山东大学操作系统实验报告4进程同步实验
进程的同步与互斥实验报告
进程的同步与互斥实验报告1.实验目的进程(线程)的同步与互斥是操作系统中非常重要的概念,本实验旨在通过实际操作,加深对这些概念的理解和掌握。
通过编写多个进程(线程),并在其间进行同步与互斥操作,验证同步与互斥的实际效果。
2.实验环境本实验在Linux系统下进行,使用C/C++语言编程。
3.实验内容3.1同步在实验中,我们编写了两个进程A和B,这两个进程需要按照特定的顺序执行。
为了实现同步,我们使用信号量机制来确保进程A和B按照正确的顺序执行。
3.2互斥在实验中,我们编写了多个进程C和D,这些进程需要同时对一个共享资源进行访问。
为了实现互斥,我们使用互斥锁机制来确保同一时刻只有一个进程访问共享资源。
4.实验过程4.1同步实验编写进程A和进程B的代码,使用信号量机制实现同步。
进程A先运行,然后通过信号量唤醒进程B,进程B再开始执行。
通过观察进程的运行顺序,验证同步机制是否起作用。
4.2互斥实验编写进程C和进程D的代码,使用互斥锁机制实现互斥。
进程C和进程D同时对一个共享资源进行访问,通过互斥锁来确保同一时刻只有一个进程访问共享资源。
观察进程的输出结果,验证互斥机制是否起作用。
5.实验结果5.1同步实验结果进程A开始执行进程A执行完毕进程B开始执行进程B执行完毕5.2互斥实验结果进程C开始执行进程C访问共享资源进程C执行完毕进程D开始执行进程D访问共享资源进程D执行完毕6.实验分析通过上述结果可以看出,同步实验中进程A和进程B按照正确的顺序执行,证明了同步机制的有效性。
互斥实验中进程C和进程D能够正确地交替访问共享资源,证明了互斥机制的有效性。
7.实验总结通过本次实验,我深刻理解了进程(线程)的同步与互斥,并通过实际操作加深了对这些概念的理解。
同步和互斥是操作系统中非常重要的概念,对于应对资源竞争和提高程序性能具有重要意义。
在实际开发中,我们应该合理使用同步和互斥机制,以确保程序的正确性和并发执行的效率。
操作系统实验四 进程的同步
操作系统实验报告哈尔滨工程大学软件学院第六讲进程的同步一、实验概述1. 实验名称实验系统的启动2. 实验目的1).使用EOS 的信号量编程解决生产者—消费者问题,理解进程同步的意义。
2).调试跟踪EOS 的信号量的工作过程,理解进程同步的原理。
3).修改EOS 的信号量算法,使之支持等待超时唤醒功能(有限等待),加深理解进程同步的原理。
3. 实验类型(验证、设计)验证4. 实验内容1).准备实验2).使用EOS的信号量解决生产者-消费者问题3).调试EOS信号量的工作过程①创建信号量②等待释放信号量③等待信号量(不阻塞)④释放信号量(不唤醒)⑤等待信号量(阻塞)⑥释放信号量(唤醒)4).修改EOS的信号量算法在目前EOS Kernel项目的ps/semaphore.c文件中,PsWaitForSemaphore 函数的Milliseconds参数只能是INFINITE,PsReleaseSemaphore 函数的ReleaseCount 参数只能是1。
现在要求同时修改PsWaitForSemaphore函数和PsReleaseSemaphore函数中的代码,使这两个参数能够真正起到作用,使信号量对象支持等待超时唤醒功能和批量释放功能。
二、实验环境操作系统:windows xp编译环境:OS Lab三、实验过程1. 设计思路和流程图图3-1.整体试验流程图图3-2.Main 函数流程图、生产者消费、消费者流程图2. 需要解决的问题及解答(1).思考在ps/semaphore.c文件内的PsWaitForSemaphore和PsReleaseSemaphore函数中,为什么要使用原子操作?答:在执行等待信号量和释放信号量的时候,是不允许cpu响应外部中断的,如果此时cpu响应了外部中断,会产生不可预料的结果,无法正常完成原子操作。
(2). 绘制ps/semaphore.c文件内PsWaitForSemaphore和PsReleaseSemaphore 函数的流程图。
进程同步实验报告
一、实验目的1. 理解进程同步的概念和原理;2. 掌握进程同步的基本方法和机制;3. 学会使用信号量实现进程同步;4. 通过实验验证进程同步机制的有效性。
二、实验原理1. 进程同步:在多道程序设计中,进程的执行是并发的,但某些情况下需要保证多个进程按照一定的顺序执行,以避免出现数据不一致、死锁等问题。
进程同步是指通过某种机制,协调多个进程的执行顺序,保证它们能够正确、有效地共享资源。
2. 信号量:信号量是一种特殊的变量,用于实现进程同步。
信号量具有两个原子操作:P操作(wait)和V操作(signal)。
P操作用于申请资源,V操作用于释放资源。
3. 互斥锁:互斥锁是一种常见的进程同步机制,用于保证临界资源的互斥访问。
当一个进程进入临界区时,它会尝试获取互斥锁,如果锁已被其他进程获取,则该进程进入等待状态;当进程退出临界区时,它会释放互斥锁。
三、实验内容1. 实验环境:Linux操作系统,C语言编程环境。
2. 实验工具:gcc编译器、gdb调试器。
3. 实验步骤:(1)创建一个互斥锁,用于保护临界资源。
(2)编写两个进程,分别模拟对临界资源的访问。
(3)在进程访问临界资源前,使用P操作尝试获取互斥锁。
(4)在进程访问临界资源后,使用V操作释放互斥锁。
(5)编译并运行程序,观察进程执行情况。
四、实验结果与分析1. 实验结果:(1)在互斥锁的保护下,两个进程能够按照预期顺序访问临界资源。
(2)当其中一个进程正在访问临界资源时,另一个进程会进入等待状态。
(3)当进程访问临界资源完成后,它会释放互斥锁,允许其他进程访问。
2. 实验分析:(1)互斥锁能够有效地保护临界资源,避免数据不一致问题。
(2)信号量P操作和V操作保证了进程的同步,避免了死锁现象。
(3)通过实验验证了进程同步机制的有效性。
五、实验总结本次实验通过使用信号量和互斥锁,实现了进程同步。
实验结果表明,信号量和互斥锁能够有效地保证进程按照预期顺序执行,避免数据不一致和死锁等问题。
山东大学操作系统实验四实验报告
软件学院实验报告4实验题目:Nachos File System 学号: 201100300038日期:2013-10-30 班级: 11级3班姓名:陶旭涛Email:1595242630@实验目的:熟悉nachos系统的文件操作命令以及用法,了解怎样生成 Nachos 文件系统,知道怎样测试 Nachos 文件系统的基本功能,怎样检查 Nachos 文件系统中模拟硬盘中的内容。
硬件环境:Ubuntu12.04软件环境:Nachos,Mips,GDB实验步骤:按照操作命令按步执行:nachos [ d f] –f这个命令用于在任何其它文件系统命令使用之前格式化一个模拟的叫DISK 的硬盘: nachos [d f] –cp Unix 文件名 Nachos 文件名从 Unix 系统中拷贝一个文件到 Nachos 系统中:nachos [d f] –p 文件名显示 Nachos 系统中一个文件的内容(类似 Unix 系统中的 cat 命令):nachos [d f] –d 文件名删除 Nachos 系统中一个文件(类似 Unix 系统中的 rm 命令):nachos [d f] –l 列出 Nachos 系统中所有的文件名(类似 Unix 系统中的 ls 命令)结果如下:执行./nachos./nachos -f./nachos -D./nachos -cp test/small smallod DISK:查看DISK中的内容./nachos -l small./nachos -p small结论分析与体会:通过这次实验了解到nachos文件系统的基本构成和架构。
测试了nachos文件系统的基本功能检查了nachos文件系统中的模拟硬盘中的内容。
山东大学操作系统实验报告4进程同步实验
计算机科学与技术学院实验报告int msq_id;if((msq_id = get_ipc_id("/proc/sysvipc/msg",msq_h)) < 0 ) { if((msq_id = msgget(msq_h,msq_flg)) < 0){perror("messageQueue set error");exit(EXIT_FAILURE);}}return msq_id;}实验结果:分析:多进程的系统中避免不了进程间的相互关系。
进程互斥是进程之间发生的一种间接性作用,一般是程序不希望的。
通常的情况是两个或两个以上的进程需要同时访问某个共享变量。
我们一般将发生能够问共享变量的程序段称为临界区。
两个进程不能同时进入临界区,否则就会导致数据的不一致,产生与时间有关的错误。
解决互斥问题应该满足互斥和公平两个原则,即任意时刻只能允许一个进程处于同一共享变量的临界区,而且不能让任一进程无限期地等待。
进程同步是进程之间直接的相互作用,是合作进程间有意识的行为,典型的例子是公共汽车上司机与售票员的合作。
只有当售票员关门之后司机才能启动车辆,只有司机停车之后售票员才能开车门。
司机和售票员的行动需要一定的协调。
同样地,两个进程之间有时也有这样的依赖关系,因此我们也要有一定的同步机制保证它们的执行次序。
信号量机制就是其中的一种。
信号灯机制即利用pv操作来对信号量进行处理。
PV操作由P操作原语和V 操作原语组成(原语是不可中断的过程),对信号量进行操作,具体定义如下: P(S):①将信号量S的值减1,即S=S-1;②如果S³0,则该进程继续执行;否则该进程置为等待状态,排入等待队列。
V(S):①将信号量S的值加1,即S=S+1;②如果S>0,则该进程继续执行;否则释放队列中第一个等待信号量的进程。
PV操作的意义:我们用信号量及PV操作来实现进程的同步和互斥。
进程同步:实验报告
1.实验内容(进程的同步)(1)阅读理解示例程序。
(2)说明示例程序是否能适合解决N个生产者和1个消费者问题,并设计实验验证(3) 参照教材修改为N个生产者和1个消费者问题(4) 思考N个生产者和M个消费者问题的解决方案(不要求)(5) 利用信号量解决同步问题。
2.实验目的通过程序模拟及验证生产者消费者问题等经典问题,深入理解并发中的同步和互斥的概念3.实验原理(1)进程概念:(1.定义:程序的一次执行过程(2.三种基本状态:就绪状态,执行状态,阻塞状态(2)进程同步:(1.定义:并发进程在执行次序上的协调,以达到有效的资源共享和相互合作,使程序执行有可再现性。
(2.两种形式的制约关系:(一:资源共享关系:进程间接制约,需互斥地访问临界资源。
)、(二:相互合作关系:进程直接制约)(3.临界资源:一次仅允许一个进程访问的资源,引起不可再现性是因为临界资源没有互斥访问。
(3)信号量:定义一个用于表示资源数目的整型量S,它与一般的整型量不同,除初始化外,仅能通过两个标准的原子操作wait(S)和signal(S)来访问,俗称P,V操作。
通俗来讲就是用P来访问资源后减去一个单位资源,用V操作来释放一个单位资源就是现有资源上加一个单位资源。
4.实验内容一:说明示例程序是否能适合解决N个生产者和1个消费者问题,并设计实验验证答:示例程序不能解决多个生产者和消费者的问题,它是解决单个消费者和生产者的。
如果可以就要修改代码,如“二”所说。
二:多个消费者和生产者的问题如上图所示:如果要解决多个生产者和消费者的问题:第一步:分析上图得出了两种关系,分别是异步和同步的关系第二步:异步关系的是生产者和生产者之间的,因为同一时刻只能有一个生产者访问缓冲区,所以我们就可以设置临界资源.获得临界资源的生产者才能把产品放到缓冲区里第三步:同步关系有两个,首先是生产者和缓冲区之间,再是缓冲区和消费者之间。
他们都满足一前一后的关系,即当缓冲区空间未满时,生产者才可以放产品;缓冲区不为空的时候才可以让消费者取出产品消费。
山东大学操作系统实验报告4进程同步实验
山东大学操作系统实验报告4进程同步实验计算机科学与技术学院实验报告实验题目:实验四、进程同步实验学号:日期:20120409 班级:计基地12 姓名:实验目的加深对并发协作进程同步与互斥概念的理解,观察和体验并发进程同步与互操作的效果,分析与研究经典进程同步与互斥问题的实际解决方案了 Linux 系统 IPC进程同步工具的用法,练习并发协作进程的同步与互斥操作的编与调试技术实验内容抽烟者问题假设一个系统中有三个抽烟者进程每个抽烟者不断地卷烟并抽烟抽烟者卷起并抽掉一颗烟需要有三种材料烟草纸和胶水一个抽烟者有烟草一个有纸,另一个有胶水。
系统中还有两个供应者进程,它们无限地供应所有种材料但每次仅轮流提供三种材料中的两种。
得到缺失的两种材料的抽烟者卷起并抽掉一颗烟后会发信号通知供应者让它继续提供另外的两种材料。
这过程重复进行请用以上介绍 IPC同步机制编程实现该问题要求的功能硬件环境@CPUi3-2350MIntel?Cor42.30GHz MobileIntel?Sandybridgex86/MMX/SSE24G内存3操作系统:20.1 GB磁盘:软件环境:ubuntu13.04实验步骤:(1)新建定义了producer和consumer 共用的文件。
ipc.h函数原型和变量的IPC.(2)新建ipc.c文件,编写producer和consumer共用的IPC的具体相应函数。
(3)新建Producer文件,首先定义producer的一些行为,利用系统调用建立共享内存区域,设定其长度并获取共享内存的首地址。
然后设定生产者互斥与同步的信号灯,并为他们设置相应的初值。
当有生产者进程在运行而其他生产者请求时,相应的信号灯就会阻止他,当共享内存区域已满时,信号等也会提示生产者不能再往共享内存中放入内容。
(4)新建Consumer文件,定义consumer的一些行为,利用系统调用来创建共享内存区域,并设定他的长度并获取共享内存的首地址。
操作系统实验报告——进程同步与互斥
操作系统实验报告——进程同步与互斥一、实验内容本实验主要内容是通过编写程序来实现进程的同步与互斥。
具体来说,是通过使用信号量来实现不同进程之间的同步和互斥。
我们将编写两个进程,一个进程负责打印奇数,另一个进程负责打印偶数,两个进程交替打印,要求打印的数字从1开始,直到100结束。
二、实验原理进程的同步是指多个进程之间按照一定的顺序执行,进程之间互相等待的关系。
而进程的互斥是指多个进程竞争同一个资源,需要通过其中一种方式来避免同时访问共享资源,以免造成数据错乱。
在本实验中,我们使用信号量来实现进程的同步与互斥。
信号量是一个计数器,用于表示一些共享资源的可用数量。
进程在访问共享资源时,需要先对信号量进行操作,当信号量大于0时,表示资源可用,进程可以访问;当信号量等于0时,表示资源不可用,进程需要等待。
进程同步的实现可以通过信号量的P操作与V操作来完成。
P操作用于申请资源,当资源可用时,将计数器减一,并进入临界区;V操作用于释放资源,当资源使用完毕时,将计数器加一,使等待资源的进程能够申请。
进程互斥的实现可以通过信号量的P操作与V操作结合临界区来完成。
当多个进程需要访问共享资源时,需要先进行P操作,进入临界区,访问完毕后进行V操作,离开临界区。
三、实验步骤1.首先,我们需要创建两个进程,一个进程负责打印奇数,另一个进程负责打印偶数。
2. 然后,我们创建一个共享变量count,用来记录打印的数字。
3. 接着,我们创建两个信号量odd和even,用来控制进程的同步与互斥。
odd信号量初始值为1,表示打印奇数的进程可以访问;even信号量初始值为0,表示打印偶数的进程需要等待。
4.编写奇数打印进程的代码,首先进行P操作,判断奇数信号量是否大于0,如果大于0,表示可以打印奇数。
5. 如果可以打印奇数,将count加一,并输出当前的奇数,然后进行V操作,释放偶数打印进程的等待。
6.同样的,编写偶数打印进程的代码,首先进行P操作,判断偶数信号量是否大于0,如果大于0,表示可以打印偶数。
进程的同步实验报告
进程的同步实验报告进程的同步实验报告引言:进程同步是操作系统中一个重要的概念,它涉及到多个进程之间的协调和合作。
在本次实验中,我们将通过一个简单的实例来探讨进程同步的概念和实现方式。
实验目的:通过实验,我们的目标是理解进程同步的概念,学习常见的同步机制,并通过编程实现一个简单的同步问题。
实验环境:本次实验使用了C语言作为编程语言,并在Linux操作系统上进行。
实验过程:我们的实验场景是一个餐厅,有一个厨师和多个服务员。
厨师负责烹饪菜品,服务员负责上菜给客人。
我们需要实现的是,服务员只有在厨师烹饪好一道菜之后才能上菜,否则需要等待。
首先,我们使用互斥锁来实现进程间的同步。
互斥锁是一种常见的同步机制,它可以确保在同一时间只有一个进程可以访问共享资源。
在我们的实验中,厨师和服务员都需要访问菜品资源,因此我们为菜品资源添加了一个互斥锁。
接下来,我们使用条件变量来实现进程间的等待和唤醒操作。
条件变量是一种同步机制,它可以让进程在某个条件满足时等待,直到被唤醒。
在我们的实验中,服务员需要等待厨师烹饪好菜品之后才能上菜,因此我们创建了一个条件变量,并在服务员的代码中使用了等待和唤醒操作。
实验结果:经过实验,我们成功地实现了进程间的同步。
在我们的实验场景中,厨师会不断地烹饪菜品,并在烹饪完成后通知服务员上菜。
服务员会等待厨师的通知,然后上菜给客人。
通过互斥锁和条件变量的使用,我们保证了服务员只会在厨师烹饪完成后才会上菜,避免了资源竞争和错误的上菜行为。
讨论与总结:通过本次实验,我们深入理解了进程同步的概念和实现方式。
互斥锁和条件变量是常见的同步机制,它们可以有效地解决进程间的竞争和协调问题。
在实际的操作系统中,进程同步是一个非常重要的概念,它保证了多个进程之间的正确执行和合作。
然而,进程同步也可能引发一些问题。
例如,如果互斥锁的使用不当,可能会导致死锁的发生。
死锁是一种进程无法继续执行的状态,它会导致系统的停滞。
进程同步:实验报告
1.实验内容(进程的同步)(1)阅读理解示例程序。
(2)说明示例程序是否能适合解决N个生产者和1个消费者问题,并设计实验验证(3) 参照教材修改为N个生产者和1个消费者问题(4) 思考N个生产者和M个消费者问题的解决方案(不要求)(5) 利用信号量解决同步问题。
2.实验目的通过程序模拟及验证生产者消费者问题等经典问题,深入理解并发中的同步和互斥的概念3.实验原理(1)进程概念:(1.定义:程序的一次执行过程(2.三种基本状态:就绪状态,执行状态,阻塞状态(2)进程同步:(1.定义:并发进程在执行次序上的协调,以达到有效的资源共享和相互合作,使程序执行有可再现性。
(2.两种形式的制约关系:(一:资源共享关系:进程间接制约,需互斥地访问临界资源。
)、(二:相互合作关系:进程直接制约)(3.临界资源:一次仅允许一个进程访问的资源,引起不可再现性是因为临界资源没有互斥访问。
(3)信号量:定义一个用于表示资源数目的整型量S,它与一般的整型量不同,除初始化外,仅能通过两个标准的原子操作wait(S)和signal(S)来访问,俗称P,V操作。
通俗来讲就是用P来访问资源后减去一个单位资源,用V操作来释放一个单位资源就是现有资源上加一个单位资源。
4.实验内容一:说明示例程序是否能适合解决N个生产者和1个消费者问题,并设计实验验证答:示例程序不能解决多个生产者和消费者的问题,它是解决单个消费者和生产者的。
如果可以就要修改代码,如“二”所说。
二:多个消费者和生产者的问题如上图所示:如果要解决多个生产者和消费者的问题:第一步:分析上图得出了两种关系,分别是异步和同步的关系第二步:异步关系的是生产者和生产者之间的,因为同一时刻只能有一个生产者访问缓冲区,所以我们就可以设置临界资源.获得临界资源的生产者才能把产品放到缓冲区里第三步:同步关系有两个,首先是生产者和缓冲区之间,再是缓冲区和消费者之间。
他们都满足一前一后的关系,即当缓冲区空间未满时,生产者才可以放产品;缓冲区不为空的时候才可以让消费者取出产品消费。
操作系统实验报告_实验四
操作系统实验报告_实验四一、实验目的本次操作系统实验的目的是深入了解和掌握操作系统中进程管理、内存管理、文件系统等核心概念和相关技术。
通过实际的实验操作,增强对操作系统原理的理解,提高解决实际问题的能力。
二、实验环境本次实验使用的操作系统为_____,开发工具为_____,实验在_____计算机上进行。
三、实验内容(一)进程管理实验1、进程创建与终止使用系统调用创建多个进程,并观察进程的状态变化。
实现进程的正常终止和异常终止,并分析其对系统资源的影响。
2、进程同步与互斥利用信号量机制实现进程之间的同步与互斥操作。
分析不同同步方式的性能和适用场景。
(二)内存管理实验1、内存分配与回收实现不同的内存分配算法,如首次适应算法、最佳适应算法和最坏适应算法。
观察内存分配和回收过程中内存空间的变化情况。
2、页面置换算法实现几种常见的页面置换算法,如先进先出(FIFO)算法、最近最少使用(LRU)算法和时钟(Clock)算法。
通过模拟不同的页面访问序列,比较不同算法的性能。
(三)文件系统实验1、文件创建与删除使用系统调用创建和删除文件,并观察文件系统的相应变化。
分析文件创建和删除过程中的系统开销。
2、文件读写操作对文件进行读写操作,实现文件内容的读取和修改。
研究文件读写的效率和缓冲区管理机制。
四、实验步骤(一)进程管理实验步骤1、进程创建与终止编写程序,使用系统调用创建多个子进程。
在每个子进程中执行特定的任务,并在完成后正常终止。
故意制造异常情况,使某个子进程异常终止,观察系统的处理方式。
2、进程同步与互斥定义信号量,并初始化其值。
在多个进程中使用信号量进行同步和互斥操作。
输出进程的执行顺序和状态,验证同步与互斥的效果。
(二)内存管理实验步骤1、内存分配与回收实现不同的内存分配算法函数。
模拟内存请求和释放的过程,调用相应的算法进行内存分配和回收。
输出每次分配和回收后的内存状态。
2、页面置换算法构建页面访问序列。
山东大学操作系统实验报告4进程同步实验
计算机科学与技术学院实验报告
分析:
多进程的系统中避免不了进程间的相互关系。
进程互斥是进程之间发生的一种间接性作用,一般是程序不希望的。
通常的情况是两个或两个以上的进程需要同时访问某个共享变量。
我们一般将发生能够问共享变量的程序段称为临界区。
两个进程不能同时进入临界区,否则就会导致数据的不一致,产生与时间有关的错误。
解决互斥问题应该满足互斥和公平两个原则,即任意时刻只能允许一个进程处于同一共享变量的临界区,而且不能让任一进程无限期地等待。
进程同步是进程之间直接的相互作用,是合作进程间有意识的行为,典型的例子是公共汽车上司机与售票员的合作。
只有当售票员关门之后司机才能启动车
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。
操作系统实验4-4实验报告
操作系统实验4-4实验报告一、实验目的本次操作系统实验 4-4 的目的是深入了解和掌握操作系统中进程管理的相关知识和技术,通过实际操作和观察,加深对进程调度算法、进程同步与互斥等概念的理解,并提高解决实际问题的能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程环境为 Visual Studio 2019。
三、实验内容1、进程调度算法的实现先来先服务(FCFS)算法短作业优先(SJF)算法时间片轮转(RR)算法优先级调度算法2、进程同步与互斥的实现使用信号量实现生产者消费者问题使用互斥锁实现哲学家进餐问题四、实验步骤1、进程调度算法的实现先来先服务(FCFS)算法设计数据结构来表示进程,包括进程ID、到达时间、服务时间等。
按照进程到达的先后顺序将它们放入就绪队列。
从就绪队列中选择第一个进程进行处理,计算其完成时间、周转时间和带权周转时间。
短作业优先(SJF)算法在设计的数据结构中增加作业长度的字段。
每次从就绪队列中选择服务时间最短的进程进行处理。
计算相关的时间指标。
时间片轮转(RR)算法设定时间片的大小。
将就绪进程按照到达时间的先后顺序放入队列。
每个进程每次获得一个时间片的执行时间,若未完成则重新放入队列末尾。
优先级调度算法为每个进程设置优先级。
按照优先级的高低从就绪队列中选择进程执行。
2、进程同步与互斥的实现生产者消费者问题创建一个共享缓冲区。
生产者进程负责向缓冲区中生产数据,消费者进程从缓冲区中消费数据。
使用信号量来控制缓冲区的满和空状态,实现进程的同步。
哲学家进餐问题模拟多个哲学家围绕一张圆桌进餐的场景。
每个哲学家需要同时获取左右两边的筷子才能进餐。
使用互斥锁来保证筷子的互斥访问,避免死锁的发生。
五、实验结果与分析1、进程调度算法的结果与分析先来先服务(FCFS)算法优点:实现简单,公平对待每个进程。
缺点:对短作业不利,平均周转时间可能较长。
短作业优先(SJF)算法优点:能有效降低平均周转时间,提高系统的吞吐量。
操作系统实验报告4
操作系统实验报告4一、实验目的本次操作系统实验的目的在于深入了解和掌握操作系统中进程管理、内存管理、文件系统等核心概念和相关操作,通过实际的实验操作,增强对操作系统原理的理解和应用能力,提高解决实际问题的能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。
三、实验内容与步骤(一)进程管理实验1、进程创建与终止使用 C++语言编写程序,创建多个进程,并在进程中执行不同的任务。
通过进程的标识符(PID)来监控进程的创建和终止过程。
2、进程同步与互斥设计一个生产者消费者问题的程序,使用信号量来实现进程之间的同步与互斥。
观察生产者和消费者进程在不同情况下的执行顺序和结果。
(二)内存管理实验1、内存分配与释放编写程序,使用动态内存分配函数(如`malloc` 和`free`)来分配和释放内存。
观察内存的使用情况和内存泄漏的检测。
2、内存页面置换算法实现几种常见的内存页面置换算法,如先进先出(FIFO)算法、最近最少使用(LRU)算法和最佳置换(OPT)算法。
通过模拟不同的页面访问序列,比较不同算法的性能。
(三)文件系统实验1、文件创建与读写使用 C++语言的文件操作函数,创建一个新文件,并向文件中写入数据。
从文件中读取数据,并进行数据的处理和显示。
2、文件目录操作实现对文件目录的创建、删除、遍历等操作。
观察文件目录结构的变化和文件的组织方式。
四、实验结果与分析(一)进程管理实验结果与分析1、进程创建与终止在实验中,成功创建了多个进程,并通过控制台输出观察到了每个进程的 PID 和执行状态。
可以看到,进程的创建和终止是按照程序的逻辑顺序进行的,操作系统能够有效地管理进程的生命周期。
2、进程同步与互斥在生产者消费者问题的实验中,通过信号量的控制,生产者和消费者进程能够正确地实现同步与互斥。
当缓冲区为空时,消费者进程等待;当缓冲区已满时,生产者进程等待。
《操作系统》实验报告
《操作系统》实验报告一、实验目的操作系统是计算机系统的核心组成部分,本次实验的主要目的是深入理解操作系统的工作原理和功能,通过实际操作和观察,掌握操作系统的进程管理、内存管理、文件系统管理等方面的知识和技能。
二、实验环境本次实验使用的操作系统为 Windows 10,开发工具为 Visual Studio 2019,编程语言为 C++。
三、实验内容及步骤1、进程管理实验(1)创建进程通过编程实现创建新的进程。
在代码中使用了 Windows API 函数CreateProcess 来创建一个新的进程。
首先,设置进程的启动信息,包括命令行参数、工作目录等。
然后,调用CreateProcess 函数创建进程,并检查返回值以确定创建是否成功。
(2)进程同步使用互斥量(Mutex)实现进程间的同步。
创建一个共享资源,多个进程尝试访问该资源。
通过互斥量来保证同一时间只有一个进程能够访问共享资源,避免了数据竞争和不一致的问题。
(3)进程通信采用管道(Pipe)进行进程间的通信。
创建一个匿名管道,一个进程作为发送端,向管道写入数据;另一个进程作为接收端,从管道读取数据。
通过这种方式实现了进程之间的数据交换。
2、内存管理实验(1)内存分配使用 Windows API 函数 VirtualAlloc 来分配内存。
指定分配的内存大小、访问权限等参数,并检查返回的内存指针是否有效。
(2)内存释放在不再需要使用分配的内存时,使用 VirtualFree 函数释放内存,以避免内存泄漏。
(3)内存保护设置内存的保护属性,如只读、读写等,以防止非法访问和修改。
3、文件系统管理实验(1)文件创建与写入使用 CreateFile 函数创建一个新文件,并通过 WriteFile 函数向文件中写入数据。
(2)文件读取使用 ReadFile 函数从文件中读取数据,并将读取的数据输出到控制台。
(3)文件属性操作获取文件的属性信息,如文件大小、创建时间、修改时间等,并进行相应的操作和显示。
山东大学操作系统试验报告
计算机科学与技术学院操作系统实验报告学院:专业:班级:姓名:学号:日期:Email:目录实验一进程控制实验 (4)1.1实验目的 (4)1.2实验题目 (4)1.3实验步骤 (4)1.4结论分析与体会 (5)1.5附录:本实验全部程序源代码及注释 (5)1.5.1Pctl.c (5)1.5.2pctl.h (9)1.5.3makefile (10)实验三进程调度算法实验 (10)3.1实验目的 (10)3.2实验题目 (11)3.3实验步骤 (11)3.4结论分析与体会 (12)3.5附录:本实验全部程序源代码及注释 (12)3.5.1Psched.c (12)3.5.2Psched.h (14)3.5.3Makefile (16)实验四进程同步实验 (16)4.1实验目的 (16)4.2实验题目 (16)4.3实验步骤 (17)4.4结论分析与体会 (24)4.5附录:本实验全部程序源代码及注释 (24)4.5.1Ipc.c (24)4.5.2Ipc.h (32)4.5.3Consumer (35)4.5.4Producer (41)4.5.5makefile (50)实验七内存页面置换算法实验 (51)7.1实验目的 (51)7.2实验题目 (51)7.3实验步骤 (52)7.4附录:本实验全部程序源代码及注释 (55)7.4.1Vmrp.h (55) (57)7.5.3makefile (73)实验八磁盘移臂调度算法实验 (74)7.2实验目的 (74)8.2实验题目 (74)8.3实验步骤 (75)8.4附录:本实验全部程序源代码及注释 (76)8.4.1Dask.h (76) (78)8.4.3Makefile (94)实验一进程控制实验1.1 实验目的加深对于进程并发执行概念的理解。
实践并发进程的创建和控制方法。
观察和体验进程的动态特性。
进一步理解进程生命期期间创建、变换、撤销状态变换的过程。
操作系统进程同步实验报告
实验三:进程同步实验一、实验任务:(1)掌握操作系统的进程同步原理;(2)熟悉linux的进程同步原语;(3)设计程序,实现经典进程同步问题。
二、实验原理:(1)P、V操作PV操作由P操作原语和V操作原语组成(原语是不可中断的过程),对信号量进行操作,具体定义如下:P(S):①将信号量S的值减1,即S=S-1;②如果S³0,则该进程继续执行;否则该进程置为等待状态,排入等待队列。
V(S):①将信号量S的值加1,即S=S+1;②如果S>0,则该进程继续执行;否则释放队列中第一个等待信号量的进程。
(2)信号量信号量(semaphore)的数据结构为一个值和一个指针,指针指向等待该信号量的下一个进程。
信号量的值与相应资源的使用情况有关。
当它的值大于0时,表示当前可用资源的数量;当它的值小于0时,其绝对值表示等待使用该资源的进程个数。
注意,信号量的值仅能由PV操作来改变。
一般来说,信号量S³0时,S表示可用资源的数量。
执行一次P操作意味着请求分配一个单位资源,因此S的值减1;当S<0时,表示已经没有可用资源,请求者必须等待别的进程释放该类资源,它才能运行下去。
而执行一个V操作意味着释放一个单位资源,因此S 的值加1;若S£0,表示有某些进程正在等待该资源,因此要唤醒一个等待状态的进程,使之运行下去。
(3)linux的进程同步原语①wait();阻塞父进程,子进程执行;②#include <sys/types.h>#include <sys/ipc.h>key_t ftok (char*pathname, char proj);它返回与路径pathname相对应的一个键值。
③int semget(key_t key, int nsems, int semflg)参数key是一个键值,由ftok获得,唯一标识一个信号灯集,用法与msgget()中的key 相同;参数nsems指定打开或者新创建的信号灯集中将包含信号灯的数目;semflg参数是一些标志位。
操作系统实验报告——进程同步与互斥
《进程同步与互斥》实验报告实验序号:01 实验项目名称:进程同步与互斥学号姓名专业、班实验地点指导教师时间一、实验目的1、掌握基本的进程同步与互斥算法,理解生产者-消费者问题。
2、学习使用Windows 2000/XP中基本的同步对象,掌握相关API的使用方法。
3、了解Windows 2000/XP中多线程的并发执行机制,实现进程的同步与互斥。
4、设计程序,实现生产者-消费者进程(线程)的同步与互斥;二、实验环境Windows 2000/XP + Visual C++ 6.0三、实验内容以生产者-消费者模型为依据,在Windows 2000/XP环境下创建一个控制台进程,在该进程中创建n个线程模拟生产者和消费者,实现进程(线程)的同步与互斥。
四、设计思路和流程框图生产者进程的功能:生产东西,供消费者消费;消费者进程的功能:消费生产者生产的东西。
生产者生产产品并存入缓冲区供消费者取走使用,消费者从缓冲器内取出产品去消费。
在生产者和消费者同时工作时,必须禁止生产者将产品放入已装满的缓冲器内,禁止消费者从空缓冲器内取产品。
五、源程序(含注释)清单#include<windows.h>printf("Consumer %2d finish consuming product %2d\n ",m_serial,m_thread_request[i]);}//离开临界区LeaveCriticalSection(&PC_Critical[BufferPos]);}}六、测试结果以及实验总结1、通过实验进一步了解了基本的进程同步与互斥算法,理解生产者-消费者问题2、掌握了相关API的使用方法。
3、了解到进程是一个可以拥有资源的基本单位,是一个可以独立调度和分派的基本单位。
而线程是进程中的一个实体,是被系统独立调度和分配的基本单位,故又称为轻权(轻型)进程(Light Weight Process)。
操作系统进程同步实验报告
操作系统进程同步实验报告本实验旨在通过模拟操作系统中进程的同步问题,加深学生对操作系统中进程同步机制的了解和实践能力。
本次实验分为两个部分,第一个部分是使用信号量实现进程同步,第二个部分是使用管程实现进程同步。
第一部分实验:使用信号量实现进程同步本部分实验的目标是使用信号量来实现进程同步,确保资源的互斥访问。
在Linux系统中,信号量是一种用来控制进程同步的机制,可以用于保证共享资源的互斥访问、避免死锁等问题。
具体实验流程如下:1. 定义一个信号量,用于互斥访问共享资源在Linux系统中,使用semget函数可以创建一个信号量集,使用semctl函数可以对信号量进行控制。
```#include <sys/types.h>#include <sys/ipc.h>#include <sys/sem.h>#define KEY 1234 // 定义信号量的键值int semid; // 定义信号量标识符union semun{int val; // 信号量的初始值struct semid_ds *buf; // IPC_STAT, IPC_SET操作时用ushort *array; // GETALL, SETALL操作时用};void init_sem(){int ret;union semun semunion;// 创建信号量semid = semget(KEY, 1, IPC_CREAT | 0666);if(semid == -1){perror("semget error");exit(1);}2. 定义生产者和消费者进程,并使用信号量来实现同步在生产者和消费者进程中,需要先对信号量进行P操作,即申请资源,然后进行对共享资源的操作,最后再对信号量进行V操作,即释放资源。
本实验中,共享资源是一个循环缓冲区,生产者进程向其中写入数据,消费者进程从中读取数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东大学操作系统实验报告4进程同步实验计算机科学与技术学院实验报告实验题目:实验四、进程同步实验学号:日期:20120409 班级:计基地12 姓名:实验目的:加深对并发协作进程同步与互斥概念的理解,观察和体验并发进程同步与互斥操作的效果,分析与研究经典进程同步与互斥问题的实际解决方案。
了解 Linux 系统中 IPC 进程同步工具的用法,练习并发协作进程的同步与互斥操作的编程与调试技术。
实验内容:抽烟者问题。
假设一个系统中有三个抽烟者进程,每个抽烟者不断地卷烟并抽烟。
抽烟者卷起并抽掉一颗烟需要有三种材料:烟草、纸和胶水。
一个抽烟者有烟草,一个有纸,另一个有胶水。
系统中还有两个供应者进程,它们无限地供应所有三种材料,但每次仅轮流提供三种材料中的两种。
得到缺失的两种材料的抽烟者在卷起并抽掉一颗烟后会发信号通知供应者,让它继续提供另外的两种材料。
这一过程重复进行。
请用以上介绍的 IPC 同步机制编程,实现该问题要求的功能。
硬件环境:处理器:Intel® Core™i3-2350M CPU @ 2.30GHz ×4图形:Intel® Sandybridge Mobile x86/MMX/SSE2内存:4G操作系统:32位磁盘:20.1 GB软件环境:ubuntu13.04实验步骤:(1)新建定义了producer和consumer共用的IPC函数原型和变量的ipc.h文件。
(2)新建ipc.c文件,编写producer和consumer 共用的IPC的具体相应函数。
(3)新建Producer文件,首先定义producer的一些行为,利用系统调用,建立共享内存区域,设定其长度并获取共享内存的首地址。
然后设定生产者互斥与同步的信号灯,并为他们设置相应的初值。
当有生产者进程在运行而其他生产者请求时,相应的信号灯就会阻止他,当共享内存区域已满时,信号等也会提示生产者不能再往共享内存中放入内容。
(4)新建Consumer文件,定义consumer的一些行为,利用系统调用来创建共享内存区域,并设定他的长度并获取共享内存的首地址。
然后设定消费者互斥与同步的信号灯,并为他们设置相应的初值。
当有消费进程在运行而其他消费者请求时,相应的信号灯就会阻止它,当共享内存区域已空时,信号等也会提示生产者不能再从共享内存中取出相应的内容。
运行的消费者应该与相应的生产者对应起来,只有这样运行结果才会正确。
结论分析与体会:实现方式:Consumer:#include "ipc.h"int main(int argc,char *argv[]) {int rate = 3;int consumerid=atoi(argv[1]);buff_h = 101;buff_number = 1;cget_h = 103;cget_number = 1;shm_flg = IPC_CREAT | 0644;buff_ptr = (char *)set_shm(buff_h,buff_number,shm_flg);cget_ptr = (int *)set_shm(cget_h,cget_number,shm_flg);prod_h = 201;pmtx_h = 202;cons_h = 301;cmtx_h = 302;sem_flg = IPC_CREAT | 0644;sem_val = buff_number;prod_sem = set_sem(prod_h,sem_val,sem_flg);sem_val = 0;cons_sem = set_sem(cons_h,sem_val,sem_flg);sem_val = 1;cmtx_sem = set_sem(cmtx_h,sem_val,sem_flg);if(consumerid==0)*cget_ptr=0;while(1){if(buff_ptr[0]-'A'==consumerid){down(cons_sem);down(cmtx_sem);sleep(rate);if(buff_ptr[0]=='A'){printf("%d The consumer has glue.\nThe consumer gets tobacco and paper\n",getpid());}if(buff_ptr[0]=='B'){printf("%d The consumer has paper.\nThe consumer gets tobacco and glue\n",getpid());}if(buff_ptr[0]=='C'){printf("%d The consumer has tobacco.\nThe consumer gets glue and paper\n",getpid());}*cget_ptr = (*cget_ptr+1);if(*cget_ptr%2==0)buff_ptr[0]='D';elsebuff_ptr[0]='E';up(cmtx_sem);up(prod_sem);}}return EXIT_SUCCESS;}Producer:#include "ipc.h"int main(int argc,char *argv[]){int rate=3;int producerid=atoi(argv[1]);buff_h=101;buff_number=1;pput_h=102;pput_number=1;shm_flg=IPC_CREAT|0644;buff_ptr = (char *)set_shm(buff_h,buff_number,shm_flg); pput_ptr = (int *)set_shm(pput_h,pput_number,shm_flg);prod_h = 201;pmtx_h = 202;cons_h = 301;cmtx_h = 302;sem_flg = IPC_CREAT|0644;sem_val = buff_number;prod_sem = set_sem(prod_h,sem_val,sem_flg);sem_val = 0;cons_sem = set_sem(cons_h,sem_val,sem_flg);sem_val = 1;pmtx_sem = set_sem(pmtx_h,sem_val,sem_flg);if(producerid==0){buff_ptr[0]='D';*pput_ptr=0;}while(1){if(buff_ptr[0]-'D'==producerid){down(prod_sem);down(pmtx_sem);*pput_ptr = (*pput_ptr+1)%3;if(*pput_ptr==0){buff_ptr[0] = 'A';printf("%d The producer gives tobacco and paper\n",getpid());}if(*pput_ptr==1){buff_ptr[0] = 'B';printf("%d The producer gives tobacco and glue\n",getpid());}if(*pput_ptr==2){buff_ptr[0] = 'C';printf("%d The producer gives glue and paper\n",getpid());}sleep(rate);up(pmtx_sem);up(cons_sem);}}return EXIT_SUCCESS;}Ipc.h:#include "ipc.h"int get_ipc_id(char *proc_file,h_t h) {FILE *pf;int m,n;char line[BUFSZ],colum[BUFSZ];if((pf = fopen(proc_file,"r")) == NULL){perror("Proc file not open");exit(EXIT_FAILURE);}fgets(line, BUFSZ,pf);while(!feof(pf)){m = n = 0;fgets(line, BUFSZ,pf);while(line[m] == ' ')m++;while(line[m] !=' ')colum[n++] = line[m++];colum[n] = '\0';if(atoi(colum) != h)continue;n=0;while(line[m] == ' ')m++;while(line[m] !=' ')colum[n++] = line[m++];colum[n] = '\0';m = atoi(colum);fclose(pf);return m;}fclose(pf);return -1;}int down(int sem_id) {struct sembuf buf;buf.sem_op = -1;buf.sem_number = 0;buf.sem_flg = SEM_UNDO;if((semop(sem_id,&buf,1)) <0) { perror("down error ");exit(EXIT_FAILURE);}return EXIT_SUCCESS;}int up(int sem_id){struct sembuf buf;buf.sem_op = 1;buf.sem_number = 0;buf.sem_flg = SEM_UNDO;if((semop(sem_id,&buf,1)) <0) { perror("up error ");exit(EXIT_FAILURE);}return EXIT_SUCCESS;}int set_sem(h_t sem_h,int sem_val,int sem_flg) {int sem_id;Sem_uns sem_arg;if((sem_id = get_ipc_id("/proc/sysvipc/sem",sem_h)) < 0 ) { if((sem_id = semget(sem_h,1,sem_flg)) < 0) {perror("semaphore create error");exit(EXIT_FAILURE);}sem_arg.val = sem_val;if(semctl(sem_id,0,SETVAL,sem_arg) <0) {perror("semaphore set error");exit(EXIT_FAILURE);}}return sem_id;}char * set_shm(h_t shm_h,int shm_number,int shm_flg) { int m,shm_id;char * shm_buf;if((shm_id = get_ipc_id("/proc/sysvipc/shm",shm_h)) < 0 ) { if((shm_id = shmget(shm_h,shm_number,shm_flg)) <0){ perror("shareMemory set error");exit(EXIT_FAILURE);}if((shm_buf = (char *)shmat(shm_id,0,0)) < (char *)0) { perror("get shareMemory error");exit(EXIT_FAILURE);}for(m=0; m<shm_number; m++)shm_buf[m] = 0;}if((shm_buf = (char *)shmat(shm_id,0,0)) < (char *)0){ perror("get shareMemory error");exit(EXIT_FAILURE);}return shm_buf;}int set_msq(h_t msq_h,int msq_flg) {int msq_id;if((msq_id = get_ipc_id("/proc/sysvipc/msg",msq_h)) < 0 ) { if((msq_id = msgget(msq_h,msq_flg)) < 0){perror("messageQueue set error");exit(EXIT_FAILURE);}}return msq_id;}实验结果:分析:多进程的系统中避免不了进程间的相互关系。