多元统计分析论文

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于主成分分析的我国地区经济指标研究

09统计班徐晓旺

【摘要】

地区经济的发展对我国现代化进程形成巨大的推动作用,而经济指标是评判地区发展水平的重要标志。根据搜集的相应数据建立数据库,基于主成分分析、同时运用聚类分析以及判别分析的多元统计方法,对全国各地区的经济状况进行综合指标分析。研究各省经济发展在全国的分布特征、筛选出具备可对比性的指标,进而探究造成差异的原因,同时具有针对性地提出相关建议。

【关键词】

主成分分析;聚类分析;判别分析;地区经济指标

一、引言

随着社会的不断进步,经济发展的车轮将会继续滚动。在整体水平提升的同时不难发现:我国各地区间发展势必存留着一定的差距,了解其具体的分布特征注定会是一个非常值得深入挖掘的信息。结合对进出口总额、居民消费水平等9个经济指标的研究,致力于分析各地区硬件发展水平、人民生活状况的异同与经济发展的相关性。

本文将对中国31个省份地区的经济指标进行分析。首先,应用主成分分析的方法对众多指标做降维处理并赋予各主成分以实际意义以获取综合性指标;进而,基于主成分分析结果通过聚类分析法把我国的31个地区分类;最后,根据聚类的结果建立判别函数同时运用判别分析将新疆、广东两个省份归类。

二、主成分分析

搜集到的经济指标为:进出口总额、地区生产总值、固定资产投资、邮电业务量、客运量、货运量、公交车运营数、居民平均工资和居民消费水平这九项指标。

在运用SPSS软件对以上数据开始分析前首先进行标准化处理,接着通过SPSS的操作,得到了如下的总方差分解结果(见表一):

表一

由表一中结果可以看到保留2个主成分为宜,这2个主成分集中了原始9个变量信息的88.392%,可见效果比较好,这样原来的9个指标就可以通过这2个综合指标来反映。此时,这2个主成分就起到了降维的作用。通过SPSS进一步的操作还可以得到如下的主成分系数矩阵(见表二):

表二

由表二可以得出前2个主成分的线性组合为:

Y1 = 0.852 X1 + 0.979 X2 + 0.821 X3 + 0.957 X4 + 0.885 X5 + 0.742 X6 + 0.967 X7 +

0.226 X8 + 0.513 X9

Y2 = 0.393 X1 - 0.113 X2 - 0.419 X3 - 0.032 X4 - 0.233 X5 - 0.483 X6 + 0.109 X7 +

0.915 X8 + 0.786 X9

通过对上述线性组合的观察,我们可以得出:在主成分1中进出口总额、地区生产总值、固定资产投资、邮电业务量、客运量、货运量和公交车运营数这几项指标的系数明显比主成分2的系数大,可以将Y1归类为地区经济发展中的硬件基础指标;在主成分2中平均工资和消费水平指标的系数最大,可以将Y2归类为地区经济发展中的居民生活指标。

这样就将繁冗的9个指标归结为上述2个,这两项指标相互作用,共同反映地区经济发展情况。

主成分得分如下(见表三):

表三

三、聚类分析

在SPSS软件上根据主成分得分应用聚类分析中的类平均法得到如下树状图(见表四):

表四

表四反映了全部31个省份地区聚类的情况,从中可以看到当取15左右范围的值时可以得到分类数为3的分类结果。

四、判别分析

将上述通过系统聚类的结果和两组待判别的数据导入SPSS,依次点击分析—分类—判别进行判别分析得到如下图表(见表五):

Casewise Statistics

Highest Group

P(D>d | G=g) Case Number

Actual Group Predicted Group p df

Original 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

1

1

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

ungrouped

ungrouped

1

1

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

2

3

.847

.847

.570

.490

.215

.407

.905

.994

.145

.938

.969

.471

.451

.679

.134

.753

.622

.818

.334

.980

.296

.472

.671

.157

.982

.378

.293

.373

.002

.000

.691

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 表五

从表五结果我们可以看出第30组(广东)归为第2类,第31组(新疆)归为第3类,其他原属分类保持不变。

相关文档
最新文档