高一数学归纳法分析及解题步骤
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学归纳法分析及解题步骤
当我第一遍读一本好书的时候,我仿佛觉得找到了一个朋友;当我再一次读这本书的时候,仿佛又和老朋友重逢。我们要把读书当作一种乐趣,并自觉把读书和学习结合起来,做到博览、精思、熟读,更好地指导自己的学习,让自己不断成长。让我们一起到一起学习吧! 高一数学归纳法
《2.3数学归纳法》教学设计
青海湟川中学刘岩
一、【教材分析】
本节课选自《普通高中课程标准实验教科书数学选修2-2(人教A 版)》第二章第三节《2.3数学归纳法》。在之前的学习中,我们已经用不完全归纳法得出了许多结论,例如某些数列的通项公式,但它们的正确性还有待证明。因此,数学归纳法的学习是在合情推理的基础上,对归纳出来的与正整数有关的命题进行科学的证明,它将一个无穷的归纳过程转化为有限步骤的演绎过程。通过把猜想和证明结合起来,让学生认识数学的本质,把握数学的思维。本节课是数学归纳法的第一课时,主要让学生了解数学归纳法的原理,并能够用数学归纳法解决一些简单的与正整数有关的问题。
二、【学情分析】
我校的学生基础较好,思维活跃。学生在学习本节课新知的过程中可能存在两方面的困难:一是从骨牌游戏原理启发得到数学方法的
过程有困难;二是解题中如何正确使用数学归纳法,尤其是第二步中如何使用递推关系,可能出现问题。
三、【策略分析】
本节课中教师引导学生形成积极主动,勇于探究的学习精神,以及合作探究的学习方式;注重提高学生的数学思维能力;体验从实际生活理论实际应用的过程;采用教师引导学生探索相结合的教学方法,在教与学的和谐统一中,体现数学的价值,注重信息技术与数学课程的合理整合。
四、【教学目标】
(1)知识与技能目标:
①理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤;
②会用数学归纳法证明某些简单的与正整数有关的命题。
(2)过程与方法目标:
努力创设愉悦的课堂气氛,使学生处于积极思考,大胆质疑的氛围中,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会归纳递推的数学思想。
(3)情感态度与价值观目标:
通过本节课的教学,使学生领悟数学归纳法的思想,由生活实例,激发学生学习的热情,提高学生学习的兴趣,培养学生大胆猜想,小心求证,以及发现问题、提出问题,解决问题的数学能力。
五、【教学重难点】
教学重点:借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,能熟练运用它证明一些简单的与正整数n有关的数学命题;
教学难点:数学归纳法中递推关系的应用。
六、【教学方法与工具】
教法指导:本节课采用的教学方法是启、思、演、练、结五字教学法,即:以具体的例子引入课题,启发学生想去了解归纳法;通过提出问题、创设情景,引导学生积极思考;借助电脑的动画演示,提高直观性与趣味性,延长学生有意注意的时间;教学中,及时精选一些练习帮助学生巩固与强化知识,而结则包含两方面的内容(1)授课中教师的及时小结与点拨(2)听课时学生的自我小结与巩固。
学法指导:(1)学习要求:①课前预习教材中有关内容;②听课时积极思考大胆质疑;③课后及时完成课外作业。(2)指导措施:通过设置问题情景,激发学生大胆思考;由具体的事例吸引学生注意,通过直观模型演示,化抽象为具体,突破教学难点;借助电脑声像效果,营造愉悦课堂氛围,提高学习兴趣。
教学手段:多媒体辅助课堂教学。
一、教材内容解析
由于正整数无法穷尽的特点,有些关于正整数n的命题,难以对n 进行一一的验证,从而需要寻求一种新的推理方法,以便能通过有限的推理来证明无限的结论.这是数学归纳法产生的根源.
数学归纳法是一种证明与正整数n有关的命题的重要方法。它的独到之处便是运用有限个步骤就能证明无限多个对象,而实现这一目
的的工具就是递推思想。
设p(n)表示与正整数n有关的命题,证明主要有两个步骤:(1)证明p(1)为真;(2)证明若p(k)为真,则p(k+1)为真;有了这两步的保证,就可实现以下的无穷动态的递推过程:
P(1)真- P(2)真- P(3)真- - P(k)真- P(k+1)真-
因此得到对于任何正整数n,命题p(n)都为真.
数学归纳法的两个步骤中,第一步是证明的奠基,第二步是递推的依据,即验证由任意一个整数n过渡到下一个整数n+1时命题是否成立.这两个步骤都非常重要,缺一不可.第一步确定了n=1时命题成立,n=1成为后面递推的出发点,没有它递推成了无源之水;第二步确认了一种递推关系,借助它,命题成立的范围就能从1开始,向后面一个数一个数的无限传递到1以后的每一个正整数,从而完成证明.因些递推是实现从有限到无限飞跃的关键,没有它我们就只能停留在对有限情况的把握上.
在应用数学归纳法时,第一步中的起点1可以恰当偏移(如取k=n0),那么由第二步,就可证明命题对n=n0以后的每个正整数都成立;而第二步的递推方式也可作灵活的变动,如跳跃式前进等,但必须保证第一步中必须含有实现第二步递推时的基础.
数学归纳法名为归纳法,实质上与归纳法毫无逻辑联系.按波利亚的说法这个名字是随便起的.[1]归纳法是一种以特殊化和类比为工具的推理方法,是重要的探索发现的手段,是一种似真结构;而数学归纳法是一种严格的证明方法,一种演绎法,它的实质是把无穷的三
段论纳入唯一的公式中(庞加莱),它得到的结论是真实可靠的.在皮亚诺提出自然数公理后,数学归纳法以归纳公理为理论基础,得到了广泛的确认和应用.而自然数中的最小数原理,则从反面进一步说明了数学归纳法证题的可靠性.
数学归纳法虽不是归纳法,但它与归纳法有着一定程度的关联.在数学结论的发现过程中,往往先通过对大量个别事实的观察,通过归纳形成一般性的结论,最终利用数学归纳法的证明解决问题.因此可以说论断是以试验性的方式发现的,而论证就像是对归纳的一个数学补充[1],即观察+归纳+证明=发现.
二、教学目标
1. 通过对具体问题的解决思路探寻,了解数学归纳法产生的根源及其无穷递推的本质,在此基础上归纳概括出数学归纳法证题的两个步骤.
2. 体会数学归纳法的思想,会用数学归纳法证明一些简单的恒等式.
3. 了解通过观察归纳证明来发现定理的基本思路.
三、教学问题诊断
认知基础:
(1) 对正整数的特点的感性认识;
(2) 对无穷的概念有一定的认识和兴趣;
(3) 在数列的学习中对递推思想有一定的体会;
(4) 在生活经验中接触到一些具有递推性质的事实;