圆周角教案(1)
圆周角(1)教案
课题:圆周角(1)教学目标(一)知识目标1、掌握圆周角的概念.2、体会圆周角与圆心角关系的探索过程,发现、验证圆周角与圆心角的关系.3、能用圆周角与圆心角的关系进行简单的说理,培养学生合情的推理意识,逐步掌握说理的基本方法,从而提高数学素养.(二)能力目标1、通过学生的探索过程,培养学生的动手操作、自主探索与合作交流的能力.2、培养学生的表达能力,让学生的个性得到充分的展示.(三)情感目标通过操作交流等活动,培养学生互相帮助、团结协作、互相讨论的团队精神,培养学生学习数学的兴趣.教学重点、难点重点:探索圆周角与圆心角的关系.难点:了解圆周角的分类,用化归思路合情推理验证“圆周角与圆心角的关系”. (“分类”、“化归”也是九年级学生的思维难点).教学课型新授课教学方法为了体现教师为主导,学生为主体,知识为主线,育人为主旨的教学原则,本节课主要采用探究式教学法为主线,多媒体直观演示、启发式设疑诱导为辅的教学方法.学法指导知识是通过学生自己动口、动手、动脑,积极思考、主动探索获得.我将课堂交给学生,让学生自己去探索,发现验证知识.自主探索,研讨发现,得出结论是本节课主要的学习方法.教具准备教师:多媒体、课件、圆规、三角板等学生:圆形硬纸片若干、直尺、圆规、量角器等教学过程教学流程设计创设情境呈现问题合作探究验证猜想简单应用一.情境创设导入新课问题:足球训练场上教练在球门前划了一个圆圈进行无人防守的射门训练如图(1),甲、乙两名运动员分别在C 、D 两处,他们争论不休,都说在自己所在位置对球门AB 的张角大,如果你是教练,请评一评他们两个人谁的位置对球门AB 的张角大?图(1)设计意图:联系生活中喜闻乐见的足球射门,创设具有一定挑战性的问题情境,导入新课.激发学生的探索激情和求知欲望,把学生的注意力尽快地集中到本节课的学习中.二、呈现问题 合作探究问题1、图中的∠C 、∠D 与我们前面所学的圆心角有什么区别?(角的顶点在圆上).问题2、你能仿照圆心角的定义给圆周角下个定义吗? 设计意图:1.选择新旧知识的切入点,既复习上节课的内容,又激发学生学习新知识的兴趣,加强各知识点之间的联系.2.让学生给圆周角下定义,提高学生的概括能力.圆周角定义: 顶点在圆上,并且两边都和圆相交的角叫圆周角. 特征:① 角的顶点在圆上.② 角的两边都与圆相交. 随堂练习:判断下列各图形中的角是不是圆周角,并说明理由.问题3、画弧BC 所对的圆心角,然后再画 同弧BC 所对的圆周角,你能画多少个同一条弧 所对的圆心角?多少个圆周角?三、合作探究 小组讨论交流ABCD四人一小组,根据下面的四个问题互相交流。
《圆周角的性质》数学教案
《圆周角的性质》数学教案标题:《圆周角的性质》数学教案一、教学目标:1. 知识与技能:- 学生能够理解和掌握圆周角的概念和性质。
- 能够运用圆周角的性质解决相关问题。
2. 过程与方法:- 通过观察、分析、归纳等活动,培养学生抽象思维和逻辑推理能力。
- 在探究过程中,学会用图形语言表达思考过程,提高几何直观能力。
3. 情感态度价值观:- 培养学生对数学的兴趣和热爱,体验数学的魅力。
- 让学生感受到数学知识在实际生活中的应用价值,增强学习的动力。
二、教学重点和难点:重点:理解并掌握圆周角的定义和性质。
难点:运用圆周角的性质解决实际问题。
三、教学准备:教具:多媒体课件,圆规,直尺,白板。
四、教学过程:(一) 导入新课(5分钟)1. 教师展示一些关于圆的图片,引导学生回顾之前学过的有关圆的知识,如半径、直径、弧度等。
2. 提出问题:“在圆中,除了直线角度,还有其他特殊的角吗?”引出圆周角的概念。
(二) 新授内容(30分钟)1. 定义讲解:教师以实例的形式,让学生明确什么是圆周角。
即顶点在圆上,两边都与圆相交的角就是圆周角。
2. 性质讲解:教师引导学生观察、比较圆周角与它所对应的圆心角的关系,发现圆周角等于它所对应圆心角的一半。
3. 练习巩固:设计一些简单的练习题,让学生通过实践来加深对圆周角性质的理解。
(三) 巩固提升(15分钟)1. 例题解析:选择一些典型的题目,详细解释解题思路,让学生了解如何运用圆周角的性质解决问题。
2. 自主练习:给出一些相关的题目,让学生独立完成,教师巡回指导。
(四) 小结反馈(10分钟)1. 学生小结:请学生分享本节课的学习心得,教师给予适当的点评和补充。
2. 教师总结:再次强调圆周角的定义和性质,并指出它们在解题中的重要作用。
五、作业布置:1. 复习课堂内容,整理笔记。
2. 完成课本上的习题。
六、教学反思:在教学过程中,要注意关注学生的反应,及时调整教学策略。
同时,要注重培养学生的自主学习能力和合作精神,让他们在探索中体验到学习的乐趣。
圆周角教案
圆周角教案教学目标:知识与技能目标:1.理解圆周角的概念,圆心角和圆周角的区别。
2.掌握圆周角的定理。
过程与方法目标:经历探索圆周角与圆心角的关系的过程,加深对分类讨论和由特殊到一般的转化等数学思想方法的理解。
情感与态度目标:在探索过程中体验到数学的思想方法,进一步提升探究水平和动手水平,通过合作学习,培养学生的合作精神教学重点:圆周角的定理、圆周角的定理的推导及使用它们解题.教学难点:使用数学分类思想证明圆周角的定理教学过程:一、复习提问:1.什么叫圆心角?2.圆心角、弧、弦三个量之间关系的一个结论,这个结论是什么?二、新授:(一)、观察,引入圆周角(二)、练一练,巩固圆周角定义(三)、探究圆周角和圆心角的关系①、学生猜想,并与同伴交流。
②、做一做,验证你的猜想。
③、证一证,得出定理(分三种情况讨论)圆周角定理:一条弧所对的圆周角等于这条弧所对的圆心角的度数的一半。
(四)圆周角定理的推论①、在同一圆(或相等的圆)中,同弧或等弧所对的圆周角相等;反之,相等的圆周角所对的弧相等。
②、直径(或半圆)所对的圆周角是直角;反之,90°的圆周角所对的弦是直径。
三、课堂练习:1、如图,AB是圆O的一条直径,∠CAB=65°,求∠ABC的度数。
2、如图,在⊙O中,∠ABC=50°,则∠AOC等于( )3、如图,在圆O 中,弦AB 与CD 相交于点M 。
(1)∠ACD 与∠ABD 相等吗?(2 ∠ CAB 与∠CDB 相等吗?(3)△ACM 与△DBM 相等吗?4、求圆中角X 的度数第4题图 5、如图,△ABC 的顶点A 、B 、C都在⊙O 上,∠C =30 °,AB =2,则⊙O 的半径是第5题图(六)小结:BAO. 70° x A O . X 120°(七)拓展练习:1、如图,△ABC 是等边三角形,动点P 在圆周的劣弧AB 上,且不与A 、B 重合,则∠BPC 等于( )2、已知⊙O 中弦AB 的长等于半径,求弦AB 所对的圆心角和圆周角的度数。
圆周角教案
课题:5.3圆周角(第一课时)授课教师:镇江市索普初级中学马聪一、教学目标:1.知识与技能目标:使学生理解圆周角的概念,掌握圆周角的性质;准确地运用圆周角性质进行简单的证明计算。
2.过程与方法目标:引导学生能主动地通过:实验、观察、猜想、验证“圆周角与圆心角的关系”,培养学生的合情推理能力、实践能力与创新精神,从而提高数学素养。
3.情感与态度目标:营造“民主、和谐”的课堂氛围,让学生在愉快的学习中不断获得成功的体验,同时培养学生以严谨求实的态度思考数学。
二、教学重点:经历探索“圆周角与圆心角的关系”的过程,掌握圆周角定理。
三、教学难点:了解圆周角的分类、用化归思想,合情推理验证“圆周角与圆心角的关系”。
四、教学方法与教学手段:《数学新课标》指出“学生是学习的主人,教师是学习的组织者、引导者、和合作者。
”本课以学生的活动为主线,以突出重点、突破难点、发展学生数学素养为目的,采用以“探究式教学法”为主,讲授法、发现法、分组交流合作法、启发式教学法、几何画板辅助教学等多种方法相结合。
注重师生互动、生生互动,让不同层次的学生动眼、动脑、动手、动口,参与数学思维活动,充分发挥学生的主体作用。
五、教学过程:一、导入新课:1、问题(1):如图,在⊙O中∠BOC是什么角?(2):的度数和圆心角的度数有什么关系?作图:在活动单上分四个小组(A-D)利用三角板分别作一个30°,45°,60°,90°的圆心角∠BOC(设计意图:回顾旧知,作图时选了一些特殊角度,为了后面通过特殊角度值发现圆周角的性质做铺垫。
)BC2、移动∠BOC 的顶点到圆周上,得到∠BAC问题(1):这个角还是圆心角吗?你给它取个什么名字? (2):你为什么给它取名圆周角? (3):你能给圆周角下个完整的定义吗?(设计意图:通过不断的追问,让学生注意观察角的特征,并能归纳得出圆周角的定义,引入今天的新课内容。
【冀教版九年级数学上册教案】28.3圆心角和圆周角(1)
28.3 圆心角和圆周角 (1)教课目的【知识与能力】1.理解圆心角的观点 , 掌握圆心角、弧、弦之间的相等关系及推论.2. 学会运用圆心角、弧、弦之间的关系进行简单的计算和证明.【过程与方法】经历探究弧、弦、圆心角关系及其结论的过程, 提升学生剖析问题、解决问题的能力, 发展学生的数学思虑能力.【感情态度价值观】1. 经过着手操作、察看、比较、猜想、推理、归纳等活动, 发展推理能力以及归纳问题的能力, 激发学生的学习兴趣.2.在教课过程中 , 鼓舞学生着手、动口、动脑 , 并与伙伴进行沟通 , 提升学生合作意识 , 体验学习的快乐 .教课重难点【教课要点】理解并掌握圆心角、弧、弦之间关系并利用其解决有关问题.【教课难点】圆心角、弧、弦之间关系中的“在同圆或等圆”条件的理解及关系的证明.课前准备多媒体课件教课过程一、新课导入:导入一 :复习发问 :1.圆能否是中心对称图形?对称中心是什么( 圆是中心对称图形, 圆心是它的对称中心)2.将课前准备的两个圆形纸片重合在一同, 绕圆心转动此中一个圆, 你发现什么现象( 把圆绕圆心旋转随意一个角度, 所得的图形与原图形重合, 即圆有旋转不变性)【师生活动】学生着手操作, 思虑回答 , 教师评论.导入二 :【课件显现】赏识动画 : 折扇的收拢和睁开.察看在这个过程中哪些弧重合?哪些弦重合 ?哪些角重合 ?引出课题., 它与这些弧、弦之[ 导入语 ]在折扇的收拢和睁开的过程中, 这些弧、弦所对的角是圆心角间有什么数目关系呢?这就是我们这节课要探究的内容.[ 设计企图 ]经过旋转课前准备的纸片, 轻松获取圆的旋转不变性, 为本节课的定理的证明做好铺垫 ; 运用多媒体形象直观地显现了折扇中蕴涵的圆心角、弧、弦之间的关系, 引入课题理所应当 , 动画演示激发了学生的学习兴趣, 并让学生领会到数学根源于生活.二、新知建立:一、圆心角定义[ 过渡语 ]什么是圆心角呢?我们一同来归纳观点.归纳观点 :察看导入里折扇收拢过程中, 这些重合的角有什么特点?【师生活动】教师指引圆心、半径与角之间的关系, 学生归纳出特点此后给出圆心角的概念.【课件显现】圆心角 : 极点在圆心的角叫做圆心角.【思虑】1.如下图 , 哪些角是圆心角?哪些角不是圆心角(1)和 (4) 所示的∠AOB为☉O的圆心角 ,(2) 和 (3) 所示的∠APB不是☉O的圆心角.【师生活动】学生察看回答, 教师评论 , 重申圆心角的特点.2.如下图 , 图中有几个圆心角?分别是什么 ?( 三个 , 分别是∠AOB,∠AOC,∠BOC)3.图中的圆心角所对的弧、弦分别是什么【师生活动】学生回答 , 教师评论.二、圆心角、弦、弧之间的关系[ 过渡语 ]经过察看我们看到, 圆的每个圆心角都对应一条弦和一条弧. 相等的两个圆心角所对应的两条弦之间以及两条弧之间拥有如何的关系呢?【课件显现】如下图 , 在☉O中 , ∠AOB=∠COD.(1)猜想弦 AB, CD以及,之间各有如何的关系;(2)请用图形的旋转说明你的猜想 .思路一着手操作 :在课前准备的圆形纸片上画出∠AOB旋转到∠ COD的图 .1.将∠AOB旋转到∠COD的地点 , 它可否与∠AOB完整重合 ?2.假如能重合 , 你会发现哪些等量关系?3.你能证明这些结论吗?4.在两个等圆中, 假如圆心角∠AOB=∠A'O'B' , 如下图 , 你可否获取同样的结论?5 你能用语言表达上边的命题吗 ?.【师生活动】学生独立思虑后小组合作沟通, 教师帮助有困难的学生达成思虑过程, 学生展示, 教师评论 , 师生共同归纳结论.【课件显现】设∠=α , 将∠顺时针旋转α , 则与重合 ,与重合AOC AOB AO CO BODO.∴AB与 CD重合,与重合 .∴AB=CD,.定理 : 在同圆或等圆中 , 相等的圆心角所对的弦相等, 所对的弧也相等. ( 板书 )思路二着手操作 ( 如下图 ):1.在课前准备的两个圆形纸片上分别作相等的∠AOB和∠ A'O'B'. ( O与 O'是两个圆的圆心)要求 : 在画∠AOB和∠A'OB'时, 要使OB有关于OA的方向与O'B'有关于O'A'的方向一致.2.将两个圆重合在一同, 将此中一个圆旋转必定的角度, 使OA与O'A'重合.察看思虑 :1.经过上边的做一做, 你能发现哪些等量关系2.假如在同一个圆中知足两个圆心角∠AOB=∠ A'OB' 相等,如下图,上述结论能否正确?3.你能证明你的结论吗?4.你能用语言表达上边的命题吗?【师生活动】学生操作、小组内合作沟通, 归纳出结论 , 边操作边显现, 教师进行评论 , 课件显现结论 .【课件显现】将∠ AOB和绕圆心O旋转,使射线OA与OA'重合.∵∠ AOB=∠A'OB' ,∴射线 OB与 OB'重合 .又 OA=OA', OB=OB',B'重合,∴点 A与 A'重合,点B与所以 ,与重合 , ABA'B'重合. 即, AB=A'B'.与定理 : 在同圆或等圆中, 相等的圆心角所对的弦相等, 所对的弧也相等. (板书)[ 设计企图 ]让学生经过着手操作、察看、猜想、证明、归纳得出圆心角、弦、弧之间的关系的定理 , 让学生亲身经历定理的形成过程, 培育学生剖析问题、解决问题的能力及归纳总结能力 .大家说说 :【课件显现】【思虑】1.在圆心角性质定理中 , 为何要说“在同圆或等圆中”?能不可以去掉 ?2.在同圆或等圆中, 假如两条弧相等 , 能获取什么结论 ?3 在同圆或等圆中, 假如两条弦相等 , 能获取什么结论 ?.4.在同圆或等圆中, 两个圆心角及所对应的两条弦和所对应的两条弧这三组量中, 只需有一组量相等 , 那么其余两组量能否相等 ?【师生活动】学生小组议论 , 回答后教师评论 , 总结.【课件显现】在同圆或等圆中 , 假如两条弧相等 , 那么它们所对的圆心角相等, 所对的弦相等.在同圆或等圆中 , 假如两条弦相等 , 那么它们所对的圆心角相等, 所对的弧相等.即: 在同圆或等圆中, 两个圆心角及所对应的两条弦和所对应的两条弧这三组量中组量相等 , 其余两组量就分别相等., 只需有一填空:如下图 , ,是☉的两条弦.ABCDO(1)假如 AB=CD,那么,.(2)假如, 那么,.(3)假如∠ AOB=∠ COD,那么,.【师生活动】学生经过察看图形, 口答填空 , 教师评论.[ 设计企图 ]学生经过小组合作学习, 用类比的方法获取圆心角定理的推论, 培育学生剖析问题能力及合作精神 . 经过填空,实时运用所学知识解决问题, 培育学生数学应企图识和解决问题的能力 ,同时让学生领会把数学语言向几何语言的转变.三、例题解说【课件显现】( 教材 154 页例 1)如下图 , 已知AB为☉O的直径 , 点M, N分别在AO, BO上 , CM⊥AB, DN⊥ , 分别交☉O 于点,, 且. 求证 CM=DN.AB C D思路一【师生活动】学生独立思虑后 , 小组合作沟通 , 小组代表板书 , 教师评论 , 规范书写格式.证明 : 如下图 , 连结OC, OD.∵, 即,∴.∴∠ AOC=∠BOD.在 Rt △CMO和 Rt △DNO中 ,∵CM⊥ AB, DN⊥ AB,∴∠ CMO=∠DNO=90° .又∵ OC=OD,∠ MOC=∠NOD,∴R t△CMO≌ Rt △DNO.∴CM=DN.思路二教师指引思虑 :1.与有公共部分,则可得哪两段弧相等?()2 由可得哪些角相等 ?.( ∠AOC=∠BOD)3.要证明CM=DN, 可经过证明哪两个三角形全等? (Rt △CMO≌Rt △DNO)4 用什么判断方法能够证明这两个三角形全等.(AAS)5.你能写出证明过程吗?【师生活动】学生在教师的指引下回答下列问题, 归纳解题思路 , 独立达成证明过程 , 教师对学生的显现评论 , 规范学生的书写格式.( 板书同思路一 )[ 设计企图 ]经过例题剖析 , 让学生掌握并能灵巧运用所学知识点解决问题, 培育学生正确应用所学知识的能力, 加强应企图识 , 同时规范学生书写格式 , 培育学生谨慎的学习态度, 达到稳固知识的目的 .[ 知识拓展 ]1 圆心角、弦、弧之间的关系的结论一定是在同圆或等圆中才能建立..2.利用同圆 ( 或等圆 ) 中圆心角、弦、弧之间的关系能够证明角、弦或弧相等.3 圆心角的度数与所对弧的度数相等..三、讲堂小结:1.圆心角观点 : 极点在圆心的角.2.圆心角、弧、弦之间的关系 : 在同圆或等圆中 , 两个圆心角及所对应的两条弦和所对应的两条弧这三组量中 , 只需有一组量相等 , 其余两组量就分别相等.3.利用同圆或等圆中圆心角、弦、弧之间的关系能够证明角、弦或弧相等.。
数学教案-圆周角
数学教案-圆周角教学目标:1.让学生理解圆周角的概念,掌握圆周角定理。
2.培养学生运用圆周角定理解决实际问题的能力。
3.培养学生的空间想象能力和逻辑思维能力。
教学内容:1.圆周角的概念2.圆周角定理3.圆周角定理的应用教学过程:一、导入1.引导学生回顾已学的圆的性质,如圆的周长、面积等。
2.提问:在圆中,哪些角与圆周有关?二、探究圆周角的概念1.用PPT展示一个圆,让学生观察并找出圆周角。
2.请学生尝试用自己的语言描述圆周角的概念。
三、讲解圆周角定理1.用PPT展示一个圆,标出圆心、圆周角和圆心角。
2.讲解圆周角定理:圆周角定理指出,圆周角等于它所对的圆心角的一半。
3.举例说明:如圆周角为30度,则它所对的圆心角为60度。
四、练习圆周角定理的应用1.请学生在纸上画出一个圆,标出圆心、圆周角和圆心角。
2.让学生运用圆周角定理,计算圆周角和圆心角的度数。
3.互相交流,检查答案。
五、巩固提高1.出示练习题,让学生运用圆周角定理解决实际问题。
题目1:已知一个圆的半径为10cm,求圆周角为60度所对的弦长。
题目2:一个圆的直径为20cm,求圆周角为45度所对的弧长。
2.学生独立完成,教师巡回指导。
3.交流答案,分析解题过程。
六、拓展延伸1.请学生思考:圆周角定理在实际生活中有哪些应用?2.学生举例说明,如钟表的时针与分针所成的圆周角等。
2.强调圆周角定理在解决实际问题中的应用价值。
教学反思:本节课通过引导学生观察、思考、实践,让学生掌握了圆周角的概念和圆周角定理。
在教学过程中,注重培养学生的空间想象能力和逻辑思维能力,使学生在解决实际问题时能够灵活运用圆周角定理。
但在教学过程中,仍有个别学生对于圆周角的概念理解不够深刻,需要在今后的教学中加强引导和辅导。
重难点补充:一、圆周角的概念难点:学生可能难以直观地理解圆周角的定义。
对话设计:师:同学们,你们能告诉我什么是圆周角吗?生1:是不是圆上的一个角?师:很好,但我们要更准确地定义它。
《圆周角》教案
《圆周角》教案1教学目标1.理解圆周角的定义,会区分圆周角和圆心角.2.能在证明或计算中熟练运用圆周角的定理.过程与方法经历探索圆周角与圆心角的关系的过程,加深对分类讨论和由特殊到一般的转化等数学思想方法的理解.情感态度1.在探究过程中体验数学的思想方法,进一步提高探究能力和动手能力.2.通过分组讨论,培养合作交流意识和探索精神.教学重点理解并掌握圆周角的概念及圆周角与圆心角之间的关系,能进行有关圆周角问题的简单推理和计算.教学难点分类讨论及由特殊到一般的转化思想的应用.教学过程一、情境导入,初步认识阅读教材,回答下列问题.1.如图所示的角中,哪些是圆周角?2.顶点在______上,并且两边都与圆_________的角叫做圆周角.3.在同圆或等圆中,_____或_______所对的圆周角相等,都等于这条弧所对的______的一半.4.在同圆或等圆中,相等的圆周角所对的弧也_______.二、思考探究,获取新知探究圆周角定理.1.同学们作出»AB所对的圆周角,和圆心角,学生分组讨论,并回答下列问题:问题1»AB所对的圆周角有几个?问题2度量下这些圆周角的关系.问题3这些圆周角与圆心角∠AOB的关系.【教学说明】①»AB所对的圆周角的个数有无数个.②通过度量,这些圆周角相等.③通过度量,同弧对的圆周角是它所对圆心角的一半.2.同学们思考如何推导上面的问题(3)的结论?教师引导,学生讨论①当点O在∠BAC边AB上,②当点O在∠BAC的内部,③当点O在∠BAC外部.①②由同学们分组讨论,自己完成.③由同学们讨论,代表回答.【教学说明】作直径AE,由∠BAC=∠OAC-∠OAB,由∠OAC=12∠EOC,∠OAB=12∠BOE得:∠BAC=12∠EOC-12∠BOE=12(∠EOC-∠BOE)=12∠BOC.从①②③得出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.还可以得出下面推论:同圆或等圆中,如果两个圆周角相等,那么它们所对的弧一定相等;3.例题1:如图,(1)已知»»AD BC=.求证:AB=CD.(2)如果AD=BC,求证:»»DC AB=.证明:(1)∵»»AD BC=,∴»»»»AD AC BC AC+=+,∴»»DC AB=,∴AB=CD.(2)∵AD=BC,∴»»AD BC=,∴»»»»AD AC BC AC+=+,即»»DC AB=.例题2:如课本图,OA,OB,OC都是圆O的半径,∠AOB=50°,∠BOC=70°.求∠ACB 和∠BAC的度数.【教学说明】在今后证明线段相等的题目中又加了一种有弧相等也可以得到线段相等的方法了.练习题:1、如课本图,各角是不是圆周角?请说明理由.2、如课本图,在圆O中,弦AB与CD相交于点M,若∠CAB=25度,∠ABD=95°,试求∠CDB与∠ACD的度数.3、如课本图,点A,B,C在圆O上,AC∥OB.若∠OBA=25°,求∠BOC的度数.三、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上.【教学说明】①圆周角的定义是基础.②圆周角的定理是重点,圆周角定理的推导是难点.③圆周角定理的应用才是重中之重.《圆周角》教案2教学目标1.巩固圆周角概念及圆周角定理.2.掌握圆周角定理的推论:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.3.圆内接四边形的对角互补.过程与方法在探索圆周角定理的推论中,培养学生观察、比较、归纳、概括的能力.情感态度在探索过程中感受成功,建立自信,体验数学学习活动充满着探索与创造,交流与合作的乐趣.教学重点对直径所对的圆周角是直角及90°的圆周角所对的弦是直径这些性质的理解.教学难点对圆周角定理推论的灵活运用是难点.教学过程一、情境导入,初步认识1.如图,木工师傅为了检验如图所示的工作的凹面是否成半圆,他只用了曲尺(它的角是直角)即可,你知道他是怎样做的吗?【分析】当曲尺的两边紧靠凹面时,曲尺的直角顶点落在圆弧上,则凹面是半圆形状,因为90度的圆周角所对的弦是直径.解:当曲尺的两边紧靠凹面时,曲尺的直角顶点落在圆弧上,则凹面是半圆形状,否则工作不合格.2.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.3.圆内接四边形的对角互补.【教学说明】半圆(或直径)所对的圆周角是直角,90°的圆周角所对弦是直径都是圆周角定理可推导出来的.试着让学生简单推导,培养激发他们的学习兴趣.二、思考探究,获取新知1.直径所对的圆周角是直角,90°的角所对的弦是直径.如图,∠C1、∠C2、∠C3所对的圆心角都是∠AOB,只要知道∠AOB的度数,就可求出∠C1、∠C2、∠C3的度数.【教学说明】∵A、O、B在一条直线上,∠AOB是平角,∠AOB=180°,由圆周角定理知∠C1=∠C2=∠C3=90°,反过来也成立.2.例3:如课本图,BC是圆O的直径,∠ABC=60°,点D在圆O上,求∠ADB的度数.【教学说明】在圆中求角时,一种方法是利用圆心角的度数求,另一种方法是把所求的角放在90°的三角形中去求.3.讲圆内接四边形和四边形的外接圆的概念.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆;圆内接四边形对角互补.例1如图所示,OA为⊙O的半径,以OA为直径的圆⊙C与⊙O的弦AB相交于点D,若OD=5cm,则BE=10cm.【教学说明】在题中利用两个直径构造两个垂直,从而构造平行,产生三角形的中位线,从而求解.例2如图,已知∠BOC=70°,则∠BAC=_____,∠DAC=______.【分析】由∠BOC=70°可得所对的圆周角为35°,又∠BAC与该圆周角互补,故∠BAC=145°.而∠DAC+∠BAC=180°,则∠DAC=35°.答案:145°5°例3如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C.若AB是⊙O的直径,D是BC的中点.(1)试判断AB、AC之间的大小关系,并给出证明;(2)在上述题设条件下,△ABC还需满足什么条件,使得点E一定是AC的中点(直接写出结论)例4:如课本图,四边形ABCD为圆O的内接四边形,已知∠BOD=100°,求∠BAD与∠B CD的度数.三、练习题:1、如课本图,在圆O中,AB是直径,C,D是圆上两点,且AC=AD.求证:BC=BD.2、怎样运用三角板画出如课本图所示的圆形表面上的直径,并标出圆心,是说明画法的理由.3、如课本图,圆内接四边形ABCD的外角∠DCE=85°,求∠A的度数.【教学说明】连接AD,得AD⊥BC,构造出Rt△ABD≌Rt△ACD.解:(1)AB=AC.证明:如图,连接AD,则AD⊥BC.∵AD是公共边,BD=DC,∴Rt△ABD≌Rt△ACD,∴AB=AC.(2)△ABC为正三角形或AB=BC或AC=BC或∠BAC=∠B或∠BAC=∠C.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?在学生回答基础上.2.教师强调:①半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径;②圆内接四边形定义及性质;③关于圆周角定理运用中,遇到直径,常构造直角三角形.课后作业1、课后习题2.22、完成同步练习册中本课时的练习.。
人教版数学九年级上册24.1.4《圆周角》教案
学生小组讨论的环节,让我看到了学生们的思维碰撞。他们提出了很多有创意的想法,也尝试着去解决实际问题。不过,我也发现有些学生在讨论中过于依赖同伴,自己的思考还不够深入。
人教版数学九年级上册24.1.4《圆周角》教案
一、教学内容
人教版数学九年级上册24.1.4《圆周角》教案,主要包括以下内容:
1.圆周角的定义:通过直观演示和实例,让学生理解圆周角是由圆上的两条半径或弦所夹的角,并掌握圆周角的度数是360度。
2.圆周角定理:引导学生探究并证明圆周角等于其所对的圆心角的一半,以及圆内接四边形的对角互补。
-着重讲解圆周角定理的证明过程,特别是如何通过几何构造和演绎推理得出圆周角等于其所对圆心角的一半。
-结合实际例题,如测量圆形场地中的角度问题,强调圆周角定理在解决具体问题中的应用。
-对于特殊圆周角,通过对比分析,让学生掌握直角圆周角和锐角圆周角的性质,并能灵活应用。
2.教学难点
-理解并掌握圆周角定理的证明过程。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆周角的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆周角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调圆周角的定义和圆周角定理这两个重点。对于难点部分,如圆周角定理的证明过程,我会通过举例和比较来帮助大家理解。
北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1
北师大版数学九年级下册3.4《圆周角和圆心角的关系》教案1一. 教材分析北师大版数学九年级下册 3.4《圆周角和圆心角的关系》是本节课的主要内容。
通过本节课的学习,让学生理解圆周角和圆心角的关系,掌握圆周角定理,并能运用圆周角定理解决实际问题。
教材通过引入圆周角和圆心角的概念,引导学生探究它们之间的关系,从而发现圆周角定理。
二. 学情分析学生在学习本节课之前,已经学习了圆的基本概念,如圆的半径、直径等,对圆有一定的认识。
但学生对圆周角和圆心角的概念可能比较陌生,需要通过实例和探究活动来理解和掌握。
此外,学生需要具备一定的观察和推理能力,通过观察图形和逻辑推理来发现圆周角定理。
三. 教学目标1.知识与技能目标:让学生掌握圆周角定理,能运用圆周角定理解决实际问题。
2.过程与方法目标:通过观察、操作、推理等过程,培养学生的观察能力和推理能力。
3.情感态度与价值观目标:让学生体验数学学习的乐趣,培养学生的探究精神和合作意识。
四. 教学重难点1.教学重点:圆周角定理的掌握和运用。
2.教学难点:圆周角定理的证明和理解。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.问题驱动法:通过提出问题,引导学生观察、思考和推理,培养学生的问题解决能力。
3.合作学习法:引导学生分组讨论和合作,培养学生的团队合作意识和交流能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示圆周角和圆心角的图形和实例。
2.教学素材:准备一些相关的实例和习题,用于引导学生进行探究和练习。
3.教学工具:准备圆规、直尺等绘图工具,方便学生进行绘图和操作。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,如自行车轮子的转动、钟表的指针运动等,引导学生观察和思考这些现象与圆周角和圆心角的关系。
2.呈现(10分钟)呈现圆周角和圆心角的定义,引导学生理解它们的概念。
通过PPT展示一些实例,让学生观察和思考圆周角和圆心角之间的关系。
最新苏科版九年级数学上册《圆周角1》教学设计(精品教案)
2.4 圆周角(1)教学目标:1.探索圆周角与圆心角及所对弧的关系,了解并证明圆周角定理;2.能运用圆周角定理解决相关问题;3.体会分类、转化等数学思想方法,学会数学.学习重点:圆周角及圆周角定理;学习难点:圆周角定理的应用.教学过程一、探索新知1.圆周角定义: ,并且 的角叫做圆周角.2.探索同弧所对圆周角和圆心角的关系. C B O思考与探索:如图,BC ︵所对的圆心角有多少个?BC ︵所对的圆周角有多少个? 在画出的圆周角中,这些圆周角与圆心O 有几种位置关系?与BC ︵所对的圆周角又有怎样的数量关系? AC B OA CB O AC B O二、典例分析例1.如图,点A 、B 、C 在⊙O 上,点D 在圆外,CD 、BD 分别交⊙O 于点E 、F ,比较∠BAC 与∠BDC 的大小,并说明理由. FEODA C B例2.如图,点A 、B 、C 在⊙O 上,∠C=150°,求∠AOB.A CB O例3.如图,AB 是⊙O 的直径,CD⊥AB,P 是CD 上的任意一点(不与点C 、D 重合),∠APC 与∠APD 相等吗?为什么?POD A CB例4.一条弦分圆1:4两部分,求这弦所对的圆周角的度数?例5.如图,点A 、B 、C 、D 在⊙O 上,∠ADC=∠BDC=60°.判断△ABC 的形状,并说明理由.OD ACB三、拓展提高1.已知P 、O 2是⊙O 1上两点,⊙O 2与⊙O 都经过A ,B 两点,PA 的延长线交⊙O 2于点C ,PB 交⊙O 2于点D ,试说明(1)PO 2平分∠APB;(2)AC=BD . P O 2O 1DAC B2.如图,四边形ABCD 为正方形,⊙O 过正方形的顶点A 和对角线的交点P ,分别交AB 、AD 于点F 、E .(1)求证:DE=AF ;(2)若⊙O 的半径为32,AB=2+1,求AE DE的值.四、课堂练习五、课堂小结1.探索圆周角与圆心角及所对弧的关系,了解并证明圆周角定理;2.能运用圆周角定理解决相关问题;六、课后反馈课作:《课课练》,家作:《新课程》七、课后反思。
圆周角(一)数学教案
圆周角(一)数学教案
标题:圆周角
一、教学目标:
1. 学生能够理解并掌握圆周角的概念。
2. 学生能够运用圆周角的性质解决实际问题。
3. 通过探究学习,培养学生的观察力和逻辑思维能力。
二、教学重点与难点:
1. 教学重点:圆周角的概念及其性质。
2. 教学难点:运用圆周角的性质解决实际问题。
三、教学准备:
1. 圆形教具
2. 多媒体设备
四、教学过程:
1. 导入新课:
通过回顾以前学习过的关于圆的知识,引入圆周角的概念。
2. 新课讲解:
(1)定义:圆周角的概念,强调圆周角的顶点在圆上,两边都与圆相交。
(2)性质:引导学生观察并总结圆周角的性质,如圆心角等于它所对的圆周角的两倍等。
3. 实例解析:
通过具体的例子,让学生理解如何运用圆周角的性质解决问题。
4. 小组讨论:
分小组进行讨论,设计一些题目让各小组完成,然后分享他们的答案和解题思路。
5. 巩固练习:
设计一些习题供学生自我检查,巩固他们对圆周角的理解。
6. 课堂小结:
让学生复述本节课学到的内容,教师进行补充和点评。
7. 布置作业:
设计一些难度适中的题目作为家庭作业,以进一步巩固学生的学习效果。
五、教学反思:
在课程结束后,反思本次教学的效果,包括学生对知识的掌握程度,教学方法的有效性,以及需要改进的地方。
《圆周角教案》
《圆周角教案》word版一、教学目标1. 让学生理解圆周角的概念,掌握圆周角的性质。
2. 培养学生运用圆周角定理解决实际问题的能力。
3. 提高学生对圆的知识的认知,为学习圆的其他性质和定理打下基础。
二、教学重点与难点1. 教学重点:圆周角的概念,圆周角的性质。
2. 教学难点:圆周角定理的证明和应用。
三、教学方法1. 采用问题驱动法,引导学生探究圆周角的性质。
2. 运用直观演示法,让学生通过观察、操作、体验圆周角的特征。
3. 运用合作学习法,培养学生团队协作精神,提高解决问题的能力。
四、教学准备1. 教具:圆规、直尺、多媒体设备。
2. 学具:每人一套圆规、直尺、练习本。
五、教学过程1. 导入新课利用多媒体展示圆周角动画,引导学生观察圆周角的特点,引发学生思考。
2. 探究圆周角的性质(1)让学生用圆规和直尺画一个圆,并标出圆心O和任意一点A。
(2)让学生以点A为顶点,分别画出两条射线,使其分别与圆相交于点B和点C。
(3)引导学生观察∠AOB和∠AOC的关系,发现∠AOB=∠AOC。
(4)让学生总结圆周角的性质,得出结论:圆周角等于其所对圆弧的两倍。
3. 讲解圆周角定理讲解圆周角定理的证明过程,让学生理解圆周角定理的含义。
4. 课堂练习(1)让学生运用圆周角定理,解决实际问题。
(2)让学生独立完成练习题,巩固所学知识。
5. 总结与拓展总结本节课所学内容,强调圆周角的概念和性质。
拓展:引导学生思考圆周角在实际生活中的应用,如测量圆的直径等。
6. 布置作业让学生课后完成相关练习题,巩固所学知识。
六、教学评价1. 课堂问答:通过提问学生对圆周角的概念和性质的理解,检查学生掌握情况。
2. 练习完成情况:检查学生课堂练习和课后作业的完成质量,评估学生对圆周角定理的应用能力。
3. 小组讨论:观察学生在小组讨论中的参与程度,合作解决问题的情况,评价学生的团队协作能力和问题解决能力。
七、教学反思课后,教师应反思本节课的教学效果,包括学生的参与度、理解程度和掌握情况。
圆周角的教案
圆周角的教案教案标题:探索圆周角的概念与性质教案目标:1. 理解圆周角的定义和性质;2. 能够计算圆周角的度数;3. 掌握圆周角相关的基本定理;4. 运用所学知识解决与圆周角相关的问题。
教案步骤:引入活动:1. 使用一张圆形的图片或实物展示给学生,引导学生观察并提问,如:你能发现这个圆中有什么特点吗?圆周上的弧段有什么特点?概念讲解:2. 介绍圆周角的定义:圆周角是以圆心为顶点的角,其两边是由圆周上的两条弧所确定。
3. 解释圆周角的度数:弧度是圆周角所对应的圆心角的度数。
提醒学生角度的概念,并与圆周角的度数进行对比。
性质探索:4. 分组活动:将学生分成小组,每组给予一些圆形纸片或圆形物体,让学生自行探索并发现以下性质:a. 圆周角的度数和所对应的圆心角的度数相等;b. 同一个圆周上的圆周角的度数之和等于360°。
性质总结与讨论:5. 汇总小组的发现,引导学生总结圆周角的性质,并与学生一起讨论性质的原因。
基本定理讲解:6. 介绍圆周角的基本定理:a. 同弧所对应的圆周角相等;b. 圆周角的平分线也是弧所对应的圆心角的平分线;c. 在同一个圆中,圆周角相等的两条弧所对应的圆心角也相等。
练习与应用:7. 给予学生一些练习题,包括计算圆周角的度数、应用基本定理解决问题等。
巩固与评价:8. 结合小组讨论和个人表现,对学生的学习情况进行评价,可以使用小测验或问题解答的方式。
拓展活动:9. 鼓励学生进行拓展思考,提出更复杂的问题,如:如何证明同弧所对应的圆周角相等等。
总结:10. 回顾本节课的学习内容,总结圆周角的概念、性质和基本定理。
教学资源:- 圆形图片或实物- 圆形纸片或圆形物体- 练习题和解答- 小测验或问题解答评价表格教学延伸:- 将圆周角的概念与实际生活中的应用联系起来,如钟表的指针运动等;- 引导学生进行实际测量,验证圆周角的性质;- 使用技术工具或软件进行圆周角的可视化展示和计算。
3.4圆周角定理及其推论1(教案)
1.教学重点
(1)圆周角定理:理解圆周角定理的概念,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
举例:如图,弧AB所对的圆周角∠ACB与圆心角∠AOB的关系,∠ACB = 1/2∠AOB。
(2)圆周角定理的推论1:掌握直径所对的圆周角是直角。
举例:如图,直径CD所对的ห้องสมุดไป่ตู้周角∠CDB是直角。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆周角定理及其推论1的基本概念。圆周角定理指出,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。这个定理对于解决与圆有关的问题具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。通过分析圆的某个特定情况下圆周角和圆心角的关系,展示圆周角定理在实际中的应用,以及它如何帮助我们解决问题。
(3)应用圆周角定理及其推论1解决实际问题:能运用定理和推论解决与圆有关的问题,如求圆周角、圆心角、弧长等。
2.教学难点
(1)圆周角定理的理解:学生需要理解圆周角与圆心角的关系,特别是“同弧或等弧所对的圆周角相等”这一条件。
(2)圆周角定理的推论1的证明:学生需要掌握直径所对的圆周角是直角的证明过程,理解其中的逻辑推理。
同学们,今天我们将要学习的是《3.4圆周角定理及其推论1》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解圆周角或圆心角的情况?”(例如:在修路时,测量员如何确定圆形转角的大小。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索圆周角定理及其推论1的奥秘。
4.应用圆周角定理及其推论1解决实际问题。
圆周角教案-1
圆周角教案圆周角教案4篇圆周角教案篇1教学目标:(1)掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;(3)培养添加辅助线的能力和思维的广阔性.教学重点:圆周角定理的三个推论的应用.教学难点:三个推论的灵活应用以及辅助线的添加.教学活动设计:(一)创设学习情境问题1:画一个圆,以B、C为弧的端点能画多少个圆周角?它们有什么关系?问题2:在⊙O中,若=,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G,是否得到=呢?(二)分析、研究、交流、归纳让学生分析、研究,并充分交流.注意:①问题解决,只要构造圆心角进行过渡即可;②若=,则∠C=∠G;但反之不成立.老师组织学生归纳:推论1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.重视:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”.问题:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)问题3:(1)一个特殊的圆弧――半圆,它所对的圆周角是什么样的角?(2)如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?学生通过以上两个问题的解决,在教师引导下得推论2:推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦直径.指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.启发学生根据推论2推出推论3:推论3:如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.(三)应用、反思例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径.求证:AB・AC=AE・AD.对A层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).解(略)教师引导学生思考:(1)此题还有其它证法吗?(2)比较以上证法的优缺点.指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的圆周角,以便利用直径上的圆周角是直角的性质.变式练习1:如图,△ABC内接于⊙O,∠1=∠2.求证:AB・AC=AE・AD.变式练习2:如图,已知△ABC内接于⊙O,弦AE平分∠BAC交BC于D.求证:AB・AC=AE・AD.指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形.例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB 的平分线交⊙O于D;求BC,AD和BD的长.解:(略)说明:充分利用直径所对的圆周角为直角,解直角三角形.练习:教材P96中1、2(四)小结(指导学生共同小结)知识:本节课主要学习了圆周角定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握.能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要掌握.(五)作业教材P100.习题A组9、10、12、13、14题;另外A层同学做P102B组3,4题.探究活动我们已经学习了“圆周角的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.提示:(1)连结BC,可得∠E=(的度数―的度数)(2)延长AE、CE分别交圆于B、D,则∠B=的度数,∠C=的度数,∴∠AEC=∠B+∠C=(的度数+的度数).圆周角教案篇2教材分析1本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角性质的探索。
《圆周角》公开课教案 (省一等奖)2022年人教版
圆周角【知识与技能】理解圆周角的概念.探索圆周角与同弧所对的圆心角之间的关系,并会用圆周角定理及推论进行有关计算和证明.【过程与方法】经历探索圆周角定理的过程,初步体会分类讨论的数学思想,渗透解决不确定的探索型问题的思想和方法,提高学生的发散思维能力.【情感态度】通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验.【教学重点】圆周角定理及其推论的探究与应用.【教学难点】圆周角定理的证明中由一般到特殊的数学思想方法以及圆周角定理及推论的应用.一、情境导入,初步认识如图是一个圆柱形的海洋馆的横截面示意图,人们可以通过其中的圆弧形玻璃窗AB观看窗内的海洋动物,同学甲站在圆心O的位置.同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角〔∠AOB和∠ACB〕有什么关系?如果同学丙、丁分别站在其他靠墙的位置D 和E,他们的视角〔∠ADB和∠AEB〕和同学乙的视角相同吗?[相同,2∠ACB=2∠AEB=2∠ADB=∠AOB]【教学说明】教师出示海洋馆图片,引导学生思考,引出课题,学生观察图形、分析,初步感知角的特征.二、思考探究,获取新知探究1 观察以下各图,图〔1〕中∠APB的顶点P在圆心O的位置,此时∠APB叫做圆心角,这是我们上节所学的内容.图〔2〕中∠APB的顶点P在⊙O上,角的两边都与⊙O相交,这样的角叫圆周角.请同学们分析〔3〕、〔4〕、〔5〕、〔6〕是圆心角还是圆周角. 【教学说明】设计这样的一个判断角的问题,是再次强调圆周角的定义,让学生深刻体会定义中的两个条件缺一不可.【归纳结论】圆周角必须具备两个条件:①顶点在圆上;②角的两边都与圆相交.二者缺一不可.探究2如图,〔1〕指出⊙O中所有的圆心角与圆周角,并指出这些角所对的是哪一条弧?〔2〕量一量∠D、∠C、∠AOB的度数,看看它们之间有什么样的关系?〔3〕改变动点C在圆周上的位置,看看圆周角的度数有没有变化?你发现其中有规律吗?假设有规律,请用语言表达.解:〔1〕圆心角有:∠AOB圆周角有:∠C、∠D,它们所对的都是AB〔2〕∠C=∠D=1/2∠AOB.〔3〕改变动点C在圆周上的位置,这些圆周角的度数没有变化,并且圆周角的度数恰好等于同弧所对圆心角度数的一半.【教学说明】教师利用几何画板测量角的大小,移动点C,让学生观察当C点位置发生改变过程中,图中有哪些不变,从而交流总结,找出规律,同时引导学生观察圆心与圆周角的位置关系,为定理分情况证明作铺垫.为了进一步研究上面发现的结论,如图,在⊙O上任取一个圆周角∠ACB,将圆对折,使折痕经过圆心O和∠ACB的顶点C.由于点C的位置的取法可能不同,这时折痕可能会:〔1〕在圆周角的一条边上;〔2〕在圆周角的内部;〔3〕在圆周角的外部.:在⊙O中,AB所对的圆周角是∠ACB,圆心角是∠AOB,求证:∠ACB=1/2∠AOB. [提示分析:我们可按上面三种图形、三种情况进行证明.]如图〔1〕,圆心O在∠ACB的边上,∵OB=OC,∴∠B=∠C,而∠BOA=∠B+∠C,∴∠B=∠C=1/2∠AOB.图〔2〕〔3〕的证明方法与图〔1〕不同,但可以转化成〔1〕的根本图形进行证明,证明过程请学生们讨论完成.得出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.注意:①定理应用的条件是“同圆或等圆中〞,而且必须是“同弧或等弧〞,如以以下图〔1〕.②假设将定理中的“同弧或等弧〞改为“同弦或等弦〞结论就不成立了.因为一条弦所对的圆周角有两种情况,它们一般不相等〔而是互补〕.如以以下图〔2〕.【教学说明】在定理的证明过程中,要使学生明确,要不要分情况来证明.假设要分情况证明,必须要明白按什么标准来分情况,然后针对各种不同的情况逐个进行证明.在证明过程中,第〔1〕种情况是特殊情况,是比拟容易证明的,经过添加直径这条辅助线将〔2〕、〔3〕种情况转化为第〔1〕种情况,表达由一般到特殊的思想方法。
圆周角教案
圆周角教案
一、教学目标:
1. 知识目标:掌握圆周角的概念和性质。
2. 能力目标:能够计算圆周角的大小。
3. 情感目标:培养学生对几何概念的兴趣和好奇心,培养学生观察和推理问题的能力。
二、教学重难点:
1. 重点:圆周角的定义、性质和计算方法;
2. 难点:圆周角的推理证明。
三、教学准备:
1. 教学资料:教案、教辅书籍。
2. 教学工具:黑板、粉笔。
四、教学过程:
1. 导入新知识:请一名学生前来,拿着一张圆的纸贴在黑板上,并让其绕圆心旋转。
2. 引入新知识:通过导入的活动,引导学生提出关于圆周角的
问题和疑惑。
3. 概念解释:根据学生的问题和疑惑,给出圆周角的定义和性质,并对概念进行讲解和解释。
4. 计算练习:通过例题进行计算练习,引导学生学会计算圆周角的方法和技巧。
5. 性质总结:总结圆周角的性质,并用纸板记录下来,供学生复习和参考。
6. 拓展练习:布置拓展练习题,让学生独立解决问题,巩固和提升所学知识和技能。
7. 总结提升:通过教学总结,让学生对所学知识进行梳理和归纳,提升对圆周角的理解和掌握。
五、教学反思:
1. 教学内容、方法和手段是否贴近学生的生活实际,能否激发起学生的学习兴趣和思考能力。
2. 学生在教学过程中的表现和学习情况,能否达到预定的教学目标和效果。
3. 教学过程中出现的问题和困惑,需要进行的改进和调整。
2_4(1)圆周角教学案
2.4(1)圆周角教学案教学目标;1、掌握圆周角的概念。
2、体会圆周角与圆心角关系的探索过程,发现、验证圆周角与圆心角的关系。
教学过程一.情境创设 导入新课问题:足球训练场上教练在球门前划了一个圆圈实行无人防守的射门训练如图(1),甲、乙两名运动员分别在C 、D 两处,他们争论不休,都说在自己所在位置对球门AB 的张角大,假如你是教练,请评一评他们两个人谁的位置对球门AB 的张角大?二、表现问题 合作探究问题1、图中的∠C 、∠D 与我们前面所学的圆心角有什么区别? 归纳:圆周角的定义________________________________ 特征:① __________________。
① ________________试一试:判断以下各图形中的角是不是圆周角,并说明理由.问题2、画弧BC 所对的圆心角,然后再画同弧BC 所对的圆周角,你能画多少个同一条弧所对的圆心角?多少个圆周角?四人一小组,根据下面的四个问题互相交流。
1、量一量你所画的圆周角的度数,有何发现? 2、量一量你所画的圆心角的度数,又有何发现? 3、你得出了什么猜测? 4、你又是怎样验证你的猜测呢?ABCDD三、验证猜测,探究新知: 1、如图,证明∠A=21∠COB. .2、如图,证明∠DAB=21∠DOB.3、如图,证明:即:∠DAB=21∠DOB思考:在同圆中,若两条弧相等,你能够得到什么结论?归纳:同弧或等弧所对的___________,都等于_________________。
4、直径所对的圆周角_________.____的圆周角所对的弦是___________四、例题讲解例1、如图,⊙O 的弦AB 、DC 的延长线相交于点E ,∠AOD=150°,BC ⌒为70°。
求∠ABD 、∠AED 的度数。
五 反馈练习1、如图,点A 、B 、C 、D 在⊙O 上,点A 与点D 在点B 、C 所在直线的同侧,∠BAC=350(1)∠BDC=_______°,理由是 . (2)∠BOC=_______°,理由是 .第1题 第2题 第3题2、如图,点A 、B 、C 在⊙O 上,若∠BAC =60°,则∠BOC = °,若∠AOB =90°, 则∠ACB = °。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级上册
§24.1.4 圆周角(教案)
第一课时
24.1.4 圆周角(第一课时教案)
教材分析:
1、本节课是在学习了圆的有关概念、垂径定理、圆心角定理的基础上对圆的有关性质的进一步探索。
2、利用弧等构造弦等、角等是解决圆中相关问题非常重要的方法。
学情分析:
九年级的学生虽然已经具备了一些问题的说理能力,但是初三的几何证明过程中,学生的逻辑思维仍然是不成熟的,所以对于知识的生成过程任然是教学中的重点内容,针对上述情况,本节课我采用了学生动手操作——猜想——验证——组长对组员进一步讲解的学习过程。
一、目标设计:
(一)知识技能:
1、了解圆周角的概念,会证明圆周角的定理及推论。
2、掌握圆周角定理的两个推论,并能简单应用。
(二)过程方法:
1、培养学生观察、分析、想象、归纳和逻辑推理的能力。
2、结合圆周角定理的探索与证明的过程,进一步体会分类讨论和转化的思想方法。
(三)情感态度:
1、通过组长的讲,小组的交流,增进同学间互相学习、互相帮助、共同提高的氛围。
2、通过小组合作学习创造学习气氛,培养学生的学习兴趣。
二、教学重难点:
重点:定理及推论的理解与运用
难点:定理的证明
三、教学过程:
【课前引入】:
出示几何画板,一个圆柱形房间有4人:A、B、C、D,D站
在圆心位置,A,B,C三人在圆周上观察弧形落地窗外的风景,
四人谁的视角比较大?大多少?
设计意图:带着问题进入本节内容,培养学生的学习兴趣。
【课堂探究】:
探究一:圆周角概念的理解。
圆周角:顶点在圆上,并且两边都与圆相交的角。
针对性思考:判断下列图形中的角,哪些是圆周角?
()()()()()()()()设计意图:学生通过对图形的识别,得出圆周角的两个特点:顶点在圆上;两边都与圆相交。
通过正例与反例的判断,加深对概念的理解。
探究二:圆周角定理的掌握。
1、学生度量图1中弧BC所对的圆周角和圆心角的大小,猜想这两个角的大小关系。
教师也可利用几何画板的动态性来加以验证。
2、学生根据图1思考结论的证明,并口述,教师板书(介绍推出符号)。
3、追问:通过图1的证明,可否说明猜想的正确性?
4、学生寻找其它情况,小组探索并交流证明方法。
(教师可以让学生在同圆中先画出一个同弧所对的圆周角和圆心角,再利用文件助手将不同情况进行展示)
(图1)(备用一)(备用二)
※圆周角定理:。
设计意图:学生经历动手操作、猜想、分析、验证、交流等基本数学活动,得出圆周角的性质
定理:一条弧所对的圆周角等于它所对的圆心角的一半。
通过图1的证明,为后面的两种情况证明提供转化基础,通过对定理的全面证明的探究,锻炼学生的逻辑思维能力,体验分类讨论和转化的数学思想方法。
针对性思考:
1、如图2,在⊙O中,∠BAC= 45º,则∠BOC= 。
(口答)
2、如图3,点A,B,P为⊙O上的点,若∠PBO = 15º,且PA∥OB,则∠AOB = 。
(口答)
3、如图4,若∠BOC = 100º,则∠BAC = ,∠BDC = ,∠BEC = 。
(图2)(图3)(图4)
追问1:弧BC对着几个圆心角?对着几个圆周角?
追问2:这些圆周角有什么关系?
总结发现:
※推论一:。
4、如图5,A,B,C,D是圆上四点,请找出图中相等的角。
(解决本节开头问题)(学生独立思考解答,组长检查)
5、如图6,经过原点的⊙P与x轴、y轴分别交于A,B两点,点C是劣弧OB上一点,
(1)∠ACB =。
(2)连接AP、BP,∠APB =。
(图5)(图6)
追问:我们发现90度的圆周角所对的弦是直径,逆命题成立吗?为什么?
总结发现:
※推论二:。
设计意图:习题设计由浅入深,便于对定理的掌握,在熟悉定理的过程中发现新的结论,认识结论的生成过程,便于更好的理解推论的内容。
【新知检测】:
1、如图7,点A,B,C都在⊙O上,∠BAO=20º,则∠ACB的大小是。
(考查学生对同弧所对的圆周角与圆心角关系的掌握)
2、如图8,点A,B,C,D都在⊙O上,OA⊥BC,∠CDA=25º,∠AOB =。
(考查学生对等弧所对的圆周角与圆心角之间关系的掌握)
3、如图9,AB是⊙O的直径,点C,D,E都在⊙O上,则∠1+∠2 = 。
(综合考查学生对圆周角定理及其推论的掌握)
4、如图10,点A,B,C为⊙O上三个点,∠BOC=3∠AOB,∠BAC=45º,∠ACB =。
(考查学生对圆周角定理的运用)
(图7) (图8)(图9)(图10)
5、如图11,⊙O的直径AB长为10cm,弦BC长为8cm,∠ACB的平分线交⊙O于点D,
求AC,AD的长。
(选做)
(对于不同层次的学生给予不同的任务,分层次教学)
(图11)
板书设计:
左板:
§21.1.4圆周角
定义:顶点在圆上,两边与圆相交
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半 推论一:同弧或等弧所对的圆周角相等
推论二:90º的圆周角所对弦是直径,所对的弧是半圆; 半圆(或直径)所对的圆周角是直角
右板:(多媒体画板)
∠BOC 21∠A ∠C ∠A ∠BOC ∠C ∠A =⇒⎭⎬⎫+==⇒=OC OA。