 1,F 2,上顶点为A ,点B ,F 2关于F 1对称,且AB⊥AF 2(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知P 是过A ,B ,F 2三点的圆上的点,若△AF 1F 2的面积为,求点P 到直线l :x ﹣y ﹣3=0距离的最大值.【知识点分析】 方法六、参数法1.圆222)()(r b y a x =-+-的参数方程可表示为)(.sin ,cos 为参数θθθ⎩⎨⎧+=+=r b y r a x .2. 椭圆12222=+b y a x )0(>>b a 的参数方程可表示为)(.sin ,cos 为参数ϕϕϕ⎩⎨⎧==b y a x .3. 抛物线px y 22=的参数方程可表示为)(.2,22为参数t pt y px x ⎩⎨⎧==.【相似题练习】已知点A (2,1),点B 为椭圆+y 2=1上的动点,求线段AB 的中点M 到直线l 的距离的最大值.并求此时点B 的坐标.【知识点分析】方法七、基本不等式1、均值不等式定理: 若0a >,0b >,则2a b ab +≥,2、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.【相似题练习】1.抛物线y 2=4x 的焦点为F ,点A 、B 在抛物线上,且∠AFB =,弦AB 的中点M 在准线l 上的射影为M ′,则的最大值为 .方法七、利用三角形的三边关系两边之和大于第三边,两边之差小于第三边。

圆锥曲线取值范围 高考数学

圆锥曲线取值范围 高考数学
(2)已知点A是曲线C的左顶点.圆E: x − 1
2
+ y−1
2
= r 2 (r>0)与直
线l:x = 1交于P、Q两点,直线AP、AQ分别与双曲线C交于M、N两
点.试问:点A到直线MN的距离是否存在最大值?若存在,求出此最大
值以及此时r的值;若不存在,说明理由.
试卷讲评课件
方法一:设 −, , , , , ,显然直线的斜率存



+

=
,所以
+ +


+


又知 + =
+
=











所以
+
=
+
= −






因此

+


为定值,这个定值为−.




= ,故 =
= −,







所以 = − = − ,即 = ①,






由 = ,得 + = ②,
联立①②,解得 = , = ,

所以椭圆的方程为

+ = ,
= ,即 =



试卷讲评课件
(2)直线AC与BP交于点D,CP与x轴交于点E,求






∈ , +∞ ,

圆锥曲线中的取值范围及最值问题归纳通关

圆锥曲线中的取值范围及最值问题归纳通关

圆锥曲线中的取值范围及最值问题归纳通关一、椭圆中的参数范围及几何量的最值1.已知椭圆C 的中心在原点,焦点在x 轴上,短轴长和焦距都等于2,A 是椭圆上的一点,且A 在第一象限内,过A 且斜率等于1-的直线与椭圆C 交于另一点B ,点A 关于原点的对称点为D .(1)证明:直线BD 的斜率为定值;(2)求ABD ∆面积的最大值,并求此时直线BD 的方程.2.已知椭圆2222:1(0)x y C a b a b+=>>的离心率是32,且椭圆经过点()0,1.(1)求椭圆C 的标准方程;(2)若直线1l : 220x y +-=与圆22:640D x y x y m +--+=相切: (ⅰ)求圆D 的标准方程;(ⅱ)若直线2l 过定点()30,,与椭圆C 交于不同的两点,E F ,与圆D 交于不同的两点,M N ,求·EF MN 的取值范围.3.在平面直角坐标系xOy 中,椭圆C : 22221(0)x y a b a b +=>>的左、右焦点分别为12,F F ,两焦点与短轴的一个顶点构成等腰直角三角形,且点21,2M ⎛⎫⎪ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)如图所示,过椭圆的左焦点作直线1l (斜率存在且不为0)交椭圆C 于,A B 两点,过右焦点作直线2l 交椭圆C 于,D E 两点,且21//l l ,直线AD 交x 轴于点P ,动点Q (异于,A D )在椭圆上运动. ①证明: AB AD k k ⋅为常数;②当1AB k =时,利用上述结论求PDQ ∆面积的取值范围.4.已知椭圆C : 22221(0)x y a b a b+=>>的离心率22e =,过点(),0A m -、(),0(0)B m m >分别作两平行直线1l 、2l , 1l 与椭圆C 相交于M 、N 两点, 2l 与椭圆C 相交于P 、Q 两点,且当直线2l 过右焦点和上顶点时,四边形MNQP 的面积为163. (1)求椭圆C 的标准方程;(2)若四边形MNQP 是菱形,求正数m 的取值范围.5.已知曲线M 由抛物线2x y =-及抛物线24x y =组成,直线l : 3(0)y kx k =->与曲线M 有m (m N ∈)个公共点.(1)若3m ≥,求k 的最小值;(2)若4m =,自上而下记这4个交点分别为,,,A B C D ,求AB CD的取值范围.6.已知椭圆C : 22221(0)x y a b a b +=>>的左右焦点分别为1F , 2F ,左顶点为A ,上顶点为()0,1B ,1ABF ∆. (1)求椭圆C 的方程;(2)设直线l : ()1y k x =+与椭圆C 相交于不同的两点M , N , P 是线段MN 的中点.若经过点2F 的直线m 与直线l 垂直于点Q ,求1PQ FQ ⋅的取值范围.7.已知椭圆C : 22221(0)y x a b a b+=>>的一条切线方程为2y x =+(1)求椭圆C 的标准方程;(2)若直线l : y kx m =+与椭圆C 交于A , B 两个不同的点,与y 轴交于点M ,且3AM MB =,求实数m 的取值范围.8.已知点P (0,-2),椭圆E : ()222210x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线PF的斜率为2,O 为坐标原点. (1)求椭圆E 的方程;(2)直线l 被圆O :x 2+y 2=3截得的弦长为3,且与椭圆E 交于A 、B 两点,求△AOB 面积的最大值.9.椭圆()2222:10x y C a b a b +=>>的离心率为12,且过点31,2⎛⎫- ⎪⎝⎭.(1)求椭圆C 的方程;(2)设(),P x y 为椭圆C 上任一点, F 为其右焦点, A B 、是椭圆的左、右顶点,点P '满足()4,0PP x =-'.①证明:PP PF'为定值;②设Q 是直线4x =上的任一点,直线AQ BQ 、分别另交椭圆C 于M N 、两点,求MF NF +的最小值.10.已知椭圆C : 22221(0)x y a b a b+=>>的离心率为y x =交椭圆C 于A 、B 两点,椭圆C的右顶点为P ,且满足4PA PB +=. (1)求椭圆C 的方程;(2)若直线y kx m =+(0k ≠, 0m ≠)与椭圆C 交于不同两点M 、N ,且定点10,2Q ⎛⎫-⎪⎝⎭满足MQ NQ =,求实数m 的取值范围.11.已知椭圆C : 22221x y a b+= (a>b>0)的离心率为2,短轴长为2.直线l :y =kx +m 与椭圆C 交于M ,N 两点,又l 与直线12y x =, 12y x =-分别交于A ,B 两点,其中点A 在第一象限,点B 在第二象限,且△OAB 的面积为2(O 为坐标原点). (1)求椭圆C 的方程; (2)求OM ON ⋅的取值范围.12.已知椭圆22:1(0)82x y C m m m+=>的长轴长为O 为坐标原点. (Ⅰ)求椭圆C 的方程和离心率;(Ⅱ)设点()3,0A ,动点P 在椭圆C 上,且P 在y 轴的右侧,线段AP 的垂直平分线l 与y 轴相交于点B ,求OB 的最小值.13.已知()0,2A -,椭圆2222:1(0)x y E a b a b+=>>的离心率2, F 是椭圆E 的右焦点,直线AF 的斜率为63, O 为坐标原点. (1)求椭圆的方程;(2)设过点A 的动直线l 与椭圆E 相交于P , Q 两点,当OPQ ∆的面积最大时,求直线l 的方程. 14.如图,已知圆()22:316E x y ++=,点()3,0,FP 是圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于Q .(1)求动点Q 的轨迹Γ的方程;(2)已知,,A B C 是轨迹Γ的三个动点,点A 在一象限, B 与A 关于原点对称,且CA CB =,问ABC ∆的面积是否存在最小值?若存在,求出此最小值及相应直线AB 的方程;若不存在,请说明理由.二、双曲线中的参数范围及最值1.已知双曲线22221x y a b-=(b >a >0),O 为坐标原点,离心率2e =,点()5,3M在双曲线上.(1)求双曲线的方程;(2)若直线l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=.求|OP|2+|OQ|2的最小值.2.已知点()3,0A -, ()3,0B ,直线,AM BM 相交于点M ,且它们的斜率之积为169. (Ⅰ)求点M 的轨迹方程;(Ⅱ)若点()()4,2,5,0P F ,求MP MF +的最小值. 3.如图,已知直线6y kx k =+-与曲线42y x=+在第一象限和第三象限分别交于点A 和点B ,分别由点A 、B 向x 轴作垂线,垂足分别为M 、N ,记四边形AMBN 的面积为S .⑴ 求出点A 、B 的坐标及实数k 的取值范围; ⑵ 当k 取何值时,S 取得最小值,并求出S 的最小值.4.已知()()121,0,1,0F F -,曲线1C 上任意一点M 满足212MF MF -=2C 上的点N 在y 轴的右边且N 到2F 的距离与它到y 轴的距离的差为1. (1)求12,C C 的方程;(2)过1F 的直线l 与1C 相交于点,A B ,直线22,AF BF 分别与2C 相交于点,C D 和,E F ·CD EF的取值范围.5.已知双曲线22:14x C y -=, P 是C 上的任意点. (1)求证:点P 到双曲线C 的两条渐近线的距离的乘积是一个常数; (2)设点A 的坐标为()5,0,求PA 的最小值.三、抛物线中的参数范围及最值1.已知点M 到点()1,0F 的距离比到y 轴的距离大1. (1)求点M 的轨迹C 的方程;(2)设直线l : 240x y +-=,交轨迹C 于A 、B 两点, O 为坐标原点,试在轨迹C 的AOB 部分上求一点P ,使得ABP ∆的面积最大,并求其最大值.2.如图,已知抛物线2y x =,点()11A ,, ()42B -,,抛物线上的点()P x y , (1)y >,直线AP 与x轴相交于点Q ,记PAB , QAB 的面积分别是1S , 2S .(1)若AP PB ⊥,求点P 的纵坐标; (2)求125S S -的最小值.3.在直角坐标系xOy 中, ()1,0F ,动点P 满足:以PF 为直径的圆与y 轴相切. (1)求点P 的轨迹方程;(2)设点P 的轨迹为曲线Γ,直线l 过点()4,0M 且与Γ交于,A B 两点,当ABF ∆与AOF ∆的面积之和取得最小值时,求直线l 的方程.4.已知抛物线2:2(0)C x py p =->的焦点到准线的距离为12,直线:(1)l y a a =<-与抛物线C 交于,A B 两点,过这两点分别作抛物线C 的切线,且这两条切线相交于点D .(1)若D 的坐标为()0,2,求a 的值;(2)设线段AB 的中点为N ,点D 的坐标为()0,a -,过()0,2M a 的直线l '与线段DN 为直径的圆相切,切点为G ,且直线l '与抛物线C 交于,P Q 两点,求PQ MG的取值范围.5.已知曲线C 上的点到点()0,1F 的距离比它到直线3y =-的距离小2. (1)求曲线C 的方程;(2)过点F 且斜率为k 的直线l 交曲线C 于A , B 两点,若BF BA λ=,当12,23λ⎡⎤∈⎢⎥⎣⎦时,求k 的取值范围.6.如图,O 为坐标原点,点F 为抛物线C 1: 22(0)x py p =>的焦点,且抛物线C 1上点M 处的切线与圆C 2: 221x y +=相切于点Q .(Ⅰ)当直线MQ的方程为0x y -=时,求抛物线C 1的方程; (Ⅱ)当正数p 变化时,记S 1 ,S 2分别为△FMQ ,△FOQ 的面积,求12S S 的最小值. 【总结】(1)圆锥曲线中求最值或范围的常见求法选择适当的参数,将所求的量表示出来,建立目标函数,再求这个函数的最值.求函数的最值时常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围; ②利用基本不等式求出参数的取值范围; ②利用函数的值域的求法,确定参数的取值范围.(2)圆中弦长的求法一般根据半径、弦长的一半、弦心距所构成的直角三角形,利用勾股定理求解.。

圆锥曲线范围问题含详解

圆锥曲线范围问题含详解

圆锥曲线取值范围问题一、圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.二、解决圆锥曲线中的范围或最值问题时,若题目的条件和结论能体现出明确的函数关系,则可先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求出新参数的范围,解题的关键是建立两个参数之间的等量关系; ③利用基本不等式求出参数的取值范围; ④利用函数值域的求法,确定参数的取值范围.三、例题.设C 为椭圆22184x y +=的左焦点,直线1y kx =+与椭圆交于A ,B 两点. (1)求CA CB +的最大值;(2)若直线1y kx =+与x 轴、y 轴分别交于M ,N ,且以MN 为直径的圆与线段MN 的垂直平分线的交点在椭圆内部(包括在边界上),求实数k 的取值范围。

【分析】(1)联立直线和椭圆方程,利用焦半径公式,结合韦达定理得到|CA |+|CB |关于k 的表达式,进而利用基本不等式求得最大值;(2)先根据直线的方程求得M ,N 的坐标,进而得到以线段MN 为直径的圆的方程和线段MN 的垂直平分线方程,解方程组求得圆与垂直平分线的交点坐标,利用点在椭圆内的条件得到不等式组求解即得k 的取值范围. 【详解】(1)22184x y +=的半长轴a =半短轴2,b =半焦距2,c =离心率c e a == 设()11,A x y ,()22,B x y ,联立221280y kx x y =+⎧⎨+-=⎩,可得()2212460k x kx ++-=, 所以122412kx x k +=-+,112,CA a ex CB =+==,则)1221212CA CB x x k +=+=≤+; (2)依题意可知1,0M k ⎛⎫- ⎪⎝⎭,(0,1)N ,所以圆的方程为1(1)0x x y y k ⎛⎫++-= ⎪⎝⎭①,垂直平分线为11122y x k k ⎛⎫=-++ ⎪⎝⎭②,联立①②消去y , 111111102222x x x x k k k k k ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫++-++-+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,即221111024x x x k k k ⎛⎫⎛⎫+++-= ⎪ ⎪⎝⎭⎝⎭,即22223411044x x x x k k k k ++++-=,即22234111111104x x k k k k ⎛⎫⎛⎫⎛⎫++++-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即22111104x x k k ⎛⎫++-= ⎪⎝⎭, 即21124x k ⎛⎫+= ⎪⎝⎭,解得11122x k =--,11122x k =-+, 对应11122y k =+,21122y k =-+, 两个交点的坐标为11111111,,,22222222k k k k ⎛⎫⎛⎫--+-+-+ ⎪ ⎪⎝⎭⎝⎭则可知2113822k ⎛⎫+≤ ⎪⎝⎭且2113822k ⎛⎫-+≤ ⎪⎝⎭,即111111k k ⎧≤≤⎪⎪⎨⎪≤≤+⎪⎩,即111k ≤≤,解得k ≥k ≤四、好题训练1.已知椭圆2222:1(0,0)x y C a b a b +=>>的焦距为.(1)求椭圆C 的标准方程;(2)若点()0,1A ,点B 在椭圆C 上,求线段AB 长度的最大值. 2.已知椭圆的长轴长是(,0). (1)求这个椭圆的标准方程;(2)如果直线y x m =+与这个椭圆交于两不同的点,求m 的取值范围.3.在平面直角坐标系xOy 中,已知点P到两点(M N 的距离之和等于4,设点P 的轨迹为曲线C . (1)求曲线C 的方程.(2)若直线2y kx =+与曲线C 有公共点,求实数k 的取值范围.4.已知椭圆C :22221x y a b +=()0a b >>,1F ,2F为椭圆的左右焦点,1,2P ⎛ ⎝⎭为椭圆上一点,且2PF =(1)求椭圆的标准方程;(2)设直线l :2x =-,过点2F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 、直线AB 于M 、N 两点,求tan MAN ∠最小值. 5.已知圆锥曲线E 上的点M 的坐标(),x y.(1)说明E 是什么图形,并写出其标准方程;(2)若斜率为1的直线l 与E 交于y 轴右侧不同的两点A ,B ,求直线l 在y 轴上的截距的取值范围.6.如图,点1F ,2F 分别是椭圆()2222:10x yC a b a b+=>>的左、右焦点,点A 是椭圆C 上一点,且满足2AF x ⊥轴,1230AF F ∠=︒,直线1AF 与椭圆C 相交于另一点B .(1)求椭圆C 的离心率;(2)若2ABF 的周长为M 为椭圆C 上任意一点,求1OM F M →→⋅的取值范围. 7.在平面直角坐标系xOy 中,点D ,E 的坐标分别为()2,0-,()2,0,P 是动点,且直线DP 与EP 的斜率之积等于14-.(1)求动点P 的轨迹C 的方程;(2)已知直线y kx m =+与椭圆:2214xy +=相交于A ,B 两点,与y 轴交于点M ,若存在m使得34OA OBOM ,求m 的取值范围.8.已知抛物线2:2(0)C y px p =>的焦点到准线的距离为1. (1)求C 的方程;(2)已知点()()1122,,,A x y B x y 在C 上,且线段AB 的中垂线l 的斜率为12-,求l 在y 轴上的截距的取值范围.9.已知圆F 1:(x +1)2+y 2=16,F 2(1,0),P 是圆F 1上的一个动点,F 2P 的中垂线l 交F 1P 于点Q .(1)求点Q 的轨迹E 的方程;(2)若斜率为k (k ≠0)的直线l 1与点Q 的轨迹E 交于不同的两点A ,B ,且线段AB 的垂直平分线过定点(13,0),求k 的取值范围.10.已知点A ,B 的坐标分别是()0,1-,()0,1,直线AM ,BM 相交于点M ,且它们的斜率之积为12-.(1)求点M 轨迹C 的方程;(2)若过点()2,0D 的直线l 与(1)中的轨迹C 交于不同的两点E 、F (E 在D 、F 之间),DE DF λ=,试求λ的取值范围. 11.已知平面内动点P与点)A和点()B 的连线的斜率之积为12-.(1)求动点P 的轨迹C 的方程;(2)过点()1,0F 的直线l 与曲线C 交于M ,N 两点,且OMF ONF S S λ=△△(113λ<<),求直线l 斜率的取值范围.12.已知抛物线C :22y px =()0p >的焦点为F,点(M a 在抛物线C 上. (1)若6MF =,求抛物线C 的标准方程;(2)若直线x y t +=与抛物线C 交于A ,B 两点,点N 的坐标为()1,0,且满足NA NB ⊥,原点O 到直线ABp 的取值范围. 13.已知一动圆M 与圆1C:(221x y ++=外切,且与圆2C:(2249x y -+=内切.(1)求动圆M 的圆心M 的轨迹方程E ;(2)若过点(1,0)A 的直线l (不与x 轴重合)与曲线E 交于,P Q 两点,线段PQ 的垂直平分线与x 轴交于点N ,求PQ AN的取值范围.14.在平面直角坐标系xOy中,直线:l y kx =22:14y E x +=相交于A 、B 两点,与圆22:4O x y +=相交于C 、D 两点. (1)若OC OD ⊥,求实数k 的值; (2)求2AB CD ⋅的取值范围.15.已知点()1,0F 是抛物线C :()220y px p =>的焦点,O 为坐标原点,过点F 的直线1l 交抛物线与A ,B 两点.(1)求抛物线C 的方程; (2)求OA OB ⋅的值;(3)如图,过点F 的直线2l 交抛物线于C ,D 两点(点A ,C 在x 轴的同侧,A C x x >),且12l l ⊥,直线AC 与直线BD 的交点为E ,记EFC △,ACF 的面积分别为1S ,2S ,求12S S 的取值范围.16.已知椭圆()22221x y a b a b +=>>的焦距为2,O 为坐标原点,F 为右焦点,点31,2E ⎛⎫ ⎪⎝⎭在椭圆上.(1)求椭圆的标准方程;(2)若直线l 的方程为4x =,AB 是椭圆上与坐标轴不平行的一条弦,M 为弦的中点,直线MO 交l 于点P ,过点O 与AB 平行的直线交/于点Q ,直线PF 交直线OQ 于点R ,直线QF 交直线MO 于点S .①证明:O ,S ,F ,R 四点共圆;②记△QRF 的面积为1S ,△QSO 的面积为2S ,求12S S 的取值范围. 17.已知椭圆C :22143x y +=左右焦点分别为12,F F ,P 在椭圆C 上且活动于第一象限,PP'垂直于y 轴交y 轴于P ',Q 为PP '中点;连接1QF 交y 轴于M ,连接2QF 并延长交直线:3l x 于N .(1)求直线1QF 与2QF 的斜率之积;(2)已知点(0,1)T -,求22MP NP TQ ⋅+的最大值.18.已知①如图,长为12的矩形ABCD ,以A 、B 为焦点的椭圆2222:1x y M a b+=恰好过CD 两点②设圆22(16x y +=的圆心为S ,直线l 过点T ,且与x 轴不重合,直线l 交圆S 于CD 两点,过点T 作SC 的平行线交SD 于M ,判断点M 的轨迹是否椭圆(1)在①②两个条件中任选一个条件,求椭圆M 的标准方程;(2)根据(1)所得椭圆M 的标准方程,若圆22:1O x y +=的切线l 与椭圆相交于P 、Q 两点,线段PQ 的中点为T ,求OT 的最大值.19.在平面直角坐标系xOy 中,点()2,0A -,过动点P 作直线4x =-的垂线,垂足为M ,且4AM AP ⋅=-.记动点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点A 的直线l 交曲线E 于不同的两点B 、C . ①若B 为线段AC 的中点,求直线l 的方程;②设B 关于x 轴的对称点为D ,求ACD △面积S 的取值范围.20()2222:10x y C a b a b +=>>经过点()3,1P .(1)求椭圆C 的标准方程;(2)设点P 关于x 轴的对称点为Q ,过点P 斜率为12,k k 的两条不重合的动直线与椭圆C 的另一交点分别为,M N (,M N 皆异于点Q ).若1213k k =,求点Q 到直线MN 的距离的取值范围.21.已知椭圆C :()222210x y a b a b+=>>的左,右焦点分别为1F ,2F ,椭圆C 上任意一点P 到焦点距离的最大值是最小值的3倍,且通径长为3(椭圆的通径:过椭圆的焦点且垂直于长轴的弦).(1)求椭圆C 的标准方程;(2)过2F 的直线l 与椭圆C 相交于不同的两点A ,B ,则1ABF 的内切圆面积是否存在最大值?若存在,则求出最大值;若不存在,请说明理由.22.已知F 是抛物线2:2(0)C y px p =>的焦点,点P 是抛物线上横坐标为2的点,且3PF =.(1)求抛物线的方程;(2)设直线l 交抛物线C 于,M N 两点,若4MN =,且弦MN 的中点在圆22()1x a y -+=上,求实数a 的取值范围.23.如图所示,在平面直角坐标系中,椭圆Γ:2212x y +=的左、右焦点分别为1F ,2F ,设P 是第一象限内Γ上一点,1PF ,2PF 的延长线分别交Γ于点1Q ,2Q .(1)求12PF Q △的周长;(2)设1r ,2r 分别为12PF Q △,21PF Q △的内切圆半径,求12r r -的最大值.24.设实数0k ≠,椭圆D :22162x y +=的右焦点为F ,过F 且斜率为k 的直线交D 于P 、Q两点,若线段PQ 的中为N ,点O 是坐标原点,直线ON 交直线3x =于点M .(1)若点P 的横坐标为1,求点Q 的横坐标; (2)求证:MF PQ ⊥; (3)求PQ MF的最大值.参考答案1.(1)22142x y +=(2 【分析】(1)由题意可得2c =2c e a a ===,求出a ,再由 b b ,从而可求得椭圆方程,(2)设()00,B x y ,然后利用距离公式和二次函数的性质求解即可 (1)依题意,得2c c ==2===⇒=c e a a ,所以b所以椭圆C 的标准方程为22142x y +=.(2)设()00,B x y ,则2200142x y +=,则有0y ≤≤所以20220041422y x y ⎛⎫=-=- ⎪⎝⎭,由两点间的距离公式,得()()222220000||14112y AB x y y ⎛⎫=+-=-+- ⎪⎝⎭ 2200025(1)6y y y =--+=-++,因为0y ≤≤所以当001,=-=y x ||AB 2.(1)2213x y +=;(2)22m -<<.【分析】(1)由已知得2a =c = (2)联立直线与椭圆方程,消元,利用韦达定理能求出m 的取值范围. 【详解】解:(1)由已知得2a =c =解得a =2321b ∴=-=, ∴椭圆的标准方程为2213x y +=.(2)由2213y x m x y =+⎧⎪⎨+=⎪⎩, 解方程组并整理得2246330x mx m ++-=, 有两个不同的交点∴222(6)44(33)12(4)0m m m ∆=-⨯⨯-=-->.解不等式得22m -<<.m ∴的取值范围(2,2)-.【点睛】本题考查椭圆标准方程的求法,考查实数的取值范围的求法,解题时要认真审题,注意根的判别式的合理运用.3.(1)2214x y +=;(2)|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭.【分析】(1)根据椭圆的定义,即可求得a ,c 的值,根据a ,b ,c 的关系,求得b 值,即可得答案. (2)联立直线与椭圆方程,根据有公共点,可得0∆≥,化简整理,即可求得答案. 【详解】解:(1)由己知得4PM PN MN +=>=由椭圆定义可知,轨迹C 是以M ,N为焦点,焦距长2c =24a =的椭圆. 所以222431b a c =-=-=,所以曲线C 的方程是2214x y +=.(2)由22214y kx x y =+⎧⎪⎨+=⎪⎩得()221416120k x kx +++=. ()()22216412146448k k k ∆=-⨯⨯+=-,因为直线2y kx =+与曲线C 有公共点, 所以0∆≥,即264480k -≥,解得k ≤k ≥故实数k的取值范围是|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭. 4.(1)2212x y +=(2)4 【分析】(1)设()1,0(0)F c c ->,根据题中条件求出1c =,得出1PF =出a 的值,再根据222b a c =-即可求出b 的值,即可求出椭圆方程;(2)由题意直线AB 的斜率必定不为零,于是可设直线:1AB x ty =+,设11(,)A x y ,22(,)B x y ,根据韦达定理、中点坐标公式、弦长公式,以及题中条件,得到23tan t MN MAN AN+∠==,再根据基本不等式即可求出结果. (1)解:设()2,0F c ,则2PF ==1c =,即()11,0F -.∴1PF =122PF PF a +==,∴a =1b ,故椭圆的标准方程为2212x y +=; (2)解:由题意直线AB 的斜率必定不为零,于是可设直线AB :1x ty =+, 联立方程22112x ty x y =+⎧⎪⎨+=⎪⎩得()222210t y ty ++-=, 设()11,A x y ,()22,B x y ,由题意,()()222442810t t t ∆=++=+>,由韦达定理12222ty y t -+=+,12212y y t =-+,则22Nt y t =-+,∴22221122N N t x ty t t =+=-+=++,MN AB ⊥,∴MNk t =-,∴222226222t MN t t +=--=++,又1212AN AB y y==-=∴23tan4tMNMANAN+⎫∠===≥=,即1t=±时取等号.5.(1)圆锥曲线E是以(),)为焦点,长轴长为22163x y+=(2)(3,-【分析】(1)由平面上两点间距离公式及椭圆的定义即得;(2)由题可设直线l:y x m=+,联立椭圆的方程,利用韦达定理可得3m-<<,即求. (1)由题可知点M到定点(),)的距离之和为∴圆锥曲线E是以(),)为焦点,长轴长为所以其标准方程为22163x y+=.(2)设直线l:y x m=+,()11,A x y,()22,B x y,由22163x yy x m⎧+=⎪⎨⎪=+⎩,消去y,得2234260x mx m++-=,由题意,有()()221221244326043263m mmx xmx x⎧∆=-⨯->⎪⎪⎪+=->⎨⎪⎪-=>⎪⎩,解得3m-<<所以直线l在y轴上的截距的取值范围为(3,-.6.(1(2)5,34⎡⎢⎣【分析】(1)结合已知条件,分别求出a 、c 与2||AF 的关系式,进而求得离心率;(2)结合(1)中结论和已知条件求出椭圆的方程,然后设出M 的坐标,然后利用数量积公式表示出1OM F M →→⋅,最后利用二次函数的性质求解即可. (1)在12Rt AF F △中,∵1230AF F ∠=︒, ∴122AF AF =,122F F =,由椭圆的定义,12223a AF AF AF =+=,22c , ∴椭圆离心率22c c e a a ====(2)2ABF 的周长为22AF BF AB ++=11224AF BF AF BF a +++==a =∵c e a ==,∴1c =,2222b a c =-=, ∴椭圆C 的标准方程为22132x y +=,可得()11,0F -,设()00,M x y ,则()00,OM x y →=,2200132x y +=, ∵()1001,F M x y →=+,∴()222210000002125123334OM F M x x y x x x x →→⎛⎫⋅=++=++-=++ ⎪⎝⎭,∵0x ≤≤所以由二次函数性质可知,当0x 1OM F M →→⋅的最大值为3当023x =-时,1OM F M →→⋅的最小值为54,所以1OM F M →→⋅的取值范围是5,34⎡⎢⎣.7.(1)()22124x y x +=≠±(2)11(1,)(,1)22-- 【分析】(1)根据直线DP 与EP 的斜率之积列方程,化简求得动点P 的轨迹C 的方程. (2)利用向量的坐标运算,由34OA OBOM 得到123x x =-,联立直线y kx m =+与椭圆:2214x y +=,化简写出根与系数关系、判别式,求得关于m 的不等式,并由此求得m 的取值范围. (1)设(),P x y ,则()1=22+24EP DP y y k k x x x ⋅=⋅-≠±-, 所以可得动点P 的轨迹C 的方程为()22124x y x +=≠±.(2)设()()1122,,,,A x y B x y 又()0,M m ,由34OA OBOM 得12123,30,4x x y y m ,123x x =-联立2214y kx m x y =+⎧⎪⎨+=⎪⎩可得()222418440k x kmx m +++-= 222(8)4(41)(4m 4)0km k ∆=-⨯+⨯->,即226416160k m -+>22410k m ∴-+>,且12221228414441km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩, 又123x x =-22441kmx k ,则222122224443()4141km m x x xk k , 222216410k m k m ,2221416m k m 代入22410k m -+>得22211014m m m-+->-, 2114m <<,解得11(1,)(,1)22m ∈--.m ∴的取值范围是11(1,)(,1)22--8.(1)22y x =;(2)9(,)16+∞.【分析】(1)利用p 的几何意义直接写出C 的方程即得.(2)根据给定条件设出直线l 及直线AB 的方程,联立直线AB 与抛物线C 的方程,求出弦AB 中点坐标,借助判别式计算作答. (1)因抛物线2:2(0)C y px p =>的焦点到准线的距离为1,则p =1, 所以C 的方程为22y x =. (2)依题意,设直线l 的方程为12y x b =-+,直线AB 的方程为y =2x +m ,设1122(,),(,)A x y B x y ,由222y x y x m⎧=⎨=+⎩消去x 得:20y y m -+=,由题意知Δ140m =->,得14m <,设线段AB 的中点为()00,N x y ,则120122y y y +==,再由002y x m =+,可得0142m x =-,又点N 在直线l 上,则111()2242m b =--+,于是584m b =-,从而有511984416b >-⨯=,所以l 在y 轴上的截距的取值范围为9(,)16+∞.9.(1)22143x y +=(2)15,,5⎛⎛⎫-∞+∞⎪⎝⎭⎝⎭【分析】(1)利用椭圆的定义可求椭圆方程.(2)设直线()()11122:,,,,l y kx m A x y B x y =+,联立直线方程和椭圆方程后利用韦达定理可求AB 的中垂线的方程,结合其过1,03⎛⎫⎪⎝⎭所得,k m 的等式,结合判别式为正可得k 的取值范围. (1)由题意可知:11||4PQ QF PF r +===, 由2F P 的中垂线l 交1F P 于点Q ,则2||QF PQ =, ∴211242QF QF F F +=>=,则点Q 的轨迹E 为以12,F F 为焦点,4为长轴长的椭圆, 即22224,22,3a c b a c ===-=, ∴点Q 的轨迹E 的方程为:22143x y +=.(2)设直线()()11122:,,,,l y kx m A x y B x y =+,将y kx m =+代入椭圆方程,消去y 得()2223484120k x kmx m +++-=,所以()()222(8)4344120km k m ∆=-+->即223043k m +>-①,由根与系数关系得122834km x x k +=-+,则()121226234my y k x x m k +=++=+, 所以线段AB 的中点M 的坐标为2243,3434km m k k ⎛⎫- ⎪++⎝⎭.又线段AB 的直平分线l '的方程为113y x k ⎛⎫=-- ⎪⎝⎭,由点M 在直线l '上,得22314134343m km k k k ⎛⎫=--- ⎪++⎝⎭,即24330k km ++=,所以()21433m k k=-+②,由①②得()222243439k k k+<+,∵2430k +>,∴22439k k +<,所以235k >,即k <k >所以实数的取值范围是15,,5⎛⎛⎫-∞+∞ ⎪⎝⎭⎝⎭.10.(1)2212x y +=(0x ≠),(2)31λ-<<且13λ≠.【分析】(1)设(,)M x y ,用坐标表示出已知条件即可得;(2)设11(,)F x y ,22(,)E x y ,由DE DF λ=得12,x x 的关系,12,y y 的关系,利用,E F 都是椭圆上的点,适合椭圆方程,可解得1x ,然后由1x ≤求得l 的范围,注意题中有01λ<<,10x ≠,结合起来求得正确的范围.(1)设(,)M x y ,则1112y y x x +-⋅=-(0x ≠),,化简得2212xy +=(0x ≠),此即为曲线C 的方程; (2)设11(,)F x y ,22(,)E x y ,221112x y +=,由DE DF λ=,得21212(2)x x y y λλ-=-⎧⎨=⎩, 212122x x y y λλλ=-+⎧⎨=⎩,E 在椭圆上,则2211(22)()12x y λλλ-++=,把221112x y =-代入得 222222111(22)(22)1222x x x λλλλλλ-+--++-=,解得1312x λλ-=,由1x <得,312λλ-33λ-<<+ 又由于E 在线段DF 上,01λ<<,10x =时,13λ=,所以31λ-<且13λ≠.11.(1)2212x y +=(x ≠;(2)()(),11,-∞-⋃+∞. 【分析】(1)设(),P x y,且x ≠12PA PB k k ⋅=-化简即可得动点P 的轨迹C 的方程;(2)设()11,A x y ,()22,B x y ,直线l :1x my =+与椭圆方程联立可得12y y +,12y y ,()221221242y y m y y m +-=+,由12OMF ONFS y S y λ==-, ()212121221122y y y y y y y y λλ+=++=--+,可得221422m m λλ---+=+,根据λ的范围求得12λλ--+的范围,再解不等式可得m 的范围,再求1m的范围即为直线l 斜率的取值范围.(1)设(),P x y,则22122PA PBy k k x ⋅===--,整理可得:2222x y +=,即2212x y +=(x ≠,所以动点P 的轨迹C 的方程为2212x y +=(x ≠,(2)由题意可知直线l 的斜率存在且不为0,设()11,A x y ,()22,B x y ,直线l 的方程为:1x my =+, 由22112x my x y =+⎧⎪⎨+=⎪⎩可得:()222210m y my ++-=, 所以12222m y y m -+=+,12212y y m -=+,因为11221212OMFONFOF y S y S y OF y λ⋅⋅===-⋅⋅,()()()2221222221244222y y m m m y y m m +-⎡⎤=⨯-+=⎣⎦++, ()222121212121212212122y y y y y y y y y y y y y y λλ+++==++=--+,所以221422m m λλ---+=+,即221422m m λλ+-=+,因为12y λλ=+-在1,13⎛⎫ ⎪⎝⎭上单调递减,所以1420,3y λλ⎛⎫=+-∈ ⎪⎝⎭,所以2244023m m <<+,因为22402m m >+,由224423m m <+可得:11m -<<, 所以直线l 的斜率11m<-或11m >.所以直线l 斜率的取值范围为()(),11,-∞-⋃+∞. 12.(1)24y x =或220y x =;(2)1,6⎡⎫+∞⎪⎢⎣⎭.【分析】(1)由已知可得202pa =,由抛物线的定义可得62pa +=,解方程求得p 的值即可求解; (2)设()11,A x y ,()22,B x y ,联立直线x y t +=与22y px =,由原点O 到直线AB 的距离不t 的范围,由韦达定理可得12x x +、12x x ,利用坐标表示0NA NB ⋅=可利用t 表示p ,再利用函数的单调性求得最值即可求解. (1)由题意及抛物线的定义得:62pa +=,又因为点(M a 在抛物线C 上,所以202pa =,由62202p a pa⎧+=⎪⎨⎪=⎩ 可得25p a =⎧⎨=⎩或101p a =⎧⎨=⎩,所以抛物线C 的标准方程为24y x =或220y x =. (2)设()11,A x y ,()22,B x y ,联立22x y t y px+=⎧⎨=⎩消去y 可得:()2220x p t x t -++=,则1222x x p t +=+,212x x t =,因为NA NB ⊥,所以()()()()()()121212121111NA NB x x y y x x t x t x ⋅=--+=--+--()()212122110x x t x x t =-++++=,所以()()22212210t t p t t -++++=,可得22121t t p t -+=+,由原点O 到直线AB≥2t ≥或2t ≤-, 因为0p >,所以2t ≤-不成立,所以2t ≥,因为221421411t t p t t t -+==++-++在[)2,+∞上单调递增, 所以2222112213p -⨯+≥=+,所以16p ≥, 即p 的取值范围为1,6⎡⎫+∞⎪⎢⎣⎭.13.(1)221168x y +=(2)( 【分析】(1)设圆M 的半径为r ,则1217MC r MC r ⎧=+⎪⎨=-⎪⎩,即可得到128MC MC +=,即可得到点M 的轨迹是以12,C C 为焦点的椭圆,求出,a b ,即可得到轨迹方程;(2)设l 方程为:(1)y k x =-,1122(,)(,)P x y Q x y ,,联立直线与椭圆方程,消元、列出韦达定理,根据弦长公式表示出PQ ,再求出线段PQ 垂直平分线方程,从而求出AN,即可得到PQ AN= (1)解:设圆M 的半径为r ,则1217MC r MC r ⎧=+⎪⎨=-⎪⎩12128MC MC C C ∴+=>=所以点M 的轨迹是以12,C C为焦点的椭圆,且4,a c ==2228b a c ∴=-=所以所求轨迹方程为221168x y +=. (2)解:经分析,l 斜率存在,设l 方程为:(1)y k x =-,1122(,)(,)P x y Q x y , 由22(11168y k x x y =-⎧⎪⎨+=⎪⎩)消去y 得:222212)42160k x k x k +-+-=( 221212224216,.1212k k x x x x k k -∴+==++PQ ∴=.. 121222(2)12ky y k x x k -+=+-=+ PQ ∴的中点坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭所以线段PQ 垂直平分线方程为222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭.令0y =得2212N kx k =+,221112N k AN x k +∴=-=+PQAN ∴= 0k ≠ 211k ∴+> 2141630301k ∴<-<+ PQ AN∴的取值范围为(.14. (1)k = (2)[)4,64 【分析】(1)求出圆心到直线l的距离为d =k 的值; (2)设()11,A x y 、()22,B x y ,将直线l 的方程与椭圆方程联立,列出韦达定理,利用弦长公式计算出AB 关于k 的表达式,利用勾股定理可求得CD 关于k 的表达式,再利用不等式的基本性质可求得2AB CD ⋅的取值范围. (1)解:因为OC OD ⊥,且圆O 的半径为2,所以点O 到直线l的距离2sin4d π===k =. (2)解:设()11,A x y 、()22,B x y,由2214y kx y x ⎧=⎪⎨+=⎪⎩,消y 整理得()22410k x ++-=,()()2224416160k k ∆=++=+>,所以12x x +=,12214x x k -=+,所以12 AB x x=-=()22414kk+=+.设圆心O到直线l的距离为d=所以CD===所以()()22222222411614142404644144k kkAB CDk k k k+++⋅=⋅⋅==-++++.244k+≥,则21144k<≤+,所以,[)22240644,644AB CDk⋅=-∈+.所以2AB CD⋅的取值范围为[)4,64.15.(1)24y x=(2)3-(3)()0,1【分析】(1)根据题意得到12p=,从而得到抛物线C:24y x=.(2)首先设直线AB的方程为1x ty=+,与抛物线24y x=联立得2440y ty--=,再利用韦达定理求解.(3)设211,4yA y⎛⎫⎪⎝⎭,222,4yC y⎛⎫⎪⎝⎭,21144,By y⎛⎫-⎪⎝⎭,22244,Dy y⎛⎫-⎪⎝⎭,再利用韦达定理和12ECFACFECSSS S AC==△△求解即可.(1)因为抛物线C:()220y px p=>,焦点()1,0F,所以12p=,解得2p=,所以抛物线C:24y x=.24y x =(2)设直线AB 的方程为1x ty =+,与抛物线24y x =联立得:2440y ty --=, 由韦达定理得124y y t +=,124y y =-,所以()22212121214416y yy y x x =⋅==,所以1212413OA OB x x y y ⋅=+=-+=- (3)设211,4y A y ⎛⎫⎪⎝⎭,222,4y C y ⎛⎫ ⎪⎝⎭,21144,B y y ⎛⎫- ⎪⎝⎭,22244,D y y ⎛⎫- ⎪⎝⎭, 因为21222112444AC y y k y y y y -==+-, 所以直线AC :2111244y y y x y y ⎛⎫-=- ⎪+⎝⎭,即1212124y y y x y y y y =+++。

圆锥曲线中的取值范围问题

圆锥曲线中的取值范围问题

圆锥曲线中的取值范围问题一、常见基本题型:对于求曲线方程中参数范围问题,应根据题设条件及曲线的几何性质构造参数满足的不等式,通过解不等式求得参数的范围;或建立关于参数的目标函数,转化为函数的值域来解. (1)从直线和二次曲线的位置关系出发,利用判别式的符号,确定参数的取值范围。

例1、已知直线l 与y 轴交于点(0,)P m ,与椭圆22:21C x y +=交于相异两点A 、B ,且3AP PB =,求m 的取值范围.解:(1)当直线斜率不存在时:12m =±(2)当直线斜率存在时:设l 与椭圆C 交点为 1122(,),(,)A x y B x y ∴2221y kx mx y =+⎧⎨+=⎩得 222(2)210k x km x m +++-= 22222(2)4(2)(1)4(22)0km k m k m ∴∆=-+-=-+> (*)212122221,22km m x x x x k k --+==++∵3AP PB =,∴123x x -=,∴122212223x x x x x x +=-⎧⎨=-⎩. 消去2x ,得212123()40x x x x ++=, 2222213()4022km m k k --∴+=++整理得22224220k m m k +--=214m =时,上式不成立; 214m ≠时,2222241mk m -=-,∴22222041mk m -=≥-,∴211-<≤-m 或121≤<m 把2222241mk m -=-代入(*)得211-<<-m 或121<<m∴211-<<-m 或121<<m综上m 的取值范围为211-<≤-m 或121≤<m 。

(2)利用题中其他变量的范围,借助于方程产生参变量的函数表达式,确定参数的取值范围.例2、已知点(4, 0)M ,(1, 0)N ,若动点P 满足6||M N M P P N ⋅=.(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设过点N 的直线l 交轨迹C 于A ,B 两点,若181275N A N B -⋅-≤≤,求 直线l 的斜率的取值范围.解:(Ⅰ)设动点(, )P x y ,则(4, )M P x y =- ,(3, 0)M N =- ,(1, )P N x y =--.由已知得22)()1(6)4(3y x x -+-=--,化简得223412x y +=,得22143xy+=.所以点P 的轨迹C 是椭圆,C 的方程为13422=+yx.(Ⅱ)由题意知,直线l 的斜率必存在,不妨设过N 的直线l 的方程为(1)y k x =-, 设A ,B 两点的坐标分别为11(, )A x y ,22(, )B x y .由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩消去y 得2222(43)84120k x k x k +-+-=.因为N 在椭圆内,所以0∆>.所以212221228,34412.34kx x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩因为2121212(1)(1)(1)(1)(1)N A N B x x y y k x x ⋅=--+=+--]1)()[1(21212++-+=x x x x k222222243)1(943438124)1(kk k kkkk ++-=+++--+=,所以22189(1)127345k k-+--+≤≤. 解得213k ≤≤.(3)利用基本不等式求参数的取值范围例3、已知点Q 为椭圆E :221182xy+=上的一动点,点A 的坐标为(3,1),求AP AQ ⋅的取值范围.解: (1,3)AP = ,设Q (x ,y ),(3,1)A Q x y =--,(3)3(1)36AP AQ x y x y ⋅=-+-=+-.∵221182xy+=,即22(3)18x y +=,而22(3)2|||3|x y x y +⋅≥,∴-18≤6xy ≤18.则222(3)(3)6186x y x y xy xy +=++=+的取值范围是[0,36].3x y +的取值范围是[-6,6].∴36AP AQ x y ⋅=+-的取值范围是[-12,0].二、针对性练习1.已知椭圆的一个顶点为(0,1)A -,焦点在x 轴上.若右焦点到直线0x y -+=的距 离为3.(1)求椭圆的方程.(2)设直线(0)y kx m k =+≠与椭圆相交于不同的两点,M N .当||||AM AN =时,求m 的 取值范围.解:(1)依题意可设椭圆方程为2221x y a+=,则右焦点)0F3=,解得23a =,故所求椭圆的方程为221.3xy +=(2)设(,)P P P x y 、(,)M M M x y 、(,)N N N x y ,P 为弦M N 的中点,由2213y kx mx y =+⎧⎪⎨+=⎪⎩ 得222(31)63(1)0k x mkx m +++-=直线与椭圆相交,22222(6)4(31)3(1)031,mk k m m k ∴∆=-+⨯->⇒<+ ①23231M NP x x mk x k +∴==-+,从而231P P m y kx m k =+=+,21313P A P Py m k k x m k+++∴==-,又||||,,AM AN AP MN =∴⊥则:23113m k m kk++-=-,即2231m k =+,②把②代入①得22m m <,解02m <<, 由②得22103m k -=>,解得12m >. 综上求得m 的取值范围是122m <<.2. 如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上, 点N 在C M 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E . (I )求曲线E 的方程;(II )若过定点F (0,2)的直线交曲线E 于不同的两点,G H (点G 在点,F H 之间),且满足FH FG λ=, 求λ的取值范围.解:(Ⅰ).0,2=⋅=AM NP AP AM∴NP 为AM 的垂直平分线,∴|NA|=|NM| 又.222||||,22||||>=+∴=+AN CN NM CN ∴动点N 的轨迹是以点C (-1,0),A (1,0)为焦点的椭圆. 且椭圆长轴长为,222=a 焦距2c=2. .1,1,22===∴bc a∴曲线E 的方程为.1222=+yx(Ⅱ)当直线GH 斜率存在时,设直线GH 方程为,12,222=++=yxkx y 代入椭圆方程得.230.034)21(222>>∆=+++k kx x k 得由设2212212211213,214),,(),,(kx x kk x x y x H y x G +=+-=+则)2,()2,(,2211-=-∴=y x y x FH FG λλ 又λλλλλ2122221222122121)1(.,)1(,x x x x x x x x x x x x x ==++∴=+=+∴=∴,λλλλ222222)1()121(316,213)1()214(+=++=++-∴k kkk 整理得.331.316214.316323164,2322<<<++<∴<+<∴>λλλ解得kk.131,10<<∴<<λλ 又又当直线GH 斜率不存在,方程为.31,31,0===λFH FG x)1,31[,131的取值范围是即所求λλ<≤∴3.已知椭圆E 的中心在坐标原点O ,两个焦点分别为)0,1(-A 、)0,1(B ,一个顶点为)0,2(H .(1)求椭圆E 的标准方程;(2)对于x 轴上的点)0,(t P ,椭圆E 上存在点M ,使得MH MP ⊥,求t 的取值范围. 解:(1)由题意可得,1c =,2a =,∴b =.∴所求的椭圆的标准方程为:22143xy+=.(2)设),(00y x M )20±≠x (,则 2200143x y +=. ①且),(00y x t MP --=,),2(00y x MH --=,由MH MP ⊥可得0=⋅MH MP ,即∴0)2)((2000=+--y x x t . ②由①、②消去0y 整理得3241)2(0200-+-=-x x x t . ∵20≠x ∴23411)2(4100-=---=x x t .∵220<<-x , ∴ 12-<<-t .∴t 的取值范围为)1,2(--.4.已知椭圆2222:1x y C ab+=(0)a b >>的离心率为2,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -+=相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)若过点M (2,0)的直线与椭圆C 相交于两点,A B ,设P 为椭圆上一点,且满 足OP t OB OA =+(O 为坐标原点)-3时,求实数t 取值范围.解:(Ⅰ)由题意知2c e a==, 所以22222212c a b e aa-===.即222a b =.又因为1b ==,所以22a =,21b =. 故椭圆C 的方程为1222=+yx.(Ⅱ)由题意知直线A B 的斜率存在.设A B :(2)y k x =-,11(,)A x y ,22(,)B x y ,(,)P x y ,由22(2),1.2y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)8820k x k x k +-+-=. 422644(21)(82)0k k k ∆=-+->,212k <.2122812kx x k+=+,21228212k x x k-=+ .∵OP t OB OA =+,∴1212(,)(,)x x y y t x y ++=,21228(12)x x kx tt k +==+,1212214[()4](12)y y ky k x x k tt t k +-==+-=+. ∵点P 在椭圆上,∴222222222(8)(4)22(12)(12)k k t k t k -+=++,∴22216(12)k t k =+.-<3123x -<,∴22121220(1)[()4]9k x x x x ++-<∴422222648220(1)[4](12)129kk k k k -+-<++ , ∴22(41)(1413)0k k -+>,∴214k >.∴21142k <<,∵22216(12)k t k =+,∴222216881212kt kk==-++,∴23t -<<-23t <<,∴实数t 取值范围为)2,362()362,2( --.。

高中数学圆锥曲线与最值及取值范围问题(附经典例题与解析)

高中数学圆锥曲线与最值及取值范围问题(附经典例题与解析)

圆锥曲线与最值问题【知识点分析】方法一、圆锥曲线的的定义转化法借助圆锥曲线定义将最值问题等价转化为易求、易解、易推理证明的问题来处理.(1)椭圆:到两定点的距离之和为常数(大于两定点的距离)(2)双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (3)抛物线:到定点与定直线距离相等。

【相似题练习】1.已知抛物线y 2=8x ,点Q 是圆C :x 2+y 2+2x ﹣8y +13=0上任意一点,记抛物线上任意一点到直线x =﹣2的距离为d ,则|PQ |+d 的最小值为( ) A .5 B .4 C .3 D .2 1.已知双曲线C :的右焦点为F ,P 是双曲线C 的左支上一点,M (0,2),则△PFM 周长最小值为 .【知识点分析】 方法二、函数法二次函数2y ax bx c =++顶点坐标为24b ac b ⎛⎫-- ⎪,1.已知F 1,F 2为椭圆C :+=1的左、右焦点,点E 是椭圆C 上的动点,1•2的最大值、最小值分别为( ) A .9,7 B .8,7 C .9,8 D .17,8【知识点分析】方法三、利用最短路径【问题1】“将军饮马”作法图形原理在直线l 上求一点P ,使P A +PB 值最小.作B 关于l 的对称点B '连A B ',与l 交点即为P .两点之间线段最短. P A +PB 最小值为A B '.【问题2】 作法图形原理在直线1l 、2l 上分别求点M 、N ,使△PMN 的周长最小.分别作点P 关于两直线的对称点P '和P '',连P 'P '',与两直线交点即为M ,N .两点之间线段最短. PM +MN +PN 的最小值为 线段P 'P ''的长.【问题3】 作法图形原理在直线1l 、2l 上分别求点M 、N ,使四边形PQMN 的周长最小.分别作点Q 、P 关于直线1l 、2l 的对称点Q '和P '连Q 'P ',与两直线交点即为M ,N .两点之间线段最短. 四边形PQMN 周长的最小值为线段P 'P ''的长.【问题4】 作法图形原理作点P 关于1l 的对称点P ',作P 'B ⊥2l 于B ,交l 于A .点到直线,垂线段最短. P A +AB 的最小值为线段P 'B 的长.l B A lPB'AB l 1l 2Pl 1l 2NMP''P'P l 1l 2N MP'Q'Q P l 1l 2P Q l 1A P'Pl 1l 2P小.【问题5】 作法图形原理A 为1l 上一定点,B 为2l 上一定点,在2l 上求点M ,在1l 上求点N ,使AM +MN +NB 的值最小.作点A 关于2l 的对称点A ',作点B 关于1l 的对称点B ',连A 'B '交2l 于M ,交1l 于N .两点之间线段最短. AM +MN +NB 的最小值为线段A 'B '的长.【相似题练习】1.已知双曲线x 2﹣y 2=1的右焦点为F ,右顶点A ,P 为渐近线上一点,则|PA |+|PF |的最小值为( )A .B .C .2D .【知识点分析】方法四、利用圆的性质【相似题练习】1.已知椭圆,圆A :x 2+y 2﹣3x ﹣y +2=0,P ,Q 分別为椭圆C 和圆A 上的点,F (﹣2,0),则|PQ |+|PF |的最小值为( ) A . B . C . D .l 2l 1ABNMl 2l 1M N A'B'AB【知识点分析】 方法五、切线法【相似题练习】1.如图,设椭圆C :+=1(a >b >0)的左右焦点为F 1,F 2,上顶点为A ,点B ,F 2关于F 1对称,且AB⊥AF 2(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知P 是过A ,B ,F 2三点的圆上的点,若△AF 1F 2的面积为,求点P 到直线l :x ﹣y ﹣3=0距离的最大值.【知识点分析】 方法六、参数法1.圆222)()(r b y a x =-+-的参数方程可表示为)(.sin ,cos 为参数θθθ⎩⎨⎧+=+=r b y r a x .2. 椭圆12222=+b y a x )0(>>b a 的参数方程可表示为)(.sin ,cos 为参数ϕϕϕ⎩⎨⎧==b y a x .3. 抛物线px y 22=的参数方程可表示为)(.2,22为参数t pt y px x ⎩⎨⎧==.【相似题练习】已知点A (2,1),点B 为椭圆+y 2=1上的动点,求线段AB 的中点M 到直线l 的距离的最大值.并求此时点B 的坐标.【知识点分析】方法七、基本不等式1、均值不等式定理: 若0a >,0b >,则2a b ab +≥,2、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈;③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭.【相似题练习】1.抛物线y 2=4x 的焦点为F ,点A 、B 在抛物线上,且∠AFB =,弦AB 的中点M 在准线l 上的射影为M ′,则的最大值为 .方法七、利用三角形的三边关系两边之和大于第三边,两边之差小于第三边。

高中数学专题:圆锥曲线中焦点弦取值范围的探究

高中数学专题:圆锥曲线中焦点弦取值范围的探究

圆锥曲线中焦点弦的取值范围的探究本文主要探究圆锥曲线中焦点弦的取值范围,尤其时焦点弦弦长何时取最小值和最大值,运用直线的参数方程和弦长公式,得出椭圆、抛物线、双曲线的焦点弦的取值范围的以下结论:结论1:椭圆焦点弦AB 的取值范围为⎥⎦⎤⎢⎣⎡a a b 2,22,其中最小值为椭圆的通经长,最大值为椭圆的长轴长;结论2:抛物线焦点弦AB 的取值范围为[)+∞,2p ,其中最小值为抛物线的通经长;结论3:(1)若b a ≥时,双曲线的焦点弦AB 的取值范围为⎪⎭⎫⎢⎣⎡+∞,22a b ,其中最小值为双曲线的通经长; (2)若b a <时,双曲线的焦点弦AB 的取值范围为[)+∞,2a ,其中最小值为双曲线的实轴长;探究一:已知椭圆:C 12222=+by a x ,点F 为椭圆C 的左焦点,直线l 过点F ,交椭圆C 于A 、B 两点,求焦点弦AB 的取值范围; 解:)0,(c F -,设直线l 的倾斜角为α,则直线l 的参数方程为:⎩⎨⎧=+-=ααsin cos t y t c x (t 为参数), 设点A 、B 对应的参数分别为1t ,2t ,联立直线l 和椭圆C 的方程得:0cos 2)sin cos (4222222=--+b ct b t a b ααα,由韦达定理得:ααα2222221sin cos cos 2a b c b t t +=+,αα2222421sin cos a b b t t +-=, 由弦长公式得:21221214)(t t t t t t AB -+=-=ααααα2222422222224sin cos 4)sin cos (cos 4a b b a b c b +++= ααααααα222222222222224224sin cos 2)sin cos ()sin cos (4cos 4a b ab a b a b b c b +=+++= α2222sin 2c b ab += 所以当0sin 2=α时,焦点弦AB 取最大值,a AB 2max =,即椭圆的长轴长,此时AB l 与x 轴重合;当1sin 2=α时,焦点弦AB 取最小值,ab AB 2min 2=,即椭圆的通经,此时直线x l AB ⊥轴;综上所述:焦点弦⎥⎦⎤⎢⎣⎡∈a a b AB 2,22 结论1:椭圆焦点弦AB 的取值范围为⎥⎦⎤⎢⎣⎡a a b 2,22,其中最小值为椭圆的通经长,最大值为椭圆的长轴长;探究二:已知抛物线C :px y 22=,点F 为抛物线C 的焦点,直线l 过点F ,交抛物线C 于A 、B 两点,求焦点弦AB 的取值范围;解:)0,2(pF ,设直线l 的倾斜角为α,则直线l 的参数方程为:⎪⎩⎪⎨⎧=+=ααsin cos 2t y t p x (t 为参数), 设点A 、B 对应的参数分别为1t ,2t ,联立直线l 和抛物线C 的方程得: 0cos 2sin 222=--p pt t αα,由韦达定理得:αα221sin cos 2p t t =+,α2221sin p t t -=, 由弦长公式得:αααα2224222122121sin 2sin 4sin cos 44)(pp p t t t t t t AB =+=-+=-=, 因为直线l 交抛物线C 于A 、B 两点,所以倾斜角0≠α,所以(]1,0sin 2∈α,则[)+∞∈,2p AB ,当1sin 2=α,即x l AB ⊥轴时,取最小值p AB 2min =,即通经长;结论2:抛物线焦点弦AB 的取值范围为[)+∞,2p ,其中最小值为抛物线的通经长;探究三:已知双曲线:C 12222=-by a x ,点F 为双曲线C 的左焦点,直线l 过点F ,交双曲线C 于A 、B 两点,求焦点弦AB 的取值范围; 解:)0,(c F -,设直线l 的倾斜角为α,则直线l 的参数方程为:⎩⎨⎧=+-=ααsin cos t y t c x (t 为参数), 设点A 、B 对应的参数分别为1t ,2t ,联立直线l 和椭圆C 的方程得:0cos 2)sin cos (4222222=+--b ct b t a b ααα,由韦达定理得:ααα2222221sin cos cos 2a b c b t t -=+,αα2222421sin cos a b b t t -=, 由弦长公式得:21221214)(t t t t t t AB -+=-=ααααα2222422222224sin cos 4)sin cos (cos 4a b b a b c b ---= ααααααα222222222222224224sin cos 2)sin cos ()sin cos (4cos 4a b ab a b a b b c b -=---= α2222sin 2c b ab -= 因为[]1,0sin 2∈α,所以[]0,sin 222c c -∈-α, 所以[]22222,sin b a c b -∈-α,因为直线l 交双曲线C 于A 、B 两点,所以ab±≠αtan ,即0sin 222≠-αc b ,所以[)(]22222,00,sin b a c b -∈-α,(1)若b a ≥,则(]2222,0sin a c b ∈-α,⎪⎭⎫⎢⎣⎡+∞∈,22a b AB ,当1sin 2=α,即直线x l AB ⊥轴时,取最小值ab AB 2min2=,即双曲线的通经;(2)若b a <,则(]2222,0sin b c b ∈-α,[)+∞∈,2a AB ,当0sin 2=α,即AB l 与x 轴重合时,取最大值a AB 2max =,即双曲线的实轴长;结论3:(1)若b a ≥时,双曲线的焦点弦AB 的取值范围为⎪⎭⎫⎢⎣⎡+∞,22a b ,其中最小值为双曲线的通经长; (2)若b a <时,双曲线的焦点弦AB 的取值范围为[)+∞,2a ,其中最小值为双曲线的实轴长;。

2025高考数学圆锥曲线中的最值、范围问题课件练习题

2025高考数学圆锥曲线中的最值、范围问题课件练习题
例1
训练1
例2
训练2
返回目录
突破2
圆锥曲线中的最值、范围问题
方法技巧
圆锥曲线中最值(范围)问题的求解方法
几何法
若题目的条件和结论明显能体现几何特征及意义,则考虑利用图形性质来
解决.
若题目的条件和结论能体现一种明确的函数,则可首先建立目标函数,再
代数法 求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不
第八章
平面解析几何
突破2 圆锥曲线中的最值、范围问题
目录
Contents
01
练习 练透好题 精准分层
突破2
圆锥曲线中的最值、范围问题
命题点1 最值问题
例1 [2023全国卷甲]已知直线 x -2 y +1=0与抛物线 C : y 2=2 px ( p >0)交于 A , B
两点,| AB |=4 15 .
.
例1
训练1
例2
训练2
返回目录
突破2
圆锥曲线中的最值、范围问题
又 · =( x 3 -1, y 3 )·( x 4 -1, y 4 )= x 3 x 4 -( x 3 + x 4 )+1+ y 3 y 4 =0,
所以
2
2

4−2
2
+1+
4

=0,化简得 m 2 + k 2 +6 km =4.
(2)若动点 P 与双曲线 C 的两个焦点 F 1, F 2的距离之和为定值(大于| F 1 F 2|),且
cos
1
∠ F 1 PF 2的最小值为- ,求动点 P 的轨迹方程.
9
[解析]
2
2
由椭圆定义得 P 点轨迹为椭圆,可设其轨迹方程为 2 + 2 =1( a > b >0),

圆锥曲线中的范围、最值问题课件-2025届高三数学一轮复习

圆锥曲线中的范围、最值问题课件-2025届高三数学一轮复习

设Q(xQ,yQ),因为5A→B=8Q→B,所以5(x2-x1)=8(x2-xQ),解得xQ=2, 过点P作PH垂直准线于点H,根据抛物线的定义,得|PF|+|PQ|=|PH|+ |PQ|,当Q,P,H三点共线且与x轴平行时,|PF|+|PQ|有最小值,最小 值为|QH|=2+1=3,所以|PF|+|PQ|的最小值为3.故选A.
6时,f′(x)<0,f(x)在32,
6上单调递减,故当
x=32时,f(x)有最
大值,
即当 x1=32时,S△ABM 有最大值,此时 y1= 410,抛物线过点32, 410,所以 p=254.
规律方法
函数法求最值(范围)问题就是构建关于变量的目标函数,将问 题转化为求函数的最值(或值域),解决问题时要注意自变量的取值 范围.
则3x62 +2y02 =1, (x+6)(x-4)+y2=0,
可得 2x2+9x-18=0,得 x=32或 x=-6. 由于 y>0,故 x=32,于是 y=523.
所以点
P
的坐标是32,5
2
3.
(2)设M是椭圆长轴AB上的一点,点M到直线AP的距离等于|MB|,求椭圆上 的点到点M的距离d的最小值.
解:由(1)可得直线AP的方程是x- 3 y+6=0,点B(6,0). 设点 M 的坐标是(m,0),则点 M 到直线 AP 的距离是|m+2 6|,于是|m+2 6|=|m -6|, 又-6≤m≤6,解得m=2. 由椭圆上的点(x,y)到点M的距离为d,
得 d2=(x-2)2+y2=x2-4x+4+20-59x2=49x-922+15, 由于-6≤x≤6,由 f(x)=49x-922+15 的图象可知, 当 x=92时,d 取最小值,且最小值为 15.

高考数学复习第44讲 圆锥曲线中的最值与范围问题

高考数学复习第44讲 圆锥曲线中的最值与范围问题

(- 2,0)∪(0, 2)∪(2,+∞).
圆锥曲线中求参数的取值范围一般采用代数法,即先建立关于参数的目标函数,再 求这个函数的最值.在利用代数法求范围时常从以下方面考虑:①利用判别式来构造不 等关系,从而确定参数的取值范围;②利用基本不等式求出参数的取值范围;③利用函 数的值域的求法,确定参数的取值范围.
1+m2>1,所以 |TF|=3t+1t,因为 y=3t+ 1 在(1,+∞)上是
4
|PQ| 4 4
4 4t
增函数,所以 y>3+1=1,即|TF|>1,当 m=0 时,F(1,0),T(4,0),|TF|=3,|PQ|=2b2=3,
44
|PQ|
a
所以 |TF|=1.综上,|TF|的取值范围是[1,+∞).
x2 y2 (2021·福州二模)已知椭圆 C1:a2+b2=1(a>b>0)的右顶点与抛物线 C2:y2
1 =2px(p>0)的焦点重合,且椭圆 C1 的离心率为2,过 C1 的右焦点 F 且垂直于 x 轴的直线 截 C2 所得的弦长为 4 2.
(1) 求椭圆 C1 和抛物线 C2 的标准方程; 【解答】 设椭圆 C1 的焦距为 2c,实轴长为 2a,由题意得 a=p2,则 C2:y2=4ax,
l2 与直线 x=4 交于点 T,求||PTQF||的取值范围.
3x2+4y2=12,
【解答】 设直线 PQ 的方程为 x=my+1,P(x1,y1),Q(x2,y2),由 x=my+1,

(3m2+4)y2+6my-9=0,故
y1+y2=
-6m 3m2+4
,y1y2=
-9 , 3m2+4
所以
|PQ|=
(例 1) 【解答】 因为椭圆 E 的方程为x42+y32=1,所以 F1(-1,0),F2(1,0).由椭圆定义可 得 AF1+AF2=4,所以△AF1F2 的周长为 4+2=6.

高中数学培优专题第44讲以圆锥曲线为背景的取值范围问题专题

高中数学培优专题第44讲以圆锥曲线为背景的取值范围问题专题

第四十四讲以圆锥曲线为背景的取值范围问题专题一、选择题1.已知椭圆,与双曲线具有相同焦点F1、F2,且在第一象限交于点P,椭圆与双曲线的离心率分别为e1、e2,若∠F1PF2=,则的最小值是A.B.2+C.D.【答案】A【解析】根据题意,可知,解得,根据余弦定理,可知,整理得,所以,故选A.2.已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上.在中,若,则的最大值为()A.B.C.D.【答案】C【解析】由题意得,准线,,,过作,垂足为,则由抛物线定义可知,于是,在上为减函数,当取到最大值时(此时直线与抛物线相切),计算可得直线的斜率为,从而,,故选C.3.过上任一点作的切线切于两点,则的最小值为()A.B.1C.D.【答案】A【解析】根据题意,设为抛物线上任一点,则,圆的圆心为,设,则,又由,变形可得,所以当最小时,最小,又由,则当的坐标为或时,取得的最小值,此时最小,且的最小值为,故选A.4.椭圆:的长轴长、短轴长和焦距成等差数列,若点为椭圆上的任意一点,且在第一象限,为坐标原点,为椭圆的右焦点,则的取值范围为()A.--B.--C.--D.--【答案】C【解析】因为椭圆的长轴长、短轴长和焦距成等差数列所以,即为椭圆的右焦点,所以c=3在椭圆中,所以,解方程组得所以椭圆方程为设则,则=因为,所以当时,取得最大值为当m趋近于0时,的值趋近于-16所以的取值范围为--所以选C5.是双曲线=1的右支上一点,M、N分别是圆和=4上的点,则的最大值为()A.6 B.7 C.8 D.9【答案】D【解析】双曲线,故焦点为,圆心分别为,半径分别为.画出图像如下图所示. 要求的最大值,也即是求的最大值减去的最小值.由图可知的最大值为,的最小值为,故的最大值为.故选D.6.已知椭圆C:的左、右顶点分别为A、B,F为椭圆C的右焦点,圆上有一动点P,P不同于A,B两点,直线PA与椭圆C交于点Q,则的取值范围是.A.B.C.D.(-∞,0)∪(0,1).【答案】D【解析】椭圆C:焦点在x轴上,,,,右焦点F(1,0),由P在圆x2+y2=4上,则PA⊥PB,则,则,,设(,),则,设,(,),则(),(,),且不等于0.故选D:7.已知是双曲线的左右焦点,若在右支上存在点使得点到直线的距离为,则离心率的取值范围是()A.B.C.D.【答案】B【解析】设,所以选B.8.已知直线与双曲线的右支有两个交点,则的取值范围为()A.B.C.D.【答案】D【解析】由得双曲线的渐近线方程为y=±x,根据图象可得当﹣1<k≤1时,直线与双曲线的右支只有1个交点,当k≤﹣1时,直线与双曲线右支没有交点,把y=kx﹣1代入x2﹣y2=4得:(1﹣k2)x+2kx﹣5=0,令△=4k2+20(1﹣k2)=0,解得k=或k=﹣(舍).∴1<k<时直线与双曲线的右支有2个交点.故选:D.9.设椭圆(的左、右焦点分别为,,点在椭圆的外部,点是椭圆上的动点,满足恒成立,则椭圆离心率的取值范围是A.,B.,C.,D.【答案】D【解析】∵点在椭圆的外部,∴>,<,由椭圆的离心率>,,又因为,且,要恒成立,即,则椭圆离心率的取值范围是.故选:D.10.已知,是椭圆和双曲线的公共焦点,是它们的一个公共点,且,记椭圆和双曲线的离心率分别为,,则的最大值是()A.B.C.D.【答案】D【解析】如图,设椭圆的长半轴长为,双曲线的半实轴长为,则根据椭圆及双曲线的定义,,设,则在中由余弦定理得,化简,该式变成,,,的最大值是,故选D.11.如图,已知抛物线的顶点在坐标原点,焦点在x轴上,且过点(2,4),圆,过圆心的直线l与抛物线和圆分别交于P,Q,M,N,则的最小值为A.36B.42C.49D.50【答案】B【解析】设抛物线方程为由抛物线过定点得,抛物线方程,焦点为,圆的标准方程为圆心为,半径,由于直线过焦点,可设直线方程为,设,又,时等号成立,的最小值为,故选B.12.已知抛物线,圆(r>0),过点的直线l交圆N于两点,交抛物线M于两点,且满足的直线l恰有三条,则r的取值范围为( )A.,B.(,)C.(,)D.,【答案】B【解析】由题意,当轴时,过与抛物线交于,与圆交于,满足题设;当与轴不垂直时,设直线,代入抛物线的方程,得,则,把直线代入圆的方程,整理得,设,因为,所以,即可得,则,设,则,此时,所以,即实数的取值范围是,故选B.13.已知是椭圆的左、右焦点,若椭圆上存在一点使得,则椭圆的离心率的取值范围为()A.,B.C.D.【答案】B【解析】设则,由题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四十四讲 以圆锥曲线为背景的取值范围问题专题一、选择题 1.已知椭圆x 2a2+y 2b 2=1(a >b >0),与双曲线x 2m2−y 2n 2=1(m >0,n >0)具有相同焦点F 1、F 2,且在第一象限交于点P ,椭圆与双曲线的离心率分别为e 1、e 2,若∠F 1PF 2=π3,则e 12+e 22的最小值是A .2+√32B . 2+√3C .1+2√32 D . 2+√34【答案】A 【解析】根据题意,可知|PF 1|+|PF 2|=2a,|PF 1|−|PF 2|=2m , 解得|PF 1|=a +m,|PF 2|=a −m ,根据余弦定理,可知(2c)2=(a +m)2+(a −m)2−2(a +m)(a −m)cos60∘, 整理得c 2=a 2+3m 24,所以e 12+e 22=c 2a 2+c 2m 2=a 2+3m 24a 2+a 2+3m 24m 2=1+14(3m 2a 2+a 2m 2)≥1+√32=2+√32,故选A.2.已知点E 是抛物线C:y 2=2px(p >0)的对称轴与准线的交点,点F 为抛物线C 的焦点,点P 在抛物线C 上.在ΔEFP 中,若sin∠EFP =μ⋅sin∠FEP ,则μ的最大值为( ) A . √22 B . √32 C . √2 D . √3 【答案】C 【解析】由题意得,准线l:x =−p2,E (−p2,0),F (p2,0),过P 作PH ⊥l ,垂足为H ,则由抛物线定义可知PH =PF ,于是μ=sin∠EFP sin∠FEP =PE PF =PE PH =1cos∠EPH =1cos∠PEF ,∵y =cosx 在(0,π)上为减函数,∴当∠PEF 取到最大值时(此时直线PE 与抛物线相切),计算可得直线PE 的斜率为1,从而∠PEF =45°,∴μmax =√22=√2,故选C.3.过y 2=4x 上任一点作(x −3)2+y 2=1的切线切于P,Q 两点,则|PQ |的最小值为( ) A .√142 B . 1 C . √73 D . 4√23【答案】A 【解析】根据题意,设M (m,n )为抛物线y 2=4x 上任一点,则n 2=4m , 圆(x −3)2+y 2=1的圆心C 为(3,0), 设|MC |=t ,则PM =√t 2−1, 又由S ΔPMC =12×|PM |×|CP |=12×|PQ |2×|MC |,变形可得|PQ |=2√1−1t 2, 所以当t 最小时,|PQ |最小,又由|MC |2=(m −3)2+(n −0)2=m 2−2m +9=(m −1)2+8≥8, 则当M 的坐标为(1,4)或(1,−4)时,|MC |=t 取得的最小值√8, 此时|PQ |最小,且|PQ |的最小值为2×√1−18=√142,故选A.22C 上的任意一点,且P 在第一象限,O 为坐标原点,F (3,0)为椭圆C 的右焦点,则 OP ⃑⃑⃑⃑⃑ ⋅PF ⃑⃑⃑⃑⃑ 的取值范围为( ) A . (-16,-10) B . (-10,-394] C . (-16,-394] D . (-∞,-394]【答案】C 【解析】因为椭圆C 的长轴长、短轴长和焦距成等差数列 所以2a +2c =4b ,即a +c =2b F (3,0)为椭圆C 的右焦点,所以c=3 在椭圆中,a 2=c 2+b 2所以{a 2=c 2+b 2a +c =2bc =3 ,解方程组得{a =5b =4c =3所以椭圆方程为x 225+y 216=1设P(m,n) (0<m <5)则m 225+n 216=1,则n 2=16−1625m 2 OP⃑⃑⃑⃑⃑ ⋅PF ⃑⃑⃑⃑⃑ =(m,n )(3−m,−n ) =3m −m 2−n 2=3m −m 2−(16−1625m 2) =−925m 2+3m −16 =−925(m −256)2−394因为0<m <5,所以当m =256时,OP⃑⃑⃑⃑⃑ ⋅PF ⃑⃑⃑⃑⃑ 取得最大值为−394当m 趋近于0时,OP⃑⃑⃑⃑⃑ ⋅PF ⃑⃑⃑⃑⃑ 的值趋近于-16 所以OP ⃑⃑⃑⃑⃑ ⋅PF ⃑⃑⃑⃑⃑ 的取值范围为(-16,-394] 所以选C 5.P 是双曲线x 29−y 216=1的右支上一点,M 、N 分别是圆(x +5)2+y 2=1和(x −5)2+y 2=4上的点,则|PM|−|PN|的最大值为( ) A . 6 B . 7 C . 8 D . 9 【答案】D 【解析】分别为1,2.画出图像如下图所示. 要求|PM|−|PN|的最大值,也即是求|PM|的最大值减去|PN|的最小值.由图可知|PM|的最大值为|PF1|+1,|PN|的最小值为|PF2|−2,故|PM|−|PN|的最大值为|PF1|+1−(|PF2|−2)=|PF1|−|PF2|+3=6+3=9.故选D.6.已知椭圆C:x 24+y23=1的左、右顶点分别为A、B,F为椭圆C的右焦点,圆x2+y2=4上有一动点P,P不同于A,B两点,直线PA与椭圆C交于点Q,则k PBk QF的取值范围是( ).A.[1,+∞] B.[23,+∞) C.[−∞,43] D.(-∞,0)∪(0,1).【答案】D 【解析】椭圆C:x 24+y23=1焦点在x轴上,a=2,b=√3,c=1,右焦点F(1,0),由P在圆x2+y2=4上,则PA⊥PB,则k AP⋅k PB=−1,则k PB=−1k AP ,k PBk QF=−1k APk QF=−1k AP k QF,设Q(2cosθ,√3sinθ),则k AP⋅k QF=√3sinθ2cosθ+2⋅√3sinθ2cosθ−1=3sin2θ4cos2θ+2cosθ−2=3(1−cos2θ)4cos2θ+2cosθ−2,设t=cosθ,t∈(−1,1),则f(t)=3(1−t 2)4t2+2t−2,∴k PBk QF=4t2+2t−23(t2−1)=43+23⋅1t−1∈(−∞,1),且不等于0.故选D:7.已知F是双曲线x2y2点F 2到直线AF 1的距离为2a ,则离心率e 的取值范围是( ) A . [√2,+∞) B . (√2,+∞) C . (1,√2) D . (1,√2] 【答案】B 【解析】设AF 1:y =k(x +c),(|k|<ba ) ,所以2a =√1+k2⇒|k|=a b<b a⇒a <b ⇒e >√2选B.8.已知直线y =kx −1与双曲线x 2−y 2=4的右支有两个交点,则k 的取值范围为( ) A . (0,√52) B . [1,√52] C . (−√52,√52) D . (1,√52) 【答案】D 【解析】由x 2−y 2=4得双曲线的渐近线方程为y=±x,根据图象可得当﹣1<k≤1时,直线与双曲线的右支只有1个交点, 当k≤﹣1时,直线与双曲线右支没有交点, 把y=kx ﹣1代入x 2﹣y 2=4得:(1﹣k 2)x+2kx ﹣5=0, 令△=4k 2+20(1﹣k 2)=0,解得k=√52或k=﹣√52(舍). ∴1<k <√52时直线与双曲线的右支有2个交点. 故选:D .9.设椭圆x 2a 2+y 2b 2=1 (a >b >0)的左、右焦点分别为F 1(−c,0),F 2(c,0),点N(c,a2)在椭圆的外部,点M 是椭圆上的动点,满足|MF 1|+|MN |<32|F 1F 2|恒成立,则椭圆离心率e 的取值范围是 A . (0,√22) B . (√22,1) C . (√22,56) D . (56,1) 【答案】D 【解析】∵点N(c,a2)在椭圆的外部,∴c 2a 2+a 24b 2>1,b 2a 2<12 , 由椭圆的离心率e =ca =√1−b 2a 2>√1−12=√22, |MF 1|+|MN |=2a −|MF 2|+|MN|, 又因为−|MF 2|+|MN| ≤ |NF 2|,且|NF 2|=a2,要|MF 1|+|MN |<32|F 1F 2|恒成立,即2a −|MF 2|+|MN | ≤ 2a +a2<32×2c ,则椭圆离心10.已知F 1,F 2是椭圆和双曲线的公共焦点,Ρ是它们的一个公共点,且∠F 1ΡF 2=π3,记椭圆和双曲线的离心率分别为e 1,e 2,则1e 1e 2的最大值是( )A . 3B . 4√33C . 2D . 2√33【答案】D 【解析】如图,设椭圆的长半轴长为a 1,双曲线的半实轴长为a 2,则根据椭圆及双曲线的定义|PF 1|+|PF 2|=2a 1,|PF 1|−|PF 2|=2a 2, ∴|PF 1|=a 1+a 2,|PF 2|=a 1−a 2, 设|F 1F 2|=2c,∠F 1PF 2=π3,则在ΔPF 1F 2中由余弦定理得4c 2=(a 1+a 2)2+(a 1−a 2)2−2(a 1+a 2)(a 1−a 2)cos π3, ∴化简a 12+3a 22=4c 2,该式变成1e 12+3e 22=4,∴1e 12+3e 22=4≥2√3e1e 2, ∴1e 1e 2≤2√33,1e 1e 2的最大值是2√33,故选D.11.如图,已知抛物线C 1的顶点在坐标原点,焦点在x 轴上,且过点(2,4),圆C 2:x 2+y 2−4x +3=0,过圆心C 2的直线l 与抛物线和圆分别交于P ,Q ,M ,N ,则|PN |+9|QM |的最小值为A . 36B . 42C . 49D . 50【解析】设抛物线方程为y 2=2px由抛物线过定点(2,4)得2p =8,抛物线方程y 2=8x ,焦点为C 2(2,0), 圆的标准方程为(x −2)2+y 2=1,∴圆心为(2,0),半径r =1, 由于直线过焦点,可设直线方程为y =k (x −2),设P (x 1,y 1),Q (x 2,y 2), {y =k (x −2)y 2=8x ⇒kx 2−(4k +8)x +4k =0,∴x 1x 2=4 又|PN |+9|QM |=(PC 2+1)+(9QC 2+9)=PC 2+9QC 2+10=(x 1+2)+9(x 2+2)+10=x 1+9x 2+30≥2√x 1⋅9x 2+30=12+30=42, x 1=x 2时等号成立,∴|PN |+9|QM |的最小值为42,故选B.12.已知抛物线M:y 2=2x ,圆N:(x −1)2+y 2=r 2 (r>0),过点(1,0)的直线l 交圆N 于C,D 两点,交抛物线M 于A,B 两点,且满足|AC |=|BD |的直线l 恰有三条,则r 的取值范围为( )A . r ∈(0,32] B . r ∈(√2,+∞) C . r ∈(2,+∞) D . r ∈(1,2] 【答案】B 【解析】由题意,当l ⊥x 轴时,过x =1与抛物线交于(1,±2),与圆交于(1,±r),满足题设; 当l 与x 轴不垂直时,设直线l:x =my +1,m ≠0,代入抛物线的方程y 2=2x ,得y 2−2my −2=0,则Δ=4m 2+8, 把直线l:x =my +1代入圆的方程(x −1)2+y 2=r 2,整理得y 2=r 2m 2+1, 设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4),因为|AC |=|BD |,所以y 1−y 3=y 2−y 4,即y 1−y 2=y 3−y 4 可得2√m 2+2=√m 2+1,则r =√(m 2+2)(m 2+1)=√m 4+3m 2+2,设t =m 2>0,则r =√t 2+3t +2,此时√t 2+3t +2>√2, 所以r >√2,即实数r 的取值范围是(√2,+∞),故选B.13.已知F 1(−c,0),F 2(c,0)是椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆上存在一点P 使得PF 1⃑⃑⃑⃑⃑⃑⃑ •PF 2⃑⃑⃑⃑⃑⃑⃑ =c 2,则椭圆的离心率的取值范围为( )A . (√33,√53] B . [√33,√22] C . [√3−1,√32] D . [√22,1) 【答案】B设P (x 0,y 0), 则x 02a 2+y 02b 2=1(a >b >0),∴y 02=b 2(1−x 02a2) ,由题PF 1⃑⃑⃑⃑⃑⃑⃑ •PF 2⃑⃑⃑⃑⃑⃑⃑ =c 2。

相关文档
最新文档