华杯赛小高近 真题 附详解 C
第十九届“华杯赛”初赛试卷_小高(北京版)(详解)
v甲
v丙
④将①、②的结果代入③的式子,得到
1 40
S S+
63 4
+
20
=
S - 315
1 40
S
-
63 4
,化简得
S
S + 630
+
1 2
=
S S
-
315 630
;
进而有
S
S + 630
=
S
0.5S - 630
,故
0.5(S
+
630)
=
S
-
630
,解得
S
=
1890
.
方法二(从条件数的巧妙性入手,考虑时间):①甲速是乙速的 3 倍,所以如果甲全程不掉头
甲
乙
(A)淘气的剪法利用率高
(B)笑笑的剪法利用率高
(C)两种剪法利用率一样
(D)无法判断
【考点】几何
【答案】A
【分析】甲图利用率为 p ;乙图中设小圆的半径为 1,则 7 个小圆面积和为 7p ,大圆面积为 9p ,利用 4
率为 7 , p > 7 ,因此淘气的剪法利用率高. 9 49
4. 小华下午 2 点要到少年宫参加活动,但他的手表每小时快了 4 分钟,他特意在上午 10 点时对好了
二、填空题(每小题 10 分,满分 40 分)
7.
算式1007´
1
3 4
(1+ 2
¸ +
3
4 3
+3¸ +4+
2
1 4
+
1 3
5)´5 -
22
¸19
第21届华杯赛初赛试卷及答案解析(小高组)
第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)一、选择题(每小题10分,共60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.算式的结算中含有( )个数字0. A.2017B.2016C.2015D.2014【答案】C【解析】 201622016201620152015(101)(102)101999...998000 (001)-=-⨯+=个个2.已知A B ,两地相距300米.甲、乙两人同时分别从,A B 两地出发,相向而行,在距A 地140米处相遇;如果乙每秒多行1米,则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米. A.325 B.425 C.3 D.135【答案】D【解析】设甲速1v 乙速2v121214073001408300180211803v v v v ⎧==⎪-⎪⎨-⎪==⎪+⎩解得12145165v v ⎧=⎪⎪⎨⎪=⎪⎩3.在一个七位整数中,任何三个连续排列的数字都构成一个能被11或13整除的三位数,则这个七位数最大是( )A.9981733B.9884737C.9978137D.9871773【答案】B【解析】100111137=⨯⨯,ACD 前三位都不是11或13的倍数 9881376=⨯,8841368=⨯,8471177=⨯,4731143=⨯,7371167=⨯4.将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有( )种不同的排行.A.1152B.864C.576D.288 【答案】A【解析】123...728++++=,8的两边之和都是14有(1247)8(356),(1256)8(347),(1346)8(257),(2345)8(356)四种分法共有244!3!1152⨯⨯⨯=种排法5.在等腰梯形ABCD 中,AB 平行于CD ,AB =6,CD =14, AEC ∠是直角,CE CB =,则AE 2等于( )A.84B.80C.75D.64【答案】A【解析】AG BF h ==,10CG =,4CF =2222100AC AG CG h =+=+2222216CE BC BF CF h ==+=+22284AE AC CE =-=6.从自然数1,2,3,…,2015,2016中,任意取n 个不同的数,要求总能在这n 个不同的数中找到5个数,它们的数字和相等.那么n 的最小值等于( )A.109B.110C.111D.112【答案】B【解析】1到2016中,数字和最大28。
18~22届华杯赛小高组初赛试题及参考答案
第一章 计算篇
1、【第 18 届华杯赛初赛 A 第 1 题】
2012.25×2013.75-2010.25×2015.75=( )
(A)5
(B)6
(C)7
(D)8
2、【第 18 届华杯赛初赛 B 卷第 2 题】
2 2 3 2 3 3 2 3 3 3 2 33的个位数字是( )。
9个3
-4-
第三章 几何篇
1、【第 18 届华杯赛初赛 A 卷第 5 题】
右图 ABCD 是平行四边形,M 是 DC 的中点,E 和 F 分别位于 AB 和 AD 上,且 EF
平行于 BD。若三角形 MDF 的面积等于 5 平方厘米,则三角形 CEB 的面积等于( )
平方厘米。
(A)5
(B)10
(C)15
计算: 481 1 265 1 904 1 184 29 160 41 703 55 _____。
6
12
20
30
42
56
7、【第 20 届华杯赛初赛 C 卷第 1 题】
计算: 9 11 13 15 17 120 1 1 ( )
20 30 42 56 72
34
(A)42
(B)43
4、【第 19 届华杯赛初赛 A 卷第 9 题】 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成________种不 同的 2×2×2 的正方体(经过旋转得到相同的正方体视为同一种情况)。 5、【第 19 届华杯赛初赛 B 卷第 10 题】 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组 成的等差数列中包含 1 的有________种取法;总共有________种取法。 6、【第 20 届华杯赛初赛 A 卷第 3 题】
历届华杯赛初赛小高真题
初赛试卷(小学高年级组)一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1.两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.(A)16 (B)17 (C)18 (D)192.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.(A)6 (B)8 (C)10 (D)123.将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.(A)14 (B)16 (C)18 (D)204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是().(A)2986 (B)2858 (C)2672 (D)2754CD BA5. 在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去.那么从第5个数字开始,该序列中一定不会出现的数组是( ). (A )8615(B )2016(C )4023(D )20176. 从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.(A )1(B )2(C )3(D )4二、填空题 (每小题 10分, 共40分)7. 若15322.254553923444741A ⎛⎫-⨯÷+=⎪⎪ ⎪+ ⎪⎝⎭,那么A 的值是________. 8. 右图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有 ________种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为CD 的中点,AE 和BD 的交点为F ,AC 和BE 的交点为H ,AC 和BD 的交点为G ,四边形EHGF 的面积是15平方厘米,则ABCD 的面积是__________平方厘米.10. 若2017,1029与725除以d 的余数均为r ,那么d r -的最大值是________.第二十届华罗庚金杯少年数学邀请赛决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________.2. 甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是华庚金 杯其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵.3. 当时间为5点8分时,钟表面上的时针与分针成________度的角.4. 某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________.5. 贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟.6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将1234567891011的某两位数字交换能否得到一个完全平方数?请说明理由.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y为整数),余下部分的体积为120,求x 和y .yx515411. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次?12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1:=MC DM ,四边形EBFC为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积.14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?第十八届华罗庚金杯少年数学邀请赛 初赛试题C (小学高年级组) (时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn=+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ).(A )1243 (B )1343 (C )4025 (D )40292. 甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:最终,( )得到的糖水最甜.(A )甲 (B )乙 (C )丙 (D )乙和丙3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米, 下滑1米的时间是向上爬3米所用时间的三分之一. 8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟. (A )22 (B )20 (C )17 (D )164. 已知正整数A 分解质因数可以写成γβα532⨯⨯=A , 其中α、β、γ 是自然数. 如果A 的二分之一是完全平方数, A 的三分之一是完全立方数, A 的五分之一是某个自然数的五次方, 那么γβα++ 的最小值是( ).(A )10 (B )17 (C )23 (D )315. 今有甲、乙两个大小相同的正三角形, 各画出了一条两边中点的连线. 如图, 甲、乙位置左右对称, 但甲、乙内部所画线段的位置不对称. 从图中所示的位置开始, 甲向右水平移动, 直至两个三角形重叠后再离开. 在移动过程中的每个位置, 甲与乙所组成的图形中都有若干个三角形. 那么在三角形个数最多的位置, 图形中有( )个三角形.(A )9 (B )10 (C )11 (D )126. 从1~11这11个整数中任意取出6个数, 则下列结论正确的有( )个.①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;③其中必有一个数的2倍是其中另一个数的倍数.(A)3 (B)2 (C)1 (D)0二、填空题(每小题10 分, 满分40分)7.有四个人去书店买书, 每人买了4本不同的书, 且每两个人恰有2本书相同, 那么这4个人至少买了_______种书..8.每天, 小明上学都要经过一段平路AB、一段上坡路BC和一段下坡路CD (如右图). 已知AB:BC:CD = 1:2:1, 并且小明在平路、上坡路、下坡路上的速度比为3:2:4. 那么小明上学与放学回家所用的时间比是.9.黑板上有11个1, 22个2, 33个3, 44个4. 做以下操作: 每次擦掉3个不同的数字,并且把没擦掉的第四种数字多写2个. 例如: 某次操作擦掉1个1, 1个2, 1个3, 那就再写上2个4. 经过若干次操作后, 黑板上只剩下3个数字, 而且无法继续进行操作, 那么最后剩下的三个数字的乘积是.10.如右图, 正方形ABCD被分成了面积相同的8个三角形, 如果DG = 5, 那么正方形ABCD面积是.第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间: 2015年12月12日10:00—11:00)一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 算式个个2016201699999999 的结果中含有( )个数字0. (A )2017 (B )2016 (C )2015 (D )20142. 已知A , B 两地相距300米.甲、乙两人同时分别从A , B 两地出发, 相向而行, 在距A 地140米处相遇; 如果乙每秒多行1米, 则两人相遇处距B 地180米.那么乙原来的速度是每秒( )米. (A )532 (B )542(C )3 (D )513 3. 在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除的三位数, 则这个七位数最大是( ).(A )9981733 (B )9884737 (C )9978137 (D )98717734. 将1, 2, 3, 4, 5, 6, 7, 8这8个数排成一行, 使得8的两边各数之和相等, 那么共有( )种不同的排法.(A )1152 (B )864 (C )576 (D )2885. 在等腰梯形ABCD 中, AB 平行于CD , 6=AB , 14=CD , AEC ∠是直角, CE CB =, 则2AE 等于( ). (A )84 (B )80 (C )75 (D )646. 从自然数1,2,32015,2016,,中, 任意取n 个不同的数, 要求总能在这n 个不同的数中找到5个数, 它们的数字和相等. 那么n 的最小值等于( ).(A )109 (B )110 (C )111 (D )112 二、填空题 (每小题 10 分, 共40分)7. 两个正方形的面积之差为2016平方厘米, 如果这样的一对正方形的边长都是整数厘米, 那么满足上述条件的所有正方形共有 对.8. 如下图, O , P , M 是线段AB 上的三个点, AB AO 54=, AB BP 32=, M 是AB 的中点, 且2=OM , 那么PM 长为 .9. 设q 是一个平方数. 如果2-q 和2+q 都是质数, 就称q 为P 型平方数. 例如, 9就是一个P 型平方数.那么小于1000的最大P 型平方数是 .10. 有一个等腰梯形的纸片, 上底长度为2015, 下底长度为2016. 用该纸片剪出一些等腰梯形, 要求剪出的梯形的两个底边分别在原来梯形的底边上, 剪出的梯形的两个锐角等于原来梯形的锐角, 则最多可以剪出 个同样的等腰梯形.第十七届华罗庚金杯少年数学邀请赛初赛试题A(小学高年级组)一、选择题1、计算:19+⨯+-=[(0.8)24]7.6(___)514(A)30 (B)40 (C)50 (D)602、以平面上4个点为端点连接线段,形成的图形中最多可以有()个三角形。
第21届“华杯赛”决赛小高组C组试题和参考答案
- 1 -
第二十一届华罗庚金杯少年数学邀请赛决赛试题 C 参考答案(小学高年级组)
第二十一届华罗庚金杯少年数学邀请赛
决赛试题 C 参考答案 (小学高年级组) 一、填空题(每小题 10 分, 共 80 分)
题号 答案 1 2 五 3 0 4 12 5 81 6 23 7 1 8 24
1
2 3
二、解答下列各题(每小题 10 分, 共 40 分, 要求写出简要过程) 9. 答案:525 米 10.答案:156 个 11.答案:24 种 12.答案:15 分钟 三 解答下列各题(每题 15 分, 共 30 分, 要求写出详细过程) 13.答案:5050,2394 14.答案:8 人
三、解答下列各题(每小题 15 分,共 30 分,要求写出详细过程)
13. 黑板上先写下一串数:1,2,3,…,100,如果每次都擦去最前面的 6 个, 并在这串数的最后再写上擦去的 6 个数的和,得到新的一串数,再做同样 的操作,直到黑板上剩下的数不足 6 个. 问:(1) 最后黑板上剩下的这些数 的和是多少?(2) 最后所写的那个数是多少? 14. 数学竞赛,填空题 8 道,答对 1 题,得 4 分,未答对,得 0 分;问答题 6 道,答对 1 道,得 7 分,未答对,得 0 分. 参赛人数 400 人,至少有多少 人的总分相同?
-1-
图2
第二十一届华罗庚金杯少年数学邀请赛决赛试题 C (小学高年级组)
二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)
9. 甲、乙两人,在一圆形跑道上同时同地出发,反向跑步. 已知甲的速度是每 分钟 180m,乙的速度是每分钟 240m,在 30 分钟内,它们相遇了 24 次, 问跑道的长度最多是多少米? 10. 一筐苹果分成甲乙两份,甲的个数和乙的苹果个数比是 27:25,甲多乙少, 若从甲中至少取出 4 个,加入乙中,则乙多甲少,问这筐苹果有多少个? 11. 图 3 是一个等边三角形,等分为 4 个小的等边三角形,用红和 黄两种颜色涂染它们的顶点,要求每个顶点必须涂色,且只能 涂一种颜色. 涂完后, 如果经过旋转, 等边三角形的涂色相同, 则认为是相同的涂色,则共有多少种不同的涂法?
18~22届华杯赛小高组初赛试题及参考答案
(A)3
(B)2
(C)1
(D)0
5、【第 18 届华杯赛初赛 C 卷第 9 题】
黑板上有 11 个 1,22 个 2,33 个 3,44 个 4,做以下操作: 每次擦掉 3 个不同
的数字,并且把没擦掉的第四种数字多写 2 个。例如: 某次操作擦掉 1 个 1,1
个 2,1 个 3,那就再写上 2 个 4.经过若干次操作后, 黑板上只剩下 3 个数字,
4、【第 19 届华杯赛初赛 A 卷第 9 题】 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成________种不 同的 2×2×2 的正方体(经过旋转得到相同的正方体视为同一种情况)。 5、【第 19 届华杯赛初赛 B 卷第 10 题】 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组 成的等差数列中包含 1 的有________种取法;总共有________种取法。 6、【第 20 届华杯赛初赛 A 卷第 3 题】
某个自然数的五次方,那么 的最小值是( )。
(A)10
(B)17
(C)23
(D)31
4、【第 18 届华杯赛初赛 C 卷第 6 题】
从 1~11 这 11 个整数中任意取出 6 个数, 则下列结论正确的有( )个。
①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;
③其中必有一个数的 2 倍是其中另一个数的倍数。
目录
计算篇……………………………………………………………………………..…1 计数篇 ………………………………………………………………………………3 几何篇 ………………………………………………………………………………5 数论篇 ………………………………………………………………………………9 应用题 ………………………………………………………………………………12 行程篇 ………………………………………………………………………………14 组合篇 ………………………………………………………………………………16
第二十届华杯初赛小学高级组C卷(含解析)
第二十届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级C 卷)(时间:2014 年 3 月 14 日 10:00〜11:00)一、选择题(每小题10分,满分60分•以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内 )『9 11 13 1517 )1 11120 一30 42 5672 丿 3 43.春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、 下的对话:甲:“丙、丁之中至少有1人捐了款” 乙:“丁、甲之中至多有1人捐了款” 丙:“你们3人中至少有2人捐了款” 丁: “你们3人中至多有2人捐了款” 己知这4位同学说的都是真话且其中恰有2位同学捐了款,那么这 4位同学是()A .甲、乙 B.丙、丁 C.甲、丙D.乙、丁4.六位同学数学考试的平均成绩是 92.5分,他们的成绩是互不相同的整数,最高的那么按分数从高到低居第三位的同学的分数至少是().A. 94 B . 95 C. 96D . 975.如图,BH 是直角梯形ABCD 的高,E 为梯形对角线 AC 上一点;如果 DEH 、•汨EH 、厶BCH 的面积 依次为56、50、40,那么 CEH 的面积是(). A. 32B . 34C. 35D. 366.—个由边长为1的小正方形n n 的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的 4个用上的小正方形不全同色,那么正整数的最大值是(). A . 3 B. 4 C. 5D. 6二、填空题(每小题10分,满分40分.)7.在每个格子中填入1〜6中的一个,使得每行、每列及每个 2 3长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯 是 __________ .&整数n —共有10个约数,这些约数从小到大排列.笫 8个是-.那么整数的最大值是=(20 A. 42B. 43C.2.如图, 有一排间距相同但高度不等的小树,1 2 15— D. 1633这两条直线成45度角.最高的小树高2.8米,最低的小树高1.4米, 那么从左向右数第 4棵树的高度是()米.A . 2.6 B. 2.4 C. 2.2 D. 2.0丙、丁 4位同学有如99分,最低的76分,39.在边长为300厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是平方厘米,两块阴影部分的周长差是 _____________ 厘米.(二取3.14)10. A 地、B 地、C 地依次分布在同一条公路上,甲、乙、丙三人分别从 A 地、B 地、C 地同时出发,匀 速向D 地行进.当甲在 C 地追上乙时,甲的速度减少 40% ;当甲追上丙时,甲的速度再次减少 40% ;甲追上丙后9分钟,乙也追上了丙,这时乙的速度减少 25% ;如乙追上丙后再行 50米,三人同时到 D地•已知乙出发时的速度是每分钟 60米,那么甲出发时的速度是每分钟 _______ 米,A 、D 两地间的路程是 ___________ 米.第二十届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级C 卷)参考答案参考解析【考点】速算巧算【考点】等差数列 【难度】☆☆ 【答案】C【解析】如右图,AB =2.8-1.4 =1.4 (米),AC =1.4'7 3=0.6 (米)因此,第四高的小树为 2.8-0.6=2.2 (米).3. 春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、下的对话:甲:“丙、丁之中至少有1人捐了款”一、选择题 (每小题10分,满分60分•以下每题的四个选项中,仅有一个是正确的,请将表示正确答案 的英文字母写在每题的圆括号内『9 Il L 131 ———-—20 30 42d 卫56 72120一3 =(A. 42B. 43C.115 3D. 163【答案】Af 1【解析】原式=寸2.如图,有一排间距相同但高度不等的小树,IL 8 9树根成一条直线, 120 3 4 1竺=42 .3树顶也成一条直线.这两条直线成45度角.最高的小树高2.8米,最低的小树高1.4米, 那么从左向右数第 4棵树的高度是()米.A . 2.6B. 2.4C. 2.2D. 2.0丙、丁 4位同学有如乙:“丁、甲之中至多有1人捐了款”丙:“你们3人中至少有2人捐了款”丁:“你们3人中至多有2人捐了款”己知这4位同学说的都是真话且其中恰有2位同学捐了款,那么这4位同学是()•A.甲、乙B.丙、丁C.甲、丙D.乙、丁【考点】逻辑推理【难度】☆☆☆【答案】D【解析】因为恰有2位同学捐了款,据丙所说知甲、乙、丁就至少2人捐款,所以丙没捐款;再据甲所说知丙、丁之中至少有1人捐了款,现在丙没捐款,所以丁一定捐款了;再据乙所说知丁、甲之中至多有1人捐了款,现在丁捐款了,所以甲一定没捐款;恰有2位同学捐了款,即恰有2位同学没捐款,现在甲、丙都没捐款,所以乙、丁都捐款了.4.六位同学数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高的99分,最低的76分,那么按分数从高到低居第三位的同学的分数至少是().A. 94B. 95C. 96D. 97【考点】最值问题【难度】☆☆☆【答案】B【解析】“至少”的含义是:第三位同学的得分若低于这个分数,不论其它同学得多少分,平均分都不会达到92.5分.要想使第三位同学的得分尽可能的少,应使第二位同学的得分尽可能的多;同时,第四位、第五位的同学得分与第4位同学的得分尽可能的接近.由此,可先求出第三位、第四位、第五位同学的平均分,再对三位同学的分数进行调整即可解决问题.由己知,第三、四、五三位同学的平均分是(92.5 6 -99 -76 -98)十3 = 282 “ 3 = 94 (分),故第三位同学的得分至少是94 •仁95 .5.如图,BH是直角梯形ABCD的高,E为梯形对角线AC上一点;如果DEH、•汨EH、厶BCH的面积依次为56、50、40,那么CEH的面积是().A. 32B. 34C. 35D. 36【考点】几何【难度】☆☆☆【答案】B【解析】因为S DEH ' S.AEH =S ABCD ' 2 = S ABC ~ S.BCE ' S AEB 所以S~ S DEH =56 ;所以,S .CEH = S BEH S BCH _ S BCE = 50 40- 56 = 34 .6.—个由边长为1的小正方形n n的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的4个用上的小正方形不全同色,那么正整数的最大值是().A. 3B. 4C. 5D. 6【考点】最值问题【难度】☆☆☆☆【答案】B【解析】假设n =5 ,笫1行中至少有3个格子颜色相同,不妨设前3格为黑色(如图1).在这3个黑格下方可以分割为4个横着的3 1的长方形,若其中有一个中有2个黑格(如图2),则存在巷图中的粗线长方形4个角上的小正方形都是黑格;所以这4个横着的3 1的长方形中,每个至多1个黑格.假设这4个横着的3 1的长方形中,有两个对应格子颜色都一样(如图3),则一样存在图中的粗线长方形4个角上的小正方形都是白格.而3 1的长方形中至多1个黑格的只有如图4的这4种.如果这4种都存在的话(如图5),则同样存在图中的粗线长方形4个角上的小正方形都是白格•矛盾!所以n <5.而图6给出了n =4的一种构造•所以,正整数n的最大值是4 .二、填空题(每小题10分,满分40分.)7•在每个格子中填入1〜6中的一个,使得每行、每列及每个 2 3长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯是___________ .【考点】数阵图【难度】☆☆☆☆【答案】4123【解析】如下左图,因为A 3为质数且A =4 ,所以A =2 ;因为“月”1为质数且“月”-2、4 ,所以“月” =6 ;从而C=5 ;因为“杯”4为质数且“杯”-1 ,所以“杯” =3 ;从而C =5 ;因为D 3为合数且D =2或6 ,所以D =6 ;从而“华” =2 ;因为“相”3为质数且“相”-2 ,所以“相” -4 ;因为B 4为合数且D =1或5 ,所以B =5 ;从而“约”=1 ;所以,相约华杯=4123(如下中图)•实际上其它格子中的数也能唯一确定(如下右图)&整数n—共有10个约数,这些约数从小到大排列•笫8个是-•那么整数的最大值是3 ----------【考点】数论【难度】☆☆☆【答案】162【解析】n有10个约数,由于第8个是-,而第10个必然是n ,所以第9个只能是-•所以n有质因子2和3 23 •所以n可能是24 3或者34 2 •而最大是34 2 =162 .9•在边长为300厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是_ 平方厘米,两块阴影部分的周长差是_____________ 厘米.(二取3.14)【考点】几何基本概念【难度】☆☆☆【答案】①15975 :②485 .【解析】①QS阴影ABE -S l影CDE =S扇形ABD S扇形ABC —SE方形ABCD —S半圆AB②因为ABE为等边三角形,所以∙EAB =. E B A=60 ,从而∙DAE =. CBE=30 ;阴影CDE的周长=弧CE 弧DE CD =2二300^12 2 300 =100二300 ;阴影ABE的周长二弧AE •弧BE •弧AB =2二300-:-6 2 • 300-:-2 = 350二;所以,的周长差=350二_(100二300)=250二_300 : 485 .10. A地、B地、C地依次分布在同一条公路上,甲、乙、丙三人分别从A地、B地、C地同时出发,匀速向D地行进.当甲在C地追上乙时,甲的速度减少40% ;当甲追上丙时,甲的速度再次减少40% ;甲追上丙后9分钟,乙也追上了丙,这时乙的速度减少25% ;如乙追上丙后再行50米,三人同时到D地•已知乙出发时的速度是每分钟60米,那么甲出发时的速度是每分钟________ 米,A、D两地间的路程是 __________ 米.【考点】行程问题【难度】☆☆☆☆【答案】①125 :②1880 .【解析】①因为三人同时到D地,所以甲、乙最后的速度和丙相同;所以丙速为60 (1 -25%)=45(米/分);甲减速一次后的速度为45 “(1 - 40%)=75 (米/分),甲出发时的速度为75 “(1 -40%)=125(米/分).②如下图,设甲在E地追上丙,乙在F地追上丙,因为甲、乙出发时的速度比为125:60 =25:12 , 所以AB:BC =25:12 ;设AC为25份,则BC为12份;因为乙、丙出发时的速度比为60: 45=4:3 ,所以BF :CF =4:3 ,从而CF 为12“(4-3) 3=36 份,AF 为25 *36=61 份.因为甲减速一次后与丙的速度比为75: 45 = 5:3 ,而甲原速行AC这25份时,相当于以75米/分行25 60% =15份;所以CE=15"(5-3) 3=22.5 份,从而EF =36-22.5 =13.5 份;而EF是丙9分钟所行的路程,为45 9 =405(米),所以每份405 "13.5 =30(米),从而AF =30 61 H 1830 (米),所以AD =1830 50 -1880 (米).。
第22届华杯赛小学高年级组初赛试题及答案解析
第22届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)一、选择题(每小题10分,共60分。
以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1、两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值。
A、16B、17C、18D、192、小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟。
某天小明因故先乘地铁,再乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟。
A、6B、8C、10D、123、将长方形ABCD对角线平均分成12段,连接成下图,长方形ABCD内部空白部分的面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米。
A、14B、16C、18D、204、请在上图中每个方框中填入适当的数字,使得乘法竖式成立,那么乘积是()。
A、2986B、2858C、2672D、27545、在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去,那么从第5个数字开始,该序列中一定不会出现的数组是()。
A、8615B、2016C、4023D、20176、从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有()种填法使得方框中话是正确的。
A、1B、2C、3D、4二、填空题(每小题10分,满分40分)7、若1532÷ 2.254553923741A⎛⎫⎪⎪⎪⨯⎪⎪⎪⎝⎭—+=+,那么A的值是。
8、下图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字,将各线段两端点的数字相加得到五个和,共有种情况使得这五个和恰为五个连续自然数。
9、上图中,ABCD是平行四边形,E为CD的中点,AE和BD的交点为F,AC和BE 的交点为H,四边形EFGH的面积是15平方厘米,则ABCD的面积是平方厘米。
10、若2017,1029和725除以d的余数均为r,那么d—r的最大值是。
(完整word版)第十八届华杯赛初赛小高组C卷试题及详解
第十八届华罗庚金杯少年数学邀请赛 初赛试题C (小学高年级组)(时间:2013年3月23 日)表示正确答案的英文字母写在每题的圆括号内.)、选择题(每小题10分,满分60分.以下每题的四个选项中,仅有一个是正1.如果 2013 2013 - 2014 2014 2012 卫(其中m 与n 为互质的自然数) m那么m+n 的值是( (A )1243 ( B )1343 ( C )4025 (D )4029 解答:B 。
在考试中,选择恰当的方法很重要。
这道题,看到这道题后,我第一个想法就是归纳。
2 2 2 2 2 23 1445、 、 、 ------------------------32 1 5 42 2 2 5 3 7 62 45-、写完前三个,发现第二个算式很不和8谐,又写出了第四个,仔细一想,原来第二个可以写成33身3,规律找到了,分子是原42 262013 式中分子部分的一个因数,分母比分子大3!答案一定是,很简单,第一题是很容易2016的年份题,等等,年份 2013这个数是我们非常熟悉的, 2013=3 X 11X 61,是3的倍数,那么加3不还是3的倍数么?可以约分,所以最后的答案是2013切所以选B !2016 672如果本题需要详细的过程,那么用规纳的方法是不合适的,因为这是不完全归纳法,你这么知道前几个适用的情况下,最后的 2013也适用呢,所以最正确的方法是这样思考:如 果这道题直接计算, 分别算出分子分母, 然后必然需要一个约分的过程(从选项可以看出),那么就太麻烦了,如果不计算出最后结果就可以约分, 是件好事儿,那么转化分子还是转化分母呢?我们都知道,当分子分母都是乘法的形式,是比较好约分的,所以要转化分母,要在分母中“凑”出 2013.具体过程是这样的:2014 (2013 1) 20122013 20132014 2013 2014 20122013 2013 2014 2013 2013 2 2013 20132013 6712013 (2014 2) 2016 672m n 671672 1343.这个题做完了,很容易得分的一道题,也是容易马虎的一个题,如果不仔细读题,忽略了“ m 与n 为互质的自然数”,那么就容易把答案写成 D 。
2013年华杯赛高年级(C)卷详细解析word版
1第十八届华罗庚金杯少年邀请赛 初赛试题C (小学高年级组)(时间2013年3月23日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1. 如果mn20122014201420132013=+⨯⨯(其中m 与n 为互质的自然数), 那么m +n 的值是( )。
A .1243B .1343C .4025D .4029解析:计算之巧算。
672671201320162013120131201322013201320122014201420132013222=⨯=-++⨯+=+⨯⨯,m +n 的值是671+672=1343。
答案为B 。
2.甲、乙、丙三位同学都把25克糖放入100克水中混合成糖水, 然后他们又分别做了以下事情:再加入20克糖和30克水.再加入100克糖与水的比是2:3的糖水.再加入50克含糖 率20%的糖水.2最终,( )得到的糖水最甜。
A .甲B .乙C .丙D .乙和丙解析:浓度问题。
原糖水浓度为25÷(100+25)×100%=20%。
甲加入20%的糖水,所得糖水的浓度不变;乙加入浓度为20÷(20+30)×100%=40%的糖水,所得糖水的浓度增加;丙加入浓度为2÷(2+3)×100%=40%的糖水,但丙加40%的糖水比乙多,所得糖水的浓度增加比丙多,所以丙得到的糖水最甜。
选C 。
3. 一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米, 下滑1米的时间是向上爬3米所用时间的三分之一。
8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为( )分钟。
A .22B .20C .17D .16解析:周期问题。
下滑1米的时间是向上爬3米所用时间的三;爬一米和滑一米的时间相同,以爬三米,滑一米为一个周期;(3-1)×3+3=9m,青蛙第一次爬至离井口3米之处,(3-1)×4+1=9m ,青蛙第二次爬至离井口3米之处,此时,青蛙爬了4个周期加1米,用时17分钟,所以青蛙每爬1m 或滑1m 所用时间为1分钟。
详解第二十三届“华杯赛”小学高年级组初赛试题
第二十三届华杯赛初赛试卷(小高组)解析仙桃吴乃华一、选择题(每小题10分,共60分。
以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1.两袋面粉同样重,第一袋用去1/3,第二袋用去1/3千克,剩下的面粉( D )。
(A) 第一袋重 (B) 第二袋重 (C)两袋同样重 (D) 无法确定哪袋重【解】:因为题目的条件只告诉了两袋面粉同样重,没有告诉两袋面粉的具体重量。
这样就可能出现三种情况①、如果这两袋面粉的重量都为1千克,第一袋用去1/3,则还剩1×(1-1/3)=2/3(千克),第二袋用去1/3千克,则还剩1-1/3=2/3(千克),剩下的面粉两袋同样重;②、如果这两袋面粉的重量大于1千克,比如1.2千克、2千克、3千克……。
如果是3千克,第一袋用去1/3,则还剩3×(1-1/3)=2(千克),第二袋用去1/3千克,则还剩3-1/3=2又2/3(千克),剩下的面粉第二袋重;③、如果这两袋面粉的重量小于1千克,比如0.2千克、0.2千克、1/3千克……。
如果是1/3千克,第一袋用去1/3,则还剩1/3×(1-1/3)=2/9(千克),第二袋用去1/3千克,则还剩1/3-1/3=0(千克),则剩下的面粉第一袋重。
所以,由于没有告诉两袋面粉的具体重量,无法确定哪袋重。
2.一个3×3的正方形网格,如果小正方形边长是1,那么阴影部分的面积是( D )。
(A)5 (B)4 (C)3 (D)2【解】:本题要求阴影部分的面积最少有两种方法:1是用总面积减去空白部分的面积得阴影部分的面积。
总面积:3×3=9 小正方形的面积1×4=4三角形的面积:1×(3÷2)÷2×4=3所以,阴影部分的面积是:9-4-3=22是连接最中间的小正方形的对角线,把阴影部分平分为面积相等的8个小三角形,每个小三角形的底的1,高的1/2,这样,阴影部分的面积就是:1×1/2×1/2×8=2。
详解第二十三届“华杯赛”小学高年级组初赛试题
第二十三届华杯赛初赛试卷(小高组)解析仙桃吴乃华一、选择题(每小题10分,共60分。
以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1.两袋面粉同样重,第一袋用去1/3,第二袋用去1/3千克,剩下的面粉( D )。
(A) 第一袋重 (B) 第二袋重 (C)两袋同样重 (D) 无法确定哪袋重【解】:因为题目的条件只告诉了两袋面粉同样重,没有告诉两袋面粉的具体重量。
这样就可能出现三种情况①、如果这两袋面粉的重量都为1千克,第一袋用去1/3,则还剩1×(1-1/3)=2/3(千克),第二袋用去1/3千克,则还剩1-1/3=2/3(千克),剩下的面粉两袋同样重;②、如果这两袋面粉的重量大于1千克,比如1.2千克、2千克、3千克……。
如果是3千克,第一袋用去1/3,则还剩3×(1-1/3)=2(千克),第二袋用去1/3千克,则还剩3-1/3=2又2/3(千克),剩下的面粉第二袋重;③、如果这两袋面粉的重量小于1千克,比如0.2千克、0.2千克、1/3千克……。
如果是1/3千克,第一袋用去1/3,则还剩1/3×(1-1/3)=2/9(千克),第二袋用去1/3千克,则还剩1/3-1/3=0(千克),则剩下的面粉第一袋重。
所以,由于没有告诉两袋面粉的具体重量,无法确定哪袋重。
2.一个3×3的正方形网格,如果小正方形边长是1,那么阴影部分的面积是( D )。
(A)5 (B)4 (C)3 (D)2【解】:本题要求阴影部分的面积最少有两种方法:1是用总面积减去空白部分的面积得阴影部分的面积。
总面积:3×3=9 小正方形的面积1×4=4三角形的面积:1×(3÷2)÷2×4=3所以,阴影部分的面积是:9-4-3=22是连接最中间的小正方形的对角线,把阴影部分平分为面积相等的8个小三角形,每个小三角形的底的1,高的1/2,这样,阴影部分的面积就是:1×1/2×1/2×8=2。
第18届“华杯赛”笔试决赛小学高年级组试题C及参考答案
三、解答下列各题(每题 15 分, 共 30 分, 要求写出详细过程)
13. 答案:
1 4
14. 答案: 10
第 1 页
共 3 页
小数 0. a b c 化成最简分数后, 分子有________不同情况. 8. 由四个完全相同的正方体堆积成如右图所示的立体 , 则立
体的表面上(包括底面)所有黑点的总数至少是________.
二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)
9. 右图中, 大正方形的周长比小正方形的周长多 80 厘米, 阴影部 分的面积为 880 平方厘米. 那么, 大正方形的面积是多少平方 厘米? 10. 某高中根据入学考试成绩确定了录取分数线, 录取了四分之一的考生. 所有 被录取者的成绩平均分比录取分数线高 10 分, 所有没有被录取的平均分比 录取分数线低 26 分, 所有考生的平均成绩是 70 分. 那么录取分数线是多少? 11. 设 n 是小于 50 的自然数, 求使得 3n+5 和 5n+4 有大于 1 的公约数的所有 n. 12. 一次数学竞赛中, 参赛各队每题的得分只有 0 分, 3 分和 5 分三种可能. 比赛 结束时, 有三个队的总得分之和为 32 分. 若任何一个队的总得分都可能达到 32 分, 那么这三个队的总得分共有多少种不同的情况?
2. 农谚 ‘逢冬数九’ 讲的是, 从冬至之日起, 每九天分为一段, 依次称之为一九, 二九, ……, 九九, 冬至那天是一九的第一天. 2012 年 12 月 21 日是冬至, 那 么 2013 年 2 月 3 日是________九的第________天. 3. 最简单分数
(word完整版)第二十届华罗庚金杯少年数学邀请赛C卷试题及,文档
第二十届华罗庚金杯少年数学邀请赛决赛试题 C 〔小学高年级组〕〔时间 : 2021 年 4 月 11 日 10:00~ 11:30〕一、 填空题〔每题 10分,共80分〕1.计算:142122.41 至 8 516 ,共有〔将自然数 分为两组,使两组的自然数各自之和的差等于 〕种不相同的分法。
3. 将 2021 的十位、百位和千位的数字相加,获取的和写在 2021 个位数字此后,获取一个自然数20213 ;将新 数的十位、百位和千位数字相加,获取的和写在 20213 个位数字此后,获取202136 ;再次操作2 次,获取202136914,这样连续下去,共操作了2021 次,获取一个很大的自然数,这个自然数所有数字的和等于〔〕。
4. 图 1 中,四边形 ABCD 是边长为 11 厘米的正方形, G 在 CD 上,四边形 CEFG 是边长为 9 厘米的正方形, H 在 AB 上,∠ EDH 是直角,三角形EDH 的面积是〔〕平方厘米 .5. 图 2 是网格为 的长方形纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形. 沿网格线将长方形裁剪为两个形状相同的卡片,若是形状和正反面颜色相同,那么视为相同种类的卡片,那么能裁剪出〔 〕种不同种类的卡片。
6. 一个长方体,棱长都是整数厘米,所有棱长之和是 88 厘米,问这个长方体总的侧面积最大是 ( ) 平方厘米。
[ x1 3x 5] [ X ] 的最大整数,那么X =〔〕。
7.2,这里表示不高出8. 右边是一个算式, 9 个汉字代表数字 1 至 9 ,不相同的汉字代表不相同的数字,那么该算式可能的最大值是 ( ).盼 望 树 翠绿 天空 湛蓝二、解答以下各题〔每题10分,共40分,要求写出简要过程〕9. C 地为 A, B 两地的中点 .上午7点整,甲车从A出发向B行进,乙车和丙车分别从 B 和 C 出发向 A3行进 . 甲车和丙车相遇时,乙车恰好走完满程的8,上午 10 点丙车到达 A地, 10点 30分当乙车走到 A 地时,甲车距离 B 地还有 84 千米,那么 A 和 B两地距离是多少千米?1111、1、1个分数 2、、、202110. 将 20213420212021 化成小数,共有多少个有限小数?a b11. a, b为正整数,小数点后第3位经四舍五入后,式子57求 a + b =?12. 算式abcd aad e式中不相同字母代表不相同的数码,问四位数abcd最大值是多少?三解答以下各题〔每题 15 分 , 共 30分 ,要求写出详细过程〕13.在图 3 中, ABCD 是平行四边形,22,四边形 BCDF F 在 AD 上, △ AEF的面积 =8cm,△ DEF 的面积 =12cm的面积 =72cm2,求出△ CDE 的面积?14.将530本书分给48名学生,最少有几名学生分到的书的数量相同?答案:二、解答以下各题〔每题10分,共40分,要求写出简要过程〕9.答案 : 336 千米10.答案:3311.答案:912.答案 : 3015.三、解答以下各题〔每题15分,共30分,要求写出详细过程〕13.答案 : 35 cm 214.答案:3 名。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
答案解析
1.
【答案】 A
【解析】 原式
1 4
+
1 5
1 5
1+1+1 667
1 7
1 8
+
1 8
+
1 9
120
4 3
1 4
+
1 9
120
4 3
30+ 40 3
4 3
42 .
按分数从高到低居第三位的同学的分数至少是( ).
A.94
B.95
C.96
D.97
5. 如图,BH 是直角梯形 ABCD 的高,E 是梯形对角线 AC 上一点;如果 △DEH 、△BEH 、△BCH 的面积依
次是 56、50、40,那么 △CEH 的面积是( ).
A.32
B.34
C.35
D.36
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
3月1 4 相 约 华杯
8. 整数 n 一共有 10 个约数,这些约数从小到大排列,第 8 个是 n ,那么整数 n 的最大值是________. 3
9. 在边长为 300 厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是 ________平方厘米,两块阴影部分的周长差是________厘米.( π 取 3.14 )
A
B
E
D
H
C
6. 【答案】 B 【解析】 3 3 、 4 4 能够成功,例子如图:
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
3
下证 5 5 、6 6 不能成功构造,方法是看在题目规则下能构造出的黑格个数的最大值 x(暂时不看白格 是否符合要求): 5 5 中若有一行全是黑格,则按要求,其余各行最多只能有 1 个黑格,则 x 5 1111 9 ;若有一 行有 4 个黑格,则按要求,其余各行最多只能有 2 个黑格,则 x 4 2 2 2 2 12 ;若最多的一行只 有 3 个黑格,则另一行最多有 3 个黑格(例子如下左图);再另一行最多只能有 2 个黑格,原因是若已 有两个 3,则这两个 3 必有 1 格重复,则再来一行时三个区域内各自最多只能有 1 格(如下中图),且 若 a 区域涂黑,则 b、c 区域皆不可涂,综合以上几点考虑,剩余 3 行最多每行涂 2 格, x 3 3 2 2 2 12 (例子如下右图).
4.
【答案】 B
【解析】六名同学总成绩是:92.5 6 555 .第三名同学得分最少,第二名同学得分尽量多,98 分(比第一名少
1 分),第四名、第五名尽量和第三名差 1 分、2 分,所以三、四、五名的总分和是:555 99 98 76 282 ,
282 3 1 95 分.所以第三名至少 95 分.
2.
【答案】 C
【解析】小树间距相等,高度差也相等.图中 8 棵树,7 个间距,所以相邻两树的高度差为 (2.8 1.4) 7 0.2 米,
从左向右数的第 4 棵树比最高的小树低差 3 个公差,所以高度是 2.8 0.2 3 2.2 米.
3.
【答案】 D
【解析】根据丙的话可知丙没捐;再根据甲的话知丁捐了;再根据乙的话知甲没捐,故乙捐了,选 D.
ab
c
若最多的一行只有 2 个黑格,则 x 10 ,太小,不再讨论. 综上,为了不出现“黑色四格”,黑色格最多只能有 12 个;那么同理为了不出现“白色四格”,白色格最 多也只能有 12 个.可是共有 25 格,根据抽屉原理,这是不可能做到的. 6 6 的证法与 5 5 类似:若最多行 6 个,则剩余行最多 1 个, x 6 11111 1118 ;若最多行 5 个,则剩余行最多 2 个, x 5 2 2 2 2 2 15 18 ;若最多行 4 个,则第二多行最多 3 个,再一 行最多 2 个(还是以 a、b、c 区域的方法讨论), x 4 3 2 2 2 2 15 18 ;若最多行 3 个,则每 一行都 3 个的答案看似可以,但实际行不通,原因是:一行 6 个格中选 2 个的方法有 C62 15 种,而一 行 3 个会占用其中的 C32 3种,6 行 18 种,根据抽屉原理,必然有某两行有相同的涂色对,会组成“黑 色四格”.可见任何一种涂色方式都有 x 18 ,故知无法涂成. 当 n 取更大的数时,证明方法将更为繁琐(例如 n 7 时可推出最大有 x 21 25 ,找组合数之和的最大 值是思路),这里不再赘述.本题答案为 B. 7. 【答案】 4123 【解析】 要做出本题不必将所有位置全填出来,只需分析中间两宫即可,如图:
5. 【答案】 B
【解析】连接 AH , △AEH 的面积等于 △DEH 与 △BEH 面积差(一半模型)
△AEH △AEB △BEH △ABH △EDH , △AEH 面积是 56 50 6 ,
而 △BHC 的面积等于 △AHC 的面积(等积变形),所以△CEH 是 40 6 34 .
1
A
B
E
D
H
C
6. 一个由边长为 1 的小正方形组成的 n n 的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩
形的 4 个角上的小正方形不全同色,那么正整数 n 的最大值是( ).
A.3
B.4
C.5
D.6
二、填空题(每小题 10 分,满分 40 分)
7. 在每个格子中填入 1~6 中的一个,使得每行、每列及每个 2 3 长方形内(粗线框围成),数字不重复;如果 小圆圈两边格子中所填数的和是合数,其他相邻两格所填数的和是质数,那么四位数 相约华杯 是__________.
10. A 地、B 地、C 地、D 地依次分布在同一条公路上,甲、乙、丙三人分别从 A 地、B 地、C 地同时出发,匀 速向 D 地行进,当甲在 C 地追上乙时,甲的速度减少 40%;当甲追上丙时,甲的速度再次减少 40%;甲追 上丙 9 分钟,乙也追上了丙,这时乙的速度减少 25%;乙追上丙后再行 50 米,三人同时到 D 地.已知乙出 发时的速度是每分钟 60 米,那么甲出发时的速度是每分钟________米,A、D 两地间的路程是________米.
话:
甲:“丙、丁之中至少有 1 人捐了款”
乙:“丁、甲之中至多有 1 人捐了款”
丙:“你们 3 人中至少有 2 人捐了款”
丁:“你们 3 人中至多有 2 人捐了款”
已知这 4 位同学说的都是真话且其中恰有 2 位同学捐了款,那么这 2 位同学是( ).
A.甲、乙
B.丙、丁
C.甲、丙
D.乙、丁
4. 六位同学数学考试的平均成绩是 92.5 分,他们的成绩是互不相同的整数,最高的 99 分,最低的 76 分,那么
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
一、选择题(每小题 10 分,满分 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正 确答案的英文字母写在每题的圆括号内.)
1.
计算:
9 20
11 30
13 42
1(
).
A.42
B.43
C.15 1 3
D.16 2 3
2. 如图,有一排间距相等但高度不等的小树,树根成一条直线,树顶也成一条直线,这两条直线成 45 度角,
最高的小树高 2.8 米,最低的小树高1.4 米,那么从左向右数第 4 棵树的高度是( )米.
A. 2.6
B. 2.4
C. 2.2
D. 2.0
3. 春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、丙、丁 4 位同学有如下的对