七年级数学上册《一元一次方程》题型总结
部编数学七年级上册专题09一元一次方程的应用题十二大题型(解析版)含答案
专题09 一元一次方程的应用题 十二大题型一元一次方程的应用题属于必考题,需要完全掌握各个类型的应用题,该专题将应用题分为分段计费、方案优化选择、行程问题、工程问题、商品销售问题、比赛积分问题、日历问题(数字问题)、配套问题、调配问题、和差倍分问题(比例问题)、几何图形问题等共进行方法总结与经典题型进行分类。
1.用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题¾¾¾®分析抽象方程¾¾¾®求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答.注意:(1)“审”指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.2 .建立书写模型常见的数量关系1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。
在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。
长方形面积=长×宽 长方形周长=2(长+宽) 正方形面积=边长×边长 正方形周长=4边长2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。
我们称这类关系为约定型数量关系。
3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。
我么把这类数量关系称为基本数量关系。
单价×数量=总价 速度×时间=路程 工作效率×时间=总工作量等。
新人教版七年级数学上册第三章《一元一次方程》知识点和题型总结
新人教版七年级数学上册第三章《一元一次方程》应知应会知识点和题型总结一、方程定义【一元一次方程的认识】1.下列各式:①3x+2y=1②m-3=6③x/2+2/3=0.5④x 2+1=2⑤z/3-6=5z ⑥(3x-3)/3=4⑦5/x+2=1⑧x+5中,一元一次方程的个数是( )A.1 B.2 C.3 D.42.下列各式中是一元一次方程的是( )。
A.1232x y -=-B.2341x x x -=-C.1123y y -=+D.1226x x -=+ 3.下列方程①313262-=+x x ②4532x x =+③2(x+1)+3=x1 ④3(2x+5)-2(x-1)=4x+6.一元一次方程共有( )个. A.1 B.2 C.3 D.4【利用定义求参数】4.如果(m-1)x |m| +5=0是一元一次方程,那么m = .【列方程】5.根据“x 的3倍与5的和比x 的13多2”可列方程( )。
A 、3525x x +=- B 、3523x x +=+ C 、3(523x x +=-) D 、3(523x x +=+) 二、方程的解【方程解的应用】1.若x=1是方程k (x-2)=2的解,则k= .2.已知3是关于x 的方程mx+1=0的根,那么m=3.一个一元一次方程的解为2,请写出这个一元一次方程 .4.若关于x 的一元一次方程23132x k x k ---=的解是1x =-,则k 的值是()A .27B .1C .1311- D .0 5.已知方程3x 2x -9x+m=0的一个根是1,则m 的值是 。
6.方程2152x kx x -+=-的解为-1时,k 的值为( )。
A.10 B.-4 C.-6 D.-87.y=1是方程12()23m y y --=的解,求关于x 的方程(4)2(3)m x mx +=+的解。
8.已知x=-1是关于x 的方程328490x x kx -++=的一个解,求23159k k --5的值。
【期末复习】初一七年级上册数学期末考试重难点:一元一次方程的11种题型和动点旋转问题
一元一次方程常考的11种题型用方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系; 设:用代数式表示实际问题中的基础数据; 列:找到所列代数式中的等量关系,以此为依据列出方程; 解:求解; 验:考虑求出的解是否具有实际意义; 答:实际问题的答案. 常见题型 1. 配套问题和工程问题【配套问题解题关键】配套问题的物品之间具有一定的数量关系,依次作为列方程的依据. 【工程问题解题关键】常把总工作量看做 1,并利用“工作量=人均效率× 人数×时间”的关系考虑问题1.20 个工人生产螺栓和螺母,已知一个工人天生产 3 个螺栓或 4 个螺母,且一个螺栓配 2 个螺母,如何分配工人生产螺栓和螺母?如果设生产螺栓的工人数为 x 个,根据题意可列方程为:_____.【答案】2×3x=4(20﹣x)【分析】设安排 x 名工人生产螺栓,由题意可得需安排(20﹣x)名工人生产螺母;因为一个螺栓配 2 个螺母,所以由题意可得2×3x=4(20﹣x).【详解】解:设安排 x 名工人生产螺栓,则需安排(20﹣x)名工人生产螺母,根据题意,得:2×3x=4(20﹣x),故答案是:2×3x=4(20﹣x).【名师点睛】本题考查列一元一次方程,解题的关键是读懂题意,掌握列一元一次方程的方法常见题型 2 销售盈亏问题销售金额=售价×数量利润=商品售价-商品进价利润率=(利润÷商品进价)×100% 现售价 = 标价×折扣售价= 进价×(1+利润率) 7.某商品按成本增加 20%定出价格,由于库存积压,将该商品按定价九折出售,那么出售该商品最终是______(填“盈利”或“亏损”),利润率或亏损率为______.【答案】盈利8%【分析】设成本为 a 元,按成本增加 20%定出价格,求出定价,再根据按定价的 90%出售,求出售价,最后根据售价-进价=利润,列式计算即可.【详解】解:设成本为 a 元,根据题意可得:(1+20%)a•90%-a=0.08a,即出售该商品最终是盈利,利润率为 8%.故答案是:盈利,8%.【名师点睛】本题考查了一元一次方程的应用,解题的关键是理清数量之间的关系,求出每件商品的售价.常见题型 3 比赛积分问题比赛总场数=胜场数+负场数+平场数比赛总积分=胜场积分+负场积分+平场积分 11.甲、乙两队开展足球对抗赛,规定每队胜一场得 3 分,平一场得 1 分,负一场得 0 分.若甲队胜场是平场的 2 倍,平场比负场多一场,共得了 21 分,则甲队胜了______场,平了______场,负了______场.常见题型 4 方案选择问题 13.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满 100 元,返购物券 50 元,此购物券在本商场通用,且用购物券购买商品不再返券,也不得找零. 小明只购物买了单价别为 60 元,80 元和 120 元的物品各一件,使用购物券后,他的实际花费为_________ 元. 【答案】200 元或 210 元【详解】①若先买单价为 120 元的物品,赠送一张 50 元购物券,再去买单价为 60 元和 80 元的物品,实际花费为:120+60+80-50=210 元;②若先买 60 元和 80 元的物品,赠送一张 50 元购物券,再去买 120 元的物品,实际花费为:60+80+120-50=210 元;③若先买 60 元和 120 元的物品,赠送一张 50 元购物券,再去买 80 元的物品,实际花费为:60+120+80-50=210 元;④若先买 80 元和120 元的物品,赠送两张 50 元购物券,再去买 60 元的物品,此时购物券可抵扣 60 元,实际花费为:120+80=200 元;故答案为:200 元或 210 元.【名师点睛】此题考查的是分类讨论的数学思想常见题型 5 顺逆流问题船在顺水中的速度=船在静水中的速度+水流速度船在逆水中的速度=船在静水中的速度—水流速度船顺水的行程=船逆水的行程 17.(·广州市期中)某轮船顺水航行 3 小时,逆水航行 2 小时,已知轮船在静水中的速度为 a 千米/小时,水流速度为 y 千米/小时,则轮船共航行___________千米.【答案】5a+y【分析】根据路程=速度×时间,再根据顺水速度=静水速度+水的流速,逆水速度=静水速度-水的流速,列出代数式,即可得出答案.【详解】解:由题意得:本船共航行:3(a+y)+2(a-y)=5a+y故答案为 5a+y.【名师点睛】本题考查了列代数式,解题的关键是掌握好顺水速度=静水速度+水的流速,逆水速度=静水速度-水的流速,从而列出代数式进行计算.常见题型 6 数字问题一个两位数,十位数字是 a,个位数字是 b,那么这个数可表示为 10a+b 一个三位数,百位数字是 x, 十位数字是 y,个位数字是 z,那么这个数可表示为100x+10y+z20.(·哈尔滨市期末)一个两位数,个位数字与十位数字的和是 9,如果将个位数字与十位数字对调后所得的新数比原数大 9,则原来的两位数是____。
《易错题》七年级数学上册第三单元《一元一次方程》-解答题专项知识点总结(含答案)
一、解答题1.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人?解析:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】解:∵67604020⨯=40203650>∴所以一定有一个班的人数大于35人.设大于35人的班有学生x人,则另一班有学生(67-x)人,依题意得5060(67)3650x x+-=6730x-=答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.某同学在解方程21132y y a-+=-去分母时,方程右边的-1没有乘6,结果求得方程的解为y=2,试求a的值及此方程的解.解析:y=-3.【分析】根据题意得到去分母结果,把y=2代入求出a的值,即可确定出方程的解.【详解】根据题意去分母得:4y-2=3y+3a-1,把y=2代入得:6=6+3a-1,解得:a=13,方程为12131 32yy+-=-,去分母得:4y-2=3y+1-6,解得:y=-3.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.解析:(1)方案一省钱;(2)见解析;(3)见解析.【分析】(1)分别按两种方案结合已知数据计算、比较即可得到结论;(2)分别根据两种方案列出对应的表达式并化简即可;(3)按以下三种方式分别计算出各自所需费用并进行比较即可:①全按方案一购买;②全按方案二购买;③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子.【详解】(1)当x=100时,按方案一购买所需费用为:100×200=20000(元);按方案二购买所需费用为:100×(200+80)×80%=22400(元),∵20000<22400,∴方案一省钱;(2)当x>100时,按方案一购买所需费用为:100×200+80(x﹣100)=80x+12000(元);按方案二购买所需费用为:(100×200+80x)×80%=64x+16000(元),答:方案一、方案二的费用为:(80x+12000)元、(64x+16000)元;(3)当x=300时,①全按方案一购买:100×200+80×200=36000(元);②全按方案二购买:(100×200+80×300)×80%=35200(元);③先按方案一购买100张课桌,同时送100把椅子;再按方案二购买200把椅子,100×200+80×200×80%=32800(元),∵36000>35200>32800,∴先按方案一购买100张桌子,同时送100把椅子;再按方案二购买200把椅子最省. 【点睛】(1)读题题意,弄清各数据间的关系是解答第1、2小题的关键;(2)解第3小题时,需分以下三种情况分别计算所需费用:①全按方案一购买;②全按方案二购买;③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子;解题时不要忽略了其中任何一种. 4.解下列方程: (1)51784a -=; (2)22146y y +--=1; (3)2131683x x x-+-= -1 解析:(1)3a =;(2)4y =-;(3)179x =. 【分析】(1)先方程两边同乘以8去分母,再按照移项、合并同类项、系数化为1的步骤解方程即可得;(2)先方程两边同乘以12去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得;(3)先方程两边同乘以24去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得. 【详解】(1)方程两边同乘以8去分母,得5114a -=, 移项,得5141a =+, 合并同类项,得515a =, 系数化为1,得3a =;(2)方程两边同乘以12去分母,得3(2)2(21)12y y +--=, 去括号,得364212y y +-+=, 移项,得341262y y -=--, 合并同类项,得4y -=, 系数化为1,得4y =-;(3)方程两边同乘以24去分母,得4(21)3(31)824x x x --+=-, 去括号,得8493824x x x ---=-, 移项,得8982443x x x --=-++, 合并同类项,得917x -=-,系数化为1,得179x .【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.5.解下列方程:(1)2(x-1)=6;(2)4-x=3(2-x);(3)5(x+1)=3(3x+1)解析:(1)x=4;(2)x=1;(3)x=1 2【分析】(1)方程去括号,移项合并,将未知数系数化为1,即可求出解;(2)方程去括号,移项合并,将未知数系数化为1,即可求出解;(3)方程去括号,移项合并,将未知数系数化为1,即可求出解;【详解】(1)去括号,得2x-2=6.移项,得2x=8.系数化为1,得x=4.(2)去括号,得4-x=6-3x.移项,得-x+3x=6-4.合并同类项,得2x=2.系数化为1,得x=1.(3)去括号,得5x+5=9x+3.移项,得5x-9x=3-5.合并同类项,得-4x=-2.系数化为1,得x=1 2 .【点睛】此题考查了解一元一次方程,其步骤为:去括号,移项合并,将未知数系数化为1,求出解.6.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x ,化简后方程的两边都加8,可得答案. 【详解】(1)两边减2x ,得3x -2x =2x -6-2x . 所以x =-6.(2)两边减x ,得2+x -x =2x +1-x . 化简,得2=x +1. 两边减1,得2-1=x +1-1 所以x =1. (3)两边加25x , 得35x -8+25x =-25x +1+25x . 化简,得x -8=1.两边加8,得x -8+8=1+8. 所以x =9. 【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 7.设a ,b ,c ,d 为有理数,现规定一种新的运算:a b ad bc c d=-,那么当35727x -=时,x 的值是多少?解析:x =-2【分析】根据新定义的运算得到关于x 的一元一次方程,解方程即可求解. 【详解】解:由题意得:21 - 2(5 - x )=7 即21-10+2x =7 x =-2. 【点睛】本题考查了新定义,解一元一次方程,根据新定义的运算列出方程是解题关键. 8.王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税。
期末复习重要考点03 《一元一次方程》十大考点题型(热点题型+限时测评)(解析版)-七年级数学上册
(人教版)七年级上册数学期末复习重要考点03《一元一次方程》十大重要考点题型【题型1方程的有关概念】1.(2022秋•新城区校级期末)下列各式中:①x=0;②2x>3;③x2+x﹣2=0;④1+2=0;⑤3x﹣2;⑥x﹣y=0;是方程的有()A.3个B.4个C.5个D.6个【分析】含有未知数的等式叫方程,根据方程的定义逐项判断即可得出答案.【解答】解:根据方程的定义可得:①③④⑥是方程,②2x>3是不等式,⑤3x﹣2,不是等式,不是方程,故方程有4个,故选:B.【点评】本题考查了方程的定义,熟练掌握方程的定义是解此题的关键.2.(2023秋•贵州期末)下列各式中是一元一次方程的是()A.x+y=6B.x2+2x=5C.+1=0D.2+3=0【分析】由一元一次方程的概念可知:①含有一个未知数,②未知数的次数为1,③整式方程,据此进行判断即可.【解答】解:A.x+y=6,含有两个未知数,不是一元一次方,不符合题意;B.x2+2x=5,未知数的次数为2,不是一元一次方,不符合题意;C.+1=0,分母含有未知数,是分式方程,不是一元一次方,不符合题意;D.2+3=0,含有一个未知数,且未知数的次数为1,为整式方程,符合题意.故选:D.【点评】本题考查了一元一次方程的判断,熟练掌握一元一次方程的定义是解题的关键.3.(2022秋•古冶区期末)方程:①2x﹣1=x﹣7,②12=13−1,③2(x+5)=x﹣4,④23=+2,其中解为x=﹣6的方程的个数为()A.1B.2C.3D.4【分析】分别计算各一元一次方程的解,然后判断作答即可.【解答】解:①2x﹣1=x﹣7,移项合并得,x=﹣6,符合要求;②12=13−1,去分母得,3x=2x﹣6,移项合并得,x=﹣6,符合要求;③2(x+5)=x﹣4,去括号得,2x+10=x﹣4,移项合并得,x=﹣14,不符合要求;④23=+2,去分母得,2x=3x+6,移项合并得,﹣x=6,系数化为1得,x=﹣6,符合要求;综上分析可知,解为x=﹣6的方程有3个,故选:C.【点评】本题考查了解一元一次方程.解题的关键在于正确的解方程.4.(2022秋•琼海期末)已知方程(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则m的值是()A.2B.3C.±3D.﹣3【分析】根据一元一次方程的定义,只含有一个未知数,并且未知数的最高次数是1的整式方程,进行计算即可解答.【解答】解:由题意得:|m|﹣2=1且m﹣3≠0,∴m=﹣3,故选:D.【点评】本题考查了绝对值,一元一次方程的定义,熟练掌握一元一次方程的定义是解题的关键.5.(2022秋•花山区期末)当m=时,方程(m﹣3)x|m﹣2|+m﹣3=0是一元一次方程.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,据此可得结论.【解答】解:∵方程(m﹣3)x|m﹣2|+m﹣3=0是一元一次方程,∴|m﹣2|=1,且m﹣3≠0,解得m=1,故答案为:1.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.6.(2023秋•曾都区期中)若方程(m2﹣1)x2﹣(m﹣1)x+2=0是关于x的一元一次方程,则代数式|m ﹣1|的值为.【分析】利用一元一次方程的定义,可列出关于m的一元二次方程及一元一次不等式,解之可得出m的值,再将其代入|m﹣1|中,即可求出结论.【解答】解:∵方程(m2﹣1)x2﹣(m﹣1)x+2=0是关于x的一元一次方程,∴2−1=0−(−1)≠0,解得:m=﹣1,∴|m﹣1|=|﹣1﹣1|=2.故答案为:2.【点评】本题考查了一元一次方程的定义以及绝对值,牢记“只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程”是解题的关键.7.(2023春•黄浦区期中)已知:(a +2b )y 2−13K 13=3是关于y 的一元一次方程.(1)求a 、b 的值;(2)若x =a 是方程r26−K12+3=x −K 3的解,求|a ﹣b ﹣2|﹣|b ﹣m |的值.【分析】(1)先根据一元一次方程的定义列出关于a ,b 的方程组,求出a ,b 的值即可;(2)把x =a 代入方程求出m 的值,再代入代数式求解即可.【解答】解:(1)∵(a +2b )y 2−13K 13=3是关于y 的一元一次方程,2=0−13=1,解得=4=−2;(2)∵a =4,x =a 是方程r26−K12+3=x −K 3的解,∴1−32+3=4−4−3,解得m =−12,∴|a ﹣b ﹣2|﹣|b ﹣m |=|4+2﹣2|﹣|﹣2+12|=52.【点评】本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.【题型2等式的基本性质】1.(2023秋•洮北区期末)将等式m =n 变形错误的是()A .m +5=n +5B .−7=−7C .m −12=n −12D .﹣2m =2n【分析】根据等式的性质可得答案.【解答】解:A 、若m =n ,则m +5=n +5,原变形正确,故此选项不符合题意;B 、若m =n ,则−7=−7,原变形正确,故此选项不符合题意;C 、若m =n ,则m −12=n −12,原变形正确,故此选项不符合题意;D 、若m =n ,则﹣2m =﹣2n ,原变形错误,故此选项符合题意.故选:D .【点评】本题考查了等式的性质,解题的关键是掌握等式的性质:等式的两边都乘以(或除以)同一个不为零的整式,结果不变,等式的两边都加(或减)同一个数(或整式),结果不变.2.(2022秋•琼海期末)下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若x=y,则=D.若=(c≠0),则a=b【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个数(除数不为零),等式仍成立.【解答】解:A、若x=y,则x+5=y+5,此选项正确;B、若a=b,则ac=bc,此选项正确;C、若x=y,当a≠0时=,此选项错误;D、若=(c≠0),则a=b,此选项正确;故选:C.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个数(除数不为零),等式仍成立.3.(2023秋•新民市校级月考)下列等式变形不正确的是()A.由x=y,得到x+3=y+3B.由3a=b,得到2a=b﹣aC.由m=n,得到4m=4n D.由bm=bn,得到m=n【分析】根据等式的性质进行判断即可.【解答】解:A.将等式x=y的两边都加上3得到的仍是等式,即x+3=y+3,因此选项A不符合题意;B.将3a=b的两边都减去a得到的仍是等式,即3a﹣a=b﹣a,也就是2a=b﹣a,因此选项B不符合题意;C.将m=n的两边都乘以4仍是等式,即4m=4n,因此选项C不符合题意;D.将bm=bn的两边都除以b,当b=0时就不能得到m=n,因此选项D符合题意.故选:D.【点评】本题考查等式的性质,理解等式的基本性质是正确判断的关键.4.(2022秋•五华县期末)下列等式变形中,结果正确的是()A.如果a=b,那么a﹣m=b+mB.由﹣3x=2得x=−32D.如果=,那么a=b【分析】根据等式性质1对A选项进行判断;根据等式性质2对B、D选项进行判断;根据绝对值的意义对C选项进行判断.【解答】解:A.如果a=b,那么a﹣m=b﹣m,所以A选项不符合题意;B.由﹣3x=2,则x=−23,所以B选项不符合题意;C.如果|a|=|b|,那么a=b或a=﹣b,所以C选项不符合题意;D.如果=,则a=b,所以D选项符合题意.故选:D.【点评】本题考查了等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.也考查了绝对值.5.(2022秋•保亭县期末)下列式子变形中,正确的是()A.由6+x=10得x=10+6B.由3x+5=4x得3x﹣4x=﹣5C.由5x=5得x=5D.由2(x﹣1)=3得2x﹣1=3【分析】根据等式的性质,逐项分析判断即可求解.【解答】解:A.由6+x=10得x=10﹣6,故该选项不正确,不符合题意;B.由3x+5=4x得3x﹣4x=﹣5,故该选项正确,符合题意;C.由5x=5得x=1,故该选项不正确,不符合题意;D.由2(x﹣1)=3得−1=32,故该选项不正确,不符合题意;故选:B.【点评】本题考查了等式的性质,熟练等式的性质是解题的关键.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等.6.(2022秋•广平县期末)等式就像平衡的天平,能与如图的事实具有相同性质的是()B.如果a=b,那么=(c≠0)C.如果a=b,那么a+c=b+cD.如果a=b,那么a2=b2【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:观察图形,是等式a=b的两边都加c,得到a+c=b+c,利用等式性质1,所以成立.故选:C.【点评】本题考查了等式的基本性质,解题的关键是掌握等式的基本性质:等式性质:1、等式两边加同一个数(或式子)结果仍得等式;2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.7.(2022秋•颍州区期末)若a=b,则下列等式:①﹣a=﹣b;②2﹣a=2﹣b;③=;④a2=b2;⑤=1.其中正确的有.(填序号)【分析】根据等式的基本性质,解答即可.【解答】解:若a=b,则下列等式:①﹣a=﹣b;②2﹣a=2﹣b;③=,当m=0时,分式不成立;④a2=b2;⑤=1,当b=0时,分式不成立其中正确的有①②④.故答案为:①②④.【点评】本题考查了等式的基本性质,掌握等式的基本性质是解题的关键,【题型3一元一次方程的解法】1.(2023春•蒸湘区校级期末)解方程3=1−K15时,去分母正确的是()A.5x=1﹣3(x﹣1)B.x=1﹣(3x﹣1)C.5x=15﹣3(x﹣1)D.5x=3﹣3(x﹣1)【分析】按照解一元一次方程的步骤进行计算即可解答.【解答】解:3=1−K15,去分母,方程两边同乘15得:5x=15﹣3(x﹣1),故选:C.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.2.(2022秋•唐县期末)下列解方程的步骤中正确的是()A.由x﹣5=7,可得x=7﹣5B.由8﹣2(3x+1)=x,可得8﹣6x﹣2=xC.由16x=﹣1,可得x=−16D.由K12=4−3,可得2(x﹣1)=x﹣3【分析】各项方程变形得到结果,即可作出判断.【解答】解:A、由x﹣5=7,可得x=7+5,不符合题意;B、由8﹣2(3x+1)=x,可得8﹣6x﹣2=x,符合题意;C、由16x=﹣1,可得x=﹣6,不符合题意;D、由K12=4−3,可得2(x﹣1)=x﹣12,不符合题意,故选:B.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.3.(2022秋•广州期末)将方程0.3=1+1.2−0.30.2中分母化为整数,正确的是()A.103=10+12−32B.3=10+1.2−0.30.2C.103=1+12−32D.3=1+1.2−0.32【分析】方程各项分子分母扩大相应的倍数,使其小数化为整数得到结果,即可作出判断.【解答】解:方程整理得:103=1+12−32.故选:C.【点评】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.4.(2022秋•丹阳市期末)关于x的一元一次方程2021−2022=2023的解为x=2,那么关于y的一元一次方程K20212021+2023(2021−p=2022的解为.【分析】将关于y的一元一次方程变形,然后根据一元一次方程解的定义得到y﹣2021=2,进而可得y 的值.【解答】解:将关于y的一元一次方程K20212021+2023(2021−p=2022变形为K20212021−2022=2023(−2021),∵关于x的一元一次方程2021−2022=2023的解为x=2,∴y﹣2021=2,∴y=2023,故答案为:2023.【点评】本题考查了解一元一次方程,一元一次方程的解,熟练掌握整体思想的应用是解题的关键.5.(2022秋•张湾区期末)解方程:(1)1−2K16=2r13;(2)3x﹣7(x﹣1)=3﹣2(x﹣1).【分析】(1)方程去分母,去括号,移项合并,将x系数化为1,即可求出解;(2)方程去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)去分母得:6﹣(2x﹣1)=2(2x+1),去括号得:6﹣2x+1=4x+2,移项合并得:﹣6x=﹣5,解得:=56;(2)去括号得:3x﹣7x+7=3﹣2x+2,移项合并得:﹣2x=﹣2,解得:x=1.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.6.(2023秋•鼓楼区校级月考)解方程:(1)4x+1=﹣5x+10;(2)K12=r76+1.【分析】(1)直接移项、合并同类项,进而解方程得出答案;(2)直接去分母,再移项、合并同类项,进而解方程得出答案.【解答】解:(1)4x+1=﹣5x+104x+5x=10﹣1,合并同类项得:9x=9,解得:x=1;(2)K12=r76+1去分母得:6(x﹣1)=2(x+7)+12,去括号得:6x﹣6=2x+14+12,移项、合并同类项得:4x=32,解得:x=8.【点评】此题主要考查了解一元一次方程,正确掌握解方程的方法是解题关键.7.(2023秋•姑苏区校级月考)解方程:(1)2(x+3)=5x;(2)K30.5−r40.2=1.6.【分析】(1)按去括号,移项,合并同类项,系数化为1的步骤求解即可;(2)按去分母,去括号,移项,合并同类项,系数化为1的步骤求解即可.【解答】解:(1)2(x+3)=5x,去括号得:2x+6=5x,移项合并同类项得:﹣3x=﹣6,系数化为1得:x=2;(2)K30.5−r40.2=1.6,化简得:10K305−10r402=1.6,2x﹣6﹣5x﹣20=1.6,移项合并同类项得:﹣3x=27.6,系数化为1得:x=﹣9.2.【点评】本题考查解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.8.(2022秋•中宁县期末)解方程:2K15−r12=1解:去分母,得2(2x﹣1)﹣5(x+1)=10……①去括号,得4x﹣2﹣5x+5=10……②移项,合并同类项,得﹣x=13……③系数化为1,得x=﹣13……④(1)步骤①去分母的依据是;(2)上面计算步骤出错的是第步,错误的原因是;(3)请你写出这个方程正确的解法.【分析】(1)利用等式的基本性质判断即可;(2)找出出错的步骤,分析其原因即可;(3)写出正确的解答过程即可.【解答】解:(1)步骤①去分母的依据是等式的基本性质;故答案为:等式的基本性质;(2)上面计算步骤出错的是第二步,错误的原因是去第二个括号时,括号中第二项没有变号;故答案为:二,去第二个括号时,括号中第二项没有变号;(3)去分母得:2(2x﹣1)﹣5(x+1)=10,去括号得:4x﹣2﹣5x﹣5=10,移项得:4x﹣5x=10+2+5,合并同类项得:﹣x=17,解得:x=﹣17.【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.【题型4方程解中的遮挡问题】1.有一方程=﹣1,其中一个数字被污渍盖住了.已知该方程的解为x=﹣1,那么处的数字应是()A.5B.﹣5C.12D.−12【分析】根据方程的解的定义(使得方程成立的未知数的值)解决此题.【解答】解:设处的数字是a.∴2−3=−1.∴a=5.故选:A.【点评】本题主要考查方程的解,熟练掌握方程的解的定义是解决本题的关键.2.(2023秋•洮北区期末)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.4【分析】把x=5代入已知方程,可以列出关于★的方程,通过解该方程可以求得★处的数字.【解答】解:将x=5代入方程,得:﹣3(★﹣9)=25﹣1,解得:★=1,即★处的数字是1,故选:A.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.3.(2022秋•太原期末)方程2x+▲=3x,▲处是被墨水盖住的常数,已知方程的解是x=2,那么▲处的常数是.【分析】把x=2代入已知方程,可以列出关于▲的方程,通过解该方程可以求得▲处的数字.【解答】解:把x=2代入方程,得4+▲=6,解得▲=2.故答案为:2.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.4.(2022秋•馆陶县期末)方程5y﹣7=2y﹣中被阴影盖住的是一个常数,此方程的解是y=﹣1.这个常数应是()A.10B.4C.﹣4D.﹣10【分析】将y=﹣1代入方程计算可求解这个常数.【解答】解:将y=﹣1代入方程5y﹣7=2y﹣中,5×(﹣1)﹣7=2×(﹣1)﹣,解得=10,故选:A.【点评】本题主要考查一元一次方程的解,理解一元一次方程解的概念是解题的关键.5.(2022秋•隆化县期末)小马虎在做作业,不小心将方程2(x﹣3)﹣■=x+1中的一个常数污染了.怎么办?他翻开书后的答案,发现方程的解是x=9.请问这个被污染的常数是()A.1B.2C.3D.4【分析】设被污染的数字为y,将x=9代入,得到关于y的方程,从而可求得y的值.【解答】解:设被污染的数字为y.将x=9代入得:2×6﹣y=10.解得:y=2.故选:B.【点评】本题主要考查的是一元一次方程的解得定义以及一元一次方程的解法,掌握方程的解得定义是解题的关键.6.(2022秋•临猗县期末)小明在解方程时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是2y−12=12y﹣■,怎么办呢?小明想了一想,便翻了书后的答案,此方程的解为y=3,他很快便补好了这个常数,你能补出这个常数吗?它应是()A.﹣2B.3C.﹣4D.5【分析】设这个常数为x,已知此方程的解是y=3,将之代入二元一次方程2y−12=12y﹣x,即可得这个常数的值.【解答】解:能,设被污染的常数为a,则2y−12=12y﹣a,∵此方程的解是y=3,∴将此解代入方程,方程成立,∴2×3−12=12×3﹣a,解得a=﹣4,故选:C.【点评】本题主要考查了一元一次方程的应用以及它的解的意义.知道一元一次方程的解,求方程中的常数项,可把方程的解代入方程求得常数项的值.(把■作为一个未知数来看即可).7.(2022秋•威县期末)嘉淇在解关于x的一元二次方程2K13+■=r34时,发现常数■被污染了;(1)嘉淇猜■是﹣1,请解一元一次方程2K13−1=r34.(2)老师告诉嘉淇这个方程的解为x=﹣7,求被污染的常数.【分析】(1)利用去分母,移项,合并同类项,系数化1,可得答案;(2)设被污染的正整数为m,则有2×(−7)−13+=−7+34,求解可得答案.【解答】解:(1)2K13−1=r34,去分母得:4(2x﹣1)﹣12=3(x+3),去括号得:8x﹣4﹣12=3x+9,移项合并得:5x=25,系数化为1得:x=5;(2)设“■”的常数为m,由于x=﹣7是方程的解,则2×(−7)−13+=−7+34,解之得,m=4,所以被污染的常数是4.【点评】此题考查的是一元一次方程的解,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.8.(2022春•西峡县期中)同学们在做解方程的练习时,卷子上有一个方程“2x−12=18x+□”中“□”没印清晰,小梅问老师,老师只说:“□是一个常数;该方程的解与当y=3时代数式5(y﹣1)﹣2(y﹣2)﹣4的值相同”.聪明的小梅很快补上了这个常数.求小梅补上的这个常数是多少?【分析】把y=3代入代数式5(y﹣1)﹣2(y﹣2)﹣4中进行计算,然后设小梅补上的这个常数是a,再把x=4代入2x−12=18x+a中得:2×4−12=18×4+a,最后进行计算即可解答.【解答】解:当y=3时,5(y﹣1)﹣2(y﹣2)﹣4=5×(3﹣1)﹣2×(3﹣2)﹣4=5×2﹣2×1﹣4=10﹣2﹣4=4,设小梅补上的这个常数是a,由题意得:把x=4代入2x−12=18x+a中得:2×4−12=18×4+a,8−12=12+a,a=8−12−12=7,∴小梅补上的这个常数是7.【点评】本题考查了一元一次方程的解,熟练掌握一元一次方程的解的意义是解题的关键.【题型5求一元一次方程含参问题】1.(2022秋•洪山区校级期末)已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为()A.a=3B.a=1C.a=2D.a=﹣1【分析】将x=2代入原方程即可求出答案.【解答】解:将x=2代入2x+a﹣5=0,∴2×2+a﹣5=0,∴a=1,故选:B.【点评】本题考查一元一次方程的解,解题的关键是将x=2代入原方程,本题属于基础题型.2.(2022秋•庆阳期末)小磊在解关于x的方程r43−r4=2时,求得的解为x=﹣1,则k的值为()A.﹣1B.﹣3C.1D.5【分析】把x=﹣1代入方程r43−r4=2,解关于k的方程即可.【解答】解:把x=﹣1代入方程r43−r4=2得,−1+43−−1+4=2,方程两边都乘以12得,4(﹣1+4)﹣3(﹣1+k)=24,解得:k=﹣3,故选:B.【点评】此题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3.(2022春•镇平县期中)若关于x的方程3(x+4)=2a+5的解大于关于x的方程(4r1)4=o3K4)3的解,试确定a的取值范围.【分析】先求出两个方程的解,即可得出不等式,求出不等式的解集即可.【解答】解:∵3(x+4)=2a+5,∴x=2K73,∵(4r1)4=o3K4)3,∴x=−163a,∴2K73>−163a,解得a>718.【点评】本题考查了解一元一次方程和解一元一次不等式,能得出关于a的不等式是解此题的关键.4.(2023秋•椒江区校级期中)若不论k取什么实数,关于x的方程2B+3=2+KB6(m,n是常数)的解总是x=1,求m+n的值.【分析】把x=1代入方程计算,求出m与n的值,即可求出m+n的值.【解答】解:把x=1代入方程得:2r3=2+1−B6,去分母得:2(2k+m)=12+1﹣nk,整理得:(4+n)k=13﹣2m,∵不论k取什么实数,关于x的方程2B+3=2+KB6(m,n是常数)的解总是x=1,∴4+n=0,13﹣2m=0,解得:n=﹣4,m=6.5,则m+n=2.5.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.(2022秋•秦都区校级期末)若方程2(3x+1)=1+2x的解与关于x的方程6−23=2(x+3)的解互为倒数,求k的值.【分析】解方程2(3x+1)=1+2x得出x的值,根据方程的解互为倒数知另一方程的解,代入可得关于k的方程,解之可得.【解答】解:2(3x+1)=1+2x,去括号,得6x+2=1+2x,移项、合并同类项,得4x=﹣1,化系数为1,得=−14.∵−14的倒数是﹣4,∴将x=﹣4代入方程6−23=2(+3),则6−23=−2,∴6﹣2k=﹣6.解得k=6.【点评】本题考查了方程的解的定义,就是能够使方程左右两边相等的未知数的值.解题的关键是正确解一元一次方程.6.(2022秋•游仙区校级月考)如果关于x的方程2(x﹣4)﹣48=﹣3(x+2)的解与方程4x﹣(3a+1)=6x+2a﹣1的解互为相反数,求2a2﹣a的值.【分析】求出第一个方程的解,根据两方程解互为相反数得出关于a的一元一次方程,求出a的值,然后代入2a2﹣a计算即可.【解答】解:解方程2(x﹣4)﹣48=﹣3(x+2),得x=10,∵关于x的方程2(x﹣4)﹣48=﹣3(x+2)的解与方程4x﹣(3a+1)=6x+2a﹣1的解互为相反数,∴方程4x﹣(3a+1)=6x+2a﹣1的解为x=﹣10,把x=﹣10代入得,﹣40﹣(3a+1)=﹣60+2a﹣1,解得,a=4,∴2a2﹣a=2×42﹣4=2×16﹣4=32﹣4=28.【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.7.(2022秋•如东县期中)已知关于x的方程12(1﹣x)=1﹣k的解与3r4−5K18=1的解相同,求k的值.【分析】根据同解方程的定义可得出关于x与k的方程组,再求解即可.【解答】解:∵关于x的方程12(1﹣x)=1﹣k的解与3r4−5K18=1的解相同,∴x=2k﹣1,把x=2k﹣1代入3r4−5K18=1,得2k﹣1+2k=7,解得k=2,∴k的值为2.【点评】本题考查了同解方程的定义,掌握同解方程的定义,得出k的值是解题的关键.8.(2022秋•石景山区校级期末)已知关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,求a的值.【分析】分别解出关于x的方程12x﹣a=0的解和方程a+8x=2+4x的解,然后根据已知条件“关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1”列出关于a的一元一次方程,解方程即可.【解答】解:由方程12x﹣a=0,得x=12,由方程a+8x=2+4x,得x=2−4,又∵关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,∴12−2−4=1,去分母,得a﹣3(2﹣a)=12,去括号,得a﹣6+3a=12,移项,得a+3a=6+12,合并同类项,得4a=18,化系数为1,得a=4.5.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.【题型6利用一元一次方程解决错解问题】1.(2023春•叙州区期末)小红在解关于x的方程:﹣3x+1=3a﹣2时,误将方程中的“﹣3”看成了“3”,求得方程的解为x=1,则原方程的解为.【分析】把x=1代入3x+1=3a﹣2,求出a的值,再把a的值代入原方程求解即可.【解答】解:把x=1代入3x+1=3a﹣2,得3+1=3a﹣2,解得a=2,故原方程为﹣3x+1=6﹣2,﹣3x=3,解得x=﹣1.故答案为:x=﹣1.【点评】本题考查了一元一次方程的解的定义.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.2.(2022秋•献县期末)小马虎在解关于x的方程2a﹣5x=21时,误将“﹣5x”看成了“+5x”,得方程的解为x=3,则原方程的解为.【分析】把x=3代入2a+5x=21得出方程2a+15=21,求出a=3,得出原方程为6﹣5x=21,求出方程的解即可.【解答】解:∵小马虎在解关于x的方程2﹣5x=21时,误将“﹣5x”看成了“+5x”,得方程的解为x =3,∴把x=3代入2a+5x=21得出方程2a+15=21,解得:a=3,即原方程为6﹣5x=21,解得x=﹣3.故答案为:x=﹣3.【点评】本题考查了一元一次方程的解的定义.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3.(2022秋•陇县期末)小明在解方程2K13=r3−1去分母时,方程右边的﹣1没有乘3,因而求得的解为x=2,则原方程的解为()A.x=0B.x=﹣1C.x=2D.x=﹣2【分析】已知小明在解方程去分母时,方程右边的﹣1这个项没有乘3,则所得的式子是:2x﹣1=x+a ﹣1,把x=2代入方程即可得到一个关于a的方程,求得a的值,然后把a的值代入原方程,解这个方程即可求得方程的解.【解答】解:根据题意,得:2x﹣1=x+a﹣1,把x=2代入这个方程,得:3=2+a﹣1,解得:a=2,代入原方程,得:2K13=r23−1,去分母,得:2x﹣1=x+2﹣3,移项、合并同类项,得:x=0,故选:A.【点评】此题考查了一元一次方程的解法以及方程的解的定义.熟练掌握解一元一次方程的方法和步骤是解题的关键.4.(2023秋•道里区校级期中)某同学在解方程2K13=r2−1去分母时,方程右边的﹣1没有乘以6,因而求得方程的解为x=2,求a的值和方程正确的解.【分析】把x=2代入看错的方程求出a的值,确定出所求方程,求出解即可.【解答】解:把x=2代入4x﹣2=3x+3a﹣1得:a=13,∴原方程为2K13=r132−1,去分母得2(2x﹣1)=3(x+13)﹣6,去括号得4x﹣2=3x+1﹣6,移项得4x﹣3x=1+2﹣6,合并同类项得x=﹣3.【点评】此题考查了一元一次方程的解,熟练掌握运算法则是解本题的关键.5.(2022秋•丰顺县校级月考)(1)已知关于x的方程2(x﹣1)=﹣3a﹣6的解与方程2x+3=﹣1的解互为倒数,求a2020的值.(2)小马虎在解关于x的方程2x=ax﹣21时,出现了一个失误:“在将ax移到方程的左边时,忘记了变号.”结果他得到方程的解为x=﹣3,求a的值和原方程的解.【分析】(1)根据方程的解互为倒数,可得关于a的方程,根据解方程,可得a的值,再根据乘方的性质,可得答案;(2)根据解方程,可得答案.【解答】解:(1)∵2x+3=﹣1,∴x=﹣2,∵方程2(x﹣1)=﹣3a﹣6的解与方程2x+3=﹣1的解互为倒数,∴2(x﹣1)=﹣3a﹣6的解为−12,∴2(−12−1)=−3−6,解得,a=﹣1,∴a2020=(﹣1)2020=1.(2)由题意得2x+ax=﹣21,x=﹣3为此方程的解,∴﹣6﹣3a=﹣21,∴a=5,∴原方程为2x=5x﹣21,∴x=7,原方程的解是7.【点评】本题考查了一元一次方程的解,利用方程的解满足方程得出关于a的方程是解题关键.6.小王在解关于x的方程3a﹣2x=15时,误将﹣2x看作2x,得方程的解x=3,(1)求a的值;(2)求此方程正确的解;(3)若当y=a时,代数式my3+ny+1的值为5,求当y=﹣a时,代数式my3+ny+1的值.【分析】(1)把x=3代入方程即可得到关于a的方程,求得a的值;(2)把a的值代入方程,然后解方程求解;(3)把y=a代入my3+ny+1得到m和n的式子,然后把y=﹣a代入my3+ny+1,利用前边的式子即可代入求解.【解答】解:(1)把x=3代入3a+2x=15得3a+6=15,解得:a=3;(2)把a=3代入方程得:9﹣2x=15,解得:x=﹣3;(3)把y=a代入my3+ny+1得27m+3n+1=5,则27m+3n=4,当y=﹣a时,my3+ny+1=﹣27m﹣3n+1=﹣(27m+3n)+1=﹣4+1=﹣3.【点评】本题考查了方程的解的定义,以及代数式的求值,正确理解方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,是关键.【题型7一元一次方程的整数解问题】1.(2023秋•西城区校级期中)若关于x的一元一次方程kx=x+3的解为正整数,则整数k的值为()A.2B.4C.0或2D.2或4【分析】先求出方程的解,再根据关于x的一元一次方程kx=x+3的解为正整数和k为整数得出k﹣1=1或k﹣1=3,再求出k即可.【解答】解:解方程kx=x+3得:x=3K1,∵关于x的一元一次方程kx=x+3的解为正整数,k为整数,∴k﹣1=1或k﹣1=3,∴k=2或4.故选:D.【点评】本题考查了一元一次方程的解,能根据题意得出关于k的方程是解此题的关键.2.(2022秋•南充期末)已知a为自然数,关于x的一元一次方程6x=ax+6的解也是自然数,则满足条件的自然数a共有()A.3个B.4个C.5个D.6个【分析】解此题可先将一元一次方程进行移项、合并同类项等转换,得出x的解,再根据题意判断a的值.【解答】解:6x=ax+6,6x﹣ax=6,(6﹣a)x=6,x=66−,因为x和a均为自然数,所以6﹣a可以被6整除,且6﹣a不等于0,分解质因数得6=1×2×3,所以6﹣a只可能等于1、2、3、6,即a可能等于5、4、3、0,故只有选项B符合题意,故选:B.【点评】此题考查了自然数的定义,以及一元一次方程的解法,熟练掌握即可解答.3.(2022秋•九龙坡区校级期末)若关于x的方程−2−B6=r13的解是整数解,m是整数,则所有m的值加起来为()A.﹣5B.﹣16C.﹣24D.18【分析】根据解一元一次方程的一般步骤表示出x的代数式,分析解答即可.【解答】解:解方程−2−B6=r13,得:=44+,根据题意可知=44+为整数,m是整数,当m的值为0,﹣2,﹣3,﹣5,﹣6,﹣8时,44+为整数,∴0+(﹣2)+(﹣3)+(﹣5)+(﹣6)+(﹣8)=﹣24,故选:C.【点评】本题考查了根据一元一次方程解的情况求参数,熟练掌握解一元一次方程的一半步骤是解本题的关键.4.(2022秋•九龙坡区校级期末)已知关于x的方程a(x+1)=a﹣2(x﹣2)的解都是正整数,则整数a 的所有可能的取值的积为()A.﹣12B.1C.8D.0【分析】根据一元一次方程的解法求出x的表达式,然后根据题该方程的解都是正整数即可求出a的值.【解答】解:a(x+1)=a﹣2(x﹣2),ax+a=a﹣2x+4,ax=﹣2x+4,(a+2)x=4,由于x是正整数,故a+2=1或2或4,。
人教版七年级数学上册第三章一元一次方程常见题型分类
一元一次方程应用题之工程问题工程问题:工程问题的基本量有:工作量、工作效率、工作时间。
关系式为:①工作量=工作效率×工作时间。
②工作时间=工作效率工作量,③工作效率=工作时间工作量。
工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t ,则工作效率为t 1。
常见的相等关系有两种:①如果以工作量作相等关系,部分工作量之和=总工作量。
②如果以时间作相等关系,完成同一工作的时间差=多用的时间。
例题:例1.一水池装有甲、乙、丙三个水管,加、乙是进水管,丙是排水管,甲单独开需10小时注满一池水,乙单独开需6小时注满一池水,丙单独开15小时放完一池水。
现在三管齐开,需多少时间注满水池?例2.一项工程,甲队单独做需要10天完成,乙队单独做需要20天完成,两队同时工作3天后,乙队采用新技术,工作效率提高了25%,自乙队采用新技术后,两队还需要同时工作多少天才能完成这项工程?针对练习:1.某中学的学生自己动手整修操场,如果让初一学生单独工作,需要7.5小时完成;如果让初二学生单独工作,需要5小时完成。
如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需几小时完成?2.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共花12天完成,问乙做了几天?3.整理一批图书,由一个人做要40小时完成。
现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体先安排多少人工作。
4.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?5.整理一批数据,由一个人做需80小时完成任务。
现在计划由一些人先做2小时,再增加5人做8小时,完成任务这项工作的3/4。
怎样安排参与整理数据的具体人数?行程问题行程问题中有三个基本量:路程、时间、速度。
七年级数学上册一元一次方程应用题常见的数量关系及题型归纳
一元一次方程应用题常见的数量关系及题型归纳补充:1、数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.2、市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.3、行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距4、航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.5、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量6、增长率问题若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则它们的数量关系可表示为:a(1+x)n=b7、加数+加数=和和-一个加数=另一个加数被减数-减数=差被减数-差=减数差+减数=被减数因数×因数=积积÷一个因数=另一个因数被除数÷除数=商被除数÷商=除数商×除数=被除数每份数×份数=总数总数÷每份数=份数总数÷份数=每份数8、工程问题公式(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
七年级数学上册一元一次方程的应用经典题型整理
七年级数学上册一元一次方程的应用经典题型整理题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。
初中数学七年级(上册)一元一次方程9大题型 例题解析
初中数学七年级(上册)一元一次方程9大题型例题解析一、列一元一次方程解应用题的一般步骤(1)审题:弄清题意(2)找出等量关系:找出能够表示本题含义的相等关系(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解方程:解所列的方程,求出未知数的值(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案二、一元一次方程解决应用题的分类1.市场经济、打折销售问题(一)知识点(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润/商品成品价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.(二)例题解析1.某高校共有5个大餐厅和2个小餐厅。
经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐。
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由。
解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680‐2y)名学生就餐,根据题意得:2(1680‐2y)+y=2280解得:y=360(名)所以1680‐2y=960(名)(2)因为960×5+360×2=5520>5300,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐。
2.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等。
该工艺品每件的进价、标价分别是多少元?解:设该工艺品每件的进价是元,标价是(45+x)元。
依题意,得:8(45+x)×0.85‐8x=(45+x‐35)×12‐12x解得:x=155(元)所以45+x=200(元)3.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费。
人教版七年级数学上册 第五章 一元一次方程知识归纳与题型突破(单元复习 8类题型清单)
1第五章一元一次方程知识归纳与题型突破(题型清单)01思维导图02知识速记一、基本概念1、等式的概念:含有等号,表示相等关系的式子2、方程的概念:含有未知数的等式3、一元一次方程的概念:(1)只含有1个未知数;(2)未知数的最高次数为1次;(3)等式两边都是整式.二、等式的性质若b a =,则c b c a +=+、c b c a -=-、bc ac =、cbc a =.特别注意:等式两边须同时乘以或除以一个不为0的数.三、解一元一次方程1、去分母(不漏乘不含分母的项,去分母应加括号)2、去括号(带着符号计算,不要漏乘)3、移项(移项要变号;未知数移到左边,常数移到右边;先后顺序不重要)4、合并同类项5、系数化为1(系数不能为0,若未知数的系数含有字母则需要讨论)四、列方程解应用题的步骤①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x )③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)五、一元一次方程的应用(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度).03题型归纳题型一判断是否是一元一次方程例题:(24-25七年级上·全国·单元测试)下列各式:①236x y -=;②2430x x --=;③()2353x x +=-;④310x+=;⑤()3425x x --.其中,一元一次方程有()A .1个B .2个C .3个D .4个巩固训练1.(23-24七年级下·全国·期中)下列各式中,属于一元一次方程的是()A .6518x y -=B .242715x x =+-C .438x x+=D .94x x-=2.(23-24七年级上·全国·单元测试)在方程①231325x +=,②=0,③235x y +=,④3120x+=中,一元一次方程共有()A .1个B .2个C .3个D .4个3.(23-24七年级上·全国·单元测试)①12x x -=;②0.31x ≤;③243x x -=;④512x x =-;⑤6x =;⑥20x y +=.其中一元一次方程的个数是()A .2B .3C .4D .5题型二根据一元一次方程的定义求参数的值例题:(24-25七年级上·黑龙江哈尔滨·阶段练习)已知1320m x --=是关于x 的一元一次方程,则m 的值是.巩固训练1.(23-24七年级上·全国·单元测试)若()1246a a x--+=-是关于x 的一元一次方程,则a =.2.(23-24七年级上·河南漯河·期中)已知关于x 的方程()||233m m x m --+=是一元一次方程,则m 的值为.3.(23-24七年级上·全国·单元测试)若关于x 的方程()21120m mx m x -+--=是一元一次方程,则m 的值为.题型三已知一元一次方程的解求参数的值例题:(23-24七年级下·全国·期中)关于x 的一元一次方程213mx x -=-有解,则m 的值为.巩固训练1.(23-24七年级上·浙江金华·期末)已知3x =是方程26ax a -=-+的解,则a =.2.(23-24七年级下·四川宜宾·期中)整式ax b +的值随着x 的取值的变化而变化,下表是当x 取不同的值时对应的整式的值:x 1-0123ax b+8-4-048则关于x 的方程8ax b +=的解是.3.(23-24七年级上·浙江·期末)若关于x 的方程30ax +=的解为2x =,则方程()130a x -+=的解为.题型四列一元一次方程例题:(23-24六年级下·全国·单元测试)设某数为x ,如果某数的2倍比它的相反数大1,那么列方程是.巩固训练1.(23-24七年级上·福建福州·期末)“x 的5倍与2的和等于x 的13与4的差”,用等式表示为2.(2024·湖南益阳·模拟预测)《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人车各几何?译文为:今有若干人乘车,每3人共乘一车,刚好每车坐满后还剩余2辆车没人坐;若每2人共乘一车,最终剩余9个人无车可乘只能步行,问共有多少人,多少辆车?设共有x 辆车,则可列方程.3.(2023·吉林长春·模拟预测)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,其大意为:今有若干人住店,若每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,设店中共有x 间房,可列方程为.题型五等式的基本性质例题:(23-24七年级上·天津·期中)下列说法错误的是()A .若22x y -=-,则x y =B .若25x x =,则5x =C .若a b =,则66a b -=-D .若2211a bc c =++,则a b =巩固训练1.(23-24七年级下·广西南宁·开学考试)下列是根据等式的性质进行变形,正确的是()A .若x y =,则33x y -=+B .若a b =,则32a b =C .若22x y=,则x y =D .若ax ay =,则x y=2.(23-24七年级上·安徽·单元测试)下列运用等式的性质变形中正确的是()A .如果a b =,则a c b c +=-B .如果23x x =,则3x =C .如果a b =,则22a bc c =D .如果22a b c c =,则a b =3.(22-23七年级上·山东济南·阶段练习)下列变形正确的是()A .4532x x -=+变形得4325x x -=-+B .211332x x -=+变形得4633x x -=+C .3(1)2(3)x x -=+变形得3126x x -=+D .32x =变形得23x =4.(2024·贵州贵阳·一模)用“□”“△”“○”表示三种不同的物体,现用天平称了两次,情况如图所示.设a ,b ,c 均为正数,则能正确表示天平从左到右变化过程的等式变形为()A .如果a c b c +=+,那么a b =B .如果a b =,那么a c b c +=+C .如果22a b =,那么a b=D .如果a b =,那么22a b=题型六解一元一次方程巩固训练题型七解一元一次方程中的错解复原问题巩固训练(2)仿照上例解方程:0.2 0.3x+题型八用一元一次方程解决实际问题例题:(2024上·辽宁大连·七年级统考期末)某车间生产一批螺钉和螺母,由一个人操作机器做需要200h完成.现计划由一部分人先做4h,然后增加5人与他们一起做6h,完成这项工作.假设这些人的工作效率相同.(1)求具体应先安排多少人工作?(2)在增加5人一起工作后,若每人每天使用机器可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母成为一个完整的产品,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?(3)若该车间有10台A型和11台B型机器可以生产这种产品,每台A型机器比B型机器一天多生产1个产品.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,且每箱装的产品数相同.某天有6台A型机器和m台B型机器同时开工,请问一天生产的产品能否恰好装满29箱.若能,请计算出m的值;若不能,请说明理由.巩固训练1.(2024上·甘肃酒泉·七年级统考期末)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.(1)请用含x的代数式分别表示学校在甲、乙两家店购物所付的费用;(2)如果购买笔记本数量为60本,并且只在一家店购买的话,请通过计算说明,到哪家店购买更合算?(2)小亮家—年缴纳水费1180元,则小亮家这一年用水多少立方米?(3)小红家去年和今年共用水520立方米,共缴纳水费2950元,并且今年的用水量超过去年的用水量,则小红家今年和去年各用水多少立方米?第五章一元一次方程知识归纳与题型突破(题型清单)01思维导图02知识速记一、基本概念1、等式的概念:含有等号,表示相等关系的式子2、方程的概念:含有未知数的等式3、一元一次方程的概念:(1)只含有1个未知数;(2)未知数的最高次数为1次;(3)等式两边都是整式.二、等式的性质若b a =,则c b c a +=+、c b c a -=-、bc ac =、cbc a =.特别注意:等式两边须同时乘以或除以一个不为0的数.三、解一元一次方程1、去分母(不漏乘不含分母的项,去分母应加括号)2、去括号(带着符号计算,不要漏乘)3、移项(移项要变号;未知数移到左边,常数移到右边;先后顺序不重要)4、合并同类项5、系数化为1(系数不能为0,若未知数的系数含有字母则需要讨论)四、列方程解应用题的步骤①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x )③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)五、一元一次方程的应用(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度).03题型归纳题型一判断是否是一元一次方程例题:(24-25七年级上·全国·单元测试)下列各式:①236x y -=;②2430x x --=;③()2353x x +=-;④310x+=;⑤()3425x x --.其中,一元一次方程有()A .1个B .2个C .3个D .4个【答案】A【知识点】一元一次方程的定义【分析】本题考查的是一元一次方程的定义,掌握一元一次方程的定义是解题的关键.根据一元一次方程的定义进行判定.【详解】解:①是二元一次方程,不符合题意;②是一元二次方程,不符合题意;③是一元一次方程,符合题意;④是分式方程,不符合题意;⑤是代数式,不是方程,不符合题意.故选:A .巩固训练1.(23-24七年级下·全国·期中)下列各式中,属于一元一次方程的是()A .6518x y -=B .242715x x =+-C .438x x+=D .94x x-=2.(23-24七年级上·全国·单元测试)在方程①231325x +=,②=0,③235x y +=,④120x+=中,一元一次方程共有()A .1个B .2个C .3个D .4个【答案】A【知识点】一元一次方程的定义3.(23-24七年级上·全国·单元测试)①2x x -=;②0.31x ≤;③243x x -=;④512x x =-;⑤6x =;⑥20x y +=.其中一元一次方程的个数是()A .2B .3C .4D .5题型二根据一元一次方程的定义求参数的值例题:(24-25七年级上·黑龙江哈尔滨·阶段练习)已知1320m x --=是关于x 的一元一次方程,则m 的值是.【答案】2【知识点】一元一次方程的定义【分析】本题考查了一元一次方程的概念,根据一元一次方程的定义得到11m -=,求出m 即可.【详解】解:根据题意得:11m -=,解得:2m =,故答案为:2.巩固训练1.(23-24七年级上·全国·单元测试)若()1246a a x --+=-是关于x 的一元一次方程,则a =.2.(23-24七年级上·河南漯河·期中)已知关于x 的方程()||233m m x m --+=是一元一次方程,则m 的值为.故答案为:13.(23-24七年级上·全国·单元测试)若关于x 的方程()21120m mx m x -+--=是一元一次方程,则m 的值为.【答案】1或0【知识点】一元一次方程的定义【分析】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.根据一元一次方程的一般形式即可判定有3种情况,分别讨论①当0m ≠且10m -≠时,②当0m =且10m -≠时,③当10m -=时是否满足该方程为一元一次方程即可.【详解】解: 关于x 的方程()21120m mxm x -+--=是一元一次方程,可考虑三种情况,①当0m ≠且10m -≠时,即0m ≠且1m ≠,则211m -=,解得:1m =,此时1m ≠,故排除;②当0m =且10m -≠时,即0m =且1m ≠,∴0m =,符合条件;③当10m -=即1m =时,211m -=,符合条件;综上:m 的值为1或0,故答案为:1或0.题型三已知一元一次方程的解求参数的值例题:(23-24七年级下·全国·期中)关于x 的一元一次方程213mx x -=-有解,则m 的值为.1.(23-24七年级上·浙江金华·期末)已知3x =是方程26ax a -=-+的解,则a =.【答案】2【知识点】方程的解【分析】本题考查了方程解的定义,使方程的左右两边相等的未知数的值,叫做方程的解.将3x =代入原方程,可得出关于a 的一元一次方程,解之即可得出a 的值.【详解】解:将3x =代入原方程得326a a -=-+,解得:2a =,∴a 的值为2.故答案为:2.2.(23-24七年级下·四川宜宾·期中)整式ax b +的值随着x 的取值的变化而变化,下表是当x 取不同的值时对应的整式的值:x 1-0123ax b+8-4-048则关于x 的方程8ax b +=的解是.【答案】3x =【知识点】方程的解【分析】此题考查了方程的解,根据表格中的数据求解即可.【详解】根据题意可得,当3x =时,8ax b +=∴关于x 的方程8ax b +=的解是3x =.故答案为:3x =.3.(23-24七年级上·浙江·期末)若关于x 的方程30ax +=的解为2x =,则方程()130a x -+=的解为.题型四列一元一次方程例题:(23-24六年级下·全国·单元测试)设某数为x ,如果某数的2倍比它的相反数大1,那么列方程是.【答案】21x x =-+【知识点】列方程【分析】本题主要考查了一元一次方程的应用,数x 的2倍为2x ,相反数为x -,据此根据题意列出方程即可.【详解】解:由题意得,21x x =-+,故答案为:21x x =-+.巩固训练1.(23-24七年级上·福建福州·期末)“x 的5倍与2的和等于x 的13与4的差”,用等式表示为2.(2024·湖南益阳·模拟预测)《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人车各几何?译文为:今有若干人乘车,每3人共乘一车,刚好每车坐满后还剩余2辆车没人坐;若每2人共乘一车,最终剩余9个人无车可乘只能步行,问共有多少人,多少辆车?设共有x 辆车,则可列方程.【答案】()3229x x -=+【知识点】古代问题(一元一次方程的应用)【分析】本题考查了由实际问题抽象出一元一次方程.根据人数不变,即可得出关于x 的一元一次方程,此题得解.【详解】解:依题意,得:()3229x x -=+.故答案为:()3229x x -=+.3.(2023·吉林长春·模拟预测)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,其大意为:今有若干人住店,若每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,设店中共有x 间房,可列方程为.【答案】()7791x x +=-【知识点】古代问题(一元一次方程的应用)【分析】本题考查一元一次方程的应用,理清题中的等量关系是解题的关键.由等量关系“一房七客多七客,一房九客一房空”,即可列出一元一次方程即可.【详解】解: 每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,∴客人可表示为()77x +个,也可表示为()91x -个,()7791x x ∴+=-,故答案为:()7791x x +=-.题型五等式的基本性质例题:(23-24七年级上·天津·期中)下列说法错误的是()A .若22x y -=-,则x y =B .若25x x =,则5x =C .若a b =,则66a b -=-D .若2211a bc c =++,则a b =【答案】B1.(23-24七年级下·广西南宁·开学考试)下列是根据等式的性质进行变形,正确的是()A .若x y =,则33x y -=+B .若a b =,则32a b =C .若22x y=,则x y =D .若ax ay =,则x y=2.(23-24七年级上·安徽·单元测试)下列运用等式的性质变形中正确的是()A .如果a b =,则a c b c+=-B .如果23x x =,则3x =C .如果a b =,则22a b c c =D .如果22a b c c =,则a b =3.(22-23七年级上·山东济南·阶段练习)下列变形正确的是()A .4532x x -=+变形得4325x x -=-+B .211332x x -=+变形得4633x x -=+C .3(1)2(3)x x -=+变形得3126x x -=+D .32x =变形得23x =4.(2024·贵州贵阳·一模)用“□”“△”“○”表示三种不同的物体,现用天平称了两次,情况如图所示.设a ,b ,c 均为正数,则能正确表示天平从左到右变化过程的等式变形为()A .如果a c b c +=+,那么a b=B .如果a b =,那么a c b c +=+C .如果22a b =,那么a b=D .如果a b =,那么22a b=【答案】A【知识点】等式的性质【分析】本题考查等式的性质,根据天平两端相等即可求得答案.【详解】解:由图形可得如果a c b c +=+,那么a b =,故选:A .题型六解一元一次方程例题1:解方程:(1)25433x x -=-;(2)576132x x -=-+.【答案】(1)35x =(2)415x =【分析】()1方程移项合并,把x 系数化为1,即可求解;()2方程移项合并,把x 系数化为1,即可求解.【详解】(1)移项,得24353x x -+=-,合并同类项,得1023x -=-,系数化为1,得35x =.(2)移项,得756123x x -+=-,合并同类项,得5223x -=-,系数化为1,得415x =.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.例题2:解方程:(1)5(1)2(31)41---=-x x x ;(2)23(1)12(10.5)-+=-+x x .题型七解一元一次方程中的错解复原问题巩固训练(2)仿照上例解方程:0.2 0.3x+【答案】(1)③④①②(2)3x=-题型八用一元一次方程解决实际问题1.(2024上·甘肃酒泉·七年级统考期末)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.答:小红家去年和今年用水分别为245立方米、275立方米.。
【精选】人教版七年级上册数学第三章《一元一次方程》知识点+典型例题
【精选】人教版七年级上册数学第三章《一元一次方程》知识点+典型例题知识点、概念总结1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。
6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。
7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。
一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.8.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。
9.方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
七年级数学上册第三章一元一次方程题型总结及解题方法
(名师选题)七年级数学上册第三章一元一次方程题型总结及解题方法单选题1、如图,将4张形状、大小完全相同的小长方形纸片分别以图1、图2的方式放入长方形ABCD 中,若图1中的阴影部分周长比图2的阴影部分周长少1,则图中BE 的长为( )A .14B .12C .1D .2答案:B分析:设小长方形的长为y ,宽为x ,用x 、y 及BE 分别表示出图1和图2的周长,根据图1中的阴影部分周长比图2的阴影部分周长少1,即可求解.解∶如下图,设小长方形的长为y ,宽为x ,则,图1中阴影部分的周长为:y +2x +y +2x +y +(y -2x )+2x =4y +4x ,图2中阴影部分的周长为:y +2x +(y +BE -2x )+y +2x +y +BE +2x =4y +4x + 2BE ,∵图1中的阴影部分周长比图2的阴影部分周长少1,∴4y +4x + 2BE =4y +4x +1,∴BE =12,故选:B .小提示:此题考查了整式的加减以及一元一次方程,正确地表示出两图中阴影部分的周长是解本题的关键.2、如图,长方形ABCD中,AB=8cm,AD=6cm,P,Q两动点同时出发,分别沿着长方形的边长运动,P点从B点出发,顺时针旋转一圈,到达B点后停止运动,Q点的运动路线为B→C→D,P,Q点的运动速度分别为2cm/秒,1cm/秒,当一个动点到达终点时,另一个动点也同时停止运动.设两动点运动的时间为t秒,要使△BDP和△ACQ的面积相等,满足条件的t值的个数为()A.2B.3C.4D.5答案:C分析:分五种情况,根据运动的路径和△BDP和△ACQ的面积相等列出方程,求解即可.解:由题意进行分类讨论:①当P点在AB上,Q点在BC上时(t≤4),BP=2t,CQ=6﹣t,要使△BDP与△ACQ面积相等,则1 2×2t×6=12(6−t)×8,解得:t=2.4;②当P点在AD上,Q点在BC上时(4<t≤6),DP=14﹣2t,CQ=6﹣t,要使△BDP与△ACQ面积相等,则DP=CQ,即14﹣2t=6﹣t,解得:t=8(舍去);③当P点在AD上,Q点在CD上时(6<t≤7),DP=14﹣2t,CQ=t﹣6,要使△BDP与△ACQ面积相等,则1 2×8(14−2t)=12×6(t−6),解得t=7411;④当P点在CD上,Q点在CD上时(7<t≤11),DP=2t﹣14,CQ=t﹣6,要使△BDP与△ACQ面积相等,则DP=CQ,即2t﹣14=t﹣6,解得:t=8;⑤当P点在BC上,Q点在CD上时(11<t≤14),BP=28﹣2t,CQ=t﹣6,要使△BDP与△ACQ面积相等,则1 2×8(28−2t)=12×6(t−6),解得:t=13011;综上可得共有4种情况满足题意,所以满足条件的t值得个数为4.故选:C.小提示:本题考查了长方形的性质、三角形的面积以及一元一次方程的应用,读懂题意,找到等量关系,列出方程是解题的关键,注意:需要分类讨论.3、若x=3是关于x的方程ax−b=5的解,则6a−2b−2的值为()A.2B.8C.-3D.-8答案:B分析:将x=3代入ax-b=5中得3a-b=5,将该整体代入6a-2b-2中即可得出答案.解:将x=3代入ax-b=5中得:3a-b=5,所以6a-2b-2=2(3a-b)-2=2×5-2=8.故选:B.小提示:本题考查了一元一次方程的解,求代数式的值,熟练掌握整体法是解题的关键.4、已知下列两个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距20km的两地同时出发,背向而行,甲的速度是4km/h,乙的速度是6km/h,问经过几小时后两人相距60km?其中可以用方程4x+6x+20=60表述题目中数量关系的应用题是()A.①B.②C.①②D.①②都不对答案:C分析:①设两人开始工作x小时后还有20个零件没有加工,根据甲生产的零件数+乙生产的零件数+未加工的零件数=计划加工零件的总数,即可得出关于x的一元一次方程;②设经过x小时后相距60km,根据甲的路程+乙的路程+原来两人间隔的距离=两地间的距离,即可得出关于x的一元一次方程.解:①设两人开始工作x小时后还有20个零件没有加工,依题意,得:4x+6x+20=60,∴①可以用方程4x+6x+20=60来表述;②设经过x小时后两人相距60km,依题意,得:4x+6x+20=60,∴②可以用方程4x+6x+20=60来表述;综上分析可知,①②可以用方程4x+6x+20=60表述题目中数量关系,故C正确.故选:C.小提示:本题主要考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.5、某项工程由甲队单独做需要20天完成,由乙队单独做只需甲队的一半时间就能完成.设两队合作需要x 天完成,则可列方程为()A.120+110=x B.(120+110)x=1C.120+140=x D.(120+140)x=1答案:B分析:运用工作效率乘工作时间等于工作量列代数式,甲队工作量加乙队工作量等于1列方程.两队合作需要x天完成,由题意得,x20+x10=1,即(120+110)x=1.故选:B.小提示:本题主要考查了工程问题,解决问题的关键是熟练掌握工作量与工作效率和工作时间的关系,甲乙两队的工作量与总工作量的关系.6、在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则y﹣x的值是()A.1B.17C.﹣1D.﹣17答案:A分析:根据题意可得关于x、y的等式,继而进行求解即可得答案.由题意得:-3+y+2=-3+3+x,即y-1=x,则y﹣x=1.故选:A.小提示:本题考查了三阶幻方,涉及方程,移项等知识,弄清题意,找准数量关系是解题的关键.7、已知y=2x+513−3x−217−32x+2.当x=1.5时,y>0;当x=1.8时,y<0.则方程2x+513−3x−217−32x+2=0的解可能是()A.1.45B.1.64C.1.92D.2.05答案:B分析:由题意估算得出方程的解的取值范围在1.5与1.8之间,据此即可求解.解:对于y=2x+513−3x−217−32x+2来说,∵当x=1.5时,y=2x+513−3x−217−32x+2>0;当x=1.8时,y=2x+513−3x−217−32x+2<0;∴方程2x+513−3x−217−32x+2=0的解的取值范围在1.5与1.8之间,观察四个选项,1.64在此范围之内,故选:B.小提示:本题考查了一元一次方程的解,关键是根据题意得出方程2x+513−3x−217−32x+2=0的解的取值范围在1.5与1.8之间.8、已知a=b,根据等式的性质,可以推导出的是()A.a+2=b+1B.−3a=−3b C.2a−3=2b D.ac =bc答案:B分析:根据等式的性质依次判断即可.解:a=b,A、a+2≠b+1,选项不符合题意;B、-3a=-3b,选项符合题意;C、2a=2b,∴2a-3≠2b,选项不符合题意;D、当c≠0时,ac =bc,选项不符合题意;故选:B.小提示:题目主要考查等式的性质,熟练掌握等式的性质是解题关键.9、在解关于y的方程2y-13=y+a2-1时,小明在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为y=4,则方程正确的解是()A.y=-1B.y=-2C.y=1D.y=2答案:A分析:把y=4代入方程2(2y-1)=3(y+a)-1得出2×(8-1)=3(4+a)-1,求出方程的解是a=1,把a=1代入方程2y-1 3=y+a2-1得出2y-13=y+12-1,再去分母,去括号,移项,合并同类项,系数化成1即可.解:∵在解关于y的方程2y-13=y+a2-1时,小明在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为y=4,∴把y=4代入方程2(2y-1)=3(y+a)-1,得2×(8-1)=3(4+a)-1,解得:a=1,即方程为2y-13=y+12-1,去分母得2(2y-1)=3(y+1)-6,去括号得4y-2=3y+3-6,移项得4y-3y=3-6+2,解得y=-1,故选:A.小提示:本题考查一元一次方程的解和解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.10、古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,若设这个数是x,则所列方程为()A.23x+17x+x=33B.23x+12x+17x=33C.23x+12x+17x+x=33D.x+23x+17x−12x=33答案:C分析:根据题意列方程23x+12x+17x+x=33.解:由题意可得23x+12x+17x+x=33.故选C小提示:本题考查了一元一次方程的应用,找等量关系是解题的关键.填空题11、已知5是关于x的方程ax+b=0的解,则关于x的方程a(x+8)+b=0的解是__________.答案:x=-3分析:把x=5代入方程ax+b=0,解得5a+b=0,得到b=−5a,把b=−5a代入方程a(x+8)+b=0即可解题.解:把x=5代入方程ax+b=0,解得5a+b=0,∴b=−5a,b=−5a代入方程a(x+8)+b=0得a(x+8)−5a=0∴a(x+8)=5a∴x+8=5∴x=−3所以答案是:x=−3.小提示:本题考查一元一次方程的解和解一元一次方程,是基础考点,掌握相关知识是解题关键.12、某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A,B处,当钢梁保持水平时,弹簧秤读数为k(N).若铁笼固定不动,移动弹簧秤使BP扩大到原来的n(n>1)倍,且钢梁保持水平,则弹簧秤读数为_______(N)(用含n,k的代数式表示).答案:kn分析:根据杠杆的平衡条件是:动力×动力臂=阻力×阻力臂,计算即可.设弹簧秤新读数为x根据杠杆的平衡条件可得:k⋅PB=x⋅nPB解得x=kn所以答案是:k.n小提示:本题是一个跨学科的题目,熟记物理公式动力×动力臂=阻力×阻力臂是解题的关键.13、据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程__________.答案:652(1+x)2=960分析:根据题意,第一季度地区生产总值×(1+平均增长率)2=第三季度地区生产总值,按照数量关系列方程即可得解.解:根据题意,第一季度地区生产总值×(1+平均增长率)2=第三季度地区生产总值列方程得:652(1+x)2=960,所以答案是:652(1+x)2=960.小提示:本题主要考查了增长率的实际问题,熟练掌握相关基本等量关系是解决本题的关键.14、某校招聘教师,规定综合成绩由笔试成绩和面试成绩构成,其中笔试占60%,面试占40%,有一名应聘者的综合成绩为84分,笔试成绩是80分,则面试成绩为______分.答案:90分析:根据综合成绩笔试占60%,面试占40%,即综合成绩等于笔试成绩乘以60%,加上面试成绩乘以40%,即可求解;解:设面试成绩为x分,根据题意知,该名老师的综合成绩为80×60%+40%⋅x=84(分)解得x=90所以答案是:90.小提示:本题考查一元一次方程实际问题和加权平均数及其计算,是中考的常考知识点,熟练掌握其计算方法是解题的关键.15、如果a,b为定值,那么关于x的方程3kx−2a3=3−x−bk2,无论k为何值,它的解总是3,则a=___,b=___答案:−946分析:先去分母,将方程中含k的整理在一起,然后根据方程的解与k无关分别列出方程求解即可.解:3kx−2a3=3−x−bk2,方程两边同乘以6去分母,得2(3kx−2a)=18−3(x−bk),整理得:(6x−3b)k+3x=18+4a,∵无论k为何值,方程的解总是3,∴6×3−3b=0,18+4a=3×3,,b=6,解得a=−94,6.所以答案是:−94小提示:本题考查了一元一次方程的解,化解方程得出关系式是解题的关键.解答题16、葡萄加工厂现收购10吨葡萄,该葡萄的出原汁率80%(原汁含皮带籽).若在市场上直接销售原汁,每吨可获利润500元;制成葡萄汁(葡萄汁不含皮不带籽)销售,每加工1吨原汁可获利润1200元;制成葡萄饮料销售,每加工1吨原汁可获利润2000元.该厂的生产能力是:若制葡萄汁,每天可加工3吨原汁;若制葡萄饮料,每天可加工1吨原汁;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批葡萄必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:(将葡萄榨成原汁时间忽略不计)方案一:尽可能多的制成葡萄饮料,其余直接销售原汁;方案二:将一部分制成葡萄饮料,其余制成葡萄汁销售,并恰好4天完成.(1)方案一获利情况.(2)方案二如何安排原汁的使用.(3)请你帮葡萄加工厂选一种方案,使这10吨葡萄既能在4天内全部销售或加工完毕,又能获得你认为最多的利润.答案:(1)10000(元);(2)2吨做制葡萄饮料,6吨做葡萄汁;(3)选择第二种方案分析:(1)方案一是尽可能多的葡萄饮料,也就是四天都制葡萄饮料,每天加工一吨,可加工4吨,剩下的4吨原汁直接销售;(2)设x天制葡萄饮料,则(4−x)天制成葡萄汁销售,由此列出方程解答即可;(3)比较两种方案的利润得出答案即可.(1)10×80%=8吨,方案一获利4×2000+(8−4)×500=10000(元);(2)设x天制葡萄饮料,则4−x天制成葡萄汁销售,由题意得x+3(4−x)=8,解得:x=2,4−x=2,2×1=2(吨),3×2=6(吨)答:2吨做制葡萄饮料,6吨做葡萄汁.(3)方案二获利2×2000+6×1200=11200元,10000<11200,所以选择第二种方案.小提示:此题考查一元一次方程的实际运用,方案的选择问题,理解方案的含义,找出题目蕴含的数量关系解决问题.17、解方程(1)2(3x−1)=7−(x−5)(2)x0.7−1=0.17−0.2x0.03答案:(1)x=2(2)x=1417分析:(1)先去括号,再移项,合并,系数化为1即可求解;(2)先将方程的分子分母化成整数,再按解一元一次方程——去分母解答即可.(1)解:去括号,得6x−2=7−x+5移项,得6x+x=7+5+2合并,得7x=14系数化为1,得x=2(2)原方程可化为10x7−1=17−20x3去分母,得30x−21=7(17−20x)去括号,得30x−21=119−140x移项,合并得170x=140系数化为1,得x=1417.小提示:本题考查解一元一次方程——去括号,解一元一次方程——去分母,解题关键是熟练掌握解一元一次方程的步骤,另方程出现小数系数时可先化成整数.18、[教材改编]改编华师版七年级下册数学教材第19页的部分内容.问题3 课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天”就停住了.根据以上信息解答下列问题:(1)两人合作需要__________天完成.(2)李老师选了两位同学的问题,合起来在黑板上写出:现由徒弟先做1天,再两人合作,完成后共得到报酬450元,如果按各完成工作量计算报酬,那么该如何分配?[拓展]在问题3中,如果两人合作完成后共得报酬450元,工作量相同部分的报酬,师徒按3:2分配,余下的工作量所得报酬分配给该部分完成者,请直接写出师徒各得的报酬.答案:[教材改编](1)2.4;(2)师傅和徒弟各分225元;[拓展]师傅所得报酬为306元,徒弟所得报酬为144元.分析:[教材改编](1)用总工作量除以两人的工作效率之和,即可求解;(2)两人合作x天,根据题意,列出方程,即可求解;[拓展]先分别求出两人完成的工作量,可得两人完成工作量相同部分,再根据工作量相同部分的报酬,师徒按3:2分配,即可求解.[教材改编]解:(1)两人合作的天数为:1÷(14+16)=2.4天,答:两人合作需要2.4天完成;(2)设两人合作x天,根据题意得:1 6(x+1)+14x=1,解得:x=2,∴徒弟完成的工作量为16+26=12,师傅完成的工作量为14×2=12,∴两人的工作量相同,∴师傅和徒弟各分一半,即12×450=225元,答:师傅和徒弟各分225元;[拓展] 解:由(1)得:两人合作的时间为2.4天,徒弟完成工作量的2.4×16=25,师傅完成工作量的2.4×14=35,两人完成工作量相同部分为25×2=45,徒弟所得报酬为450×45×23+2=144元,∴师傅所得报酬为450−144=306元,答:师傅所得报酬为306元,徒弟所得报酬为144元.小提示:本题主要考查了一元一次方程的应用,有理数混合运算的应用,明确题意,准确得到数量关系是解题的关键.。
七年级数学上册第三单元《一元一次方程》-解答题专项知识点复习(含解析)
一、解答题1.如果,a b 为定值,关于x 的方程2236kx a x bk+-=+无论k 为何值时,它的根总是1,求,a b 的值.解析:a=132,b=﹣4 【分析】先把方程化简,然后把x =1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值. 【详解】解:方程两边同时乘以6得: 4kx +2a =12+x−bk , (4k−1)x +2a +bk−12=0①, ∵无论为k 何值时,它的根总是1, ∴把x =1代入①, 4k−1+2a +bk−12=0,则当k =0,k =1时,可得方程组:12120412120a a b --⎧⎨--⎩+=++=, 解得:a=132,b=﹣4 当a=132,b=﹣4时,无论为k 何值时,它的根总是1. ∴a=132,b=﹣4 【点睛】本题主要考查了一元一次方程的解,理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.本题利用方程的解求未知数a 、b .2.已知方程3210x a +-=的解与方程20x a -=的解互为相反数,求a 的值.解析:14a =-【分析】先分别求出两个方程的解,再根据解互为相反数列方程计算即可. 【详解】3210x a +-=,解得123ax -=; 20x a -=,解得2x a =.由题意得,12203aa -+=, 解得14a =-. 【点睛】本题考查一元一次方程的解法,解题的关键是根据两个方程的解互为相反数列方程求解.3.10.3x -﹣20.5x + =1.2. 解析:4 【解析】试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题121.20.30.5x x -+-=10103x --10205x +=6550x-50-30x-60=18 20 x=128 x=6.44.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生? 解析:10个家长,5个学生 【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可. 【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生, 根据题意得:100x +100×0.8(15﹣x )=1400, 解得:x =10, 15﹣x =5,答:小明他们一共去了10个家长,5个学生. 【点睛】本题考查了一元一次方程的应用. 5.解下列方程: (1)2(x -1)=6; (2)4-x =3(2-x); (3)5(x +1)=3(3x +1)解析:(1)x =4;(2)x =1;(3)x =12【分析】(1)方程去括号,移项合并,将未知数系数化为1,即可求出解; (2)方程去括号,移项合并,将未知数系数化为1,即可求出解; (3)方程去括号,移项合并,将未知数系数化为1,即可求出解; 【详解】(1)去括号, 得2x -2=6. 移项,得2x =8. 系数化为1,得x =4. (2)去括号,得4-x =6-3x. 移项,得-x +3x =6-4. 合并同类项,得2x =2. 系数化为1,得x =1. (3)去括号,得5x +5=9x +3. 移项,得5x -9x =3-5. 合并同类项,得-4x =-2. 系数化为1,得x =12. 【点睛】此题考查了解一元一次方程,其步骤为:去括号,移项合并,将未知数系数化为1,求出解.6.设a ,b ,c ,d 为有理数,现规定一种新的运算:a b ad bc c d=-,那么当35727x -=时,x 的值是多少?解析:x =-2【分析】根据新定义的运算得到关于x 的一元一次方程,解方程即可求解. 【详解】解:由题意得:21 - 2(5 - x )=7 即21-10+2x =7 x =-2. 【点睛】本题考查了新定义,解一元一次方程,根据新定义的运算列出方程是解题关键. 7.王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税。
七年级数学上册第三章一元一次方程常考必考知识点总结
七年级数学上册第三章一元一次方程常考必考知识点总结单选题1、若关于x的方程2k−3x=4与x−2=0的解相同,则k的值为()A.−10B.10C.−5D.5答案:D解析:根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.故选:D.小提示:本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.2、已知关于x的方程(2k−1)x2−(2k+1)x+3=0是一元一次方程,则k的值为()A.1B.1C.0D.22答案:A解析:根据一元一次方程的定义可得2k-1=0,-(2k+1)≠0,据此进行求解即可得.∵关于x的方程(2k−1)x2−(2k+1)x+3=0是一元一次方程,∴2k-1=0且-(2k+1)≠0,∴k=1,2故选A.小提示:本题考查了一元一次方程的概念,熟练掌握一元一次方程是指含有一个未知数,并且未知数的次数为1的整式方程是解题的关键.3、下列方程中,解为x=5的是()=1C.7−(x−1)=3D.3x−1=2x+6A.2x+3=5B.10x答案:C解析:解:A.把x=5代入方程得:左边=2×5+3=13,右边=5,∴左边≠右边,故本选项错误;B.把x=5代入方程得:左边=2,右边=1,∴左边≠右边,故本选项错误;C.把x=5代入方程得:左边=7﹣(5﹣1)=3,右边=3,∴左边=右边,故本选项正确;D.把x=5代入方程得:左边=15﹣1=14,右边=,16,∴左边≠右边,故本选项错误.故选C.4、下列各式中,是方程的是()B.14﹣5=9C.a>3bD.x=1A.x−2y3答案:D解析:根据方程的定义:含有未知数的等式叫方程可得答案.A、没有等号,故不是方程,故此选项错误;B、等式中没有未知数,不是方程,故此选项错误;C、是不等式,不是方程,故此选项错误;D、符合方程的定义,是方程,故此选项正确;故选D.小提示:此题主要考查了方程,关键是掌握方程定义.5、买一支钢笔要5元钱,买3支圆珠笔的钱正好是一支钢笔钱的35.买一支圆珠笔要多少元?下列方法错误的是().A.5×35÷3B.5÷35÷3C.35÷3×5D.设买一支圆珠笔x元,3x=5×35答案:B解析:通过有理数计算或者一元一次方程,即可完成求解.∵买一支钢笔要5元钱,买3支圆珠笔的钱正好是一支钢笔钱的35∴三只圆珠笔的总价=5×35∴一只圆珠笔的价格=5×35÷3故选项B错误,选项A正确;∵5×35÷3=35÷3×5∴选项C正确;设买一支圆珠笔x元,3x=5×35∴x=5×35÷3∴选项D正确;故选:B .小提示:本题考察了有理数计算和一元一次方程的知识;求解的关键是熟练掌握有理数计算和一元一次方程的性质,从而完成求解.6、已知关于x 的方程mx +2=2(m −x)的解满足方程|x −12|=0,则m 的值是( ) A .12B .2C .32D .3答案:B解析:先求出方程|x −12|=0的解;再把求出的解代入方程mx +2=2(m −x),求关于m 的一元一次方程即可. 解:∵|x −12|=0,解得:x =12,将x =12代入方程mx +2=2(m −x)得:12m +2=2(m −12), 解得:m =2,故选:B .小提示:此题考查了方程的解,解题的关键是熟练掌握方程的解即为能使方程左右两边相等的未知数的值.7、在方程6x +1=1,2x =23,7x −1=x −1,5x =2−x 中,解为13的方程个数是( ). A .1个B .2个C .3个D .4个答案:B解析:把x =13代入各方程进行检验即可.解:当x =13时,左边=6×13+1=3≠1,不符合题意;当x =13时,左边=2×13=23=右边,符合题意;当x =13时,左边=7×13-1=43,右边=13-1=-23,左边≠右边,不符合题意; 当x =13时,左边=5×13=53,右边=2-13=53,左边=右边,符合题意.综上,符合题意的有2个,故选:B .小提示:本题考查了一元一次方程的解,熟知使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解是解答此题的关键.8、解方程−2(2x +1)=x ,以下去括号正确的是( )A .−4x +1=−xB .−4x +2=−xC .−4x −1=xD .−4x −2=x答案:D解析:去括号得法则:括号前面是正因数,去掉括号和正号,括号里的每一项都不变号;括号前面是负因数,去掉括号和负号,括号里的每一项都变号.解:−2(2x +1)=x−4x −2=x ,故选:D .小提示:此题主要考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.去括号注意几点:①不要漏乘括号里的每一项;②括号前面是负因数,去掉括号和负号,括号里的每一项一定都变号.填空题9、若a,b为常数,无论k为何值时,关于x的一元一次方程(b+1)x=12−4ka,它的解总是1,则a,b的值分别是_______.答案:a=0,b=11解析:将方程的解代入原方程,并化简.因为无论k为何值,它的解总是1,即可列出{4a=011−b=0,解出a和b即可.把x=1代入方程得b+1=12−4ka,化简得4ka=11−b,∵k的值为全体实数,∴4a=0,且11−b=0,∴a=0,b=11.小提示:本题考查一元一次方程的解.理解方程的解的定义“能够使方程左右两边相等的未知数的值”是解答本题的关键.10、若(a﹣1)x|a|+4=﹣6是关于x的一元一次方程,则a=_____.答案:-1解析:根据一元一次方程的特点求出a的值.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).解:根据题意知:|a|=1且a﹣1≠0.解得a=﹣1.故答案是:﹣1.小提示:本题主要考查了一元一次方程的定义,解题的关键在于能够熟练掌握一元一次方程的定义.11、若a,b为常数,无论k为何值时,关于x的一元一次方程(b+1)x=12−4ka,它的解总是1,则a,b 的值分别是_______.答案:a=0,b=11解析:将方程的解代入原方程,并化简.因为无论k为何值,它的解总是1,即可列出{4a=011−b=0,解出a和b即可.把x=1代入方程得b+1=12−4ka,化简得4ka=11−b,∵k的值为全体实数,∴4a=0,且11−b=0,∴a=0,b=11.小提示:本题考查一元一次方程的解.理解方程的解的定义“能够使方程左右两边相等的未知数的值”是解答本题的关键.12、已知一个角的补角是这个角的4倍,那么这个角的度数是_________.答案:36°解析:设这个角的度数为x,根据补角的性质列出方程求解即可.设这个角的度数为x,可得180°−x=4x解得x=36°所以答案是:36°.小提示:本题考查了一元一次方程的应用,掌握解一元一次方程的解法、补角的性质是解题的关键.13、《九章算术》是我国古代数学名著,卷七“盈不足”中题目译文如下:“今有人合伙买羊,每人出5钱,还差45钱;每人出7钱,还差3钱.问合伙人数、羊价各是多少?”设合伙人数为x人,根据题意可列一元一次方程为_____.答案:5x+45=7x+3解析:根据题意列一元一次方程即可;解:根据题意列方程5x+45=7x+3;所以答案是:5x+45=7x+3.小提示:本题主要考查了一元一次方程的应用,准确分析列方程是解题的关键.解答题14、解方程:(1)9x−14=8+7x(2)x+x−12=3−2x−13答案:(1)x=11(2)x=2313解析:(1)解一元一次方程,先移项,然后合并同类项,最后系数化1求解;(2)解一元一次方程,先去分母,然后去括号,移项,合并同类项,最后系数化1求解.(1)解:9x−14=8+7x移项,得:9x−7x=14+8合并同类项,得:2x=22系数化1,得:x=11(2)x+x−12=3−2x−13去分母,得:6x+3(x−1)=18−2(2x−1)去括号,得:6x+3x−3=18−4x+2移项,得:6x+3x +4x=18+2+3合并同类项,得:13x=23系数化1,得:x=2313小提示:本题考查了解一元一次方程,掌握解方程的步骤正确计算是解题关键.15、某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼.制作1块大月饼要用0.05kg 面粉,1块小月饼要用0.02kg面粉.现共有面粉4500kg,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?答案:制作大月饼要用2500kg 面粉,小月饼要用2000kg 面粉解析:方法1 设大月饼要用x kg 面粉,根据大月饼数量:小月饼数量=2:4得等量关系式:2倍大月饼数量=1倍小月饼数量,根据等量关系列出方程,解方程即可;方法2 设大月饼做了x 块,则小月饼做了2x 块,根据等量关系:大月饼所需的面粉质量+小月饼所需的面粉质量=现共有面粉4500kg ,列出方程并解方程即可;方法3 用算术方法解决.先计算出一盒月饼的面粉用量:一盒月饼面粉用量=2块大月饼面粉用量+4块小月饼面粉用量,则4500kg 面粉可制作月饼盒数可求出,根据:每盒月饼中大月饼的数量×总盒数×每块大月饼的面粉用量,可求得用于制作大月饼的面粉质量,从而也可求得用于制作小月饼的面粉质量;方法4 用比来解.先求得每盒月饼中,大月饼和小月饼的面粉用量比为5:4,然后按比分配即可解决; 方法5 设一共制作x 盒月饼,则可分别表示出制作大月饼和小月饼所需的面粉用量,根据等量关系:制作大月饼所需的面粉用量+小月饼所需的面粉用量=4500,列出方程,解方程即可.【方法1】设大月饼要用x kg 面粉,小月饼要用(4500−x )kg 面粉大月饼的数量为x 0.05块;小月饼的数量为(4500−x )0.02块. 依题意列方程:2x 0.05=(4500−x )0.02,解得:x =2500.4500−x =2000. ∴制作大月饼要用2500kg 面粉,小月饼要用2000kg 面粉.【方法2】设大月饼做了x 块,则小月饼做了2x 块.大月饼用了0.05x kg 面粉,小月饼用了0.04x kg 面粉.依题意列方程:0.05x +0.04x =4500;解得:x =50000;0.05x =2500;0.04x =2000.∴制作大月饼要用2500kg 面粉,小月饼要用2000kg 面粉.【方法3】一盒月饼面粉用量=2块大月饼面粉用量+4块小月饼面粉用量=2×0.05+4×0.02=0.18(kg) 4500kg面粉可制作月饼:4500÷0.18=25000(盒)其中用于制作大月饼的面粉有:每盒月饼中大月饼的数量×总盒数×每块大月饼的面粉用量=2×25000×0.05=2500(kg)其中用于制作小月饼的面有:每盒月饼中小月饼的数量×总盒数×每块小月饼的面粉用量=4×25000×0.02=2000(kg)【方法4】每盒月饼中,大月饼和小月饼的面粉用量比为:(2×0.05):(4×0.02)=5:4∴用于制作大月饼的面粉有:4500×5=2500(kg);5+4=2000(kg).用于制作小月饼的面粉有:4500×45+4【方法5】设一共制作x盒月饼,面粉用量为:大月饼0.05×2x=0.1x kg;小月饼0.02×4x=0.8x kg依题意列方程:0.1x+0.8x=4500;解得x=25000;0.1x=2500;0.8x=2000,∴制作大月饼要用2500kg面粉,小月饼要用2000kg面粉.11。
七年级数学上册第三章一元一次方程总结(重点)超详细
(名师选题)七年级数学上册第三章一元一次方程总结(重点)超详细单选题1、将连续奇数1,3,5,7,9,…排成如图所示的数表,若将十字形框上下左右移动,可框出另外五个数,则框出的五个数之和可以是()A.2020B.2022C.2023D.2025答案:D分析:先设中间的数为2x+1(x为整数),进而得到该数上方、下方、左边、右边的数分别为(2x+1)-10、(2x+1)+10、(2x+1)-2、(2x+1)+2,然后求得框出的五个数之和,即可得到答案.解:设中间的数为2x+1(x为整数),则该数上方、下方、左边、右边的数分别为(2x+1)-10、(2x+1)+10、(2x+1)-2、(2x+1)+2,∴框出的五个数之和为(2x+1)+(2x+1)-10+(2x+1)+10+(2x+1)-2+(2x+1)+2=10x+5,∵x为整数,∴10x+5是5的倍数,且个位数字为5,故选:D.小提示:本题考查了代数式的表示,属于数字的变化规律类题型,解题的关键是会用含有未知数的式子表示框出的5个数.2、解方程1.5x0.6−1.5−x2=0.5,以下变形正确的是()A.5x2−1.5−x2=5B.5x2−15−10x2=5C.5x2−15−1x20=5D.5x2−3−2x4=0.5答案:D分析:把方程中的分子与分母同时乘以10,使分母变为整数即可.把1.5x0.6的分子分母同时乘以10,1.5−x2的分子分母同时乘以2得15x 6−3−2x4=0.5,即5x2−3−2x4=0.5.故选:D.小提示:本题考查的是解一元一次方程,在解答此类题目时要注意把方程中分母化为整数再求解.3、一支球队参加比赛,开局9场保持不败,共积21分,比赛规定胜一场得3分,平一场得1分,则该队共胜的场数为()A.6场B.7场C.8场D.9场答案:A分析:设该队前9场比赛共平了x场,则胜了(9-x)场.根据共得21分列方程求解.解:设该队前9场比赛共平了x场,则胜了(9-x)场.根据题意得:3(9-x)+x=21,解得:x=3.9-x=6.答:该队前9场比赛共胜了6场.故选:A.小提示:本题考查了一元一次方程的应用,解题的关键是根据题意找到等量关系并正确的列出方程.4、下列解方程的过程中,移项错误的是()A.方程2x+6=−3变形为2x=−6+3B.方程2x−6=−3变形为2x=−3+6C.方程3x=4−x变形为3x+x=4D.方程4−x=3x变形为x+3x=4答案:A分析:各方程移项变形得到结果,即可作出判断.解:A、方程2x+6=-3变形为2x=-3-6,该选项符合题意;B、方程2x-6=-3变形为2x=-3+6,该选项不符合题意;C、方程3x=4-x变形为3x+x=4,该选项不符合题意;D、方程4-x=3x变形为x+3x=4,该选项不符合题意.故选:A.小提示:此题考查了解一元一次方程,以及等式的性质,熟练掌握等式的性质是解本题的关键.5、解一元一次方程的过程就是通过变形,把一元一次方程转化为x=a的形式,下面是解方程2x−0.30.5−x+0.40.3=1的主要过程,方程变形对应的依据错误的是()解:原方程可化为20x−35−10x+43=1(①)去分母,得3(20x−3)−5(10x+4)=15(②)去括号,得60x−9−50x−20=15(③)移项,得60x−50x=15+9+20(④)合并同类项,得10x=44(合并同类项法则)系数化为1,得x=4.4(等式的基本性质2)A.①分数的基本性质B.②等式的基本性质2C.③乘法对加法的分配律D.④加法交换律答案:D分析:方程利用分数的基本性质化简,再利用等式的基本性质2两边乘以15去分母,去括号后利用等式的基本性质1移项,合并后将x系数化为1,即可求出解.解:原方程可化为20x−35−10x+43=1(①)去分母,得3(20x−3)−5(10x+4)=15(②)去括号,得60x−9−50x−20=15(③)移项,得60x−50x=15+9+20(等式的基本性质1 )合并同类项,得10x=44(合并同类项法则)系数化为1,得x=4.4(等式的基本性质2).故选:D.小提示:本题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.6、小明早上8点从家骑车去图书馆,计划在上午11点30分到达图书馆.出发半小时后,小明发现若原速骑行,将迟到10分钟,于是他加速继续骑行,平均每小时多骑行1千米,恰好准时到达,则小明原来的速度是( )A .12千米/小时B .17千米/小时C .18千米/小时D .20千米/小时答案:C分析:设原来的速度是x 千米/小时,则提高速度后为x +1千米/小时,根据出发半小时后,发现按原速行驶要迟到10分钟,将速度每小时增加1千米,恰好准时到达,分别表示路程建立方程求解即可.解:设小明原来的速度是x 千米/小时,则提高速度后为x +1千米/小时,由题意得(3.5+16)x =12x +(x +1)×(3.5−0.5), 解得:x =18.答:小明原来的速度是18千米/小时.故选:C小提示:此题考查一元一次方程的实际运用,利用行程问题中的速度、时间、路程之间的等量关系是解决问题的关键.7、我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( )A .8(x −3)=7(x +4)B .8x +3=7x −4C .y−38=y+47D .y+38=y−47答案:D分析:设共有x 人,根据物价不变列方程;设物价是y 钱,根据人数不变即可列出一元一次方程;由此即可确定正确答案解:设共有x 人,则有8x -3=7x +4设物价是y 钱,则根据可得:y +38=y −47故选D.小提示:本题主要考查了列一元一次方程,正确审题、发现隐藏的等量关系成为解答本题的关键.8、解一元一次方程12(x+1)=1−13x时,去分母正确的是()A.3(x+1)=1−2x B.2(x+1)=1−3xC.2(x+1)=6−3x D.3(x+1)=6−2x答案:D分析:根据等式的基本性质将方程两边都乘以6可得答案.解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.小提示:本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.9、已知一项工程,甲单独完成需要5天,乙单独完成需要10天,现先由甲单独做2天,然后再安排乙与甲合作完成剩下的部分,则完成这项工程共耗时( )A.1天B.2天C.3天D.4天答案:D分析:设完成这项工程共耗时x天,则甲工作了x天,乙工作了(x﹣2)天,根据总工作量=甲完成的工作量+乙完成的工作量,即可得出关于x的一元一次方程,解之即可得出结论.解:设完成这项工程共耗时x天,则甲工作了x天,乙工作了(x﹣2)天,根据题意得:x5+x−210=1,解得:x=4.即完成这项工程共耗时4天.故选:D小提示:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.10、中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了()A.102里B.126里C.192里D.198里答案:D分析:设第六天走的路程为x里,则第五天走的路程为2x里,依此往前推,第一天走的路程为32x里,根据前六天的路程之和为378里,即可得出关于x的一元一次方程,解之即可得出结论.解:设第六天走的路程为x里,则第五天走的路程为2x里,依此往前推,第一天走的路程为32x里,依题意,得:x+2x+4x+8x+16x+32x=378,解得:x=6.32x=192,6+192=198,答:此人第一和第六这两天共走了198里,故选D.小提示:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.填空题11、在0,1,2,3中,_______是方程2x–1=–5x+6的解.答案:1分析:根据解一元一次方程的方法移项合并,把x系数化为1,即可求出解.解:2x–1=–5x+6移项,得2x+5x=1+6,合并同类项,得7x=7,系数化为1,得x=1,所以答案是:1.小提示:本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.12、若x|m|﹣10=2是关于x的一元一次方程,则m的值是 _____.答案:±1分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).解:根据题意,有|m|=1,∴m=±1,所以答案是:±1.小提示:本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.13、我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醐洒一斗直粟三斗,今持粟三斛,得酒五斗,问清跴酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醐洒酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清洒,醐洒酒各几斗?如果设清酒x斗,那么可列方程为_________.答案:10x+3(5−x)=30分析:设清酒x斗,则醐洒酒为(5-x)斗,一斗清酒价值10斗谷子,x斗清酒价值10x斗谷子;一斗醐洒酒价值3斗谷子,(5-x)斗醐洒酒价值3(5-x)斗谷子.存在“换x斗清酒和(5-x)斗醐洒酒共用30斗谷子”的等量关系,根据等量关系可列方程.解:设清酒x斗,则醐洒酒为(5-x)斗.10x+3(5−x)=30.所以答案是:10x+3(5−x)=30.小提示:本题主要考查了一元一次方程的实际应用,准确分析出数量关系和等量关系是解决本题的关键.14、已知关于x的方程(|k|﹣2)x2+(k﹣2)x=k+6是一元一次方程,则k的值为_______答案:-2分析:根据一元一次方程是只有一个未知数且未知数的次数是1的方程可知,x2的系数应为0,x的系数应不为0,列出关系式求解即可.由题意得:{|k|−2=0k−2≠0,解得:k=−2,所以答案是:-2.小提示:本题考查了一元一次方程的概念,熟悉一元一次方程应满足的条件是解题的关键.15、若关于x的方程2kx+m3=x−nk6+2,无论k为任何数时,它的解总是x=1,那么m+n=_______.答案:52分析:先将x=1代入原方程得,根据无论k为任何数时(4+n)k=13−2m恒成立,可得k的系数为0,由此即可求出答案.解:将x=1代入2kx+m3=x−nk6+2,∴2k+m3=1−nk6+2,∴(4+n)k=13−2m,由题意可知:无论k为任何数时(4+n)k=13−2m恒成立,∴n+4=0,∴n=−4,m=132,∴m+n=52,所以答案是:52小提示:本题主要考查了一元一次方程,解题的关键是正确理解一元一次方程的解.解答题16、解方程:(1)4−x3=x−35−1(2)5(x−3)−2(x−3)=0答案:(1)x=112(2)x=3分析:(1)根据解一元一次方程的步骤“去分母,去括号,移项、合并同类项,系数化为1”解答即可;(2)根据解一元一次方程的步骤“去括号,移项、合并同类项,系数化为1”解答即可.(1)4−x3=x−35−1解:去分母,得:5(4−x)=3(x−3)−15去括号,得:20−5x=3x−9−15移项、合并同类项,得:−8x=−44系数化为1,得:x=112(2)5(x−3)−2(x−3)=0解:去括号,得5x−15−2x+6=0移项、合并同类项得:3x=9系数化为1,得:x=3小提示:本题考查解一元一次方程.熟练掌握解一元一次方程的步骤是解题关键.17、某超市第一次以4450元购进甲、乙两种商品,其中乙商品的件数是甲商品件数的2倍多15件,甲、乙两种商品的进价和售价如下表:(注:利润=售价-进价)(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中乙商品的件数不变,甲商品的件数是第一次的2倍;乙商品按原价销售,甲商品打折销售,第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样,求第二次甲商品是按原价打几折销售?答案:(1)甲50件,乙115件(2)9折分析:(1)设第一次购进甲种商品x件,则购进乙种商品(2x+15)件,根据“第一次以4450元购进甲、乙两种商品”列方程求解即可;(2)设第二次甲商品是按原价打m折销售,根据“乙商品按原价销售,甲商品打折销售,第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样”列方程求解即可.(1)设第一次购进甲种商品x件,则购进乙种商品(2x+15)件,由题意得:20x+30(2x+15)=4450解得x=502x+15=2×50+15=115所以,第一次购进甲种商品50件,则购进乙种商品115件.(2)设第二次甲商品是按原价打m折销售,根据题意得:50×2×(25×m10−20)+115×(40−30)=50×(25−20)+115×(40−30)解得m=9答:第二次甲商品是按原价打9折销售.小提示:本题考查了一元一次方程的应用,正确理解题意,找准等量关系是解题的关键.18、(1)5(3−2x)−12(5−2x)=11(2)3x+x−12=3−2x−13答案:(1)x=4;(2)x=2325分析:(1)方程去括号,移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.解:(1)去括号得:15-10x-60+24x=11,移项得:-10x+24x=11-15+60,合并得:14x=56,系数化为1得:x=4;(2)方程两边都乘以6得:18x+3(x-1)=18-2(2x-1),去括号得:18x+3x-3=18-4x+2,移项得:18x+3x+4x=18+2+3,合并得:25x=23,系数化为1得:x=2325.小提示:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并,把未知数系数化为1.。
七年级上册数学解一元一次方程应用题的十六种常见题型
列一元一次方程解应用题(设未知数,找等量关系列方程)一.利润率问题:利润=进价(成本价)×利润率利润=售价-进价利润率=(利润÷进价)×100%进价(成本价)﹢利润=售价1. 某商品进价为 500 元,按标价的 9 折销售,利润率为 15.2%,求商品的标价为多少元?2. 工艺商场按标价销售某种工艺品时,每件可获利 45 元;按标价的八五折销售该工艺品 8 件与将标价降低 35 元销售该工艺品 12 件所获利润相等.该工艺品每件的进价、标价分别是多少元?3. 一家商店将某种服装按进价提高 40%后标价,又以 8 折优惠卖出,结果每件仍获利 15 元,这种服装每件的进价是多少?4. 某商品的进价是 2000 元,标价为 3000 元,商店要求以利润不低于 5%的售价打折出售,售货员最低可以打几折出售此商品?5、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?6、某商店在同一时间内以每件60元的价格卖出2件衣服,其中一件盈利25%,另一件亏损25%,则卖这2件衣服是盈利还是亏损了,还是不盈不亏?二. 储蓄问题:利息=本金×利率×期数本息和=本金+利息利息税=利息×税率年利率=月利率×12=日利率×3651. 某同学把 250 元钱存入银行,整存整取,存期为半年。
半年后共得本息和 252.7 元,求银行半年期的年利率是多少?(不计利息税)2.某储蓄所去年储户存款为4600万元,今年与去年相比,定期存款增加20%,而活期存款减少25%,但总存款增加15%,问今年定期,活期存款各是多少?三. 相遇问题(相向而行):这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
对应公式:路程=速度×时间快者路程+慢者路程=总路程(慢者速度+快者速度)×相遇时间=相遇路程1. 甲、乙两车从相距 264 千米的 A、B 两地同时出发相向而行,甲速是乙速的 1.2 倍,4 小时相遇,求乙速?2. 甲、乙两站相距 600 千米,慢车从甲地出发,每小时行 40 千米,快车从乙地出发,每小时行60 千米,若慢车先行 50 分钟,快车再开出,又行一段时间后遇到慢车,求快车开出多少小时两车相遇?3. A、B 两地相距 75 千米,一辆汽车以 50 千米/时的速度从 A 地出发,另一辆汽车以 40 千米/时速度从 B 地出发,两车同时出发,相向而行,经过几小时两车相距 30 千米?四. 追及问题(同向而行):这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
《易错题》七年级数学上册第三单元《一元一次方程》-选择题专项知识点总结(含解析)
一、选择题1.已知方程16x -1=233x + ,那么这个方程的解是( ) A .x =-2B .x =2C .x =-12D .x =12A 解析:A【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】两边同乘以6去分母,得62(23)x x -=+,去括号,得646x x -=+,移项,得646x x -=+,合并同类项,得510x -=,系数化为1,得2x =-,故选:A .【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.2.某商场的老板销售一种商品,标价为360元,可以获得80%的利润,则这种商品进价多少( )A .80元B .200元C .120元D .160元B 解析:B【分析】利用公式:标价=(1+利润率)×进价,列出方程,求解即可.【详解】设进价为x 元.标价=(1+利润率)×进价根据题意,列方程:(180%)360x +=解得200x =故选B.【点睛】本题考查了一元一次方程的应用,属于典型题,熟练掌握价格公式是解题关键. 3.把方程112x =变形为2x =,其依据是( ) A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律B 解析:B【分析】根据等式的基本性质,对原式进行分析即可.【详解】将原方程两边都乘2,得2x =,这是依据等式的性质2.故选B .【点睛】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立. 4.宜宾某机械厂加工车间有34名工人,平均每名工人每天加工小齿轮20个或大齿轮15个.已知3个小齿轮和2个大齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天生产的齿轮刚好配套?若设加工小齿轮的工人有x 名,则可列方程为( ) A .2015(34)x x =-B .220315(34)x x ⨯=⨯-C .320215(34)x x ⨯=⨯-D .320(34)215x x ⨯-=⨯ B 解析:B【分析】设加工小齿轮的工人有x 名,则加工大齿轮的工人有(34)x -名,根据生产的小齿轮的数量:生产的大齿轮的数量=3:2即可列出方程,进而可得答案.【详解】解:设加工小齿轮的工人有x 名,则加工大齿轮的工人有(34)x -名.根据题意,得220315(34)x x ⨯=⨯-.故选:B .【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.5.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- A 解析:A【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x 互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1).故答案选A .【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.6.两年前,李叔叔在银行存了一笔两年的定期存款,年利率是2.75%.到期后取出,得到本金和利息总共21100元.设李叔叔存入的本金为x 元,则下列方程正确的是( ) A .2 2.75%21100x ⨯=B . 2.75%21100x x +=C .2 2.75%21100x x +⨯=D .2( 2.75%)21100x x += C解析:C【分析】根据“利息=本金×利率×时间”(利率和时间应对应),列出方程,即可得出结论.【详解】解:根据题意得:x+2×2.75%x=21100;故选:C .【点睛】此题主要考查了一元一次方程的应用,计算的关键是掌握根据利息、利率、时间和本金的等量关系,列出方程.7.“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A 、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x - = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅2m + 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个A .1B .2C .3D .4D解析:D【分析】 根据题意可知,A 型纸盒需要4个长方形纸板,1个正方形纸板,B 型纸盒需要3个长方形纸板和2个正方形纸板,设A 型盒子个数为x 个,可得A 型纸盒需要长方形纸板的数量和B 型纸盒需要长方形纸板的数量,可列出方程对①进行判断;设B 型盒中正方形纸板的个数为m 个,可得B 型纸盒需要长方形纸板的数量和A 型纸盒需要长方形纸板的数量,可列出方程对②进行判断;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则可得A 型盒子x 个,B 型盒子y 个,根据长方形纸板360张,正方形纸板120张,可得出方程组,求出A 型纸盒和B 型纸盒的数量可对③④进行判断.【详解】设A 型盒子个数为x 个,则A 型纸盒需要长方形纸板4x 张,正方形纸板x 张,由于制作一个B 型纸盒需要两张正方形纸板,因此可得B 型纸盒的数量为1202x -个,需要长方形纸板3×1202x -张,因此可得120433602x x -+=,故①正确; 设B 型盒中正方形纸板的个数为m 个,则B 型纸盒有2m 个,需要长方形纸板3×2m 个,A 型纸盒有(120-m )个,则需长方形纸板4(120-m )个,所以可得方程3×2m +4(120-m )=120,故②正确;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则有,212043360x y x y +=⎧⎨+=⎩解得,7224x y =⎧⎨=⎩即,A 型纸盒有72个,B 型纸盒有24个,所以B 型盒中正方形纸板 48 个故③④正确.故选D.【点睛】本题考查了列一元一次方程和二元一次方程组的应用,解答本题时注意无盖盒子中的长方形及正方形的个数之间的关系是解答的关键.8.若正方形的边长增加3cm ,它的面积就增加39cm ,则正方形的边长原来是( ) A .8cmB .6cmC .5cmD .10cm C 解析:C【解析】试题分析:原来正方形的边长为x ,则=39,解得:x=5. 考点:一元一次方程的应用9.关于y 的方程331y k +=与350y +=的解相同,则k 的值为( )A .-2B .34C .2D .43- C 解析:C【分析】分别解出两方程的解,两解相等,就得到关于k 的方程,从而可以求出k 的值.【详解】解第一个方程得:133k y -=, 解第二个方程得:53y =-,∴133k -=53-, 解得:k=2.故选C .【点睛】 本题解决的关键是能够求解关于y 的方程,要正确理解方程解的含义.10.关于x 的方程2x m 3-=1的解为2,则m 的值是( ) A .2.5B .1C .-1D .3B 解析:B【解析】 由已知得413m -= ,解得m=1;故选B. 11.某种商品进价为800元,标价1 200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打 ( )A .6折B .7折C .8折D .9折C 解析:C【分析】设打折x 折,利用利润率=100%⨯-⨯标价折扣进价进价的数量关系, 根据利润率不低于20%可得:12000.1x 800 20%800⨯-≥,解不等式可得:8x ≥. 【详解】设打折x 折,由题意可得:12000.1x 80020%800⨯-≥, 解得:8x ≥.故选C.【点睛】本题主要考查不等式解决商品利润率问题,解决本题的关键是要熟练掌握利润率的数量关系,列不等式进行求解.12.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元B解析:B【解析】解:设商品的进价为x 元,则:x (1+20%)=120×0.9,解得:x =90.故选B .点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.13.若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6- B 解析:B【分析】由已知可得4x +=2,解方程可得.【详解】由已知可得4x +=2,解得x=-2.故选B.【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.14.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( )A .2B .12C .-2D .1-2B 解析:B【分析】根据题意列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:2x-6+3+4x=0移项合并得:6x=3, 解得:x=12, 故选:B .【点睛】 本题考查解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.15.一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( )A .54B .72C .45D .62B解析:B【分析】首先设个位上的数为x ,则十位数字为()31x +,根据题意可得等量关系:十位上的数与个位上的数的和=9,列出方程,再解方程即可.【详解】设个位上的数为x ,则十位数字为()31x +,由题意得:x +(3x +1)=9,解得:x =2,十位数字为:6+1=7,这个两位数是:72.故选:B.【点睛】考查一元一次方程的应用,读懂题目,找出题目中的等量关系是解题的关键.16.如图,每个圆纸片的面积都是30,圆纸片A 与B ,B 与C ,C 与A 的重叠面积分别为6,8,5,三个圆纸片覆盖的总面积为73,则图中阴影部分面积为( )A .54B .56C .58D .69C解析:C【分析】 根据图形可知:三个圆纸片覆盖的总面积+A 与B 的重叠面积+B 与C 的重叠面积+C 与A 的重叠面积−A 、B 、C 共同重叠面积=每个圆纸片的面积×3,由此等量关系列方程求出A 、B 、C 共同重叠面积,从而求出图中阴影部分面积.【详解】解:设三个圆纸片重叠部分的面积为x ,则73+6+8+5−x =30×3,得x =2.所以三个圆纸片重叠部分的面积为2.图中阴影部分的面积为:73−(6+8+5−2×2)=58.故选:C .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出式子,再求解.17.一项工程,甲单独做需10天完成,乙单独做需6天完成.现由甲先做2天,乙再加入合做,完成这项工程共需多少天?若设完成这项工程共需x 天,依题意可得方程( ) A .106x x +=1 B .22106x x +-+=1 C .2106x x -+=1 D .222106x x x --++=1C解析:C【分析】设总工作量为1,从而可得甲、乙的工作效率,再根据“甲完成的工作量+乙完成的工作量1=”建立方程即可得.【详解】设总工作量为1,则甲的工作效率为110,乙的工作效率为16, 若设完成这项工程共需x 天,则甲工作的天数为x 天,乙工作的天数为(2)x -天, 由题意得:21106x x -+=, 故选:C .【点睛】本题考查了列一元一次方程,读懂题意,正确找出等量关系是解题关键.18.若三个连续偶数的和是24,则它们的积为( )A .48B .240C .480D .120C 解析:C【分析】设出一个偶数,表示出另外两个数,列出方程解出这三个数,再计算它们的积.【详解】解:设中间的偶数为m ,则(m-2)+m+(m+2)=24,解得m=8.故三个偶数分别为6,8,10.故它们的积为:6×8×10=480.故选:C .【点睛】本题考查了一元一次方程的应用.找到三个连续偶数间的数量关系是解题的关键. 19.下列方程中,是一元一次方程的是( )A .243x x -=B .0x =C .21x y +=D .11x x-= B 解析:B【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a≠0).【详解】解:A 、最高项的次数是2,故不是一元一次方程,选项不符合题意;B 、正确,符合题意;C 、含有2个未知数,故不是一元一次方程,选项不符合题意;D 、不是整式方程,故不是一元一次方程,选项不符合题意;故选:B .【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.20.下列运用等式的性质对等式进行的变形中,错误的是( )A .()()2211a x b x +=+若,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c = D .若x y =,则33x y -=- C 解析:C【分析】根据等式的性质,逐项判断即可.【详解】解:A 、根据等式性质2,a (x 2+1)=b (x 2+1)两边同时除以(x 2+1)得a=b ,原变形正确,故这个选项不符合题意;B 、根据等式性质2,a=b 两边都乘c ,即可得到ac=bc ,原变形正确,故这个选项不符合题意;C 、根据等式性质2,c 可能为0,等式两边同时除以c 2,原变形错误,故这个选项符合题意;D 、根据等式性质1,x=y 两边同时减去3应得x-3=y-3,原变形正确,故这个选项不符合题意.故选:C .【点睛】此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.21.如图,方格中的格子被填上了数,每一行、每一列以及两条对角线中所填的数字之和均相等,则x 的值为( )A .39B .13C .14D .9D解析:D【解析】【分析】根据每一行、每一列以及两条对角线中所填的数字之和均相等,可求出方格中间、右下以及右上的数,再由每一行、每一列所填的数字之和相等,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】16+11+12−11−15=13,16+11+12−16−13=10,16+11+12−10−15=14.根据题意得:16+11+12=16+x+14,解得:x=9.故选:D.【点睛】此题考查一元一次方程的应用,解题关键在于根据题意找出等量关系.22.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x辆汽车到甲队,由此可列方程为( )A.100﹣x=2(68+x) B.2(100﹣x)=68+xC.100+x=2(68﹣x) D.2(100+x)=68﹣x C解析:C【分析】由题意得到题中存在的等量关系为:2(乙队原来的车辆-调出的车辆)=甲队原来的车辆+调入的车辆,根据此等式列方程即可.【详解】设需要从乙队调x辆汽车到甲队,由题意得100+x=2(68﹣x),故选C.【点睛】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.23.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元C解析:C【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.24.方程2424x x -=-+的解是 ( )A .x =2B .x =−2C .x =1D .x =0A解析:A【分析】利用等式的性质解方程即可解答.【详解】解: 移项得:2+2x 4+4x =合并同类项得:48x =系数化为1得:2x =故选:A【点睛】本题考查解一元一次方程,难度较低,熟练掌握利用等式的性质解一元一次方程是解题关键.25.新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm ,那么一块渗水防滑地板的面积是( ).A .2450cmB .2600cmC .2900cmD .21350cm A解析:A【分析】 设小长方形的长为x ,根据大的长方形对边相等得到小长方形的宽为2x ,再根据长方形的周长列等量关系得到2(2x+2x+x )=150,再解方程求出x ,然后计算小长方形的面积.【详解】解:设小长方形的长为x ,则宽为2x ,根据题意得2(2x+2x+x )=150,解得x=15,2x=30,所以x•2x=15×30=450.答:一块渗水防滑地板的面积为450cm 2.故选A .【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.26.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x 千米,可列方程( )A .408 3.6x x -=B .4083.6x =-C . 3.6840x x -= D . 3.6408x x -= C 解析:C【分析】本题中的相等关系是:步行从甲地到乙地所用时间-乘车从甲地到乙地的时间=3.6小时,据此列方程即可.【详解】解:设甲乙两地相距x 千米,根据等量关系列方程得:3.6840x x -= 故选:C.【点睛】列方程解应用题的关键是找出题目中的相等关系.27.某地为了打造千年古镇旅游景点,将修建一条长为3600m 的旅游大道.此项工程由A 、B 两个工程队接力完成,共用时20天.若A 、B 两个工程队每天分别能修建240m 、160m ,设A 工程队修建此项工程xm ,则可列方程为( )A .360020240160x x -+=B .360020160240x x -+= C .360020160240x x +-= D .360020160240x x --= A 解析:A【分析】根据A 工程队修建此项工程xm ÷修建速度+B 工程队修建此项工程(3600-x )m÷修建速度= 20天.列出方程即可.【详解】设A 工程队修建此项工程xm ,则B 工程队修建此项工程(3600-x )m ,由题意,得360020240160x x -+= 故选:A .【点睛】此题考查一元一次方程的应用,找出合适的等量关系是解题的关键.28.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+ D解析:D【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.29.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t =D .方程110.20.5x x --=,整理得36x = D 解析:D【分析】根据解方程的步骤逐一对选项进行分析即可.【详解】A . 方程3221x x -=+,移项,得3212x x -=+,故A 选项错误;B . 方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项错误;C . 方程2332t =,系数化为1,得94t =,故C 选项错误; D . 方程110.20.5x x --=,去分母得()5121--=x x ,去括号,移项,合并同类项得:36x =,故D 选项正确.故选:D【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.30.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( )A.2314B.3638C.42 D.44C解析:C【详解】解:设每一份为x,则图②中白色的面积为8x,灰色部分的面积为3x,由题意,得8x+3x=33,解得:x=3,∴灰色部分的面积为:3×3=9,∴图(①)纸片的面积为:33+9=42.故选C.【点睛】本题考查了比列问题在解实际问题中的运用,一元一次方程的解法的运用,解答时根据条件建立方程求出灰色部分的面积是关键.。
河南省七年级数学上册第三章一元一次方程考点总结
河南省七年级数学上册第三章一元一次方程考点总结单选题1、若关于x 的方程5x −m =2(x −2)+1的解是x =−2,则m 的值为( )A .-3B .-5C .-13D .5答案:A分析:把x =−2代入方程即可得到一个关于m 的方程,解方程即可求解.解∶把x =−2代入方程5x −m =2(x −2)+1得∶5×(−2)−m =2×(−2−2)+1,解得m =-3.故选∶ A .小提示:本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是解题的关键.2、疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的25,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1916元,求其他两个年级的捐款数若设七年级捐款数为x 元,则可列方程为( )A .x +65x +1916=52xB .25x +13x +1916=xC .x +25x +1916=3xD .x +25x +1916=52x答案:A分析:根据七年级的捐款为x 元,可以求得三个年级的总的捐款数,然后即可得到八年级的捐款数,从而可以列出相应的方程,本题得以解决.解:由题意可得,七年级捐款数为x 元,则三个年级的总的捐款数为:x ÷25=52x , 故八年级的捐款为:52x 3=56x ,则x +56x +1916=52x ,故选:A .小提示:本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.3、新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品.某口罩厂有26名工人,每人每天可以生产400个口罩面或500个口罩耳绳,一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,则下列所列方程正确的是()A.2×500(26−x)=400x B.500(26−x)=400xC.500(26−x)=2×400x D.500(26−x)=400x答案:C分析:安排x名工人生产口罩面,则(26−x)人生产耳绳,由一个口罩面需要配两个耳绳可知耳绳的个数是口罩面个数的2倍从而得出等量关系,就可以列出方程.解:设安排x名工人生产口罩面,则(26−x)人生产耳绳,由题意得500(26−x)=2×400x.故选:C.小提示:本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.4、解一元一次方程12(x+1)=1−13x时,去分母正确的是()A.3(x+1)=1−2x B.2(x+1)=1−3xC.2(x+1)=6−3x D.3(x+1)=6−2x答案:D分析:根据等式的基本性质将方程两边都乘以6可得答案.解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.小提示:本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.5、已知一项工程,甲单独完成需要5天,乙单独完成需要10天,现先由甲单独做2天,然后再安排乙与甲合作完成剩下的部分,则完成这项工程共耗时( )A.1天B.2天C.3天D.4天答案:D分析:设完成这项工程共耗时x天,则甲工作了x天,乙工作了(x﹣2)天,根据总工作量=甲完成的工作量+乙完成的工作量,即可得出关于x的一元一次方程,解之即可得出结论.解:设完成这项工程共耗时x天,则甲工作了x天,乙工作了(x﹣2)天,根据题意得:x5+x−210=1,解得:x=4.即完成这项工程共耗时4天.故选:D小提示:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.6、对于两个不相等的有理数a,b,我们规定符号min{a,b}表示a、b两数中较小的数,例如min{2,-4}=-4,则方程min{x,-x}=3x+4的解为()A.x=-1B.x=-2C.x=-1或x=-2D.x=1或x=2答案:B分析:根据题意可得:min{x,-x}=x或−x,所以x=3x+4或−x=3x+4,据此求出x的值即可.∵规定符号min{a,b}表示a、b两数中较小的数,∴当min{x,-x}表示为x时,则x=3x+4,解得x=−2,当min{x,-x}表示为−x时,则−x=3x+4,解得x=−1,∵x=−1时,最小值应为x,与min{x,-x}=−x相矛盾,故舍去,∴方程min{x,-x}=3x+4的解为x=−2,故选:B.小提示:本题主要考查一元一次方程的解法,能根据题意正确列出一元一次方程是解题的关键.7、在方程①x+1=0;②1−x2=0;③1x−3=0;④x−y=6中,为一元一次方程的有()A.4个B.3个C.2个D.1个答案:D分析:只含有一个未知数(元)并且未知数的指数是1 (次)的方程叫做一元一次方程,它的一般形式是ax+b=0 (a,b是常数且a≠0),根据此定义判断即可.①x+1=0;是一元一次方程,故①正确;②1−x2=0;不是一元一次方程,故②错误;③1x−3=0;不是一元一次方程,故③错误;④x−y=6不是一元一次方程,故④错误;为一元一次方程的有1个;故选:D.小提示:本题主要考查了一元一次方程的识别,注意三个要点:只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.8、在解关于x的方程x+23=x+a5−2时,小颖在去分母的过程中,右边的“−2”漏乘了公分母15,因而求得方程的解为x=4,则方程正确的解是()A.x=−10B.x=16C.x=203D.x=4答案:A分析:先根据小颖解方程的过程求出a的值,然后正确求出原方程的解即可.解:由题意得5(x+2)=3(x+a)−2的解为x=4,∴5×(4+2)=3(4+a)−2,解得a=203,∴x+23=x+2035−2,去分母得:5(x+2)=3(x+203)−30,去括号得:5x+10=3x+20−30,移项得:5x−3x=20−30−10,合并得:2x=−20,解得:x=−10,故选A.小提示:本题主要考查了解一元一次方程,正确理解题意是解题的关键.9、在数轴上,到表示﹣6的点的距离等于6个单位长度的点表示的数是()A.12B.﹣12C.0或﹣12D.﹣12或12答案:C分析:根据数轴上的点之间的距离即可表示为|x−6|=6,去绝对值即可求解.解:这个点所表示的数为x,则,|x−6|=6,即x−6=±6,解得x=0或x=﹣12,故选:C.小提示:本题考查了数轴上两点之间的距离,理解数轴上两点之间的距离的意义是解题的关键.10、宁宁同学拿了一架天平,测量饼干与糖果的质量(每块饼干的质量都相同,每颗糖果的质量都相同).第一次:左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次:左盘放一块饼干和一颗糖果,右盘放10克砝码,结果天平平衡;第三次:左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再次平衡()A.左盘上加2克砝码B.右盘上加2克砝码C.左盘上加5克砝码D.右盘上加5克砝码答案:A分析:由试验可得饼干与糖果之间的数量关系,求出一颗糖果和一块饼干各自的重量,再代入求解即可.由试验可得饼干与糖果之间的数量关系,第一次:2饼干=3糖果,即1饼干=1.5糖果;第二次:1饼干+1糖果=10克砝码,把1饼干=1.5糖果代入,得1.5糖果+1糖果=10克砝码,即1糖果=4克砝码,1饼干=1.5糖果=6克砝码;所以第三次:1饼干-1糖果=6克砝码-4克砝码=2克砝;故选A.小提示:本题考查了等式的问题,掌握等式的性质是解题的关键.11、把9个数填入3×3的方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛书”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中a的值为()A.2B.4C.6D.1答案:D分析:根据题意设左边中间位置为b,左上为c.求出“九宫格”中的b、c,再求出a即可求解.如图,依题意可得2+5+8=3+5+b,解得b=7.∴2+5+8=2+7+c,解得c=6.∴2+5+8=6+8+a,解得a=1.故选:D.小提示:此题主要考查一元一次方程的应用,解题的关键是根据题意得到方程求解.12、已知x=3是关于x的方程2x−a=4的解,则a的值是()A.−2B.0C.2D.3答案:C分析:直接利用方程的解的定义代入求解即可.解:∵x=3是关于x的方程2x−a=4的解,∴6−a=4,解得a=2,故选:C小提示:本题考查了方程的解的定义,能使方程的左右两边相等的未知数的值,叫做方程的解,理解方程解的定义是关键.13、中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A.96里B.48里C.24里D.12里答案:B分析:根据题意可设第一天所走的路程为x,用含x的式子分别把这六天的路程表示出来,相加等于总路程378,解此方程即可.解:设第一天的路程为x里∴x+x2+x4+x8+x16+x32=378解得x=192∴第三天的路程为x4=1924=48故答案选B小提示:本题主要考查了一元一次方程的应用,通过每日路程之和等于总路程建立一元一次方程是解题的关键.14、已知x=5是方程2x−4a=2的解,则a的值是()A.1B.2C.-2D.-1答案:B分析:根据方程解的定义将x=5代入方程2x−4a=2中,即可得到关于a的方程,解方程即可求得答案.解:∵x=5是方程2x−4a=2的解,∴2×5−4a=2,∴a=2.故选:B.小提示:本题考查了方程解的定义、解一元一次方程等知识点,较为简单,能根据方程解的定义列出关于a的方程是解决问题的关键.15、如果关于x的方程(m−2)x=8无解,那么m的取值范围()A.任意实数B.m>2C.m≠2D.m=2答案:D分析:根据ax=b中当a=0,b≠0方程无解可知当m-2=0时关于x的方程(m−2)x=8无解.解:由题意得:当m-2=0时关于x的方程(m−2)x=8无解,解得m=2,故选D.小提示:本题考查了解一元一次方程无解的情况,根据题意得出关于m-2=0是解题关键.填空题16、如图,数轴上有若干个点,每相邻两点相距1个单位长度.其中点A,B,C,D对应的数分别是整数a,b,c,d,且d−2a=12,则b+c的值为___________.答案:−3分析:根据数轴得到d=a+7,利用d−2a=12,求出a=-5,得到b=-2,c=-1,代入计算即可得到答案.解:由数轴可知:d−a=7,∴d=a+7∵d−2a=12,∴a+7−2a=12,解得a=-5,∴b=-2,c=-1,∴b+c=-3,所以答案是:-3.小提示:此题考查数轴上两点间的距离公式,解一元一次方程,已知字母的值求代数式的值,正确掌握数轴上两点间的距离公式是解题的关键.17、已知数轴上的点A,B表示的数分别为−2,4,P为数轴上任意一点,表示的数为x,若点P到点A,B的距离之和为7,则x的值为 _____.答案:−2.5或4.5分析:根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x的值.解:根据题意得:|x+2|+|x-4|=7,当x<-2时,化简得:-x-2-x+4=7,解得:x=-2.5;当-2≤x<4时,化简得:x+2-x+4=7,无解;当x≥4时,化简得:x+2+x-4=7,解得:x=4.5,综上,x的值为-2.5或4.5.所以答案是:-2.5或4.5.小提示:此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.18、若关于x的方程2kx+m3=x−nk6+2,无论k为任何数时,它的解总是x=1,那么m+n=_______.答案:52分析:先将x=1代入原方程得,根据无论k为任何数时(4+n)k=13−2m恒成立,可得k的系数为0,由此即可求出答案.解:将x=1代入2kx+m3=x−nk6+2,∴2k+m3=1−nk6+2,∴(4+n)k=13−2m,由题意可知:无论k为任何数时(4+n)k=13−2m恒成立,∴n+4=0,∴n=−4,m=132,∴m+n=52,所以答案是:52小提示:本题主要考查了一元一次方程,解题的关键是正确理解一元一次方程的解.19、用一根80cm的绳子围成一个长方形,且这个长方形的长比宽多10cm,则围成长方形的面积为______cm2.答案:375分析:设长方形的长为xcm,则宽为(x-10)cm,然后运用长方形的周长求得x,进而求得长方形的长和宽,最后根据长方形的面积公式计算即可.解:设长方形的长为x,则宽为x-10由题意得:2(x+x-10)=80,解得x=25则长方形的宽为25-10=15所以围成长方形的面积为15×25=375cm2.所以答案是:375.小提示:本题主要考查了一元一次方程的应用,根据题意列出方程、求得长方形的长和宽是解答本题的关键.20、学校组织劳动实践活动,组织一组同学把两片草地的草割完已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为_______人.答案:8分析:设共有x人,每个工人一天的工作量为1,根据大的一片草地的工作量是小的一片的两倍,即可得出关于x的一元一次方程,解之即可得出结论.解:设共有x人,一个人一天的工作量为1,由题意可得:1×12x+12×12x=2(12×x2+1),解得:x=8,∴此次参加社会实践活动的人数为8人,所以答案是:8.小提示:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.。
七年级数学上册一元一次方程总结(重点)超详细
(每日一练)七年级数学上册一元一次方程总结(重点)超详细单选题1、把1−9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为:()A.1B.3C.4D.6答案:A解析:根据题意求出“九宫格”中的y,再求出x即可求解.如图,依题意可得2+5+8=2+7+y∴8+x+6=2+5+8解得x=1故选A.小提示:此题主要考查一元一次方程的应用,解题的关键是根据题意得到方程求解.2、甲车队有汽车56辆,乙车队有汽车32辆,要使两车队汽车一样多,设由甲队调出x辆汽车给乙队,则可得方程()A.56+x=32−x B.56−x=32+x C.56−x=32D.32+x=56答案:B解析:表示出抽调后两车队的汽车辆数然后根据两车队汽车一样多列出方程即可.解:设由甲队调出x辆汽车给乙队,则甲车队有汽车(56-x)辆,乙车队有汽车(32+x)辆,由题意得,56-x=32+x.小提示:本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.3、已知x=−1是方程ax+1=bx−4的解,则−3a+5b−2(b−5)的值是()A.5B.−5C.−10D.10答案:B解析:先将x=−1代入已知方程中得出等式,最后再化简后面的整式即可计算出结果.∵x=−1是方程ax+1=bx−4的解,∴−a+1=−b−4,∴整理得a−b=5.∴−3a+5b−2(b−5)=−3a+5b−2b+10=−3a+3b+10=−3(a−b)+10=−3×5+10=−5,故选:B.小提示:本题主要考查整式的运算,属于基础题,难度一般,熟练掌握整式的运算法则是解题的关键.填空题4、关于x的一元一次方程(k-1)x-8=0的解是-2,则k=______.答案:-3解析:将x=-2代入方程求解即可.解:x=-2代入方程(k-1)x-8=0可得:-2(k-1)-8=0,解得:k=-3,所以答案是:-3.小提示:本题考查一元一次方程解的定义和方程的求解,熟练掌握方程的解法是解题的关键.5、当x=3时,式子2x+2与5x+k的值相等,则k的值是______.答案:-7解析:把x=3代入两个式子即可表示出两个式子的值,就可得到一个关于k的方程,从而求得k的值.解:由题意得:8 =15+k,解得:k=-7,所以答案是:-7小提示:本题要注意列出方程,求出未知数的值.解答题6、已知方程4x +2m =3x +1的解与方程3x +1=6x +1的解相同.(1)求m 的值;(2)求代数式[(m +2)⋅(2m −75)]2019的值.答案:(1)m =12;(2)−1 解析:(1)根据同解方程,可得关于m 的方程,根据解方程,可得答案;(2)根据m 的值代入,由乘方的运算法则可得答案.(1)由3x +1=6x +1解得x =0.由4x +2m =3x +1的解与方程3x +1=6x +1的解相同,得2m =1,解得m =12; (2)当m =12时,[(m +2)⋅(2m −75)]2019=[(12+2)⋅(1−75)]2019=[52×(−25)]2019=(−1)2019=−1.小提示:本题考查了同解方程,利用同解方程得出关于m的方程是解(1)题关键,利用乘方的运算是解(2)的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上《一元一次方程》题型总结【课标要求】一、 知识总结知识点一:1、含有______________的等式是方程,使方程的等式两边的相等的值教方程的解,方程中含有____个未知数,未知数的_________________的方程称为一元一次方程(注意:方程一定是等式,等式不一定是方程)知识点二:等式的性质1 等式两边都______(或者减去)_________(或同一个式子)所得结果仍是____.等式的性质2 等式两边都______(或者除以)_________(或同一个式子)(除数或者除式不能为0),所得结果仍是____.二、 题型归纳#题型一:判定是不是方程1下列各式中:① 3+3=6 ② 123>+x ③ 39-x =7 ④ 122=-z z ⑤ 0=m (6) 239=-π (7)236=-πx有______条是方程,其中__________(填写编号)是一元一次方程。
2、下列式子谁有资格进入住方程乐园2973=+x ,62-=x x ,y x 21-,071<-x ,422=-y x ,224-=+-3、判断是不是一元一次方程 &2(x +100)=600 , (x +200)+ x +(x -448)=30064 4x +(x +4)=8, x +5=8 , x -2y =6 , 32x -2y =120题型二:判定是不是一元一次方程1、如果单项式121-2n a b +与213n m a b -是同类项,则n=___,m=____ 2 如果代数式3x-5与1-2x 的值互为相反数,那么x=____ 3 若方程3x-5=4x+1与3m-5=4(m+x)-2m 的解相同,求()200820m +的值4.关于x 的方程230m mxm ++-=是一个一元一次方程,则m =_______.5.关于x 的方程()112436x x m +=-+的解是116-,则()20021m -=_______. @6.关于x 的方程39x =与4x k +=解相同,则代数式212kk-的值为_______.7.若关于x 的方程()23202k x kx -+-=k 是一元一次方程,则k =_______,方程的解为_______.8.当x =_______时,代数式12x -与113x +-的值相等. 9 若关于x 的一元一次方程231,32x k x k---=的解是x= -1,则k 的值是( )A 27B 1C 1311- D 011.已知方程112332x x x ---=+-与方程2224334kx xk +--=-的解相同,则k 的值为( ) A.0B.2C.1D.1-11.已知方程233mx x -=+的解满足10x -=,则m 的值是( ) "A.6-B.12-C.6-或12-D.任何数12.已知当1a =,2b =-时,代数式10ab bc ca ++=,则c 的值为( ) A.12B.6C.6-D.12-13.(8分)解关于x 的方程()0b x x aa b a b+-=≠≠. 14.(10分)已知2ym my m +=-. (1)当4m =时,求y 的值; (2)当4y =时,求m 的值.15 已知x=- 2是方程22328x mx m -+=的解,求m 的值。
》16 若方程2x+a=223,与方程511=33x +的解相同,求a 的值。
第二节、 解方程一 知识总结知识点一:解方程的步骤:1、 /2、如果有分母,先去____, (注意去分母时等式两边每一项都乘以最小公倍数)3、 后去_____,(去括号时,注意括号前面的符合)4、 再_____、(移项要变号)5、 ______得到标准形式ax=b(a ≠0),最后两边同除以______的系数。
(合并同类型)6、 易错知识辨析:(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.二 题型归纳>题型一:应用解方程的步骤细心解方程(先慢后快,刚开始一定要慢,等熟练就快了,)1、 4x-3 (20-x )=6x-7 ( 9-x )2、 351-322x x =+3 解方程:42132[]3324x x x ⎛⎫--=⎪⎝⎭ 4 解方程 : 1211=223x x -+--5.解方程132x -=,则x =_______.6 解方程:0.010.0210.310.030.2x x+--= 、7解方程:(1)533523x x -+=, 8 、 2151168x x -+-=二、解下列方程(本题50分,每小题10分): 1.2{3[4(5x -1)-8]-20}-7=1; 2.⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-46151413121x =1;(3.x -2[x -3(x +4)-5]=3{2x -[x -8(x -4)]}-2;4.03.04.05233.12.188.1=-----x x x ; 5.45234x x x x =---.:)11(76)20(34y y y y --=--14126110312-+=---x x x(8分)m 为何值时,代数式3152--m m 的值与代数式27m-的值的和等于5;第三节 4、日历中的方程一 知识总结一、 知识点一:在日历中,注意一个日历数的上下横竖的数量关系,同一竖列相邻两数之差为7,横列相邻两数相差1。
二 题型归纳}题型一:日历中存在的数量关系1.在日历上横着每两个数的差为________,竖着的差为________.( ),8,7,8,74.设最小的数为x ,则日历中它所在的正方形中最大数表示为( )+7 +1 +2 +81.在一本日历上,用一个长方形竖着圈住6个数,且它们的和为129,则这六个数分别为多1、(看图)做一做.日历中有一个数为16,则周围的数是多少若将16改为x呢1.在一本挂历上,圈住四个数,这四个数恰好构成一个正方形,且它们的和为48,则这四个数为________.3.有若干张卡片,上面写有数字,且后一张卡片比前一张的数大8,有一只小狗叼走了相邻的三张卡片,且它们之和为48,则这三张卡片上的数分别是________.》二、解决问题1、某日历表中一个竖列上相邻的三个日期的和为60,那么这三个日期分别是多少(1)如果设其中一个数为X,那么其他两个数如何表示你是怎么设未知数的有几种设法(2)哪种设法解方程最简单(3)规范书写过程2、爸爸妈妈带小新去旅游,小新问几号出发.爸爸说:“哪一天与它前一天与后一天的日期总和是78时,我们出发.”(1)爸爸所说的表示日期的3个数字有何关系/(2)如果设中间一个为未知数x.那么其余两个如何表示__________所列方程为__________x%16.(3)如果设第一个数为未知数x,那么其余两个如何表示__________所列方程为__________(4)还可以设哪一个未知数x__________列方程为__________(5)爸爸他们几号出发__________(6)如果爸爸说的总和是24,那么,他们几号出发_____日,(7)如果爸爸说的总和是57,他们几号出发_____日(8)若爸爸说的总和是28.小新能算出几号出发吗第四节、我变胖了一知识总结…知识点一:特殊图形的表面积与体积(1)长方体的体积:________________________(2)圆柱体的体积:________________________(3)长方形的周长_______________和面积_____________________\知识点二:一个有规格的物体,如果体积形状发生变化时,表面积发生变化了,但是体积没有发生变化。
此类问题体积相等是等量关系。
二题型归纳题型一:形体变化的问题例1、将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径是20厘米的“矮胖”形圆柱,高变成了多少"分析:设锻压后圆柱的高为x 厘米,填写下表:学生自测1、把一块长、宽、高分别为5cm、3cm、3cm的长方体木块,浸入半径为4cm 的圆柱形玻璃杯中(盛有水),水面将增高多少(不外溢)!相等关系:水面增高体积=长方体体积2、一块圆柱形铁块,底面半径为20cm,高为16cm。
若将其锻造成长为20cm,宽为8cm的长方体,则长方体的高为cm。
(∏取2、用一根长为10米的铁丝围成一个长方体。
(1)使得该长方形的长比宽多米,此时长方形的长、宽各为多少米(2)使得该长方形的长比宽多米,此时长方形的长、宽各为多少米它围成的长方形与(1)中所围成的长方形相比,面积有何变化(3)使得该长方形的长与宽相等,围成一个正方形,此时,正方形的边长是多少米它所围成的面积与(2)中相比有何变化4、用直径为90mm的圆柱形玻璃杯(已装满水,且水足够多)向一个内底面积为131×131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降了多少(结果保留—第五节、打折销售一 知识总结1、概念与公式(1)进价:购进商品时的价格(有时也叫成本价)。
(2)售价:在销售商品时的售出价(有时称成交价,卖出价) (3)标价:在销售时标出的价(有时称原价,定价)(4)利润:在销售商品的过程中的纯收入, 利润 = 售价 – 进价)(5)利润率:利润占进价的百分率,即利润率 = 利润 ÷进价×100%利润率进价进价折数标价=-⨯⨯%10)((6)打折:卖货时,按照标价乘以十分之几或百分之几十,则称将标价进行了几折。
或理解为:销售价占标价的百分率。
例如某种服装打8打即按标价的百分之八十出售。
进价×(1+利润率)=标价×(折数×10)%二 题型归纳题型一:概念求值1、 求商品标价[例1]某商品的进价是1530元,按商品标价的9折出售时,利润率是15%,商品的标价是多少元 2、 >3、求商品进价[例2]某商品的标价为320元,打9折销售时利润率为%,此商品的进价为多少元4、 求利润率[例3]一商店将每台彩电先按进价提高40%,标出售价,然后广告宣传将以80%的优惠价出售,结果每台赚了300元,则经销这种产品的利润率是多少 5、 求折扣数[例4]某商品的进价为1250元,按进价的120%标价,商店允许营业员在利润不低于8%的情况下打折销售,问营业员最低可以打几折销售此商品 6、 求盈亏[例5]某商店有两种进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店盈利还是亏损盈利或亏损了多少元^题型二:一元一次方程在销售总的应用1.某件商品连续两次9折隆价销售,降价后每件商品售价为a 元,则该商品每件原价为( ) A.0.92a 元B.1.12a 元C.1.12a元 D.0.81a元 2、商品按进价增加20%出售,因积压需降价处理,如果仍想获得8%的利润,则出售价需打( ) 。