2020届上海市奉贤区中考数学二模试卷(有答案)(加精)
〖汇总3套试卷〗上海市奉贤区2020年中考数学学业质量检查模拟试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是A.有两个相等的实数根B.有两个异号的实数根C.有两个不相等的实数根D.没有实数根【答案】A【解析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键. 2.如图所示的几何体,它的左视图是()A.B.C.D.【答案】D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限()A.一、二B.二、三C.三、四D.一、四【答案】D【解析】分析:根据一次函数的图形与性质,由一次函数y=kx+b 的系数k 和b 的符号,判断所过的象限即可.详解:∵y=ax ﹣x ﹣a+1(a 为常数),∴y=(a-1)x-(a-1)当a-1>0时,即a >1,此时函数的图像过一三四象限; 当a-1<0时,即a <1,此时函数的图像过一二四象限. 故其函数的图像一定过一四象限. 故选D.点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.一次函数y=kx+b (k≠0,k 、b 为常数)的图像与性质:当k >0,b >0时,图像过一二三象限,y 随x 增大而增大;当k >0,b <0时,图像过一三四象限,y 随x 增大而增大;当k <0,b >0时,图像过一二四象限,y 随x 增大而减小;当k <0,b <0,图像过二三四象限,y 随x 增大而减小. 4.已知二次函数2(0)y x x a a =-+>,当自变量x 取m 时,其相应的函数值小于0,则下列结论正确的是( )A .x 取1m -时的函数值小于0B .x 取1m -时的函数值大于0C .x 取1m -时的函数值等于0D .x 取1m -时函数值与0的大小关系不确定 【答案】B【解析】画出函数图象,利用图象法解决问题即可; 【详解】由题意,函数的图象为:∵抛物线的对称轴x=12,设抛物线与x 轴交于点A 、B , ∴AB <1,∵x 取m 时,其相应的函数值小于0,∴观察图象可知,x=m-1在点A 的左侧,x=m-1时,y >0, 故选B . 【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.5.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4π B .324π- C .2-8π D .324π- 【答案】B【解析】利用矩形的性质以及结合角平分线的性质分别求出AE ,BE 的长以及∠EBF 的度数,进而利用图中阴影部分的面积=S ABCD 矩形-SABE-S EBF 扇形,求出答案.【详解】∵矩形ABCD 的边AB=1,BE 平分∠ABC , ∴∠ABE=∠EBF=45°,AD ∥BC , ∴∠AEB=∠CBE=45°, ∴AB=AE=1,BE=2 , ∵点E 是AD 的中点, ∴AE=ED=1,∴图中阴影部分的面积=S ABCD 矩形 −S ABE −S EBF 扇形 =1×2−12×1×1−245(2)3=-24π⨯π故选B. 【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式6.如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①12AF FD =;②S △BCE =36;③S △ABE =12;④△AEF ~△ACD ,其中一定正确的是( )A .①②③④B .①④C .②③④D .①②③【答案】D【解析】∵在▱ABCD 中,AO=12AC , ∵点E 是OA 的中点, ∴AE=13CE , ∵AD ∥BC , ∴△AFE ∽△CBE , ∴AF AE BC CE ==13, ∵AD=BC ,∴AF=13AD , ∴12AF FD =;故①正确; ∵S △AEF =4,AEF BCESS=(AF BC )2=19, ∴S △BCE =36;故②正确; ∵EF AE BE CE = =13, ∴AEF ABES S=13, ∴S △ABE =12,故③正确; ∵BF 不平行于CD ,∴△AEF 与△ADC 只有一个角相等,∴△AEF 与△ACD 不一定相似,故④错误,故选D . 7.下列运算正确的是( ) A .﹣(a ﹣1)=﹣a ﹣1 B .(2a 3)2=4a 6C .(a ﹣b )2=a 2﹣b 2D .a 3+a 2=2a 5 【答案】B【解析】根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.【详解】解:A 、因为﹣(a ﹣1)=﹣a+1,故本选项错误; B 、(﹣2a 3)2=4a 6,正确;C 、因为(a ﹣b )2=a 2﹣2ab+b 2,故本选项错误;D 、因为a 3与a 2不是同类项,而且是加法,不能运算,故本选项错误. 故选B . 【点睛】本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.8的值在()A.0到1之间B.1到2之间C.2到3之间D.3至4之间【答案】B【解析】试题分析:∵23,∴1<2,在1到2之间,故选B.考点:估算无理数的大小.9.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是6【答案】D【解析】根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=15[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.10.将2001×1999变形正确的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1 【答案】A【解析】原式变形后,利用平方差公式计算即可得出答案.【详解】解:原式=(2000+1)×(2000-1)=20002-1,故选A.【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.二、填空题(本题包括8个小题)11.函数21yx=-中,自变量x的取值范围是_____.【答案】x≠1【解析】根据分母不等于0,可以求出x的范围;【详解】解:(1)x-1≠0,解得:x≠1;故答案是:x≠1, 【点睛】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.12.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m ,他在不弯腰的情况下,在棚内的横向活动范围是__m .【答案】1【解析】设抛物线的解析式为:y=ax 2+b ,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=﹣x 2+2.4,根据题意求出y=1.8时x 的值,进而求出答案;【详解】设抛物线的解析式为:y=ax 2+b , 由图得知:点(0,2.4),(1,0)在抛物线上, ∴,解得:, ∴抛物线的解析式为:y=﹣x 2+2.4,∵菜农的身高为1.8m ,即y=1.8, 则1.8=﹣x 2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米, 故答案为1.13.已知一元二次方程x 2-4x -3=0的两根为m ,n ,则2m -mn +2n = . 【答案】1【解析】试题分析:由m 与n 为已知方程的解,利用根与系数的关系求出m+n=4,mn=﹣3,将所求式子利用完全平方公式变形后,即2m ﹣mn+2n =()2m n +﹣3mn=16+9=1. 故答案为1.考点:根与系数的关系.14.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.【答案】28【解析】设这种电子产品的标价为x元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.15.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A.B.C.D.【答案】C【解析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=1 2 x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态16.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____.摸球的次数n 100 150 200 500 800 1000摸到白球的次数m 58 96 116 295 484 601摸到白球的频率m/n 0.58 0.64 0.58 0.59 0.605 0.601【答案】0.1【解析】根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率.【详解】解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右,则P白球=0.1.故答案为0.1.【点睛】本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.17.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数是_____.【答案】32°【解析】根据直径所对的圆周角是直角得到∠ADB=90°,求出∠A的度数,根据圆周角定理解答即可.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=32°,∴∠BCD=32°,故答案为32°.18.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是_____.【答案】60%【解析】设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,根据总价=单价×数量结合6月份的电费却比5月份的电费少25%,即可得出关于x,y的二元一次方程,解之即可得出x,y之间的关系,进而即可得出结论.【详解】设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,依题意,得:(1﹣25%)(ax+2ay)=2ax+ay,解得:x=0.4y,∴该地区空闲时段民用电的单价比高峰时段的用电单价低y xy×100%=60%.故答案为60%.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题(本题包括8个小题)19.已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.【答案】(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.【解析】(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.【详解】解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,解得k≥﹣2.∵k为负整数,∴k=﹣2,﹣2.(2)当k=﹣2时,不符合题意,舍去;当k=﹣2时,符合题意,此时方程的根为x2=x2=2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.20.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【答案】观景亭D到南滨河路AC的距离约为248米.【解析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【详解】过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,tan∠DBE=DE BE,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.21.某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.【答案】足球单价是60元,篮球单价是90元.【解析】设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可.【详解】解:足球的单价分别为x元,篮球单价是1.5x元,可得:24002250151.5x x-=,解得:x=60,经检验x=60是原方程的解,且符合题意,1.5x=1.5×60=90,答:足球单价是60元,篮球单价是90元.【点睛】本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验.22.计算:13 1|132sin60(2016)8 3π-︒︒⎛⎫+-+-- ⎪⎝⎭先化简,再求值:2344111x xxx x++⎛⎫-+÷⎪++⎝⎭,其中22x=.【答案】(1)1;(2)【解析】(1)分别计算负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根;(2)先把括号内通分相减,再计算分式的除法,除以一个分式,等于乘它的分子、分母交换位置.【详解】(1)原式1﹣﹣﹣1﹣2=1.(2)原式=[31x+﹣(1)(1)1x xx+-+]•21(2)xx++=(2)(2)1x xx-+-+•21(2)xx++=22xx-+,当2时,原式-1.【点睛】本题考查负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根以及分式的化简求值,解题关键是熟练掌握以上性质和分式的混合运算.23.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.求y与x的函数关系式并直接写出自变量x的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?【答案】(1)y=﹣10x2+130x+2300,0<x≤10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【解析】(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可.(3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可.【详解】(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点睛】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.24.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.求证:EF=ED;若AB=22,CD=1,求FE的长.【答案】(1)见解析;(2)EF=5 3 .【解析】(1)由旋转的性质可求∠FAE=∠DAE=45°,即可证△AEF≌△AED,可得EF=ED;(2)由旋转的性质可证∠FBE=90°,利用勾股定理和方程的思想可求EF的长.【详解】(1)∵∠BAC=90°,∠EAD=45°,∴∠BAE+∠DAC=45°,∵将△ADC绕点A顺时针旋转90°,得到△AFB,∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,∴∠BAF+∠BAE=45°=∠FAE,∴∠FAE=∠DAE,AD=AF,AE=AE,∴△AEF≌△AED(SAS),∴DE=EF(2)∵AB=AC=2,∠BAC=90°,∴BC=4,∵CD=1,∴BF=1,BD=3,即BE+DE=3,∵∠ABF=∠ABC=45°,∴∠EBF=90°,∴BF2+BE2=EF2,∴1+(3﹣EF)2=EF2,∴EF=53【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键.25.如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=kx(k≠0)的图象经过点B.求反比例函数的解析式;若点E恰好落在反比例函数y=kx上,求平行四边形OBDC的面积.【答案】(1)y=12x;(2)1;【解析】(1)把点B的坐标代入反比例解析式求得k值,即可求得反比例函数的解析式;(2)根据点B(3,4)、C(m,0)的坐标求得边BC的中点E坐标为(32m,2),将点E的坐标代入反比例函数的解析式求得m的值,根据平行四边形的面积公式即可求解. 【详解】(1)把B坐标代入反比例解析式得:k=12,则反比例函数解析式为y=;(2)∵B(3,4),C(m,0),∴边BC的中点E坐标为(,2),将点E的坐标代入反比例函数得2=,解得:m=9,则平行四边形OBCD的面积=9×4=1.【点睛】本题为反比例函数的综合应用,考查的知识点有待定系数法、平行四边形的性质、中点的求法.在(1)中注意待定系数法的应用,在(2)中用m表示出E点的坐标是解题的关键.26.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:20 21 19 16 27 18 31 29 21 2225 20 19 22 35 33 19 17 18 2918 35 22 15 18 18 31 31 19 22整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23 m 21根据以上信息,解答下列问题:上表中众数m的值为;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.【答案】(1)18;(2)中位数;(3)100名.【解析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【详解】(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×11231230+++++=100(名),答:该部门生产能手有100名工人.【点睛】本题考查了条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.2.若正六边形的边长为6,则其外接圆半径为()A.3 B.32C.33D.6【答案】D【解析】连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.【详解】如图为正六边形的外接圆,ABCDEF是正六边形,∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1.故选D.【点睛】本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.3.解分式方程12x-﹣3=42x-时,去分母可得()A .1﹣3(x ﹣2)=4B .1﹣3(x ﹣2)=﹣4C .﹣1﹣3(2﹣x )=﹣4D .1﹣3(2﹣x )=4【答案】B 【解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x ﹣2)=﹣4,故选B .【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键. 4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )A .7.6×10﹣9B .7.6×10﹣8C .7.6×109D .7.6×108 【答案】A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.0000000076用科学计数法表示为97.610-⨯.故选A.【点睛】本题考查了用科学计数法表示较小的数,一般形式为a×10n -,其中110a ≤<,n 为由原数左边起第一个不为0的数字前面的0的个数所决定.5.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x (c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <2【答案】C 【解析】一次函数y 1=kx+b 落在与反比例函数y 2=c x图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.6.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°【答案】B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°. 考点:角度的计算7.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF 的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE【答案】A【解析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【详解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用x 张铝片制作瓶身,则可列方程( )A .1645(100)x x =-B .1645(50)x x =-C .21645(100)x x ⨯=-D .16245(100)x x =⨯-【答案】C【解析】设用x 张铝片制作瓶身,则用()100x -张铝片制作瓶底,可作瓶身16x 个,瓶底()45100x -个,再根据一个瓶身和两个瓶底可配成一套,即可列出方程.【详解】设用x 张铝片制作瓶身,则用()100x -张铝片制作瓶底,依题意可列方程()21645100x x ⨯=-故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.9.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2m,则树高为( )米A 5B 3C 5D .3【答案】C 【解析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则2222125AC AB +=+=;∴AC+BC=(5m.答:树高为(5故选C.10.以坐标原点为圆心,以2个单位为半径画⊙O ,下面的点中,在⊙O 上的是( )A .(1,1)B .22C .(1,3)D .(12【答案】B【解析】根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系. 【详解】A 选项,(1,1)到坐标原点的距离为2<2,因此点在圆内, B 选项(2,2) 到坐标原点的距离为2=2,因此点在圆上, C 选项 (1,3) 到坐标原点的距离为10>2,因此点在圆外 D 选项(1,2) 到坐标原点的距离为3<2,因此点在圆内, 故选B. 【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系. 二、填空题(本题包括8个小题)11..如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______.【答案】2【解析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出 OA ,最后用勾股定理即可得出结论.【详解】设圆锥底面圆的半径为 r , ∵AC=6,∠ACB=120°, ∴1206180l π⨯⨯==2πr ,∴r=2,即:OA=2,在 Rt △AOC 中,OA=2,AC=6,根据勾股定理得,22AC OA -2,故答案为2. 【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出 OA 的长是解本题的关键. 12.因式分解:a 3﹣2a 2b+ab 2=_____. 【答案】a (a ﹣b )1.【解析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 1﹣1ab+b 1)=a (a ﹣b )1, 故答案为a (a ﹣b )1.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.与直线2y x =平行的直线可以是__________(写出一个即可). 【答案】y=-2x+5(答案不唯一)【解析】根据两条直线平行的条件:k 相等,b 不相等解答即可. 【详解】解:如y=2x+1(只要k=2,b≠0即可,答案不唯一). 故答案为y=2x+1.(提示:满足y 2x b =+的形式,且b 0≠) 【点睛】本题考查了两条直线相交或平行问题.直线y=kx+b ,(k≠0,且k ,b 为常数),当k 相同,且b 不相等,图象平行;当k 不同,且b 相等,图象相交;当k ,b 都相同时,两条直线重合.14.如图所示,直线y=x+1(记为l 1)与直线y=mx+n(记为l 2)相交于点P(a,2),则关于x 的不等式x+1≥mx+n 的解集为__________.【答案】x≥1【解析】把y=2代入y=x+1,得x=1, ∴点P 的坐标为(1,2),根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n 相应的函数值, 因而不等式x+1≥mx+n 的解集是:x≥1, 故答案为x≥1. 【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.15.如图,⊙O 的半径为1cm ,正六边形ABCDEF 内接于⊙O ,则图中阴影部分面积为_____cm 1.(结果保留π)。
上海市奉贤区2019-2020学年中考数学二月模拟试卷含解析
上海市奉贤区2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知一组数据2、x 、8、1、1、2的众数是2,那么这组数据的中位数是( )A .3.1;B .4;C .2;D .6.1.2.若分式242x x -+的值为0,则x 的值为( ) A .-2 B .0 C .2 D .±2 3.如图,在△ABC 中,∠ACB=90°,点D 为AB 的中点,AC=3,cosA=13,将△DAC 沿着CD 折叠后,点A 落在点E 处,则BE 的长为( )A .5B .42C .7D .524.等腰三角形两边长分别是2 cm 和5 cm ,则这个三角形周长是( )A .9 cmB .12 cmC .9 cm 或12 cmD .14 cm5.已知抛物线2(2)2(0)y ax a x a =+-->的图像与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①当0a >的条件下,无论a 取何值,点A 是一个定点;②当0a >的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于2-;④若AB AC =,则152a +=.其中正确的结论有( )个. A .1个B .2个C .3个D .4个 6.下列图形中,可以看作中心对称图形的是( )A .B .C .D .7.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )A .B .C .D .8.在3,0,-2,-四个数中,最小的数是( ) A .3 B .0 C .-2 D .-9.如图,在圆O 中,直径AB 平分弦CD 于点E ,且CD=43,连接AC ,OD,若∠A 与∠DOB 互余,则EB 的长是( )A .23B .4C .3D .210.如图,在射线OA ,OB 上分别截取OA 1=OB 1,连接A 1B 1,在B 1A 1,B 1B 上分别截取B 1A 2=B 1B 2,连接A 2B 2,…按此规律作下去,若∠A 1B 1O=α,则∠A 10B 10O=( )A .102αB .92αC .20αD .18α 11.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若∠B=40°,∠C=36°,则∠DAC 的度数是( )A .70°B .44°C .34°D .24°12.如图,在△ABC 中,DE ∥BC ,若23AD DB =,则AE EC 等于( )A .13B .25C .23D .35二、填空题:(本大题共6个小题,每小题4分,共24分.)13.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:ABC.V 求作:ABC V 的内切圆.小明的作法如下:如图2,()1作ABC ∠,ACB ∠的平分线BE 和CF ,两线相交于点O ;()2过点O 作OD BC ⊥,垂足为点D ;()3点O 为圆心,OD 长为半径作O.e 所以,O e 即为所求作的圆.请回答:该尺规作图的依据是______.14.如图,某海监船以20km/h 的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为_____km .15.如图,矩形OABC 的边OA ,OC 分别在轴、轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,B′和B 分别对应),若AB=1,反比例函数(0)k y k x =≠的图象恰好经过点A′,B ,则的值为_________.16.某自然保护区为估计该地区一种珍稀鸟类的数量,先捕捉了20只,给它们做上标记后放回,过一段时间待它们完全混合于同类后又捕捉了20只,发现其中有4只带有标记,从而估计该地区此种鸟类的数量大约有______只.17.如图,线段AB 两端点坐标分别为A (﹣1,5)、B (3,3),线段CD 两端点坐标分别为C (5,3)、D (3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.18.对于二次函数y =x 2﹣4x+4,当自变量x 满足a≤x≤3时,函数值y 的取值范围为0≤y≤1,则a 的取值范围为__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线2y ax bx c =++()0a ≠与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x =–1,P 为抛物线上第二象限的一个动点.(1)求抛物线的解析式并写出其顶点坐标;(2)当点P 的纵坐标为2时,求点P 的横坐标;(3)当点P 在运动过程中,求四边形PABC 面积最大时的值及此时点P 的坐标.20.(6分)如图,AB 为⊙O 的直径,点E 在⊙O ,C 为弧BE 的中点,过点C 作直线CD ⊥AE 于D ,连接AC 、BC .试判断直线CD 与⊙O 的位置关系,并说明理由若AD=2,AC=6,求⊙O 的半径.21.(6分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).22.(8分)计算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣3|.23.(8分)先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.24.(10分)如图,在平面直角坐标系中,抛物线C1经过点A(﹣4,0)、B(﹣1,0),其顶点为532D⎛⎫--⎪⎝⎭,.(1)求抛物线C1的表达式;(2)将抛物线C1绕点B旋转180°,得到抛物线C2,求抛物线C2的表达式;(3)再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标.25.(10分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;抽查C厂家的合格零件为件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.26.(12分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.用树状图或列表等方法列出所有可能出现的结果;求两次摸到的球的颜色不同的概率.27.(12分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,12),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】∵数据组2、x、8、1、1、2的众数是2,∴x=2,∴这组数据按从小到大排列为:2、2、2、1、1、8,∴这组数据的中位数是:(2+1)÷2=3.1.故选A.2.C【解析】由题意可知:24020xx=⎧-⎨+≠⎩,解得:x=2,故选C. 3.C【解析】【分析】连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可.【详解】解:连接AE,∵AC=3,cos∠CAB=13,∴AB=3AC=9,由勾股定理得,22AB AC-2,∠ACB=90°,点D为AB的中点,∴CD=12AB=92,S△ABC=12×3×22,∵点D为AB的中点,∴S△ACD=12S△ABC92,由翻转变换的性质可知,S四边形ACED2,AE⊥CD,则12×CD×2,解得,2,∴2,由勾股定理得,22AD AF-=72,∵AF=FE,AD=DB,∴BE=2DF=7,故选C.【点睛】本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.B【解析】当腰长是2 cm 时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm 时,因为5+5>2,符合三角形三边关系,此时周长是12 cm .故选B .5.C【解析】【分析】①利用抛物线两点式方程进行判断;②根据根的判别式来确定a 的取值范围,然后根据对称轴方程进行计算;③利用顶点坐标公式进行解答;④利用两点间的距离公式进行解答.【详解】①y=ax 1+(1-a )x-1=(x-1)(ax+1).则该抛物线恒过点A (1,0).故①正确;②∵y=ax 1+(1-a )x-1(a >0)的图象与x 轴有1个交点,∴△=(1-a )1+8a=(a+1)1>0,∴a≠-1.∴该抛物线的对称轴为:x=21122a a a -=-,无法判定的正负. 故②不一定正确;③根据抛物线与y 轴交于(0,-1)可知,y 的最小值不大于-1,故③正确;④∵A (1,0),B (-2a,0),C (0,-1),∴当AB=AC =,解得:,故④正确. 综上所述,正确的结论有3个.故选C .【点睛】考查了二次函数与x 轴的交点及其性质.(1).抛物线是轴对称图形.对称轴为直线x = -2b a,对称轴与抛物线唯一的交点为抛物线的顶点P ;特别地,当b=0时,抛物线的对称轴是y 轴(即直线x=0);(1).抛物线有一个顶点P ,坐标为P ( -b/1a ,(4ac-b1)/4a ),当-2b a=0,〔即b=0〕时,P 在y 轴上;当Δ= b1-4ac=0时,P 在x 轴上;(3).二次项系数a 决定抛物线的开口方向和大小;当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;|a|越大,则抛物线的开口越小.(4).一次项系数b 和二次项系数a 共同决定对称轴的位置;当a 与b 同号时(即ab>0),对称轴在y 轴左;当a 与b 异号时(即ab<0),对称轴在y 轴右;(5).常数项c 决定抛物线与y 轴交点;抛物线与y 轴交于(0,c );(6).抛物线与x 轴交点个数Δ= b1-4ac>0时,抛物线与x轴有1个交点;Δ= b1-4ac=0时,抛物线与x轴有1个交点;Δ= b1-4ac<0时,抛物线与x轴没有交点.X的取值是虚数(x= -b±√b1-4ac 乘上虚数i,整个式子除以1a);当a>0时,函数在x= -b/1a处取得最小值f(-b/1a)=〔4ac-b1〕/4a;在{x|x<-b/1a}上是减函数,在{x|x>-b/1a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b1/4a}相反不变;当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax1+c(a≠0).6.B【解析】【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.B【解析】【分析】根据俯视图可确定主视图的列数和每列小正方体的个数.【详解】由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成.故答案选B.【点睛】由几何体的俯视图可确定该几何体的主视图和左视图.8.C【解析】【分析】根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以,所以最小的数是,故选C.【点睛】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.9.D【解析】【分析】连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可. 【详解】连接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=23∵∠A与∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,设OE=x,则CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(23)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理. 10.B 【解析】 【分析】根据等腰三角形两底角相等用α表示出∠A 2B 2O ,依此类推即可得到结论. 【详解】∵B 1A 2=B 1B 2,∠A 1B 1O =α,∴∠A 2B 2O =12α, 同理∠A 3B 3O =12×12α=212α,∠A 4B 4O =312α,∴∠A n B n O =n 112 α,∴∠A 10B 10O =9a2,故选B . 【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键. 11.C 【解析】 【分析】易得△ABD 为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC 【详解】∵AB=BD ,∠B=40°, ∴∠ADB=70°, ∵∠C=36°,∴∠DAC=∠ADB ﹣∠C=34°. 故选C. 【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键. 12.C 【解析】试题解析::∵DE ∥BC ,∴23 AE ADEC DB==,故选C.考点:平行线分线段成比例.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【解析】【分析】根据三角形的内切圆,三角形的内心的定义,角平分线的性质即可解答.【详解】解:该尺规作图的依据是到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线;故答案为到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【点睛】此题主要考查了复杂作图,三角形的内切圆与内心,关键是掌握角平分线的性质.14.【解析】【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.【详解】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×=km),故答案为本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.15.43【解析】【详解】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=12m,A′E=3m,∴A′(12m,3m),∵反比例函数y=kx(k≠0)的图象恰好经过点A′,B,∴12m•3m=m,∴m=43,∴k=433.【点睛】本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.16.1【分析】求出样本中有标记的所占的百分比,再用样本容量除以百分比即可解答. 【详解】解:()20420÷÷2020%=÷ 100=只.故答案为:1. 【点睛】本题考查的是通过样本去估计总体,总体百分比约等于样本百分比. 17.()1,1或()4,4 【解析】 【分析】分点A 的对应点为C 或D 两种情况考虑:①当点A 的对应点为点C 时,连接AC 、BD ,分别作线段AC 、BD 的垂直平分线交于点E ,点E 即为旋转中心;②当点A 的对应点为点D 时,连接AD 、BC ,分别作线段AD 、BC 的垂直平分线交于点M ,点M 即为旋转中心.此题得解. 【详解】①当点A 的对应点为点C 时,连接AC 、BD ,分别作线段AC 、BD 的垂直平分线交于点E ,如图1所示:A Q 点的坐标为()1,5-,B 点的坐标为()3,3, E ∴点的坐标为()1,1;②当点A 的对应点为点D 时,连接AD 、BC ,分别作线段AD 、BC 的垂直平分线交于点M ,如图2所示:A Q 点的坐标为()1,5-,B 点的坐标为()3,3, M ∴点的坐标为()4,4.综上所述:这个旋转中心的坐标为()1,1或()4,4. 故答案为()1,1或()4,4. 【点睛】本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键. 18.1≤a≤1 【解析】 【分析】根据y 的取值范围可以求得相应的x 的取值范围. 【详解】解:∵二次函数y =x 1﹣4x+4=(x ﹣1)1, ∴该函数的顶点坐标为(1,0),对称轴为:x =﹣4222b a -=-=, 把y =0代入解析式可得:x =1, 把y =1代入解析式可得:x 1=3,x 1=1,所以函数值y 的取值范围为0≤y≤1时,自变量x 的范围为1≤x≤3, 故可得:1≤a≤1, 故答案为:1≤a≤1. 【点睛】此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)二次函数的解析式为223y x x =--+,顶点坐标为(–1,4);(2)点P 横坐标为2–1;(3)当3x 2=-时,四边形PABC 的面积有最大值758,点P (31524-,). 【解析】试题分析: (1)已知抛物线2y ax bx c =++ ()0a ≠与x 轴交于点A 和点B (1,0),与y 轴交于点C(0,3),其对称轴l 为x =﹣1,由此列出方程组,解方程组求得a 、b 、c 的值,即可得抛物线的解析式,把解析式化为顶点式,直接写出顶点坐标即可;(2)把y=2代入解析式,解方程求得x 的值,即可得点P 的横坐标,从而求得点P 的坐标;(3)设点P(x ,y ),则2--23y x x =+ ,根据OBC OAP OPC BCPA S S S S ∆∆∆=++四边形得出四边形PABC 与x 之间的函数关系式,利用二次函数的性质求得x 的值,即可求得点P 的坐标. 试题解析:(1)∵抛物线2y ax bx c =++ ()0a ≠与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x =﹣1,∴0312a b c c ba⎧⎪++=⎪=⎨⎪⎪-=-⎩ , 解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴二次函数的解析式为2--23y x x =+ =()214x -++, ∴顶点坐标为(﹣1,4) (2)设点P (x ,2), 即2--23y x x =+=2,解得1x1(舍去)或2x =﹣1, ∴点P1,2).(3)设点P(x ,y ),则2--23y x x =+ ,OBC OAP OPC BCPA S S S S ∆∆∆=++四边形,∴ 2339332222BCPA S x x x =--+-四边形=23375228x ⎛⎫-++ ⎪⎝⎭ ∴当32x =-时,四边形PABC 的面积有最大值758. 所以点P (315,24-).点睛:本题是二次函数综合题,主要考查学生对二次函数解决动点问题综合运用能力,动点问题为中考常考题型,注意培养数形结合思想,培养综合分析归纳能力,解决这类问题要会建立二次函数模型,利用二次函数的性质解决问题.20.(1)直线CD 与⊙O 相切;(2)⊙O 的半径为1.1. 【解析】 【详解】(1)相切,连接OC ,∵C 为»BE的中点,∴∠1=∠2,∵OA=OC ,∴∠1=∠ACO ,∴∠2=∠ACO ,∴AD ∥OC ,∵CD ⊥AD ,∴OC ⊥CD ,∴直线CD 与⊙O 相切;(2)连接CE ,∵AD=2,AC=6,∵∠ADC=90°,∴CD=22AC AD -=2,∵CD 是⊙O 的切线,∴2CD =AD•DE ,∴DE=1,∴CE=22CD DE +=3,∵C 为»BE的中点,∴BC=CE=3,∵AB 为⊙O 的直径,∴∠ACB=90°,∴AB=22AC BC +=2.∴半径为1.121.(1)34.(2)公平. 【解析】 【详解】试题分析:(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是34; (2)列表得: A BCDA(A ,B ) (A ,C )(A ,D )B (B ,A )(B ,C ) (B ,D )C(C ,A )(C ,B )(C ,D )共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种, ∴P (两张都是轴对称图形)=12,因此这个游戏公平.考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法. 22.【解析】 【分析】根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简各项后,再根据实数的运算法则计算即可求解. 【详解】 原式=22⨯1 =1 【点睛】本题主要考查了实数运算,根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质正确化简各数是解题关键. 23.12【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再由x 2-2x-2=0得x 2=2x+2=2(x+1),整体代入计算可得.详解:原式=()()()()2222112[]111x x x x xx x x x x ----÷+++ =()()()2121•121x x x x x x +-+- =21x x+, ∵x 2-2x-2=0, ∴x 2=2x+2=2(x+1), 则原式=()11212x x +=+.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 24.(1)y 242016333x x =++;(2)2448333y x x =-++;(3)E(12,0). 【解析】 【分析】(1)根据抛物线C 1的顶点坐标可设顶点式将点B 坐标代入求解即可;(2)由抛物线C 1绕点B 旋转180°得到抛物线C 2知抛物线C 2的顶点坐标,可设抛物线C 2的顶点式,根据旋转后抛物线C 2开口朝下,且形状不变即可确定其表达式;(3)作GK ⊥x 轴于G ,DH ⊥AB 于H ,由题意GK=DH=3,AH=HB=EK=KF 32=,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证△AGK ∽△GFK ,由其对应线段成比例的性质可知AK 长,结合A 、B 点坐标可知BK 、BE 、OE 长,可得点E 坐标. 【详解】解:(1)∵抛物线C 1的顶点为532D ⎛⎫-- ⎪⎝⎭,, ∴可设抛物线C 1的表达式为y 25()32a x =+-, 将B(﹣1,0)代入抛物线解析式得:250(1)32a =-+-,∴9304a -=, 解得:a 43=,∴抛物线C 1的表达式为y 245()332x =+-,即y 242016333x x =++. (2)设抛物线C 2的顶点坐标为(,)m n∵抛物线C 1绕点B 旋转180°,得到抛物线C 2,即点(,)m n 与点532D ⎛⎫-- ⎪⎝⎭,关于点B(﹣1,0)对称 5321,022m n --∴=-= 1,32m n ∴==∴抛物线C 2的顶点坐标为(132,) 可设抛物线C 2的表达式为y 21()32k x =-+ ∵抛物线C 2开口朝下,且形状不变43k ∴=-∴抛物线C 2的表达式为y 241()332x =--+,即2448333y x x =-++.(3)如图,作GK⊥x轴于G,DH⊥AB于H.由题意GK=DH=3,AH=HB=EK=KF32 =,∵四边形AGFD是矩形,∴∠AGF=∠GKF=90°,∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,∴∠AGK=∠GFK.∵∠AKG=∠FKG=90°,∴△AGK∽△GFK,∴AK GK GK KF=,∴3332 AK=,∴AK=6,633 BK AK AB=∴=--=,∴BE=BK﹣EK=333 22 -=,∴OE31122 BE OB=-=-=,∴E(12,0).【点睛】本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.25.(1)500,90°;(2)380;(3)合格率排在前两名的是C、D两个厂家;(4)P(选中C、D)=16.【解析】试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;(2)C厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:(1)D厂的零件比例=1-20%-20%-35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)=212=16.考点:1.条形统计图;2.扇形统计图;3. 树状图法.26.(1)详见解析;(2)23.【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.试题解析:(1)如图:,所有可能的结果为(白1,白2)、(白1,红)、(白2,白1)、(白2,红)、(红,白1)、(红,白2); (2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为4263=. 27.(1)y=﹣12x 2+32x+2;(2)m=﹣1或m=3时,四边形DMQF 是平行四边形;(3)点Q 的坐标为(3,2)或(﹣1,0)时,以点B 、Q 、M 为顶点的三角形与△BOD 相似.【解析】【分析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD 解析式为y=12x-2,则Q (m ,-12m 2+32m+2)、M (m ,12m-2),由QM ∥DF 且四边形DMQF 是平行四边形知QM=DF ,据此列出关于m 的方程,解之可得;(3)易知∠ODB=∠QMB ,故分①∠DOB=∠MBQ=90°,利用△DOB ∽△MBQ 得12DO MB OB BQ ==,再证△MBQ ∽△BPQ 得BM BP BQ PQ =,即214132222m m m -=-++,解之即可得此时m 的值;②∠BQM=90°,此时点Q 与点A 重合,△BOD ∽△BQM′,易得点Q 坐标.详解:(1)由抛物线过点A (-1,0)、B (4,0)可设解析式为y=a (x+1)(x-4),将点C (0,2)代入,得:-4a=2,解得:a=-12, 则抛物线解析式为y=-12(x+1)(x-4)=-12x 2+32x+2; (2)由题意知点D 坐标为(0,-2),设直线BD 解析式为y=kx+b ,将B (4,0)、D (0,-2)代入,得:402k b b +⎧⎨-⎩==,解得:122k b ⎧⎪⎨⎪-⎩==, ∴直线BD 解析式为y=12x-2, ∵QM ⊥x 轴,P (m ,0),∴Q (m ,-12m 2+32m+2)、M (m ,12m-2),则QM=-12m2+32m+2-(12m-2)=-12m2+m+4,∵F(0,12)、D(0,-2),∴DF=52,∵QM∥DF,∴当-12m2+m+4=52时,四边形DMQF是平行四边形,解得:m=-1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则21=42DO MBOB BQ==,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴BM BPBQ PQ=,即214132222mm m-=-++,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.【详解】请在此输入详解!。
2020届上海市奉贤区中考数学二模试卷(有答案)
上海市奉贤区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.如果两个实数a、b满足a+b=0,那么a、b一定是()A.都等于0 B.一正一负 C.互为相反数D.互为倒数2.若x=2,y=﹣1,那么代数式x2+2xy+y2的值是()A.0 B.1 C.2 D.4.3.一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.一组数据3,3,2,5,8,8的中位数是()A.3 B.4 C.5 D.8.5.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线之间对称D.周长相等的两个三角形一定关于某条直线之间对称6.已知⊙O1与⊙O2外离,⊙O1的半径是5,圆心距O1O2=7,那么⊙O2的半径可以是()A.4 B.3 C.2 D.1二、填空题:(本大题共12题,每题4分,满分48分)7.化简:=.8.因式分解:a2﹣a=.9.函数y=的定义域是.10.一个不透明的袋子中装有若干个除颜色外形状大小完全相同的小球.如果其中有2个白球n个黄球,从中随机摸出白球的概率是,那么n=.11.不等式组的解集是.12.已知反比例函数,在其图象所在的每个象限内,y的值随x值的增大而(填“增大”或“减小”).13.直线y=kx+b(k≠0)平行于直线且经过点(0,2),那么这条直线的解析式是.14.小明在高为18米的楼上看到停在地面上的一辆汽车的俯角为60°,那么这辆汽车到楼底的距离是.(结果保留根号)15.如图,在△ABC中,点D在边BC上,且DC=2BD,点E是边AC的中点,设,那么=;(用不的线性组合表示)16.四边形ABCD中,AD∥BC,∠D=90°,如果再添加一个条件,可以得到四边形ABCD是矩形,那么可以添加的条件是.(不再添加线或字母,写出一种情况即可)17.如图,在Rt△ABC中,∠ACB=90°,AD是边BC边上的中线,如果AD=BC,那么cot∠CAB的值是.18.如图,在△ABC中,∠B=45°,∠C=30°,AC=2,点D在BC上,将△ACD沿直线AD翻折后,点C 落在点E处,边AE交边BC于点F,如果DE∥AB,那么的值是.三、解答题:(本大题共7题,满分78)19.计算:.20.解方程:.21.已知,如图,在Rt△ABC中,∠ACB=90°,AB=4,AD是∠BAC的平分线,过点D作DE⊥AD,垂足为点D,交AB于点E,且.(1)求线段BD的长;(2)求∠ADC的正切值.22.今年3月5日,某中学组织六、七年级200位学生参与了“走出校门,服务社会”的活动,该校某数学学习小组的同学对那天参与打扫街道、敬老院服务和社区文艺演出的三组人数进行分别统计,部分数据如图所示:(1)参与社区文艺演出的学生人数是人,参与敬老院服务的学生人数是人;(2)该数学学习小组的同学还发现,六、七年级参与打扫街道的学生人数分别比参与敬老院服务的学生人数多了40%和60%,求参与敬老院服务的六、七年级学生分别有多少人?23.已知:如图,梯形ABCD中,DC∥AB,AD=BC=DC,AC、BD是对角线,E是AB延长线上一点,且∠BCE=∠ACD,联结CE.(1)求证:四边形DBEC是平行四边形;(2)求证:AC2=AD•AE.24.已知在平面直角坐标系xOy(如图)中,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)与点C(3,0),与y轴交于点B,点P为OB上一点,过点B作射线AP的垂线,垂足为点D,射线BD交x轴于点E.(1)求该抛物线的解析式;(2)连结BC,当P点坐标为(0,)时,求△EBC的面积;(3)当点D落在抛物线的对称轴上时,求点P的坐标.25.如图,边长为5的菱形ABCD中,cosA=,点P为边AB上一点,以A为圆心,AP为半径的⊙A与边AD交于点E,射线CE与⊙A另一个交点为点F.(1)当点E与点D重合时,求EF的长;(2)设AP=x,CE=y,求y关于x的函数关系式及定义域;(3)是否存在一点P,使得=2?若存在,求AP的长;若不存在,请说明理由.上海市奉贤区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.如果两个实数a、b满足a+b=0,那么a、b一定是()A.都等于0 B.一正一负 C.互为相反数D.互为倒数【考点】实数的运算.【专题】计算题;实数.【分析】利用相反数的性质判断即可.【解答】解:由a+b=0,得到a,b互为相反数,故选C【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.若x=2,y=﹣1,那么代数式x2+2xy+y2的值是()A.0 B.1 C.2 D.4.【考点】代数式求值.【分析】首先利用完全平方公式的逆运算,然后代入即可.【解答】解:x2+2xy+y2=(x+y)2=(2﹣1)2=1,故选B.【点评】本题主要考查了代数式求值,利用完全平方公式的逆运算,然后代入是解答此题的关键.3.一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【分析】首先确定k,k>0,必过第二、四象限,再确定b,看与y轴交点,即可得到答案.【解答】解:∵y=﹣2x+3中,k=﹣2<0,∴必过第二、四象限,∵b=3,∴交y轴于正半轴.∴过第一、二、四象限,不过第三象限,故选:C.【点评】此题主要考查了一次函数的性质,直线所过象限,受k,b的影响.4.一组数据3,3,2,5,8,8的中位数是()A.3 B.4 C.5 D.8.【考点】中位数.【分析】根据中位数计算:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:把这组数据按照从小到大的顺序排列为:2,3,3,5,8,8,∴这组数据的中位数是=4,故选B.【点评】本题考查了中位数的定义,解题的关键是牢记定义,此题比较简单,易于掌握.5.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线之间对称D.周长相等的两个三角形一定关于某条直线之间对称【考点】轴对称的性质.【分析】认真阅读各选项提供的已知条件,根据轴对称的性质对个选项逐一验证,其中选项A是正确的.【解答】解:A、关于某条直线对称的两个图形能够完全重合,所以关于某条直线对称的两个三角形是全等三角形,正确;B、全等三角形不一定关于某直线对称,错误;C、面积相等的两个三角形不一定关于某条直线之间对称,错误;D、周长相等的两个三角形不一定关于某条直线之间对称,错误;故选A【点评】主要考查了轴对称的性质;找着每个选项正误的具体原因是正确解答本题的关键.6.已知⊙O1与⊙O2外离,⊙O1的半径是5,圆心距O1O2=7,那么⊙O2的半径可以是()A.4 B.3 C.2 D.1【考点】圆与圆的位置关系.【分析】由⊙O1与⊙O2外离,⊙O1的半径是5,圆心距O1O2=7,可求得⊙O2的半径<2,继而求得答案.【解答】解:∵⊙O1与⊙O2外离,圆心距O1O2=7,∴⊙O1与⊙O2的半径和<7,∵⊙O1的半径是5,∴⊙O2的半径<2,∴⊙O2的半径可以是:1.故选D.【点评】此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.化简:=4.【考点】二次根式的性质与化简.【分析】根据二次根式的性质,化简即可.【解答】解:,故答案为:4.【点评】本题考查了二次根式的性质,解决本题的关键是熟记二次根式的性质.8.因式分解:a2﹣a=a(a﹣1).【考点】因式分解-提公因式法.【分析】直接提取公因式a,进而分解因式得出即可.【解答】解:a2﹣a=a(a﹣1).故答案为:a(a﹣1).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.函数y=的定义域是x≠1.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.一个不透明的袋子中装有若干个除颜色外形状大小完全相同的小球.如果其中有2个白球n个黄球,从中随机摸出白球的概率是,那么n=1.【考点】概率公式.【分析】根据有2个白球n个黄球,从中随机摸出白球的概率是,列出等式解答即可.【解答】解:∵有2个白球n个黄球,从中随机摸出白球的概率是,∴=,解得n=1;故答案为:1.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.不等式组的解集是x>3.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x>3,解②得x>﹣4.则不等式组的解集是:x>3.故答案是:x>3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.12.已知反比例函数,在其图象所在的每个象限内,y的值随x值的增大而减小(填“增大”或“减小”).【考点】反比例函数的性质.【分析】根据反比例函数的性质,k=3>0,y随x的增大而减小.【解答】解:反比例函数y=中,k=3>0,故每个象限内,y随x增大而减小.故答案为:减小.【点评】本题考查了反比例函数的性质,应注意y=中k的取值.13.直线y=kx+b(k≠0)平行于直线且经过点(0,2),那么这条直线的解析式是y=x+2.【考点】反比例函数与一次函数的交点问题.【分析】根据两直线平行的问题得到k=,然后把(0,2)代入y=x+b,求出b的值即可.【解答】解:根据题意得k=,把(0,2)代入y=x+b得b=2,所以直线解析式为y=x+2.故答案为y=x+2.【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.14.小明在高为18米的楼上看到停在地面上的一辆汽车的俯角为60°,那么这辆汽车到楼底的距离是6米.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】由俯角的正切值和楼高可求得这辆汽车到楼底的距离.【解答】解:由于楼高18米,塔顶看停在地面上的一辆汽车的俯角为60°,则这辆汽车到楼底的距离为=6(米).故答案是:6米.【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.15.如图,在△ABC中,点D在边BC上,且DC=2BD,点E是边AC的中点,设,那么=﹣;(用不的线性组合表示)【考点】*平面向量.【分析】由在△ABC中,点D在边BC上,且DC=2BD,点E是边AC的中点,设,可表示出与,然后利用三角形法则求解即可求得答案.【解答】解:∵DC=2BD,点E是边AC的中点,设,∴==,==,∴=﹣=﹣.故答案为:﹣.【点评】此题考查了平面向量的知识.注意掌握三角形法则的应用是解此题的关键.16.四边形ABCD中,AD∥BC,∠D=90°,如果再添加一个条件,可以得到四边形ABCD是矩形,那么可以添加的条件是AD=BC.(不再添加线或字母,写出一种情况即可)【考点】矩形的判定.【分析】添加AD=BC,再有条件AD∥BC可得四边形ABCD是平行四边形,再加上条件∠D=90°可根据有一个角是直角的平行四边形是矩形判定四边形ABCD是矩形.【解答】解:添加AD=BC,∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵∠D=90°,∴四边形ABCD是矩形,故答案为:AD=BC.【点评】此题主要考查了矩形的判定,关键是掌握有一个角是直角的平行四边形是矩形.17.如图,在Rt△ABC中,∠ACB=90°,AD是边BC边上的中线,如果AD=BC,那么cot∠CAB的值是.【考点】解直角三角形;含30度角的直角三角形.【专题】计算题.【分析】设AD=BC=2x,利用中线定义得到CD=BD=x,则可根据勾股定理表示出AC,然后利用余切的定义求解.【解答】解:设AD=BC=2x,则CD=BD=x,在Rt△ACD中,AC===x,在Rt△ABC中,cot∠CAB===.故答案为.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.解决本题的关键是灵活运用勾股定理和锐角三角函数的定义.18.如图,在△ABC中,∠B=45°,∠C=30°,AC=2,点D在BC上,将△ACD沿直线AD翻折后,点C 落在点E处,边AE交边BC于点F,如果DE∥AB,那么的值是+1.【考点】翻折变换(折叠问题).【分析】作AM⊥BC垂足为M,先求出AM、BM、MC,再证明CA=CF,由此即可解决问题.【解答】解:如图作AM⊥BC垂足为M,∵△ADE是由△ADC翻折,∴∠C=∠E=30°,∵AB∥DE,∴∠E=∠BAF=30°,∴∠AFC=∠B+∠BAF=75°,∴∠CAF=180°﹣∠AFC﹣∠C=75°,∴∠CAF=∠CFA=75°,∴CA=CF=2,在RT△AMC中,∵∠C=30°,AC=2,∴AM=1,MC=,∵∠B=∠BAM=45°,∴MB=AM=1,∴BC=1+,BF=1+﹣2=﹣1∴==+1.故答案为+1.【点评】本题考查翻折变换、等腰三角形的判定和性质、勾股定理等知识,添加辅助线构造直角三角形是解决问题的关键,解题时要善于发现特殊三角形,属于中考常考题型.三、解答题:(本大题共7题,满分78)19.计算:.【考点】实数的运算;分数指数幂;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用立方根定义计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1﹣﹣2+2﹣=1﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解方程:.【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是(x2﹣4),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x2﹣4),得(x+2)2﹣(x﹣2)=16,解得x1=2,x2=﹣5.检验:把x=2代入(x2﹣4)=0,所以x=2是原方程的增根.把x=﹣5代入(x2﹣4)=21≠0,∴原方程的解为x=﹣5.【点评】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.已知,如图,在Rt△ABC中,∠ACB=90°,AB=4,AD是∠BAC的平分线,过点D作DE⊥AD,垂足为点D,交AB于点E,且.(1)求线段BD的长;(2)求∠ADC的正切值.【考点】相似三角形的判定与性质;解直角三角形.【分析】(1)根据余角的性质得到∠CAD=∠DAB,推出∠BAD=∠BDE,得到△BED∽△BDA,由相似三角形的性质得到BD2=BE•BA,即可得到结论;(2)由余角的性质得到∠ADE=∠AED,根据余角的性质得到,根据三角形函数的定义即可得到结论.【解答】解:(1)∵DE⊥AD,∴∠BDE=∠CAD=90°﹣∠CDA,∵∠CAD=∠DAB,∴∠BAD=∠BDE,∵∠B=∠B,∴△BED∽△BDA,∴BD2=BE•BA,∵AB=4,,∴BE=1,∴BD2=1×4=4,∴BD=2;(2),∵DE⊥AD,∴∠AED=90°﹣∠DAE,∵∠ADE=90°﹣∠CAD,∵∠CAD=∠DAB,∴∠ADE=∠AED,∵△BED∽△BDA,∴,∴tan∠ADE=tan∠AED===2.【点评】本题考查了相似三角形的判定和性质,三角函数的定义,熟练掌握相似三角形的判定和性质是解题的关键.22.今年3月5日,某中学组织六、七年级200位学生参与了“走出校门,服务社会”的活动,该校某数学学习小组的同学对那天参与打扫街道、敬老院服务和社区文艺演出的三组人数进行分别统计,部分数据如图所示:(1)参与社区文艺演出的学生人数是50人,参与敬老院服务的学生人数是60人;(2)该数学学习小组的同学还发现,六、七年级参与打扫街道的学生人数分别比参与敬老院服务的学生人数多了40%和60%,求参与敬老院服务的六、七年级学生分别有多少人?【考点】扇形统计图.【分析】(1)用学生总数乘以参与社区文艺演出的学生所占百分比得到参与社区文艺演出的学生人数;用学生总数分别减去打扫街道、社区文艺演出的人数得到参与敬老院服务的学生人数;(2)设六年级参与敬老院服务的学生有x人,则七年级参与敬老院服务的学生有(60﹣x)人,根据六、七年级参与打扫街道总人数为90人列出方程求解可得.【解答】解:(1)参与社区文艺演出的学生人数是:200×25%=50人,参与敬老院服务的学生人数是:200﹣90﹣50=60人;(2)设六年级参与敬老院服务的学生有x人,则七年级参与敬老院服务的学生有(60﹣x)人,根据题意,得:(1+40%)x+(1+60%)(60﹣x)=90,解得:x=30,答:六年级参与敬老院服务的学生有30人,则七年级参与敬老院服务的学生有30人.【点评】本题主要考查读扇形统计图和列方程解决实际问题的能力,根据扇形统计图读出有用信息依据计算公式计算是基础,抓住相等关系列方程解决实际问题是关键.23.已知:如图,梯形ABCD中,DC∥AB,AD=BC=DC,AC、BD是对角线,E是AB延长线上一点,且∠BCE=∠ACD,联结CE.(1)求证:四边形DBEC是平行四边形;(2)求证:AC2=AD•AE.【考点】相似三角形的判定与性质;平行四边形的判定.【专题】证明题.【分析】(1)由等腰梯形的性质得出∠ADC=∠BCD,由SAS证明△ADC≌△BCD,得出∠ACD=∠BDC,由等腰三角形的性质和已知条件得出∠BCE=∠CBD,证出BD∥CE,即可得出结论;(2)证出CE=AC,证明△EAC∽△EBC,得出对应边成比例,即可得出结论.【解答】证明:(1)∵梯形ABCD中,DC∥AB,AD=BC=DC,∴∠ADC=∠BCD,在△ADC和△BCD中,,∴△ADC≌△BCD(SAS),∴∠ACD=∠BDC,∵BC=DC,∴∠CBD=∠BDC,∴∠CBD=∠ACD,∵∠BCE=∠ACD,∴∠BCE=∠CBD,∴BD∥CE,又∵DC∥AB,∴四边形DBEC是平行四边形;(2)由(1)得:四边形DBEC是平行四边形,∴∠E=∠BDC,∵DC∥AB,∴∠BAC=∠ACD,∵∠BCE=∠ACD,∴∠BAC=∠BCE=∠E,∴CE=AC,又∵∠B=∠B,∴△EAC∽△EBC,∴,即,∴AC2=AD•AE.【点评】本题考查了平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、等腰梯形的性质、等腰三角形的性质等知识;熟练掌握平行四边形的判定与性质,证明三角形相似得出比例式是解决问题(2)的关键.24.已知在平面直角坐标系xOy(如图)中,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)与点C(3,0),与y轴交于点B,点P为OB上一点,过点B作射线AP的垂线,垂足为点D,射线BD交x轴于点E.(1)求该抛物线的解析式;(2)连结BC,当P点坐标为(0,)时,求△EBC的面积;(3)当点D落在抛物线的对称轴上时,求点P的坐标.【考点】二次函数综合题.【分析】(1)将A、C点的坐标代入抛物线解析式,得到关于b、c的二元一次方程,解方程即可得出结论;(2)由∠APO、∠AED均匀∠PAO互余得出∠APO=∠AED,再结合∠AOP=∠BOE=90°可得出△AOP∽△BOE,由相似三角形的性质得出,代入数据可得出OE的长度,结合C点坐标可得出CE 长度,将CE、OB的长度代入三角形的面积公式,即可得出结论;(3)令对称轴与x轴的交点为H,过点B作BF⊥直线x=1于点F,先证△ADH∽△DBF,再由相似三角形的性质找出,设DH=a,由此可得出关于a的一元二次方程,解方程可求出a的值,再根据可得出OP的长度,从而得出P点的坐标.【解答】解:(1)将点A(﹣1,0),点C(3,0)的坐标代入抛物线解析式,得:,解得:.故该抛物线的解析式为y=﹣x2+2x+3.(2)∵BD⊥AD,∴∠ADE=90°,∴∠PAO+∠APO=∠PAO+∠AED=90°,∴∠APO=∠AED=∠BEO,又∵∠AOP=∠BOE=90°,∴△AOP∽△BOE,∴.令x=0,y=3,即点B的坐标为(0,3),∵点A(﹣1,0),点C(3,0),点P(0,),∴OE=2,∴CE=OC﹣OE=3﹣2=1.S△EBC=CE•OB=.(3)抛物线对称轴直线x=﹣=1,令对称轴与x轴的交点为H,过点B作BF⊥直线x=1于点F,如图所示.∵DH⊥x轴,BF⊥FD,∴∠AHD=∠DFB=90°,∵∠BDF+∠BDA+∠ADH=180°,∠BDA=90°,∠BDF+∠DBF=90°,∴∠ADH=∠DBF,∴△ADH∽△DBF,∴.设DH=a.∵AH=2,DF=BO﹣DH=3﹣a,FB=1,∴有,解得:a1=1,a2=2.又∵,∴OP=或1.故点P的坐标为(0,1)或(0,).【点评】本题考查了待定系数法求函数解析式、相似三角形的判定及性质、解一元二次方程,解题的关键:(1)待定系数法求解析式的系数;(2)找出线段CE的长度;(3)由相似三角形的性质找出关于a的一元二次方程.本题属于中档题,(1)难度不大;(2)(3)有点难度.解决该类问题,利用相似三角形的性质找出比例关系,解方程即可得出结论.25.如图,边长为5的菱形ABCD中,cosA=,点P为边AB上一点,以A为圆心,AP为半径的⊙A与边AD交于点E,射线CE与⊙A另一个交点为点F.(1)当点E与点D重合时,求EF的长;(2)设AP=x,CE=y,求y关于x的函数关系式及定义域;(3)是否存在一点P,使得=2?若存在,求AP的长;若不存在,请说明理由.【考点】圆的综合题.【分析】(1)由平行四边形的性质得到∠AEF=DAB,再利用cos∠DAB=cos∠AEF==即可求解;(2)由平行四边形的性质得到∠CGD=∠BAD,再利用勾股定理即可求解;(3)由平行四边形的性质得到∠GCE=∠HAE=∠DAB,利用cosA=计算即可.【解答】解:(1)过点A作AH⊥EF于点H,∴EF=2EH,∵点E与点D重合,∴EF∥AB,∴∠AEF=DAB,∴cos∠DAB=cos∠AEF==,∵AE=5,∴EH=3,∴EF=6;(2)如图,过点C作CG⊥AD,在Rt△CGD中,cos∠CGD=cos∠BAD=,∴DG=3,CG=4,在Rt△CGE中,GE=8﹣x,∴y2=16+(8﹣x)2,y=(0<x≤5),(3)∵cos∠DAB=,∴tan∠DAB=,∵∠GCE=∠HAE=∠DAB,∴tan∠DAB==,∴x=,即:AP的长为.【点评】此题是圆的综合题,主要考查了圆的性质,平行四边形的性质,勾股定理以及锐角三角函数,锐角三角函数的运用是解本题的关键.。
2019-2020学年上海市奉贤区九年级第二学期(二模)考试数学(答案部分)
奉贤区2019学年度九年级数学质量调研参考答案及评分说明(202005)一、选择题:(本大题共6题,每题4分,满分24分)1.D ; 2.A ; 3.A ; 4.B ; 5.C ; 6.B . 二、填空题:(本大题共12题,每题4分,满分48分) 三、解答题(本大题共7题,其中19-22题每题10分,23、24题每题12分,25题14分,满分78分)19.解原式=1214(-+ ······································· (每个2分,共8分)211=. ······························································ (2分)20.解原式=2336(3)3x x x x ··························································· (4分)=2331(3)33x x x x x . ···································································· (3分)当3x 时,原式133633. ·················································· (3分)21.(1)解:过点C 作CH y 轴,垂足为H ,得//CH x 轴.∴BC CHAB AO . ··················································································· (1分)∵A (-2,0),∴AO =2,∴CH =2.∵点C 的纵坐标为4,∴点C 的坐标为(2,4).······································· (2分) 设直线AB 的表达式(0)y kxb k,由它经过点A 、C ,得2024k b kb, 解得12k b. ···································· (2分)∴直线AB 的表达式2y x .(2)∵反比例函数y =xm的图像交于点C (2,4),∴8=m . ······················ (1分) ∵直线AB 与与y 轴的正半轴交于点B ,∴点B 的坐标为(0,2). ·············· (1分) ∵BD ∥x 轴,∴点D 纵坐标为2. ·························································· (1分) ∵点D 在反比例函数y =x 8的图像上,∴点D 坐标为(4,2). ···················· (1分)∴22=+=222)(44)(2--CD . ····························································· (1分)7. 3ab ;8. 3x;9. 15x =;10. 11x y =⎧⎨=⎩;11.13;12. 减小;13.106.1;14.12a b - ;15.360;16.40; 17.18r <<; 18.125.22.(1)过点E 作EH AB 轴,垂足为H . ············································· (1分) ∵四边形ABCD 是矩形,∴∠DAB =90°,∴AD //EH . ∴∠DAE =∠AEH . ·············································································· (1分) ∵∠DAE =30°,∴∠AEH =30°.在直角△AEH 中,∠AHE =90°,∴AEH cos AE EH ∠⋅=. ························· (2分)∵AD=AE =3cm ,∴233233=⨯=EH cm . ············································· (1分) 即点E 到边AB 的距离是233cm .(2)过点E 作EH AB ,垂足为H . ∵四边形ABCD 是矩形,∴AD=BC . ∵AD =3cm ,∴BC=3cm .在直角△ABC 中,∠ABC =90°,AB =4cm ,,∴225ACAB BC cm .································································ (1分) ∵EH //BC ,∴AEEHACBC. ∵AE=AD=3 cm ,∴354EH.∴95EH cm . ··········································· (2分) ∵推移过程中边的长度保持不变,∴,AD AE BF AB DC EF .∴四边形ABCD 是平行四边形. ····························································· (1分) ∴936455ABFE S AB EH 平行四边形cm 2. ·············································· (1分)23.证明:(1)∵CA CE BC ⋅=2,∴BCCA CEBC. ··········································· (1分) ∵BCA ECB ∠=∠,∴△BCE ∽△ACB . ············································ (1分) ∴CBE CAB . ······································································· (1分) ∵AC ⊥BC ,∠DAB=90°,∴90BEC CBE ∠+∠=︒,90DAE CAB ∠+∠=︒. ∴BEC DAE . ········································································· (1分) ∵BEC DEA ,∴DAE DEA . ·············································· (1分) ∴AD DE . ·················································································· (1分) (2)∵DF ⊥AC, AC ⊥BC ,∴∠DFE=∠BCA =90°.∴//DF BC .∴CE BE EF DE=. ················································································· (2分) ∵//DC AB ,∴BE AEDE CE=. ····························································· (1分) ∴CE AEEF CE=. ···················································································· (1分) ∵AD DE ,DF ⊥AC ,∴AF EF . ···················································· (1分)∴2CE AE EF =⋅. ·············································································· (1分)24.解:(1)由题意,抛物线2y x bx 经过点A (2,0),得042b , 解得 2b····················································· (2分) ∴抛物线的表达式是22y x x =-. ·························································· (1分) 它的顶点C 的坐标是(1,-1). ······························································ (1分) (2)∵直线122y x =-与x 轴交于点B , ∴点B 的坐标是(4,0) . ················· (1分) ①将抛物线22y x x =-向右平移2个单位,使得点A 与点B 重合,此时平移后的抛物线表达式是231()y x =--. ······································ (2分) ②将抛物线22y x x =-向右平移4个单位,使得点O 与点B 重合,此时平移后的抛物线表达式是251()y x =--. ······································· (1分) (3)设向下平移后的抛物线表达式是:22y x x n =-+,得点D (0,n ). ∵DP ∥x 轴,∴点D 、P 关于抛物线的对称轴直线1x 对称,∴P (2,n ).∵点P 在直线BC 上,∴12212n =⨯-=-.∴平移后的抛物线表达式是:222y x x =--. ·········································· (2分) ∴新抛物线的顶点M 的坐标是(1,-2). ················································ (1分) ∴MC //OB ,∴∠MCP =∠OBC . 在Rt △OBC 中,sin OCOBC BC, 由题意得:OC =2,25BC , ∴25sin sin 525MCPOBC. ····················································· (1分)即∠MCP25.解:(1)联结EO ,交弦CD 于点H .∵E 为弧CD 的中点,∴EO ⊥AB . ······························································ (1分) ∵CD ∥AB ,∴OH ⊥CD .∴CH=12CD .联结CO ,∵AB =10,CD =8,∴CO=5,4CH =.∴3OH =. ·········································································· (1分) ∴2EH EO OH =-=.∵点F 与点B 重合,∴45OBE HGE ∠=∠=︒.∵PE ⊥BE ,∴45HPE HGE ∠=∠=︒,∴PE GE =. ········································ (1分) ∴2PH HG ==.∴2CP CH PH =-=. ·············································································· (1分) (2)∵∠PEH+∠OEF=90°,∠OFE+∠OEF=90°,∴∠PEH=∠OFE .∵∠PHE=∠EOF=90°,∴PEH ∆∽EFO ∆. ·············································· (2分) ∴EH PHFO EO=. ∵245EH FO y PH x EO ,,,===-=,∴245xy -=. ··································· (1分) ∴10034y x x()=≤<-. ··········································································· (2分) (3)过点P 作PQAB ,垂足为Q .∵GP =GF ,∴∠GPF=∠GFP . ································································· (1分) ∵CD ∥AB ,∴∠GPF=∠PFQ .∵PE ⊥EF ,∴PQ=PE . ·········································································· (1分) 由(2)可知,PEH ∆∽EFO ∆,∴PE PHEF EO=. ∵PQ=OH=3,∴PE=3.∵2EH ,=∴PH ==∴3EF =.∴EF = ························································································ (2分)∴11322EPF S PE EF ∆=⋅⋅=⨯⨯=················································· (1分)。
2020年上海市奉贤区中考数学二模试卷 (含答案解析)
2020年上海市奉贤区中考数学二模试卷一、选择题(本大题共6小题,共24.0分)1.下列计算错误的是()A. 2a2+3a2=5a4B. (3ab3)2=9a2b6C. (x2)3=x6D. a⋅a2=a32.下列四个等式:①√(−4)2=4;②(−√4)2=16;③(√4)2=4;④√(−4)2=−4,正确的是()A. ①②B. ③④C. ②④D. ①③3.已知关于x的一元二次方程x2−2kx+6=0有两个相等的实数根,则k的值为()A. ±2√6B. ±√6C. 2或3D. √6或√34.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x−(单位:分)及方差s2如表所示:甲乙丙丁x−7887s21 1.21 1.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是()A. 甲B. 乙C. 丙D. 丁5.如图,在给定的一张平行四边形纸片上作一个菱形,甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形;乙:分别作∠BAD,∠ABC的平分线AE,BF,交BC,AD于E,F,连接EF,则四边形ABEF 是菱形.根据两人的作法可判断()A. 甲正确,乙错误B. 乙正确,甲错误C. 甲、乙均正确D. 甲、乙均错误6. 如图,线段AD 、AE 、AF 分别是△ABC 的高线,角平分线,中线,比较线段AC 、AD 、AE 、AF 的长短,其中最短的是( )A. AFB. AEC. ADD. AC 二、填空题(本大题共12小题,共48.0分)7. 计算:16a 2b 3÷(−2ab 2)=______.8. 要使代数式2x−1有意义,则实数x 的取值范围是________.9. 方程√2x −3=1的解是______.10. 二元一次方程3x +2y =15的正整数解为______.11. 一枚质地均匀的正六面体骰子,六个面分别标有1、2、3、4、5、6,连续投掷两次.记两次朝上的面上的数字分别为m 、n ,若把m 、n 分别作为点P 的横坐标和纵坐标,则P(m,n)在双曲线y =12x 上的概率为______.12. 已知正比例函数y =kx(k ≠0),点(2,−3)在这个函数的图象上,则y 随x 的增大而________(填“增大”或“减小”).13. 为了节能减排,近期纯电动出租车正式上路运行.某地纯电动出租车的收费标准如下表:行驶公里范围收费标准 3公里以内(含3公里) 10元超过3公里且不超过15公里的部分 2元/公里超过15公里的部分 3元/公里小周要到离家10公里的博物馆参观,如果他乘坐纯电动出租车,那么需付车费______元.14. 如图,AC 、BD 是平行四边形ABCD 的对角线,设BC ⃗⃗⃗⃗⃗ =a ⃗ ,CA ⃗⃗⃗⃗⃗ =b ⃗ ,那么向量BD ⃗⃗⃗⃗⃗⃗ 用向量a ⃗ 、b ⃗ 表示为______.15.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1000人,则根据此估计步行上学的有______人.16.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时B处与灯塔P的距离约为______海里.(结果取整数,参考数据:√3≈1.7,√2≈1.4)17.如图,在矩形ABCD中,AB=4,AD=3,以D为圆心的圆,与线段AB有公共点,则圆的半径r的取值范围是______.18.如图,四边形ABCD中,AB=10,BD⊥AD,若将ΔBCD沿BD折叠,点C与边AB的中点E恰好重合,则四边形BCDE的周长是__________.三、解答题(本大题共7小题,共78.0分))−219.计算:√81−20180−|−5|+(1220.先化简,再求值:(x+1x−2−1)÷x2−2xx2−4x+4,其中x=√3.21.已知平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=kx的图象上,过点A的直线y=x+b交x轴于点B.(1)求反比例函数解析式;(2)求△OAB的面积.22.如图,在四边形ABCD中,∠ADC=90°,∠A=45°,AB=√2,BD=3.(1)求sin∠ADB的值;(2)若DC=3,求BC的长.23.已知:如图,在△ABC中,∠ACB的平分线CD交AB于D,过B作BE//CD交AC的延长线于点E.(1)求证:BC=CE;(2)求证:ADBD =ACBC.24.已知抛物线y=−12x2+bx+c经过点(1,0),(0,32).(1)求该抛物线的函数表达式;(2)将抛物线y=−12x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.25.已知:AB是⊙O直径,点E、F是弦AD、CD延长线上的点,∠F=∠BAD;(1)求EF与AC的位置关系.(2)连接CE交⊙O于G,连接BD,若2∠CAE+∠DAG=∠ABD,求证:AC=CE.(3)在(2)的条件下,延长AB、EF交于K,EK=2AC,AK=10,△AEK的面积=18,求线段EK的长度.【答案与解析】1.答案:A解析:解:A、2a2+3a2=5a2,符合题意;B、(3ab3)2=9a2b6,正确,不合题意;C、(x2)3=x6,正确,不合题意;D、a⋅a2=a3,正确,不合题意;故选:A.直接利用积的乘方运算法则以及同底数幂的乘法运算、合并同类项,正确掌握相关运算法则分别化简得出答案.此题主要考查了积的乘方运算以及同底数幂的乘法运算、合并同类项,正确掌握相关运算法则是解题关键.2.答案:D解析:解:①√(−4)2=√16=4,正确;②(−√4)2=(−1)2(√4)2=1×4=4≠16,不正确;③(√4)2=4符合二次根式的意义,正确;④√(−4)2=√16=4≠−4,不正确.①③正确.故选:D.本题考查的是二次根式的意义:①√a2=a(a≥0),②( √a)2=a(a≥0),逐一判断.运用二次根式的意义,判断等式是否成立.3.答案:B解析:解:根据题意得△=(−2k)2−4×6=0,解得k=±√6.故选:B.利用判别式的意义得到△=(−2k)2−4×6=0,然后解关于k的方程即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.答案:C解析:本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.解:因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故选:C.5.答案:C解析:本题主要考查全等三角形的判定和性质,平行四边形的性质,菱形的判定和性质.先证明△AOM≌△CON(ASA),可得MO=NO,再根据对角线互相平分的四边形是平行四边形可判定判定四边形ANCM是平行四边形,再由AC⊥MN,可根据对角线互相垂直的四边形是菱形判定出ANCM是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD//BC,∴∠DAC=∠ACN,∵MN 是AC 的垂直平分线,∴AO =CO ,在△AOM 和△CON 中{∠MAO =∠NCO AO =CO ∠AOM =∠CON,∴△AOM≌△CON(ASA),∴MO =NO ,∴四边形ANCM 是平行四边形,∵AC ⊥MN ,∴四边形ANCM 是菱形;乙的作法正确;如图:∵AD//BC ,∴∠1=∠2,∠6=∠7,∵BF 平分∠ABC ,AE 平分∠BAD ,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF//BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选C.6.答案:C解析:本题考查了垂线段的性质,关键是掌握垂线段最短.根据垂线段的性质:垂线段最短可得答案.解:根据垂线段最短可得AD最短,故选C.7.答案:−8ab解析:此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.直接利用整式的除法运算法则计算得出答案.解:16a2b3÷(−2ab2)=−8ab.故答案为−8ab .8.答案:x ≠1解析:本题主要考查了分式有意义的条件,利用分母不为0得出不等式是解题的关键,根据分母不为0分式有意义,可得答案.解:由题意得:x −1≠0,解得x ≠1.故答案为x ≠1.9.答案:x =2解析:解:√2x −3=1,两边平方得,2x −3=1,解得,x =2;经检验,x =2是方程的根;故答案为x =2.根据无理方程的解法,首先,两边平方,解出x 的值,然后,验根解答出即可.本题考查了无理方程的解法,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法,解无理方程,往往会产生增根,应注意验根. 10.答案:{x =1y =6、{x =3y =3解析:解:方程3x +2y =15变形,得:y =15−3x 2,当x =1时,y =6;当x =3时,y =3;∴方程3x +2y =15的正整数解为:{x =1y =6、{x =3y =3, 故答案为:{x =1y =6、{x =3y =3. 将x 看做已知数求出y ,即可确定出正整数解.此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .11.答案:19 解析:解:列表如下: 共有36种等可能的结果,其中有(2,6)、(6,2)、(3,4),(4,3)在y =12x 图象上,所以P(m,n)在双曲线y =12x 上的概率=436=19. 故答案为19.先列表展示所有36种等可能的结果,利用反比例函数图象上点的坐标特点得到(2,6)、(6,2)、(3,4),(4,3)在y =12x 图象上,然后根据概率的定义即可得到P(m,n)在双曲线y =12x 上的概率=436. 本题考查了利用列表法或树状图法求概率:先列表或画树状图展示所有等可能的结果数m ,再找出某事件所占有的可能数n ,然后根据概率的概念即可得到这个事件的概率=nm .也考查了反比例函数图象上点的坐标特点. 12.答案:减小解析:此题主要考查了正比例函数的性质,以及待定系数法确定正比例函数解析式,关键是掌握正比例函数的性质.首先利用待定系数法确定正比例函数解析式,再根据正比例函数的性质:k >0时,y 随x 的增大而增大,k <0时,y 随x 的增大而减小确定答案.解:∵点(2,−3)在正比例函数y =kx(k ≠0)上,∴2k =−3,解得k =−32,∴正比例函数解析式是y =−32x ,∵k =−32<0,∴y 随x 的增大而减小,故答案为减小.13.答案:24解析:解:根据题意,知他乘坐纯电动出租车需付车费10+(10−3)×2=24(元),故答案为:24.先根据表格中分段计费方法列出算式,再根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是理解题意,列出算式,并熟练掌握有理数的混合运算顺序和运算法则.14.答案:2a ⃗ +b ⃗解析:解:∵四边形ABCD 是平行四边形,∴AD =BC ,AD//BC ,AB =CD ,AB//CD ,∴AD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ =a ⃗ ,∵CD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ =b ⃗ +a ⃗ ,∴BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ =b ⃗ +a ⃗ ,∵BD ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AD⃗⃗⃗⃗⃗⃗ , ∴BD ⃗⃗⃗⃗⃗⃗ =b ⃗ +a ⃗ +a ⃗ =2a ⃗ +b ⃗ ,故答案为:2a ⃗ +b ⃗ .利用平行四边形的性质,三角形法则求解即可.本题考查平行四边形的性质,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.答案:400解析:解:∵骑车的学生所占的百分比是126360×100%=35%,∴步行的学生所占的百分比是1−10%−15%−35%=40%,∴若该校共有学生1000人,则据此估计步行的有1000×40%=400(人).故答案为:400.先求出步行的学生所占的百分比,再用学生总数乘以步行学生所占的百分比即可估计全校步行上学的学生人数.本题考查了扇形统计图及用样本估计总数的知识,解题的关键是从统计图中得出步行上学学生所占的百分比.16.答案:95解析:解:过P作PD⊥AB,垂足为D,∵一艘海轮位于灯塔P的北偏东60°方向,距离灯塔80海里的A处,∴∠MPA=∠PAD=60°,∴PD=AP⋅sin∠PAD=80×√32=40√3(海里),∵∠BPD=45°,∴∠B=45°.在Rt△BDP中,由勾股定理,得BP=PDsinB =√3√22=40√3×√2≈95(海里),故答案为:95.根据题意得出∠MPA=∠PAD=60°,从而知PD=AP⋅sin∠PAD=40√3,由∠BPD=∠PBD=45°根据BP=PDsinB,即可求出即可.此题主要考查了方向角含义、勾股定理的运用,正确记忆三角函数的定义得出相关角度是解决本题的关键.17.答案:3≤r≤5解析:解:在直角△ABD中,CD=AB=4,AD=3,则BD=√32+42=5.由图可知3≤r≤5.故答案为:3≤r≤5要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.此题主要考查了点与圆的位置关系,解决本题要注意点与圆的位置关系,要熟悉勾股定理,及点与圆的位置关系.18.答案:20.解析:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.根据直角三角形斜边上中线的性质,即可得到DE=BE=12AB=5,再根据折叠的性质,即可得到四边形BCDE的周长为5×4=20.解:∵BD⊥AD,点E是AB的中点,∴DE=BE=12AB=5,由折叠可得,CB=BE,CD=ED,∴四边形BCDE的周长为5×4=20,故答案为20.19.答案:解:原式=9−1−5+22=7.解析:直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.答案:解:原式=(x+1x−2−x−2x−2)÷x(x−2)(x−2)2=3x−2⋅x−2x=3x,当x=√3时,原式=3=√3.解析:先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.21.答案:解:(1)∵点A(2,5)在反比例函数y=kx的图象上,∴k=2×5=10∴反比例函数解析式:y=10x,(2)∵点A在直线y=x+b上,∴5=2+b∴b=3∴一次函数解析式y=x+3,∵直线y=x+b交x轴于点B,∴点B(−3,0),∴S△AOB=12×3×5=152.解析:(1)将点A坐标代入解析式可求解;(2)将点A坐标代入解析式可求一次函数解析式,可求点B坐标,即可求△OAB的面积.本题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象上点的坐标满足函数解析式是本题的关键.22.答案:解:(1)如图,过点B作BE⊥AD于点E,在Rt△ABE中,∵∠A=45°,AB=√2,∴AE=BE=1,在Rt△BDE中,sin∠ADB=BEBD=1;(2)过点B作BF⊥DC于点F,则∠BFD=∠BED=∠ADC=90°,∴四边形BEDF是矩形,∴DF=BE=1,BF=DE=√BD2−BE2=√32−12=2√2,∵DC=3,∴FC=2,则BC=√BF2+FC2=√(2√2)2+22=2√3.解析:本题主要考查解直角三角形,解题的关键是结合题意构建合适的直角三角形及直角三角形的有关性质与三角函数的定义.(1)作BE⊥AD,Rt△ABE中由∠A=45°,AB=√2知AE=BE=1,在Rt△BDE中,根据sin∠ADB= BE可得答案;(2)作BF⊥DC,证四边形BEDF是矩形得DF=BE=1,BF=DE=√BD2−BE2=2√2,结合DC= 3知FC=2,根据BC=√BF2+FC2可得答案.23.答案:证明:(1)∵CD平分∠ACB,∴∠ACD=∠BCD.又∵BE//CD,∴∠CBE=∠BCD,∠CEB=∠ACD.∵∠ACD=∠BCD,∴∠CBE=∠CEB.∴BC=CE.(2)∵BE//CD,∴ADBD =ACCE,又∵BC =CE , ∴AD BD =AC BC . 解析:本题主要考查了等腰三角形的判定及性质和角平分线定理、平行线分线段成比例定理,关键是熟练掌握平行线分线段成比例定理和平行线的性质.(1)根据CD 平分∠ACB ,可知∠ACD =∠BCD ;由BE//CD ,可求出△BCE 是等腰三角形,故BC =CE ;(2)根据平行线的性质,及BC =CE 可得出结论.24.答案:解:(1)把(1,0),(0,32)代入抛物线解析式得:{−12+b +c =0c =32, 解得:{b =−1c =32,则抛物线解析式为y =−12x 2−x +32;(2)抛物线解析式为y =−12x 2−x +32=−12(x +1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y =−12x 2,其顶点恰好落在原点.解析:此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.(1)把已知点的坐标代入抛物线解析式求出b 与c 的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可. 25.答案:解:(1)如图1,延长FE ,AC 交于点H ,连接BD ,∵AB 是直径,∴∠ADB =90°,∴∠DAB+∠ABD=90°,∵四边形ABDC是圆内接四边形,∴∠HCD=∠ABD,且∠F=∠BAD,∴∠HCD+∠F=90°,∴∠H=90°,∴AC⊥EF;(2)如图2,延长FE,AC交于点H,连接BD,∵四边形ABDC是圆内接四边形,∴∠HCD=∠ABD,∵2∠CAE+∠DAG=∠ABD,且∠HCD=∠CAE+∠ADC,∴∠CAE+∠ADC=2∠CAE+∠DAG,∴∠ADC=∠CAE+∠DAG,且∠AGC=∠ADC,且∠AGC=∠AEC+∠GAD,∴∠CAE+∠DAG=∠GAD+∠AEC,∴∠AEC=∠CAE,∴AC=CE;(3)如图3,过点K作KM⊥AE,过点E作EN⊥AK,过点A作AP⊥CE,交EC的延长线于P,∵∠H=∠AMK=90°,∠AEH=∠MEF,∴∠HAE=∠MKE,且∠HAE=∠CEA,∴∠CEA=∠MKE,∵PA⊥AE,∠HAE=∠CEA,∴∠CPA=∠CAP,∴PC=AC,且AC=CE,∴PE=2AC,且EK=2AC,∴PE=EK,且∠PAE=∠KME=90°,∠CEA=∠MKE,∴△PAE≌△EMK(AAS)∴AE=MK,∵AK=10,△AEK的面积=18,∴12AK×EN=12×10×EN=18,12AE×MK=12×AE2=18,∴EN=185,AE=6,∴AN=√AE2−EN2=√36−32425=245,∴KN=AK−AN=265,∴EK=√EN2+NK2=√32425+67625=2√10.解析:(1)如图1,延长FE,AC交于点H,连接BD,由圆周角定理可求∠DAB+∠ABD=90°,由圆的内接四边形的性质可得∠HCD=∠ABD,可求∠H=90°,可得AC⊥EF;(2)如图2,延长FE,AC交于点H,连接BD,由圆的内接四边形的性质可得∠HCD=∠ABD,由角的数量关系可求∠AEC=∠CAE,可得AC=CE;(3)如图3,过点K作KM⊥AE,过点E作EN⊥AK,过点A作AP⊥CE,交EC的延长线于P,由“AAS”可证△PAE≌△EMK,可得AE=MK,由三角形面积公式可求EN=185,AE=6,由勾股定理可求解.本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,勾股定理等知识,添加恰当辅助线构造全等三角形是本题的关键.。
2020年上海市奉贤区中考数学二模试卷 (解析版)
2020年中考数学二模试卷一、选择题(本题共6题)1.下列计算中,结果等于a2m的是()A.a m+a m B.a m•a2C.(a m)m D.(a m)22.下列等式成立的是()A.()2=3B.=﹣3C.=3D.(﹣)2=﹣3 3.如果关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,那么实数m的值可以是()A.0B.1C.2D.34.甲、乙、丙、丁四位同学本学期5次50米短跑成绩的平均数(秒)及方差S2(秒2)如表所示.如果从这四位同学中选出一位成绩较好且状态稳定的同学参加学校比赛,那么应该选的同学是()甲乙丙丁777.57.5S2 2.1 1.92 1.8A.甲B.乙C.丙D.丁5.四边形ABCD的两条对角线AC、BD互相平分.添加下列条件,一定能判定四边形ABCD 为菱形的是()A.∠ABD=∠BDC B.∠ABD=∠BAC C.∠ABD=∠CBD D.∠ABD=∠BCA 6.如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN二、填空题(本大题共12题,每题4分,满分48分)7.计算:9a3b÷3a2=.8.如果代数式在实数范围内有意义,那么实数x的取值范围是.9.方程=4的解是.10.二元一次方程x+2y=3的正整数解是.11.从分别写有数字1,2,4的三张相同卡片中任取两张,如果把所抽取卡片上的两个数字分别作为点M的横坐标和纵坐标,那么点M在双曲线y=上的概率是.12.如果函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而.(填“增大”或“减小”)13.据国家统计局数据,2019年全年国内生产总值接近100万亿,比2018年增长6.1%.假设2020年全年国内生产总值的年增长率保持不变,那么2020年的全年国内生产总值将达到万亿.14.已知平行四边形ABCD,E是边AB的中点.设,,那么=.(结果用、表示).15.某校计划为全体1200名学生提供以下五种在线学习的方式:在线听课、在线答题、在线讨论、在线答疑和在线阅读.为了解学生需求,该校随机对部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成扇形统计图(如图).由这个统计图可知,全校学生中最喜欢“在线答疑”的学生人数约为人.16.如图,一艘轮船由西向东航行,在A处测得灯塔P在北偏东60°的方向,继续向东航行40海里后到B处,测得灯塔P在北偏东30°的方向,此时轮船与灯塔之间的距离是海里.17.在矩形ABCD中,AB=5,BC=12.如果分别以A、C为圆心的两圆外切,且圆A与直线BC相交,点D在圆A外,那么圆C的半径长r的取值范围是.18.如图,在Rt△ABC中,∠ACB=90°,∠B=35°,CD是斜边AB上的中线,如果将△BCD沿CD所在直线翻折,点B落在点E处,联结AE,那么∠CAE的度数是度.三、解答题(本大题共7题,满分78分)19.计算:.20.先化简,再求值:,其中x=.21.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与y 轴的正半轴交于点B,与反比例函数y=(x>0)的图象交于点C,且AB=BC,点C 的纵坐标为4.(1)求直线AB的表达式;(2)过点B作BD∥x轴,交反比例函数y=的图象于点D,求线段CD的长度.22.如图1,由于四边形具有不稳定性,因此在同一平面推矩形的边可以改变它的形状(推移过程中边的长度保持不变).已知矩形ABCD,AB=4cm,AD=3cm,固定边AB,推边AD,使得点D落在点E处,点C落在点F处.(1)如图2,如果∠DAE=30°,求点E到边AB的距离;(2)如图3,如果点A、E、C三点在同一直线上,求四边形ABFE的面积.23.已知:如图,在梯形ABCD中,CD∥AB,∠DAB=90°,对角线AC、BD相交于点E,AC⊥BC,垂足为点C,且BC2=CE•CA.(1)求证:AD=DE;(2)过点D作AC的垂线,交AC于点F,求证:CE2=AE•AF.24.如图,在平面直角坐标系xOy中,抛物线y=x2+bx经过点A(2,0).直线y=x﹣2与x轴交于点B,与y轴交于点C.(1)求这条抛物线的表达式和顶点的坐标;(2)将抛物线y=x2+bx向右平移,使平移后的抛物线经过点B,求平移后抛物线的表达式;(3)将抛物线y=x2+bx向下平移,使平移后的抛物线交y轴于点D,交线段BC于点P、Q,(点P在点Q右侧),平移后抛物线的顶点为M,如果DP∥x轴,求∠MCP的正弦值.25.如图,已知半圆⊙O的直径AB=10,弦CD∥AB,且CD=8,E为弧CD的中点,点P在弦CD上,联结PE,过点E作PE的垂线交弦CD于点G,交射线OB于点F.(1)当点F与点B重合时,求CP的长;(2)设CP=x,OF=y,求y与x的函数关系式及定义域;(3)如果GP=GF,求△EPF的面积.参考答案一、选择题(本大题共6题,每题4分,满分24分)1.下列计算中,结果等于a2m的是()A.a m+a m B.a m•a2C.(a m)m D.(a m)2【分析】直接利用合并同类项法则、同底数幂的乘法运算法则、幂的乘方运算法则分别计算得出答案.解:A、a m+a m=2a m,故此选项不合题意;B、a m•a2=a m+2,故此选项不合题意;C、(a m)m=,故此选项不合题意;D、(a m)2=a2m,故此选项符合题意.故选:D.2.下列等式成立的是()A.()2=3B.=﹣3C.=3D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简,判断即可.解:()2=3,A正确;=3,B错误;==3,C错误;(﹣)2=3,D错误;故选:A.3.如果关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,那么实数m的值可以是()A.0B.1C.2D.3【分析】利用判别式的意义得到△=(﹣2)2﹣4m>0,解不等式得到m的范围,然后对各选项进行判断.解:根据题意得△=(﹣2)2﹣4m>0,解得m<1,所以m可以取0.故选:A.4.甲、乙、丙、丁四位同学本学期5次50米短跑成绩的平均数(秒)及方差S2(秒2)如表所示.如果从这四位同学中选出一位成绩较好且状态稳定的同学参加学校比赛,那么应该选的同学是()甲乙丙丁777.57.5S2 2.1 1.92 1.8A.甲B.乙C.丙D.丁【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.解:∵乙的平均分最好,方差最小,最稳定,∴应选乙.故选:B.5.四边形ABCD的两条对角线AC、BD互相平分.添加下列条件,一定能判定四边形ABCD 为菱形的是()A.∠ABD=∠BDC B.∠ABD=∠BAC C.∠ABD=∠CBD D.∠ABD=∠BCA 【分析】先由对角线AC、BD互相平分得出四边形ABCD是平行四边形,再按照平行四边形基础上菱形的判定方法:①一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形,逐个选项分析即可.解:如图所示,设四边形ABCD的两条对角线AC、BD交于点O,∵AC、BD互相平分,∴四边形ABCD是平行四边形.选项A,由平行四边形的性质可知AB∥DC,则∠ABD=∠BDC,从而A不符合题意;选项B,∠ABD=∠BAC,则AO=BO,再结合对角线AC、BD互相平分,可知AC=BD,从而平行四边形ABCD是矩形,故B不符合题意;选项C,由平行四边形的性质可知AD∥BC,从而∠ADB=∠CBD,当∠ABD=∠CBD时,∠ADB=∠ABD,故AB=AD,由一组邻边相等的平行四边形的菱形可知,C符合题意;选项D,∠ABD=∠BCA,得不出可以判定四边形ABCD为菱形的条件,故D不符合题意.综上,只有选项C一定能判定四边形ABCD为菱形.故选:C.6.如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN【分析】根据三角形的高的概念得到AD⊥BC,根据垂线段最短判断.解:∵线段AN是△ABC边BC上的高,∴AD⊥BC,由垂线段最短可知,AM≥AN,故选:B.二、填空题(本大题共12题,每题4分,满分48分)7.计算:9a3b÷3a2=3ab.【分析】直接利用整式的除法运算法则计算得出答案.解:原式=3ab.故答案为:3ab.8.如果代数式在实数范围内有意义,那么实数x的取值范围是x≠3.【分析】根据分式有意义的条件是分母不为0求解可得.解:根据题意知3﹣x≠0,解得x≠3,故答案为:x≠3.9.方程=4的解是x=15.【分析】将无理方程化为一元一次方程,然后求解即可.解:原方程变形为:x+1=16,∴x=15,x=15时,被开方数x+1=16>0‘∴方程的解为x=15.故答案为x=15.’10.二元一次方程x+2y=3的正整数解是.【分析】把y看做已知数求出x,即可确定出正整数解.解:方程x+2y=3,变形得:x=﹣2y+3,当y=1时,x=1,则方程的正整数解为,故答案为:11.从分别写有数字1,2,4的三张相同卡片中任取两张,如果把所抽取卡片上的两个数字分别作为点M的横坐标和纵坐标,那么点M在双曲线y=上的概率是.【分析】列表得出所有等可能的情况,然后判断落在双曲线上点的情况数,即可求出点M在双曲线y=上的概率.解:列表如下:1241(2,1)(4,1)2(1,2)(4,2)4(1,4)(2,4)所有可能的情况有6种;落在双曲线y=上的点有:(1,4),(4,1)共2个,则P==.12.如果函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而减小.(填“增大”或“减小”)【分析】根据正比例函数的性质进行解答即可.解:函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而减小,故答案为:减小.13.据国家统计局数据,2019年全年国内生产总值接近100万亿,比2018年增长6.1%.假设2020年全年国内生产总值的年增长率保持不变,那么2020年的全年国内生产总值将达到106.1万亿.【分析】利用增长率的意义得到2020年全年国内生产总值100×(1+6.1%),然后进行计算即可.解:根据题意得:100×(1+6.1%)=106.1(万亿),答:2020年的全年国内生产总值将达到106.1万亿;故答案为:106.1.14.已知平行四边形ABCD,E是边AB的中点.设,,那么=﹣+.(结果用、表示).【分析】由三角形法则可知:=+,只要求出,即可解决问题.解:如图,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC∴==,∵E是AB的中点,∴AE=AB=,∵=+,∴=﹣+,故答案为:﹣+.15.某校计划为全体1200名学生提供以下五种在线学习的方式:在线听课、在线答题、在线讨论、在线答疑和在线阅读.为了解学生需求,该校随机对部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成扇形统计图(如图).由这个统计图可知,全校学生中最喜欢“在线答疑”的学生人数约为360人.【分析】先根据各部分所占百分比之和为1求出D类型人数所占百分比,再乘以总人数即可得.解:∵最喜欢“在线答疑”的学生人数占被调查人数的百分比为1﹣(20%+25%+15%+10%)=30%,∴全校学生中最喜欢“在线答疑”的学生人数约为1200×30%=360(人),故答案为:360.16.如图,一艘轮船由西向东航行,在A处测得灯塔P在北偏东60°的方向,继续向东航行40海里后到B处,测得灯塔P在北偏东30°的方向,此时轮船与灯塔之间的距离是40海里.【分析】根据已知方向角得出∠P=∠PAB=30°,进而得出对应边关系即可得出答案.解:如图所示:由题意可得,∠PAB=30°,∠DBP=30°,故∠PBE=60°,则∠P=∠PAB=30°,可得:AB=BP=40海里.故答案为:40.17.在矩形ABCD中,AB=5,BC=12.如果分别以A、C为圆心的两圆外切,且圆A与直线BC相交,点D在圆A外,那么圆C的半径长r的取值范围是1<r<8.【分析】四边形ABCD是矩形,可得∠B=90°,AD=BC=12,AB=5,根据勾股定理,得AC=13,分别以A、C为圆心的两圆外切,且圆A与直线BC相交,点D在圆A外,根据圆与圆相切的性质即可求出r的取值范围.解:如图,∵四边形ABCD是矩形,∴∠B=90°,AD=BC=12,AB=5,根据勾股定理,得AC==13,∵分别以A、C为圆心的两圆外切,且圆A与直线BC相交,∴13﹣5=8,∵点D在圆A外,∴13﹣12=1,∴1<r<8,所以圆C的半径长r的取值范围是1<r<8.故答案为:1<r<8.18.如图,在Rt△ABC中,∠ACB=90°,∠B=35°,CD是斜边AB上的中线,如果将△BCD沿CD所在直线翻折,点B落在点E处,联结AE,那么∠CAE的度数是125度.【分析】依据折叠的性质即可得到∠DAE的度数,再根据三角形内角和定理即可得到∠BAC的度数,进而得出∠CAE的度数.解:如图所示,∵CD是斜边AB上的中线,∴CD=BD=AD,∴∠BCD=∠B=35°,∴∠BDC=110°,由折叠可得,∠CDE=∠CDB=110°,DE=DB=AD,∴∠BDE=360°﹣110°×2=140°,∴∠DAE=∠BDE=70°,又∵Rt△ABC中,∠BAC=90°﹣35°=55°,∴∠CAE=55°+70°=125°,故答案为:125.三、解答题(本大题共7题,满分78分)19.计算:.【分析】直接利用二次根式的性质和零指数幂的性质、绝对值的性质分别化简得出答案.解:原式==﹣2++1=﹣1.20.先化简,再求值:,其中x=.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.解:原式==,当时,原式=.21.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与y 轴的正半轴交于点B,与反比例函数y=(x>0)的图象交于点C,且AB=BC,点C 的纵坐标为4.(1)求直线AB的表达式;(2)过点B作BD∥x轴,交反比例函数y=的图象于点D,求线段CD的长度.【分析】(1)过点C作CH⊥x轴,垂足为H,如图,利用平行线分线段成比例得到==1,则OH=OA=2,则点C的坐标为(2,4),然后利用待定系数法求直线AB 的解析式;(2)把C点坐标代入y=中求出m=8,再利用直线解析式确定点B的坐标为(0,2),接着利用BD∥x轴得到点D纵坐标为2,根据反比例解析式确定点D坐标,然后根据两点间的距离公式计算CD的长.解:(1)过点C作CH⊥x轴,垂足为H,如图,∴==1,∵A(﹣2,0),∴AO=2,∴OH=OA=2,∵点C的纵坐标为4,∴点C的坐标为(2,4),设直线AB的表达式y=kx+b(k≠0),把A(﹣2,0),C(2,4)代入得,解得,∴直线AB的表达式y=x+2;(2)∵反比例函数y=的图象过点C(2,4),∴m=2×4=8,∵直线y=x+2与y轴的正半轴交于点B,∴点B的坐标为(0,2),∵BD∥x轴,∴点D纵坐标为2,当y=2时,=2,解得x=4,∴点D坐标为(4,2),∴CD==2.22.如图1,由于四边形具有不稳定性,因此在同一平面推矩形的边可以改变它的形状(推移过程中边的长度保持不变).已知矩形ABCD,AB=4cm,AD=3cm,固定边AB,推边AD,使得点D落在点E处,点C落在点F处.(1)如图2,如果∠DAE=30°,求点E到边AB的距离;(2)如图3,如果点A、E、C三点在同一直线上,求四边形ABFE的面积.【分析】(1)过点E作EH⊥AB轴,垂足为H,根据矩形的性质得到∠DAB=90°,AD∥EH,根据平行线的性质得到∠DAE=∠AEH,求得∠AEH=30°,解直角三角形即可得到结论;(2)过点E作EH⊥AB,垂足为H.根据矩形的性质得到AD=BC.得到BC=3cm.根据勾股定理得到cm,根据平行线分线段成比例定理得到cm,根据四边形的性质得到AD=AE=BF,AB=DC=EF.求得四边形ABCD是平行四边形,于是得到结论.解:(1)如图2,过点E作EH⊥AB轴,垂足为H,∵四边形ABCD是矩形,∴∠DAB=90°,∴AD∥EH,∴∠DAE=∠AEH,∵∠DAE=30°,∴∠AEH=30°.在直角△AEH中,∠AHE=90°,∴EH=AE•cos∠AEH,∵AD=AE=3cm,∴cm,即点E到边AB的距离是cm;(2)如图3,过点E作EH⊥AB,垂足为H.∵四边形ABCD是矩形,∴AD=BC,∵AD=3cm,∴BC=3cm,在直角△ABC中,∠ABC=90°,AB=4cm,∴cm,∵EH∥BC,∴,∵AE=AD=3 cm,∴,∴cm,∵推移过程中边的长度保持不变,∴AD=AE=BF,AB=DC=EF,∴四边形ABCD是平行四边形,∴cm2.23.已知:如图,在梯形ABCD中,CD∥AB,∠DAB=90°,对角线AC、BD相交于点E,AC⊥BC,垂足为点C,且BC2=CE•CA.(1)求证:AD=DE;(2)过点D作AC的垂线,交AC于点F,求证:CE2=AE•AF.【分析】(1)根据相似三角形的判定定理得到△BCE∽△ACB,根据相似三角形的性质得到∠CBE=∠CAB,根据等角的余角相等得到∠BEC=∠DAE,根据等腰三角形的判定定理证明;(2)根据平行线分线段成比例定理得到,,得到,整理得到CE2=AE•EF,根据等腰三角形的三线合一得到AF=EF,证明结论.【解答】证明:(1)∵BC2=CE•CA,∴,又∠ECB=∠BCA,∴△BCE∽△ACB,∴∠CBE=∠CAB,∵AC⊥BC,∠DAB=90°,∴∠BEC+∠CBE=90°,∠DAE+∠CAB=90°,∴∠BEC=∠DAE,∵∠BEC=∠DEA,∴∠DAE=∠DEA,∴AD=DE;(2)∵DF⊥AC,AC⊥BC,∴∠DFE=∠BCA=90°,∴DF∥BC,∴,∵DC∥AB,∴,∴,∴CE2=AE•EF,∵AD=DE,DF⊥AC,∴AF=EF,∴CE2=AE•AF.24.如图,在平面直角坐标系xOy中,抛物线y=x2+bx经过点A(2,0).直线y=x﹣2与x轴交于点B,与y轴交于点C.(1)求这条抛物线的表达式和顶点的坐标;(2)将抛物线y=x2+bx向右平移,使平移后的抛物线经过点B,求平移后抛物线的表达式;(3)将抛物线y=x2+bx向下平移,使平移后的抛物线交y轴于点D,交线段BC于点P、Q,(点P在点Q右侧),平移后抛物线的顶点为M,如果DP∥x轴,求∠MCP的正弦值.【分析】(1)根据待定系数法即可求得抛物线的解析式,化成顶点式即可求得顶点坐标;(2)根据图象上点的坐标特征求得B(4,0),然后分两种情况讨论求得即可;(3)设向下平移后的抛物线表达式是:y=x2﹣2x+n,得点D(0,n),即可求得P(2,n),代入y=x﹣2求得n=﹣1,即可求得平移后的解析式为y=x2﹣2x﹣2.求得顶点坐标,然后解直角三角形即可求得结论.解:(1)由题意,抛物线y=x2+bx经过点A(2,0),得0=4+2b,解得b=﹣2,∴抛物线的表达式是y=x2﹣2x.∵y=x2﹣2x=(x﹣1)2﹣1,∴它的顶点C的坐标是(1,﹣1).(2)∵直线与x轴交于点B,∴点B的坐标是(4,0).①将抛物线y=x2﹣2x向右平移2个单位,使得点A与点B重合,此时平移后的抛物线表达式是y=(x﹣3)2﹣1.②将抛物线y=x2﹣2x向右平移4个单位,使得点O与点B重合,此时平移后的抛物线表达式是y=(x﹣5)2﹣1.(3)设向下平移后的抛物线表达式是:y=x2﹣2x+n,得点D(0,n).∵DP∥x轴,∴点D、P关于抛物线的对称轴直线x=1对称,∴P(2,n).∵点P在直线BC上,∴.∴平移后的抛物线表达式是:y=x2﹣2x﹣2.∴新抛物线的顶点M的坐标是(1,﹣2).∴MC∥OB,∴∠MCP=∠OBC.在Rt△OBC中,,由题意得:OC=2,,∴.即∠MCP的正弦值是.25.如图,已知半圆⊙O的直径AB=10,弦CD∥AB,且CD=8,E为弧CD的中点,点P在弦CD上,联结PE,过点E作PE的垂线交弦CD于点G,交射线OB于点F.(1)当点F与点B重合时,求CP的长;(2)设CP=x,OF=y,求y与x的函数关系式及定义域;(3)如果GP=GF,求△EPF的面积.【分析】(1)如图1,连接EO,交弦CD于点H,根据垂径定理得EO⊥AB,由勾股定理计算,可得EH的长,证明∠HPE=∠HGE=45°,则PE=GE.从而可得结论;(2)如图2,连接OE,证明△PEH∽△EFO,列比例式可得结论;(3)如图3,作PQ⊥AB,分别计算PE和EF的长,利用三角形面积公式可得结论.解:(1)连接EO,交弦CD于点H,∵E为弧CD的中点,∴EO⊥AB,∵CD∥AB,∴OH⊥CD,∴CH=,连接CO,∵AB=10,CD=8,∴CO=5,CH=4,∴,∴EH=EO﹣OH=2,∵点F与点B重合,∴∠OBE=∠HGE=45°,∵PE⊥BE,∴∠HPE=∠HGE=45°,∴PE=GE,∴PH=HG=2,∴CP=CH﹣PH=4﹣2=2;(2)如图2,连接OE,交CD于H,∵∠PEH+∠OEF=90°,∠OFE+∠OEF=90°,∴∠PEH=∠OFE,∵∠PHE=∠EOF=90°,∴△PEH∽△EFO,∴,∵EH=2,FO=y,PH=4﹣x,EO=5,∴,∴.(3)如图3,过点P作PQ⊥AB,垂足为Q,∵GP=GF,∴∠GPF=∠GFP,∵CD∥AB,∴∠GPF=∠PFQ,∵PE⊥EF,∴PQ=PE,由(2)可知,△PEH∽△EFO,∴,∵PQ=OH=3,∴PE=3,∵EH=2,∴,∴,∴,∴.。
上海2020中考数学综合模拟测试卷2(含答案及解析)
2020上海市初中毕业模拟考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共24分)一、选择题(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的.1.计算×的结果是( )A. B. C.2 D.32.据统计,2013年上海市全社会用于环境保护的资金投入约为60800000000元,这个数用科学记数法表示为( )A.608×108B.60.8×109C.6.08×1010D.6.08×10113.如果将抛物线y=x2向右平移1个单位,那么所得新抛物线的表达式是( )A.y=x2-1B.y=x2+1C.y=(x-1)2D.y=(x+1)24.如图,已知直线a、b被直线c所截,那么∠1的同位角是( )A.∠2B.∠3C.∠4D.∠55.某市测得上一周PM2.5的日均值(单位:微克/立方米)如下:50,40,73,50,37,50,40,这组数据的中位数和众数分别是( )A.50和50B.50和40C.40和50D.40和406.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( )A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形ABCD的周长等于两条对角线长之和的两倍D.菱形ABCD的面积等于两条对角线长之积的两倍第Ⅱ卷(非选择题,共126分)二、填空题(本大题共12题,每题4分,满分48分)7.计算:a(a+1)= .的定义域是.8.函数y=-9.不等式组-的解集是.10.某文具店二月份共销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份共销售各种水笔支.11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是.12.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是.14.已知反比例函数y=(k是常数,k≠0),在其图象所在的每个象限内,y的值随着x的值增大而增大,那么这个反比例函数的解析式可以是(只需写一个).15.如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设=a,=b,那么= (结果用a、b表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投掷的成绩如图所示,那么三人中成绩最稳定的是.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a-b”,例如这组数中的第三个数“3”是由“2×2-1”得到的,那么这组数中y表示的数为.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C'、D'处,且点C'、D'、B在同一直线上,折痕与边AD交于点F,D'F 与BE交于点G.设AB=t,那么△EFG的周长为(用含t的代数式表示).三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:--+|2-|.20.(本题满分10分)解方程:---=.21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),下表记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数解析式(不需要写出函数定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.如图,已知在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sin B的值;(2)如果CD=,求BE的长.23.(本题满分12分,每小题满分各6分)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)连结AE,交BD于点G.求证:=.在平面直角坐标系xOy中(如图),已知抛物线y=x2+bx+c与x轴交于点A(-1,0)和点B,与y 轴交于点C(0,-2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)如图所示,已知在平行四边形ABCD中,AB=5,BC=8,cos B=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)连结AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.答案全解全析:一、选择题1.B ×==.2.C 60800000000的整数位有11位,所以用科学记数法表示为6.08×1010.3.C 抛物线的平移规律是“左加右减,上加下减”,如当抛物线y=ax2向右平移h(h>0)个单位时,所得新抛物线的解析式为y=a(x-h)2,所以当抛物线y=x2向右平移1个单位时,所得新抛物线的解析式为y=(x-1)2.4.D ∠1在直线a的下方,且在直线c的左边,∠5在直线b的下方,也在直线c的左边,所以它们是同位角,选D.5.A 把这组数据按照从小到大的顺序排列为:37,40,40,50,50,50,73,共有七个数,中位数是50,其中50出现的次数最多,所以众数为50.故选A.6.B 解法一:由题图可知S△ABD=S菱形ABCD,S△ABC=S菱形ABCD,所以S△ABD=S△ABC.解法二:△ABC和△ABD是同底等高的两个三角形,所以S△ABC=S△ABD.二、填空题7.答案a2+a解析a(a+1)=a2+a.评析本题考查单项式与多项式的乘法.8.答案x≠1有意义,则分母x-1≠0,即x≠1.解析要使分式-评析本题考查函数的定义域.9.答案3<x<4解析解不等式x-1>2得x>3,解不等式2x<8得x<4,所以原不等式组的解集是3<x<4. 10.答案352解析根据题意列式为:320×(1+10%)=320×1.1=352(支).11.答案k<1解析因为方程有两个不相等的实数根,所以Δ>0,即(-2)2-4×1×k=4-4k>0,解得k<1.评析本题考查一元二次方程的根的判别式.12.答案26解析如图,斜坡AB的坡度i=1∶2.4=AC∶BC=10∶BC,所以BC=24米,所以AB==26米.13.答案解析初三(1)、(2)、(3)班被抽到的机会均等,共3种可能,恰好抽到初三(1)班的概率是.14.答案y=-(答案不唯一)解析因为反比例函数y=(k≠0)的图象在每个象限内y的值随着x的值增大而增大,所以k<0,即只需满足k<0即可,此题答案不唯一.15.答案a-b解析如图,过点E作EF∥AD,因为AB=3EB=3FC,所以=-b,==a,所以=+=a-b.16.答案乙解析从折线统计图可以看出,甲、丙两人成绩浮动较大,极差分别为7、6,而乙的成绩较稳定,极差为2.所以成绩最稳定的是乙.17.答案-9解析根据题意得,x=2×1-3=-1,y=2x-7=-2-7=-9.18.答案2t解析连结BD',∵点C'、D'、B在同一直线上,∴∠D=∠FD'C'=∠GD'B=90°,由翻折知,CE=C'E,∴BE=2CE=2C'E,∴∠EBC'=30°,∠BGD'=60°,∵∠BGD'=∠FGE,∴∠FGE=60°.∵AD∥BC,∴∠AFG=∠BGD'.∴∠AFG=60°,易得∠GFE=60°,∴△EFG为等边三角形.∵AB=t,∴FG=t,∴C△EFG=2t.三、解答题19.解析原式=2--2+2-=.20.解析去分母,整理得x2+x=0.解方程,得x1=-1,x2=0.经检验:x1=-1是增根,舍去;x2=0是原方程的根.所以原方程的根是x=0.评析此题考查可化为一元二次方程的分式方程的解法,易错点是忽视验根.21.解析(1)设y关于x的函数解析式为y=kx+b(k≠0).由题意,得解得所以y关于x的函数解析式为y=x+.(2)当x=6.2时,y=37.5.答:此时该体温计的读数为37.5℃.评析第(1)问考查待定系数法求一次函数解析式,第(2)问是代入自变量的值求函数值.22.解析(1)∵在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,∴AB=2CD=2BD,∴∠DCB=∠B.∵AH⊥CD,∴∠AHC=∠CAH+∠ACH=90°.又∵∠DCB+∠ACH=90°,∴∠CAH=∠DCB=∠B.∴△ABC∽△CAH.∴=.又∵AH=2CH,∴BC=2AC.可设AC=k,BC=2k,在Rt△ABC中,AB==k.∴sin B==.(2)∵AB=2CD,CD=,∴AB=2.在Rt△ABC中,AC=AB·sin B=2×=2.∴BC=2AC=4.在Rt△ACE和Rt△AHC中,tan∠CAE===.∴CE=AC=1.∴BE=BC-CE=3.23.证明(1)∵四边形ABCD是梯形,AD∥BC,AB=DC,∴∠ADC=∠DAB.∵AD∥BE,∴∠ADC=∠DCE.∴∠DAB=∠DCE.在△ABD和△CDE中,∠∠∵∠∠∴△ABD≌△CDE,∴AD=CE.又∵AD∥CE,∴四边形ACED是平行四边形.(2)∵四边形ACED是平行四边形,∴FC∥DE.∴=.∵AD∥BE,∴=.又∵AD=CE,∴=.24.解析(1)∵点A(-1,0)和点C(0,-2)在抛物线y=x2+bx+c上,∴--解得--∴该抛物线的表达式为y=x2-x-2,对称轴为直线x=1.(2)∵点E为该抛物线的对称轴与x轴的交点,∴E(1,0).∵四边形ACEF为梯形,AC与y轴交于点C,∴AC与EF不平行.∴AF∥CE.∴∠FAE=∠OEC.在Rt△AEF中,∠AEF=90°,tan∠FAE=,同理,在Rt△OEC中,tan∠OEC=,∴=.∵OC=2,OE=1,AE=2,∴EF=4,∴点F的坐标是(1,4).(3)该抛物线的顶点D的坐标是-,点B的坐标是(3,0).由点P(t,0),且t>3,得点P在点B的右侧(如图).S△BPD=×(t-3)×=t-4.S△CDP=×(1+t)×-×1×-×t×2=t+1.∵S△BPD=S△CDP,∴t-4=t+1.解得t=5.即符合条件的t的值是5.评析此题第(2)问难点是根据已知条件确定出AF∥CE.第(3)问关键是根据已知条件分别用含t的代数式表示出△BPD与△CDP的面积.考查学生灵活运用知识的能力,难度较大. 25.解析(1)过点A作AH⊥BC,垂足为点H.连结AC.在Rt△AHB中,∠AHB=90°,cos B==,AB=5,∴BH=4.∵BC=8,∴AH垂直平分BC.∴AC=AB=5.∵圆C经过点A,∴CP=AC=5.(2)过点C作CM⊥AD,垂足为点M.设圆C的半径长为x.∵四边形ABCD是平行四边形,∴AB=DC=5,AD=BC=8,∠B=∠D.又由cos B=,得DM=4,CM=3.在Rt△EMC中,∠EMC=90°,EM=-=-.又∵点F在点E的右侧,∴DE=EM+DM=-+4.∴AE=AD-DE=4--.由AD∥BC,AP∥CG,得四边形APCE是平行四边形.∴AE=CP,即4--=x.解得x=.经检验:x=是原方程的根,且符合题意.∴EM=-=.在圆C中,由CM⊥EF,得EF=2EM=.∴当AP∥CG时,弦EF的长为.(3)设圆C的半径长为x,则CE=x,又∵点F在点E的右侧,∴DE=-+4.∵四边形ABCD是平行四边形,∴AB∥DC.∴△AGE∽△DCE.由△AGE是等腰三角形,可得△DCE是等腰三角形.①若GE=GA,则CE=CD,又由(1)知CD=CA,∴CE=CA.又∵点A、E在线段AD的垂直平分线CM的同侧,∴点E与点A重合,舍去.②若AG=AE,则DC=DE,得-+4=5.解得x=±,则x=-不符合题意,舍去.∴x=.③若GE=AE,则CE=DE,得-+4=x.解得x=,不符合题意,舍去.综上所述,当△AGE是等腰三角形时,圆C的半径长为.评析此题是圆、平行四边形、锐角三角函数、等腰三角形的综合题,考查学生运用变化的观点分析问题的能力.。
2020届上海市奉贤区中考数学二模
19.解原式= 2 2 1 −(2- 2)+1 ·······································(每个 2 分,共 8 分) 4
= 2 − 2 + 2 +1 = 3 2 −1. ······························································(2 分)
E
E
CP
G
D
C
D
A
O
FB
A
O
B
图8
备用图
第 -4- 页
微信公众号:上海教学案中心
奉贤区 2019 学年度九年级数学质量调研参考答案
一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)
1.D ;
2.A ;
3.A ;
4.B ;
二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)
5.C ;
x
∴ CD = (2 - 4)2 +(4 - 2)2 = 2 2 .·····························································(1 分)
22.(1)过点 E 作 EH AB 轴,垂足为 H. ·············································(1 分) ∵四边形 ABCD 是矩形,∴∠DAB=90°,∴AD//EH. ∴∠DAE=∠AEH. ··············································································(1 分) ∵∠DAE=30°,∴∠AEH=30°. 在直角△AEH 中,∠AHE=90°,∴ EH = AE cos AEH .···························(2 分) ∵AD=AE=3cm,∴ EH = 3 3 = 3 3 cm.··············································(1 分)
上海市奉贤区2019-2020学年中考第二次模拟数学试题含解析
上海市奉贤区2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( ) A . B . C . D .2.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x 英寸(如图),下面所列方程正确的是( )A .(7+x )(5+x )×3=7×5 B .(7+x )(5+x )=3×7×5 C .(7+2x )(5+2x )×3=7×5 D .(7+2x )(5+2x )=3×7×5 3.﹣3的相反数是( )A .13-B .13C .3-D .34.如图,已知⊙O 的半径为5,AB 是⊙O 的弦,AB=8,Q 为AB 中点,P 是圆上的一点(不与A 、B 重合),连接PQ ,则PQ 的最小值为( )A .1B .2C .3D .85.二次函数2y x =的对称轴是( )A .直线y 1=B .直线x 1=C .y 轴D .x 轴6.桌面上有A 、B 两球,若要将B 球射向桌面任意一边的黑点,则B 球一次反弹后击中A 球的概率是( )A .17B .27C .37D .477.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=o ,90C o ∠=,45A ∠=o ,30D∠=o,则12∠+∠等于()A.150o B.180o C.210o D.270o8.下列实数0,23,3,π,其中,无理数共有()A.1个B.2个C.3个D.4个9.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A.B.C.D.110.平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )A.60°B.50°C.40°D.30°11.下列计算正确的是()A.3a2﹣6a2=﹣3B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a612.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B的坐标为(0,1),OD=2,则这种变化可以是()A .△ABC 绕点C 顺时针旋转90°,再向下平移5个单位长度B .△ABC 绕点C 逆时针旋转90°,再向下平移5个单位长度C .△ABC 绕点O 顺时针旋转90°,再向左平移3个单位长度D .△ABC 绕点O 逆时针旋转90°,再向右平移1个单位长度二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,等腰三角形ABC 的底边BC 长为4,面积是12,腰AB 的垂直平分线EF 分别交AB ,AC 于点E 、F ,若点D 为底边BC 的中点,点M 为线段EF 上一动点,则△BDM 的周长的最小值为_____.14.阅读材料:设a r =(x 1,y 1),b r =(x 2,y 2),如果a r ∥b r ,则x 1•y 2=x 2•y 1.根据该材料填空:已知a r =(2,3),b r =(4,m ),且a r ∥b r,则m=_____.15.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 分.16.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,且DE ∥BC ,已知AD =2,DB =4,DE =1,则BC =_____.17.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于 .18.已知a、b为两个连续的整数,且28a b<<,则+a b=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=3,AD=1,求DB的长.20.(6分)科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B 两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.(1)求两种机器人每台每小时各分拣多少件包裹;(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?21.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)22.(8分)解不等式组2233134x xx x+≤+⎧⎪+⎨<⎪⎩(),并把解集在数轴上表示出来.23.(8分)西安汇聚了很多人们耳熟能详的陕西美食.李华和王涛同时去选美食,李华准备在“肉夹馍(A )、羊肉泡馍(B )、麻酱凉皮(C )、(biang )面(D )”这四种美食中选择一种,王涛准备在“秘制凉皮(E )、肉丸胡辣汤(F )、葫芦鸡(G )、水晶凉皮(H )”这四种美食中选择一种.(1)求李华选择的美食是羊肉泡馍的概率;(2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率.24.(10分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C 测得教学楼顶部D 的仰角为18°,教学楼底部B 的俯角为20°,量得实验楼与教学楼之间的距离AB=30m .(1)求∠BCD 的度数.(2)求教学楼的高BD .(结果精确到0.1m ,参考数据:tan20°≈0.36,tan18°≈0.32)25.(10分)求抛物线y=x 2+x ﹣2与x 轴的交点坐标.26.(12分)已知:如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,过点D 作AE 的垂线交AE 于点G ,交AB 延长线于点F ,连接EF ,ED .求证:EF ED =; 若60ABC ∠=︒,6AD =, 2CE =,求EF 的长.27.(12分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.不是轴对称图形,也不是中心对称图形.故错误;B.不是轴对称图形,也不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.不是轴对称图形,是中心对称图形.故错误.故选C.【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.2.D【解析】试题分析:由题意得;如图知;矩形的长="7+2x" 宽=5+2x ∴矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=3×7×5考点:列方程点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.3.D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.4.B【解析】【分析】连接OP 、OA ,根据垂径定理求出AQ ,根据勾股定理求出OQ ,计算即可.【详解】 解:由题意得,当点P 为劣弧AB 的中点时,PQ 最小,连接OP 、OA ,由垂径定理得,点Q 在OP 上,AQ=12AB=4, 在Rt △AOB 中,OQ=22OA AQ =3,∴PQ=OP-OQ=2,故选:B .【点睛】本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.5.C【解析】【分析】根据顶点式y=a (x-h )2+k 的对称轴是直线x=h ,找出h 即可得出答案.【详解】解:二次函数y=x 2的对称轴为y 轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a (x-h )2+k 的对称轴是直线x=h ,顶点坐标为(h ,k ).6.B【解析】试题解析:由图可知可以瞄准的点有2个..∴B 球一次反弹后击中A 球的概率是27. 故选B .7.C【解析】【分析】根据三角形的内角和定理和三角形外角性质进行解答即可.【详解】如图:1D DOA ∠∠∠=+Q ,2E EPB ∠∠∠=+,DOA COP ∠∠=Q ,EPB CPO ∠∠=,∴12D E COP CPO ∠∠∠∠∠∠+=+++=D E 180C ∠∠∠++-o=309018090210++-=o o o o o ,故选C .【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.8.B【解析】【分析】根据无理数的概念可判断出无理数的个数.【详解】 解:无理数有:3,π.故选B.【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数. 9.D【解析】试题分析:∵△ABC 为等边三角形,BP 平分∠ABC ,∴∠PBC=∠ABC=30°,∵PC ⊥BC ,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC==1,∴点P到边AB所在直线的距离为1,故选D.考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.10.C【解析】【分析】先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.【详解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故选:C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.11.B【解析】【分析】根据整式的运算法则分别计算可得出结论.【详解】选项A,由合并同类项法则可得3a2﹣6a2=﹣3a2,不正确;选项B,单项式乘单项式的运算可得(﹣2a)•(﹣a)=2a2,正确;选项C,根据整式的除法可得10a10÷2a2=5a8,不正确;选项D,根据幂的乘方可得﹣(a3)2=﹣a6,不正确.故答案选B.考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.12.C【解析】【分析】Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可【详解】∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,∴DO=BC=2,CO=3,∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;故选:C.【点睛】本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】【分析】连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD的长.【详解】解:连接AD交EF与点M′,连结AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=12,解得AD=1,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值1.∴△BDM的周长的最小值为DB+AD=2+1=2.【点睛】本题考查三角形的周长最值问题,结合等腰三角形的性质、垂直平分线的性质以及中点的相关属性进行分析.14.6。
上海市奉贤区2019-2020学年中考数学第二次调研试卷含解析
上海市奉贤区2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是某个几何体的三视图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥2.在平面直角坐标系中,位于第二象限的点是( )A .(﹣1,0)B .(﹣2,﹣3)C .(2,﹣1)D .(﹣3,1)3.已知二次函数y=-x 2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x 的图象上,则平移后的抛物线解析式为( )A .y=-x 2-4x-1B .y=-x 2-4x-2C .y=-x 2+2x-1D .y=-x 2+2x-24.若抛物线y =x 2﹣3x+c 与y 轴的交点为(0,2),则下列说法正确的是( )A .抛物线开口向下B .抛物线与x 轴的交点为(﹣1,0),(3,0)C .当x =1时,y 有最大值为0D .抛物线的对称轴是直线x =32 5.如图,平行四边形 ABCD 中,E 为 BC 边上一点,以 AE 为边作正方形AEFG ,若 40BAE ∠=︒,15CEF ∠=︒,则 D ∠的度数是A .65︒B .55︒C .70︒D .75︒6.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:17.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )A .15B .25C .35D .458.下列运算,结果正确的是( )A .m 2+m 2=m 4B .2m 2n÷12mn=4m C .(3mn 2)2=6m 2n 4D .(m+2)2=m 2+4 9.如图所示的几何体的左视图是( )A .B .C .D .10.如图,在平面直角坐标系中,△OAB 的顶点A 在x 轴正半轴上,OC 是△OAB 的中线,点B 、C 在反比例函数y=2x(x >0)的图象上,则△OAB 的面积等于( )A .2B .3C . 4D .611.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒12. 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b+ab 2的值为_____.14.计算:a 3÷(﹣a )2=_____.15.化简:21211x x +=+-_____________. 16.点 C 在射线 AB 上,若 AB=3,BC=2,则AC 为_____.17.已知抛物线 2y ax bx c =++的部分图象如图所示,根据函数图象可知,当 y >0 时,x 的取值范围是__.18.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm 的圆盘,如图所示,AB 与CD 水平,BC 与水平面的夹角为60°,其中AB=60cm ,CD=40cm ,BC=40cm ,那么该小朋友将圆盘从A 点滚动到D 点其圆心所经过的路线长为____cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成.20.(6分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图.请根据有关信息解答:(1)接受测评的学生共有________人,扇形统计图中“优”部分所对应扇形的圆心角为________°,并补全条形统计图;(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;(3)测评成绩前五名的学生恰好3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率.21.(6分)如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为F ,交AD 的延长线于点E ,交DC 于点N .求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.22.(8分)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.(1)求证:DB为⊙O的切线;(2)若AD=1,PB=BO,求弦AC的长.23.(8分)“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②这30户家庭2018年4月份义务植树数量的平均数是______,众数是______;(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有______户.24.(10分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.()1小明和小刚都在本周日上午去游玩的概率为________;()2求他们三人在同一个半天去游玩的概率.25.(10分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x 轴另一交点为(﹣,0).(1)求抛物线F的解析式;(1)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1的值(用含m的式子表示);(3)在(1)中,若m=,设点A′是点A关于原点O的对称点,如图1.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.26.(12分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程.①在科研所到宿舍楼之间修一条高科技的道路;②对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=ax+b(0≤x≤3).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w=防辐射费+修路费.(1)当科研所到宿舍楼的距离x=3km时,防辐射费y=____万元,a=____,b=____;(2)若m=90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?27.(12分)315211xx x-⎧⎨-+-⎩<()<参考答案。
2020年上海市中考数学二模试卷及解析
2020年上海市二模试卷数学试卷一、选择题(本大题共6小题,共24分)1. 拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省32400000斤,这些粮食可供9万人吃一年.“32400000”这个数据用科学记数法表示为( )A. 324×105B. 32.4×106C. 3.24×107D. 0.32×1082. 如果关于x 的方程x −m +2=0(m 为常数)的解是x =−1,那么m 的值是( )A. m =3B. m =−3C. m =1D. m =−13. 将抛物线y =x 2−2x −1向上平移1个单位,平移后所得抛物线的表达式是( )A. y =x 2−2xB. y =x 2−2x −2C. y =x 2−x −1D. y =x 2−3x −14. 现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别是S 甲2、S 乙2,如果S 甲2>S 乙2,那么两个队中队员的身高较整齐的是( )A. 甲队B. 乙队C. 两队一样整齐D. 不能确定5. 已知|a ⃗ |=1,|b ⃗ |=3,而且b ⃗ 和a ⃗ 的方向相反,那么下列结论中正确的是( ) A. a ⃗ =3b ⃗ B. a ⃗ =−3b ⃗ C. b ⃗ =3a ⃗ D. b ⃗ =−3a ⃗6. 对于一个正多边形,下列四个命题中,错误的是 ( )A. 正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B. 正多边形是中心对称图形,正多边形的中心是它的对称中心C. 正多边形每一个外角都等于正多边形的中心角D. 正多边形每一个内角都与正多边形的中心角互补二、填空题(本大题共12小题,共48分) 7. 计算:a 6÷a 3=______.8. 分解因式:2a 2−4a =______.9. 已知关于x 的方程x 2+3x −m =0有两个相等的实数根,则m 的值为______. 10. 不等式组{x +1≥0x −1<1的解集是______.11. 方程√2x −1=1的根是______. 12. 已知反比例函数y =2k+1x的图象经过点(2,−1),那么k 的值是______.13. 不透明的袋中装有8个小球,这些小球除了有红白两种颜色外其它都一样,其中2个小球为红色,6个小球为白色,随机地从袋中摸取一个小球是红球的概率为______.14. 在一次有12人参加的测试中,得100分、95分、90分、85分、75分的人数分别是1、4、3、2、2,那么这组数据的众数是______分.15. 在Rt △ACB 中,∠C =90°,AC =3,BC =3√3,以点A 为圆心作圆A ,要使B 、C两点中的一点在圆A 外,另一点在圆A 内,那么圆A 的半径长r 的取值范围是______. 16. 如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,过点O 的线段EF 与AD 、BC 分别交于点E 、F ,如果AB =4,BC =5,OE =32,那么四边形EFCD 的周长为______.17. 各顶点都在方格纸横竖格子线的交错点上的多边形称为格点多边形,奥地利数学家皮克(G.Pick,1859~1942年)证明了格点多边形的面积公式:S =a +12b −1,其中a 表示多边表内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图格点多边形的面积是______.18. 如图,点M 的坐标为(3,2),点P 从原点O 出发,以每秒1个单位的速度沿y 轴向上移动,同时过点P 的直线l 也随之上下平移,且直线l 与直线y =−x 平行,如果点M 关于直线l 的对称点落在坐标轴上,如果点P 的移动时间为t 秒,那么t 的值可以是______.三、计算题(本大题共1小题,共10分)19. 计算:(−2018)0+(12)−2−12+tan60∘+√(3−π)2.四、解答题(本大题共6小题,共68分) 20. 解方程:16x 2−4=x+2x−2−1x+2.21. 如图已知:△ABC 中,AD 是边BC 上的高、E 是边AC 的中点,BC =11,AD =12,DFGH 为边长为4的正方形,其中点F 、G 、H 分别在AD 、AB 、BC 上. (1)求BD 的长度; (2)求cos ∠EDC 的值.22.某乒乓球馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元;暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设打乒乓x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请根据函数图象,写出选择哪种消费方式更合算.23.如图,在矩形ABCD中,点E是边AB的中点,△EBC沿直线EC翻折,使B点落在矩形ABCD内部的点P处,联结AP并延长AP交CD于点F,联结BP交CE于点Q.(1)求证:四边形AECF是平行四边形;(2)如果PA=PE,求证:△APB≌△EPC.24.在平面直角坐标系xOy中,如图,抛物线y=mx2−2x+n(m、n是常数)经过点A(−2,3)、B(−3,0),与y轴的交点为点C.(1)求此抛物线的表达式;(2)点D为y轴上一点,如果直线BD和直线BC的夹角为15°,求线段CD的长度;(3)设点P为此抛物线的对称轴上的一个动点,当△BPC为直角三角形时,求点P的坐标.25.在圆O中,AB是圆O的直径,AB=10,点C是圆O上一点(与点A、B不重合),点M是弦BC的中点.(1)如图1,如果AM交OC于点E,求OE:CE的值;(2)如图2,如果AM⊥OC于点E,求sin∠ABC的值;(3)如图3,如果AB:BC=5:4,点D为弦BC上一动点,过点D作DF⊥OC,交半径OC于点H,与射线BO交于圆内点F.探究一:如果设BD=x,FO=y,求y关于x的函数解析式及其定义域;探究二:如果以点O为圆心,OF为半径的圆经过点D,直接写出此时BD的长度;请你完成上述两个探究.答案和解析1.【答案】C【解析】解:32400000=3.24×107元.故选:C.用科学记数法表示较大的数时,一般形式为a×10−n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10−n,其中1≤|a|<10,确定a与n的值是解题的关键.2.【答案】C【解析】解:把x=−1,代入方程关于x的方程x−m+2=0(m为常数)得:−1−m+2=0,解得:m=1,故选:C.理解一元一次的解和解一元一次方程的概念是解此题的关键.本题考查了一元一次方程两个概念,重点是理解一元一次方程的解和会解一元一次方程.3.【答案】A【解析】解:∵将抛物线y=x2−2x−1向上平移1个单位,∴平移后抛物线的表达式y=x2−2x−1+1,即y=x2−2x.故选:A.根据向上平移纵坐标加求得结论即可.本题考查了二次函数图象与几何变换,此类题目利用顶点的平移确定抛物线函数图象的变化更简便.4.【答案】B【解析】【分析】根据方差的意义,方差越小数据越稳定,故比较方差后可以作出判断.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2>S乙2,∴两个队中队员的身高较整齐的是:乙队.故选:B.5.【答案】D【解析】解:∵|a |=1,|b⃗|=3,而且b⃗ 和a⃗的方向相反,∴b⃗=−3a,故选:D.根据平面向量的性质即可解决问题.本题考查平面向量的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【答案】B【解析】解:A、正多边形是轴对称图形,每条边的垂直平分线是它的对称轴,正确,故此选项错误;B、正奇数多边形多边形不是中心对称图形,错误,故本选项正确;C、正多边形每一个外角都等于正多边形的中心角,正确,故本选项错误;D、正多边形每一个内角都与正多边形的中心角互补,正确,故本选项错误.故选:B.利用正多边形的对称轴的性质、对称性、中心角的定义及中心角的性质作出判断即可.本题考查了正多边形和圆的知识,解题的关键是正确的理解正多边形的有关的定义.7.【答案】a3【解析】解:a6÷a3=a6−3=a3.故应填a3.根据同底数幂相除,底数不变指数相减计算即可.本题主要考查同底数幂的除法运算性质,熟练掌握运算性质是解题的关键.8.【答案】2a(a−2)【解析】解:2a2−4a=2a(a−2).故答案为:2a(a−2).观察原式,找到公因式2a,提出即可得出答案.本题考查了因式分解的基本方法一---提公因式法.本题只要将原式的公因式2a提出即可.9.【答案】−94【解析】解:∵关于x的方程x2+3x−m=0有两个相等的实数根,∴△=32−4×1×(−m)=0,解得:m=−94,故答案为:−94.根据方程有两个相等的实数根得出△=0,求出m的值即可.本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac的关系是解答此题的关键.10.【答案】−1≤x<2【解析】解:{x+1≥0 ①x−1<1 ②由①得:x≥−1,由②得:x<2,∴不等式组的解集为−1≤x<2.故答案为−1≤x<2.分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的解法,不等式组取解集的方法为:同大取大;同小取小;大小小大去中间;大大小小无解.11.【答案】1【解析】解:两边平方得2x−1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.本题思路是两边平方后去根号,解方程.平方时可能产生增根,要验根.12.【答案】k=−32【解析】解:∵反比例函数y=2k+1x的图象经过点(2,−1),∴−1=2 k+12∴k=−32;故填k=−32.根据点的坐标与函数解析式的关系,将点的坐标代入,可以得到−1=2 k+12,然后解方程,便可以得到k的值.本题侧重考查利用待定系数法求函数的解析式的方法,可以结合代入法进行解答13.【答案】14【解析】【分析】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.用红色小球的个数除以球的总个数即可得.【解答】解:∵袋子中共有8个小球,其中红色小球有2个,∴随机地从袋中摸取一个小球是红球的概率为26+2=28=14,故答案为:14.14.【答案】95【解析】解:∵95分出现了4次,出现的次数最多,∴这组数据的众数是95分;故答案为:95.根据众数的定义即众数是一组数据中出现次数最多的数据,即可得出答案.此题考查了众数,熟练掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.15.【答案】3<r<6【解析】解:∵Rt△ACB中,∠C=90°,AC=3,BC=3√3,∴AB=6,如果以点A为圆心作圆,使点C在圆A内,则r>3,点B在圆A外,则r<6,因而圆A半径r的取值范围为3<r<6.故答案为3<r<6;熟记“设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内”即可求解,本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.16.【答案】12【解析】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF(AAS),∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.故答案为:12.根据平行四边形的性质知,AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE和∠COF是对顶角相等,根据全等三角形的性质得到OF=OE=1.5,CF=AE,所于是得到结论.本题利用了平行四边形的性质,由已知条件先证出△OAE≌△OCF,再全等三角形的性质,转化边的关系后再求解.17.【答案】6【解析】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴格点多边形的面积S=a+12b−1=4+12×6−1=6.故答案为:6.分别统计出多边形内部的格点数a和边界上的格点数b,再代入公式S=a+12b−1,即可得出格点多边形的面积.本题考查格点多边形面积的计算,解题的关键是根据图形正确统计出a,b的值.18.【答案】2或3(答一个即可)【解析】解:设直线l:y=−x+b.如图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点.过点M作MD⊥x轴于点D,则OD=3,MD=2.由直线l:y=−x+b可知∠PDO=∠OPD=45°,∴∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,−1).∵M(3,2),F(0,−1),∴线段MF中点坐标为(32,1 2 ).直线y=−x+b过点(32,12),则=−32+b,解得:b=2,∴t=2.∵M(3,2),E(1,0),∴线段ME中点坐标为(2,1).直线y=−x+b过点(2,1),则1=−2+b,解得:b=3,∴t=3.故点M关于l的对称点,当t=2时,落在y轴上,当t=3时,落在x轴上.故答案为:2或3(答一个即可).找出点M关于直线l在坐标轴上的对称点E、F,如图所示.求出点E、F的坐标,然后分别求出ME、MF中点坐标,最后分别求出时间t的值.考查了一次函数的图象与几何变换.注意在x轴、y轴上均有点M的对称点,不要漏解;其次注意点E、F坐标以及线段中点坐标的求法.19.【答案】解:原式=1+4−2+√3π−3=π+√3.【解析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【答案】解:方程两边同乘以(x+2)(x−2)得:16=(x+2)2−(x−2),整理得:x2+3x−10=0,解此方程得:x1=−5,x2=2,经检验x1=−5是原方程的解,x2=2是增根(舍去),所以原方程的解是:x=−5.【解析】先把分式方程转化成整式方程,求出方程的解,再进行检验即可.本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.21.【答案】解:(1)∵四边形DFGH为顶点在△ABD边长的正方形,且边长为4,∴GF//BD,GF=DF=4,∴GFBD =AFAD,∵AD=12,∴AF=8,则4BD =812,解得:BD=6;(2)∵BC=11,BD=6,∴CD=5,在直角△ADC中,AC2=AD2+DC2,∴AC=13,∵E是边AC的中点,∴ED=EC,∴∠EDC=∠ACD,∴cos∠EDC=cos∠ACD=513.【解析】(1)由四边形DFGH为边长为4的正方形得GFBD =AFAD,将相关线段的长度代入计算可得;(2)先求出CD、AC的长,再由E是边AC的中点知ED=EC,据此得∠EDC=∠ACD,再根据余弦函数的定义可得答案.本题主要考查正方形的性质,解题的关键是掌握正方形的性质、勾股定理、三角函数的应用及直角三角形的性质等.22.【答案】解:(1)由题意可得,选择银卡消费时,y与x之间的函数关系式为:y=10x+150,选择普通票消费时,y与x之间的函数关系式为:y=20x;(2)当10x+150=20x时,得x=15,当10x+150=600时,得x=45,答:当打球次数不足15次时,选择普通票最合算,当打球次数介于15次到45次之间时,选择银卡最合算,当打球次数超过45次时,选择金卡最合算,当打球次数恰为15次时,选择普通票或银卡同为最合算,当打球次数恰为45次时,选择金卡或银卡同为最合算.【解析】(1)根据题意可以直接写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)根据函数图象和(1)中的函数解析式可以分别求得普通票消费和银卡消费相等的情况,银卡消费和金卡消费相等的情况,再根据图象即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.23.【答案】证明:(1)由折叠得到EC垂直平分BP,设EC与BP交于Q,∴BQ=EQ∵E为AB的中点,∴AE=EB,∴EQ为△ABP的中位线,∴AF//EC,∵AE//FC,∴四边形AECF为平行四边形;(2)∵AF//EC,∴∠APB=∠EQB=90°,由翻折性质∠EPC=∠EBC=90°,∠PEC=∠BEC,∵E为直角△APB斜边AB的中点,且AP=EP,∴△AEP为等边三角形,∠BAP=∠AEP=60°,∠CEP=∠CEB=180°−60°2=60°,在△ABP和△EPC中,{∠BAP=∠CEP ∠APB=∠EPC AP=EP,∴△ABP≌△EPC(AAS).【解析】(1)由折叠的性质得到BE=PE,EC与PB垂直,根据E为AB中点,得到AE= EB=PE,利用三角形内一边上的中线等于这条边的一半的三角形为直角三角形,得到∠APB为90°,进而得到AF与EC平行,再由AE与FC平行,利用两对边平行的四边形为平行四边形即可得证;(2)根据三角形AEP 为等边三角形,得到三条边相等,三内角相等,再由折叠的性质及邻补角定义得到一对角相等,根据同角的余角相等得到一对角相等,再由AP =EB ,利用AAS 即可得证.此题考查全等三角形的判定与性质,折叠的性质,熟练掌握全等三角形的判定与性质是解本题的关键.24.【答案】解:(1)依题意得:{4m +4+n =39m +6+n =0, 解得:{m =−1n =3, ∴抛物线的表达式是y =−x 2−2x +3.(2)∵抛物线y =−x 2−2x +3与y 轴交点为点C ,∴点C 的坐标是(0,3),又点B 的坐标是(−3,0),∴OC =OB =3,∠CBO =45°,∴∠DBO =30°或60°.在直角△BOD 中,DO =BO ⋅tan ∠DBO ,∴DO =√3或3√3,∴CD =3−√3或3√3−3.(3)由抛物线y =−x 2−2x +3得:对称轴是直线x =−1,根据题意:设P(−1,t),又点C 的坐标是(0,3),点B 的坐标是(−3,0),∴BC 2=18,PB 2=(−1+3)2+t 2=4+t 2,PC 2=(−1)2+(t −3)2=t 2−6t +10, ①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2−6t +10,解之得:t =−2,②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2−6t +10=4+t 2,解之得:t =4,③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2−6t +10=18,解之得:t 1=3+√172,t 2=3−√172.综上所述P 的坐标为(−1,−2)或(−1,4)或(−1,3+√172)或(−1,3−√172).【解析】(1)将点A 和点B 坐标代入解析式求解可得;(2)先求出点C 坐标,从而得出OC =OB =3,∠CBO =45°,据此知∠DBO =30°或60°,依据DO =BO ⋅tan ∠DBO 求出得DO =√3或3√3,从而得出答案;(3)设P(−1,t),知BC 2=18,PB 2=4+t 2,PC 2=t 2−6t +10,再分点B 、点C 和点P 为直角顶点三种情况分别求解可得.本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、等腰三角形的性质、两点间的距离公式及直角三角形的性质等知识点.25.【答案】解:(1)过点O 作ON//BC 交AM 于点N ,如图1∴AOAB =ONBM,ONMC=OECE,∵AO=BO=12AB∴AOAB=ONBM=12∵点M是弦BC的中点∴BM=MC∴OECE =ONBM,∴OE:CE=1:2;(2)联结OM,如图2∵点M是弦BC的中点,OM经过圆心O ∴OM⊥BC,∠OMC=90°,∵AM⊥OC,∴∠MEO=90°∴∠OMC=∠MEO=90°又∠MOC=∠EOM ∴△MOC∽△EOM;∴OMOE =OCOM,∵OE:CE=1:2∴OM=√33OC,∵OB=OC∴∠ABC=∠OCM在直角△MOC中,sin∠OCM=OMOC =√33∴sin∠ABC=√33;(3)探究一:如图3,过点D作DL⊥DF交BO于点L,取BC中点M,连接OM∵DF⊥OC,∴DL//OC,∴∠LDB=∠C=∠B ∴BL=DL,∵AB=10,AB:BC=5:4,∴BC=8,OC=5,∵BM=CM=4,∴cos∠OCM=MCOC=CHCD=45∵DL//OC,∴BLOB=BDBC设BD=x,则CD=8−x,∴BL=DL=58x,CH=45(8−x),OH=OC−CH=5−45(8−x),∵OH//DL,∴OHLD =OFFL,∴45x−7558=yy+5−58y;∴y关于x的函数解析式是y=207x−5定义域是74≤x<72,探究二:∵以O为圆心,OF为半径的圆经过D,∴OF=OD,∵DF⊥OC,∴OC垂直平分DF,FO=OL,∴y=5−58x,∴207x−5=5−58x,解得:x=11219,∴BD=11219.【解析】(1)如图1,过点O作ON//BC交AM于点N,根据三角形的中位线的性质得到ON=12BM,根据平行线分线段成比例定理即可得到结论;(2)如图1,连接OM,根据垂径定理得到OM⊥BC,根据余角的性质得到∠OME=∠MCE,根据相似三角形的性质得到ME2=OE⋅CE,设OE=x,则CE=2x,ME=√2x,解直角三角形即可得到结论;(3)探究一:如图2,过点D作DL⊥DF交BO于点L,根据平行线的性质得到∠LDB=∠C=∠B,根据等腰三角形的判定定理得到BL=DL,设BD=x,则CD=8−x,BL=DL=58x,CH=45(8−x),OH=OC−CH=5−45(8−x),根据平行线成线段成比例定理得到y=20x−357(其中74≤x<72);探究二:根据题意得到OF=OD,根据等腰三角形的性质得到DF⊥OC,根据直角三角形的性质得到FO=OL,列方程即可得到结论.本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.。
2023年上海市奉贤区初三中考二模数学试卷含答案
2022学年九年级数学练习卷(202305)(完卷时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)1.下列实数中,有理数是(▲)(A;(B(C;(D.2.下列运算正确的是(▲)(A )325aa a +=;(B)32a a a -=;(C)326a a a ⋅=;(D)32a a a ÷=.3.下列函数图像中,可能是反比例函数xy 6=的图像的是(▲)(A ))(C )(D )4.在一次学校的演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分这两组数据相比,一定不变的是(▲)(A )中位数;(B )众数;(C )平均数;(D )方差.5.正方形具有而菱形不一定具有的性质是(▲)(A )对角线相等;(B )对角线互相垂直;(C )对角线平分一组对角;(D )对角线互相平分.6.如图1,矩形ABCD 中,AB =1,∠ABD=60°,点O 在对角线BD 上,圆O 经过点C .如果矩形ABCD 有2个顶点在圆O 内,那么圆O 的半径长r 的取值范围是(▲)(A )0<r ≤1;(B )1<r ≤3;(C )1<r ≤2;(D )3<r ≤2.二、填空题(本大题共12题,每题4分,满分48分)7.计算:()23ab=▲.图1ABCD图5ACBD 8.化简分式bab b+的结果为▲.9.如果关于x 的方程022=+-m x x 有两个相等的实数根,那么m 的值是▲.10.如果一个二次函数的图像顶点是原点,且它经过平移后能与221y x x =-+-的图像重合,那么这个二次函数的解析式是▲.11.如果正比例函数kx y =(k 是常数,k ≠0)的图像经过点(4,-1),那么y 的值随x 的增大而▲.(填“增大”或“减小”)12.布袋里有4个小球,分别标注了数字﹣1、0、2、3,这些小球除了标注数字不同外,其它都相同.从布袋里任意摸出一个球,这个球上标注数字恰好是正数的概率是▲.13.图2是某商场2022年四个季度的营业额绘制成的扇形统计图,其中二季度的营业额为100万元,那么该商场全年的营业额为▲万元.14.如图3,在平行四边形ABCD 中,BD 为对角线,E 是边DC 的中点,联结BE .如果设a AD =,b BD =,那么BE =▲(含a 、b的式子表示).15.在△ABC 中,AB=AC ,如果BC =10,135cos =B ,那么△ABC 的重心到底边的距离为▲.16.如果四边形有一组邻边相等,且一条对角线平分这组邻边的夹角,我们把这样的四边形称为“准菱形”.有一个四边形是“准菱形”,它相等的邻边长为2,这两条边的夹角是90°,那么这个“准菱形”的另外一组邻边的中点间的距离是▲.17.如图4,某电信公司提供了A 、B 两种方案的移动通讯费用y (元)与通话时间x (元)之间的关系.如果通讯费用为60元,那么A 方案与B 方案的通话时间相差▲分钟.18.如图5,在正方形ABCD 中,点E 、F 分别在边AD 、AB 上,EF ⊥CE .将△CDE 沿直线CE 翻折,如果点D 的对应点恰好落在线段CF 上,那么∠EFC 的正切值是▲.三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:2202321113231-⎛⎫-+---- ⎪-⎝⎭().E图3ACBD图4705030120170200250x (分)(元)A 方案B 方案y 图220.(本题满分10分)解不等式组⎪⎪⎩⎪⎪⎨⎧-<--≤-;,52157353131x x x x 将其解集在数轴上表示出来,并写出这个不等式组的整数解.21.(本题满分10分,每小题满分5分)如图6,在平面直角坐标系xOy 中,直线l 上有一点A (3,2),将点A 先向左平移3个单位,再向下平移4个单位得到点B ,点B 恰好在直线l 上.(1)写出点B 的坐标,并求出直线l 的表达式;(2)如果点C 在y 轴上,且∠ABC=∠ACB ,求点C 的坐标.22.(本题满分10分,每小题满分5分)图7-1是某地下商业街的入口的玻璃顶,它是由立柱、斜杆、支撑杆组成的支架撑起的,图7-2是它的示意图.经过测量,支架的立柱AB 与地面垂直(∠BAC=90°),AB =2.7米,点A 、C 、M 在同一水平线上,斜杆BC 与水平线AC 的夹角∠ACB=33°,支撑杆DE ⊥BC ,垂足为E ,该支架的边BD 与BC 的夹角∠DBE=66°,又测得CE =2.2米.(1)求该支架的边BD 的长;(2)求支架的边BD 的顶端D 到地面AM 的距离.(结果精确到0.1米)(参考数据:sin33054.︒≈,sin66091.︒≈,cos33084.︒≈,cos66040.︒≈,tan33065.︒≈,tan66225.︒≈)-21234-1xOxy11图6A (3,2)图7-2ABC DEM图7-1立柱支撑杆斜杆O图9xy 23.(本题满分12分,每小题满分6分)已知:如图8,在菱形ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E 、F ,射线EF 交AD 的延长线于点G .(1)求证:CE =CF ;(2)如果DG AG FG ⋅=2,求证:BEAFAE AG =.24.(本题满分12分,每小题满分4分)如图9,在平面直角坐标系xOy 中,抛物线32++-=bx x y 与x 轴交于点A (1,0)和点B ,与y 轴交于点C .(1)求该抛物线的表达式和对称轴;(2)联结AC 、BC ,D 为x 轴上方抛物线上一点(与点C 不重合),如果△ABD 的面积与△ABC 的面积相等,求点D 的坐标;(3)设点P (m ,4)(m >0),点E 在抛物线的对称轴上(点E 在顶点上方),当∠APE =90°,且45=AP EP 时,求点E 的坐标.25.(本题满分14分,第(1)小题满分4分,第(2)(3)小题满分5分)在梯形ABCD 中,AD //BC ,AD =4,∠ABC =90°,BD =BC ,过点C 作对角线BD 的垂线,垂足为E ,交射线BA 于点F .(1)如图10,当点F 在边AB 上时,求证:△ABD ≌△ECB ;(2)如图11,如果F 是AB 的中点,求FE :EC 的值;(3)联结DF ,如果△BFD 是等腰三角形,求BC 的长.图8E图10ABCDFE图11ABCDF2022学年度九年级数学练习卷参考答案及评分说明(202305)一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.D ;3.C ;4.A ;5.A ;6.B .二、填空题:(本大题共12题,每题4分,满分48分)三、解答题(本大题共7题,其中19-22题每题10分,23、24题每题12分,25题14分,满分78分)19.解:原式=413131----+-·································(每一项各2分,共8分)7-=.···············································································(2分)20.解不等式(1)得2x ≤.·····································································(3分)解不等式(2)得12x >-.····································································(3分)解集在数轴上正确表示.······································································(2分)所以,不等式组的解集是:122x -<≤.··················································(1分)它的整数解是0,1,2··········································································(1分)21.(1)解:由题意得点B 的坐标为(0,-2).···········································(2分)设直线l 的表达式为:()0y kx b k =+≠.∵直线l 经过点A 、B ,∴代入得32,2.k b b ì+=ïïíï=-ïî解得4,32.b c ìïï=ïíïï=-ïî···············································(2分)∴直线l 的表达式是423y x =-.···················································(1分)(2)过点A 作AH y ^轴,垂足为H .∵∠ABC=∠ACB ,∴AB=AC .∴CH BH =.·············································(2分)7.26a b ;8.11a +;9.1;10.22y x =-;11.减小;12.12;13.500;14.1122a b +r r ;15.4;162;17.30;18.2.∵点B 的坐标为(0,-2),点A 的坐标为(3,2),∴点H 的坐标为(0,2),BH =4,∴CH =4.··············································(1分)∵点C 在y 轴上,∴点C 的坐标为(0,6).········································(2分)22.(1)由题意得,∠BAC=90°,AB =2.7米,∠ACB=33°,∠DBE=66°,CE =2.2米,DE ⊥BC .在Rt △ABC 中,∠BAC =90°,sin ABACB BC∠=,即 2.75sin 0.54AB BC ACB ===∠(米).·····················································(2分)∴5 2.2 2.8BE BC CE =-=-=(米).····················································(1分)在Rt △BED 中,∠BED =90°,cos BEDBE BD∠=,即 2.87cos 0.40BE BD DBE ==≈∠(米).······················································(2分)答:该支架的边BD 的长7米.(2)过点D 作DH ⊥AM ,垂足为H ,过点B 作BF ⊥DH ,垂足为F .····················(1分)∵BF //AM ,∴∠FBC =∠ACB .∵∠ACB=33°,∴∠FBC=33°.∵∠DBE=66°,∴∠DBF=33°.····························································(1分)在Rt △DBF 中,∠DFB =90°,sin DFDBF BD∠=,即sin 70.54 3.78DF BD ACB =⋅∠=⨯≈(米).···········································(2分)∵FH=AB=2.7(米),∴ 3.78 2.7 6.48 6.5DH DF FH =+=+=≈(米).······································(1分)答:支架的边BD 的顶端D 到地面AM 的距离为6.5米.23.解:(1)∵四边形ABCD 是菱形,∴AB=AD ,∠B =∠ADF .∵AE ⊥BC ,AF ⊥CD ,垂足分别为E 、F ,∴90AEB AFD ∠=∠=︒.∴ABE ADF ∆≅∆.············································································(3分)∴BE=DF .··························································································(1分)∵四边形ABCD 是菱形,∴BC=DC .∴BC -BE=DC -DF ,即CE=CF .··································································(2分)(2)∵DG AG FG ⋅=2,∴FG DGAG FG=.∵∠G=∠G ,∴△GDF ∽△GFA .∴∠GFD =∠GAF .···································(1分)∵AD //BC ,∴DF DGCF CE=.∵CE=CF ,∴DF =DG .∴∠GFD =∠G .·····················································(1分)∴∠G=∠GAF .∵ABE ADF ∆≅∆,∴∠BAE =∠GAF .∴∠BAE=∠G .∵AD //BC ,∴∠AEB =∠GAE .∴△AEG ∽△EBA .···············································································(2分)∴AG AE AE BE=.∵AE =AF ,∴BEAFAE AG =.·····································································(2分)24.解:(1)∵抛物线32++-=bx x y 与x 轴交于点A (1,0),∴代入得130b -++=,解得2b =-.·······································(2分)∴抛物线的表达式是322+--=x x y .该抛物线的对称轴是直线x =-1.······················································(2分)(2)∵抛物线322+--=x x y 与y 轴交于点C ,∴C (0,3).················(1分)∵△ABD 的面积与△ABC 的面积相等,∴点C 到x 轴的距离等于点D 到x 轴的距离.∴点C 与点D 关于抛物线的对称轴对称.············································(2分)∵点D 在x 轴上方的抛物线上,∴点D 的坐标(-2,3).································································(1分)(3)过点P 作对称轴的垂线,垂足为点H ,作x 轴的垂线,垂足为点G .∵∠APE=∠GPH=90°,∴∠EPH=∠APG .∵∠EHP=∠AGP=90°,∴△EHP ∽△AGP .·············································(1分)∴EP EH PHAP AG PG==.∵45=AP EP ,GP=4,∴5PH =.··························································(1分)∵点A 到对称轴的距离是2,∴3AG =.∴154EH =,∴E 的纵坐标是314.··························································(1分)∴点E 的坐标(-1,431).···································································(1分)25.解:(1)∵CF ⊥BD ,∴∠CEB =90°.·······················································(1分)∵AD //BC ,∠ABC =90°,∴∠A =90°,∠ADB =∠CBE .·······························(1分)∴∠CEB =∠A .··················································································(1分)∵BD =BC ,∴△ABD ≌△ECB .·······························································(1分)(2)过点F 作FG //AD ,交BD 于点G .设BC=BD=m ,∵FG//AD ,∴.ADFGBD BG AB BF ==(1分)∵点F 是AB 的中点,AD =4,∴.21=AB BF ∴FG =2,BG =.21m ················································································(1分)∵△ABD ≌△ECB ,∴BE=AD =4.∴EG =421-m .······································(1分)∵AD//BC ,∴FG//BC .∴ECEFBE EG BC FG ==.·········································(1分)即44212-=m m .解得m =.244±∴2122442-=+=EC EF .(1分)(3)①如图1,当BF=DF 时,∵FC ⊥BD ,∴∠FEB =∠FED =90°.∴BE=DE .∴BC=DC.∴△BDC 是等边三角形.∴∠DBC =60°.∴∠ABD =30°.∴BD =2AD =8.∴BC =8.······························································································(2分)②如图2,当BF=BD 时,∵BD=BC ,∴BF=BC .∵CF ⊥BD ,∠FBC =90°,∴∠FBE =∠CBE =45°.∵∠BAD =90°,∴AD=AB =4.∴BC =BD=42.···················································································(2分)③如图3,当DF=BD 时,设AD 和EC 的交点为点H ,BC=BD=a ,∵FD=BD ,∠DAB =90°,∴AF=AB .∵AD//AB ,∴.21==BF AF BC AH ∴AH =.21a ∴DH =.a 214-∵.BEEDBC DH =即.a a a44214-=-解得a =(负值舍去).171±∴BC =.171+.···········································(1分)综上所述,如果△BFD 是等腰三角形,BC =8、24或.171+图3。
2020年上海市奉贤区中考数学二模试卷(含答案解析)
2020年上海市奉贤区中考数学二模试卷一、选择题(本大题共6小题,共24.0分)1.下列根式中,与√18是同类二次根式的是()A. √8B. √6C. √13D. √272.在学校举办的“中华诗词大赛”中,有11名选手进入决赛,他们的决赛成绩各不相同,其中一名参赛选手想知道自己是否能进入前6名,他需要了解这11名学生成绩的()A. 中位数B. 平均数C. 众数D. 方差3.不等式组1≤x<2的解集在数轴上可表示为()A. B.C. D.4.把直线y=3x向上平移4个单位后所得到直线的函数表达式是()A. y=3x−4B. y=3x+4;C. y=3(x−4)D. y=3(x+4)5.将一把直尺与一块直角三角板如图放置,如果∠1=58°,那么∠2的度数为A. 32°B. 58°C. 138°D. 148°6.如图,∠O=30∘,C为OB上一点,且OC=8,以点C为圆心,半径为4的圆与直线OA的位置关系是().A. 相离B. 相交C. 相切D. 以上三种情况均有可能二、填空题(本大题共12小题,共48.0分)7.计算:2m+3m+1−1m+1=______.8. 若m +n =6,m 2−n 2=18,则(n −m)÷2=______.9. 方程√x +2=x 的根是______.10. 已知反比例函数y =k−2x 的图象在每个象限内y 的值随x 的值增大而减小,则k 的取值范围是_______________ .11. 若一条抛物线经过平移后与抛物线y =−13x 2+2重合,且顶点坐标为(4,−2),则它的表达式为________.12. 若x y =25,则x+yy = ______ .13. 从 1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是______.14. 某校为了解九年级学生的体能情况,随机抽取了30名学生进行1分钟仰卧起坐测试,统计结果并绘制成如图所示的频数分布直方图。
2020年上海市奉贤区中考数学二模试卷 (解析版)
2020年中考数学二模试卷一、选择题(本题共6题)1.下列计算中,结果等于a2m的是()A.a m+a m B.a m•a2C.(a m)m D.(a m)22.下列等式成立的是()A.()2=3B.=﹣3C.=3D.(﹣)2=﹣3 3.如果关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,那么实数m的值可以是()A.0B.1C.2D.34.甲、乙、丙、丁四位同学本学期5次50米短跑成绩的平均数(秒)及方差S2(秒2)如表所示.如果从这四位同学中选出一位成绩较好且状态稳定的同学参加学校比赛,那么应该选的同学是()甲乙丙丁777.57.5S2 2.1 1.92 1.8A.甲B.乙C.丙D.丁5.四边形ABCD的两条对角线AC、BD互相平分.添加下列条件,一定能判定四边形ABCD 为菱形的是()A.∠ABD=∠BDC B.∠ABD=∠BAC C.∠ABD=∠CBD D.∠ABD=∠BCA 6.如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN二、填空题(本大题共12题,每题4分,满分48分)7.计算:9a3b÷3a2=.8.如果代数式在实数范围内有意义,那么实数x的取值范围是.9.方程=4的解是.10.二元一次方程x+2y=3的正整数解是.11.从分别写有数字1,2,4的三张相同卡片中任取两张,如果把所抽取卡片上的两个数字分别作为点M的横坐标和纵坐标,那么点M在双曲线y=上的概率是.12.如果函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而.(填“增大”或“减小”)13.据国家统计局数据,2019年全年国内生产总值接近100万亿,比2018年增长6.1%.假设2020年全年国内生产总值的年增长率保持不变,那么2020年的全年国内生产总值将达到万亿.14.已知平行四边形ABCD,E是边AB的中点.设,,那么=.(结果用、表示).15.某校计划为全体1200名学生提供以下五种在线学习的方式:在线听课、在线答题、在线讨论、在线答疑和在线阅读.为了解学生需求,该校随机对部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成扇形统计图(如图).由这个统计图可知,全校学生中最喜欢“在线答疑”的学生人数约为人.16.如图,一艘轮船由西向东航行,在A处测得灯塔P在北偏东60°的方向,继续向东航行40海里后到B处,测得灯塔P在北偏东30°的方向,此时轮船与灯塔之间的距离是海里.17.在矩形ABCD中,AB=5,BC=12.如果分别以A、C为圆心的两圆外切,且圆A与直线BC相交,点D在圆A外,那么圆C的半径长r的取值范围是.18.如图,在Rt△ABC中,∠ACB=90°,∠B=35°,CD是斜边AB上的中线,如果将△BCD沿CD所在直线翻折,点B落在点E处,联结AE,那么∠CAE的度数是度.三、解答题(本大题共7题,满分78分)19.计算:.20.先化简,再求值:,其中x=.21.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与y 轴的正半轴交于点B,与反比例函数y=(x>0)的图象交于点C,且AB=BC,点C 的纵坐标为4.(1)求直线AB的表达式;(2)过点B作BD∥x轴,交反比例函数y=的图象于点D,求线段CD的长度.22.如图1,由于四边形具有不稳定性,因此在同一平面推矩形的边可以改变它的形状(推移过程中边的长度保持不变).已知矩形ABCD,AB=4cm,AD=3cm,固定边AB,推边AD,使得点D落在点E处,点C落在点F处.(1)如图2,如果∠DAE=30°,求点E到边AB的距离;(2)如图3,如果点A、E、C三点在同一直线上,求四边形ABFE的面积.23.已知:如图,在梯形ABCD中,CD∥AB,∠DAB=90°,对角线AC、BD相交于点E,AC⊥BC,垂足为点C,且BC2=CE•CA.(1)求证:AD=DE;(2)过点D作AC的垂线,交AC于点F,求证:CE2=AE•AF.24.如图,在平面直角坐标系xOy中,抛物线y=x2+bx经过点A(2,0).直线y=x﹣2与x轴交于点B,与y轴交于点C.(1)求这条抛物线的表达式和顶点的坐标;(2)将抛物线y=x2+bx向右平移,使平移后的抛物线经过点B,求平移后抛物线的表达式;(3)将抛物线y=x2+bx向下平移,使平移后的抛物线交y轴于点D,交线段BC于点P、Q,(点P在点Q右侧),平移后抛物线的顶点为M,如果DP∥x轴,求∠MCP的正弦值.25.如图,已知半圆⊙O的直径AB=10,弦CD∥AB,且CD=8,E为弧CD的中点,点P在弦CD上,联结PE,过点E作PE的垂线交弦CD于点G,交射线OB于点F.(1)当点F与点B重合时,求CP的长;(2)设CP=x,OF=y,求y与x的函数关系式及定义域;(3)如果GP=GF,求△EPF的面积.参考答案一、选择题(本大题共6题,每题4分,满分24分)1.下列计算中,结果等于a2m的是()A.a m+a m B.a m•a2C.(a m)m D.(a m)2【分析】直接利用合并同类项法则、同底数幂的乘法运算法则、幂的乘方运算法则分别计算得出答案.解:A、a m+a m=2a m,故此选项不合题意;B、a m•a2=a m+2,故此选项不合题意;C、(a m)m=,故此选项不合题意;D、(a m)2=a2m,故此选项符合题意.故选:D.2.下列等式成立的是()A.()2=3B.=﹣3C.=3D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简,判断即可.解:()2=3,A正确;=3,B错误;==3,C错误;(﹣)2=3,D错误;故选:A.3.如果关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,那么实数m的值可以是()A.0B.1C.2D.3【分析】利用判别式的意义得到△=(﹣2)2﹣4m>0,解不等式得到m的范围,然后对各选项进行判断.解:根据题意得△=(﹣2)2﹣4m>0,解得m<1,所以m可以取0.故选:A.4.甲、乙、丙、丁四位同学本学期5次50米短跑成绩的平均数(秒)及方差S2(秒2)如表所示.如果从这四位同学中选出一位成绩较好且状态稳定的同学参加学校比赛,那么应该选的同学是()甲乙丙丁777.57.5S2 2.1 1.92 1.8A.甲B.乙C.丙D.丁【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.解:∵乙的平均分最好,方差最小,最稳定,∴应选乙.故选:B.5.四边形ABCD的两条对角线AC、BD互相平分.添加下列条件,一定能判定四边形ABCD 为菱形的是()A.∠ABD=∠BDC B.∠ABD=∠BAC C.∠ABD=∠CBD D.∠ABD=∠BCA 【分析】先由对角线AC、BD互相平分得出四边形ABCD是平行四边形,再按照平行四边形基础上菱形的判定方法:①一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形,逐个选项分析即可.解:如图所示,设四边形ABCD的两条对角线AC、BD交于点O,∵AC、BD互相平分,∴四边形ABCD是平行四边形.选项A,由平行四边形的性质可知AB∥DC,则∠ABD=∠BDC,从而A不符合题意;选项B,∠ABD=∠BAC,则AO=BO,再结合对角线AC、BD互相平分,可知AC=BD,从而平行四边形ABCD是矩形,故B不符合题意;选项C,由平行四边形的性质可知AD∥BC,从而∠ADB=∠CBD,当∠ABD=∠CBD时,∠ADB=∠ABD,故AB=AD,由一组邻边相等的平行四边形的菱形可知,C符合题意;选项D,∠ABD=∠BCA,得不出可以判定四边形ABCD为菱形的条件,故D不符合题意.综上,只有选项C一定能判定四边形ABCD为菱形.故选:C.6.如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN【分析】根据三角形的高的概念得到AD⊥BC,根据垂线段最短判断.解:∵线段AN是△ABC边BC上的高,∴AD⊥BC,由垂线段最短可知,AM≥AN,故选:B.二、填空题(本大题共12题,每题4分,满分48分)7.计算:9a3b÷3a2=3ab.【分析】直接利用整式的除法运算法则计算得出答案.解:原式=3ab.故答案为:3ab.8.如果代数式在实数范围内有意义,那么实数x的取值范围是x≠3.【分析】根据分式有意义的条件是分母不为0求解可得.解:根据题意知3﹣x≠0,解得x≠3,故答案为:x≠3.9.方程=4的解是x=15.【分析】将无理方程化为一元一次方程,然后求解即可.解:原方程变形为:x+1=16,∴x=15,x=15时,被开方数x+1=16>0‘∴方程的解为x=15.故答案为x=15.’10.二元一次方程x+2y=3的正整数解是.【分析】把y看做已知数求出x,即可确定出正整数解.解:方程x+2y=3,变形得:x=﹣2y+3,当y=1时,x=1,则方程的正整数解为,故答案为:11.从分别写有数字1,2,4的三张相同卡片中任取两张,如果把所抽取卡片上的两个数字分别作为点M的横坐标和纵坐标,那么点M在双曲线y=上的概率是.【分析】列表得出所有等可能的情况,然后判断落在双曲线上点的情况数,即可求出点M在双曲线y=上的概率.解:列表如下:1241(2,1)(4,1)2(1,2)(4,2)4(1,4)(2,4)所有可能的情况有6种;落在双曲线y=上的点有:(1,4),(4,1)共2个,则P==.12.如果函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而减小.(填“增大”或“减小”)【分析】根据正比例函数的性质进行解答即可.解:函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而减小,故答案为:减小.13.据国家统计局数据,2019年全年国内生产总值接近100万亿,比2018年增长6.1%.假设2020年全年国内生产总值的年增长率保持不变,那么2020年的全年国内生产总值将达到106.1万亿.【分析】利用增长率的意义得到2020年全年国内生产总值100×(1+6.1%),然后进行计算即可.解:根据题意得:100×(1+6.1%)=106.1(万亿),答:2020年的全年国内生产总值将达到106.1万亿;故答案为:106.1.14.已知平行四边形ABCD,E是边AB的中点.设,,那么=﹣+.(结果用、表示).【分析】由三角形法则可知:=+,只要求出,即可解决问题.解:如图,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC∴==,∵E是AB的中点,∴AE=AB=,∵=+,∴=﹣+,故答案为:﹣+.15.某校计划为全体1200名学生提供以下五种在线学习的方式:在线听课、在线答题、在线讨论、在线答疑和在线阅读.为了解学生需求,该校随机对部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成扇形统计图(如图).由这个统计图可知,全校学生中最喜欢“在线答疑”的学生人数约为360人.【分析】先根据各部分所占百分比之和为1求出D类型人数所占百分比,再乘以总人数即可得.解:∵最喜欢“在线答疑”的学生人数占被调查人数的百分比为1﹣(20%+25%+15%+10%)=30%,∴全校学生中最喜欢“在线答疑”的学生人数约为1200×30%=360(人),故答案为:360.16.如图,一艘轮船由西向东航行,在A处测得灯塔P在北偏东60°的方向,继续向东航行40海里后到B处,测得灯塔P在北偏东30°的方向,此时轮船与灯塔之间的距离是40海里.【分析】根据已知方向角得出∠P=∠PAB=30°,进而得出对应边关系即可得出答案.解:如图所示:由题意可得,∠PAB=30°,∠DBP=30°,故∠PBE=60°,则∠P=∠PAB=30°,可得:AB=BP=40海里.故答案为:40.17.在矩形ABCD中,AB=5,BC=12.如果分别以A、C为圆心的两圆外切,且圆A与直线BC相交,点D在圆A外,那么圆C的半径长r的取值范围是1<r<8.【分析】四边形ABCD是矩形,可得∠B=90°,AD=BC=12,AB=5,根据勾股定理,得AC=13,分别以A、C为圆心的两圆外切,且圆A与直线BC相交,点D在圆A外,根据圆与圆相切的性质即可求出r的取值范围.解:如图,∵四边形ABCD是矩形,∴∠B=90°,AD=BC=12,AB=5,根据勾股定理,得AC==13,∵分别以A、C为圆心的两圆外切,且圆A与直线BC相交,∴13﹣5=8,∵点D在圆A外,∴13﹣12=1,∴1<r<8,所以圆C的半径长r的取值范围是1<r<8.故答案为:1<r<8.18.如图,在Rt△ABC中,∠ACB=90°,∠B=35°,CD是斜边AB上的中线,如果将△BCD沿CD所在直线翻折,点B落在点E处,联结AE,那么∠CAE的度数是125度.【分析】依据折叠的性质即可得到∠DAE的度数,再根据三角形内角和定理即可得到∠BAC的度数,进而得出∠CAE的度数.解:如图所示,∵CD是斜边AB上的中线,∴CD=BD=AD,∴∠BCD=∠B=35°,∴∠BDC=110°,由折叠可得,∠CDE=∠CDB=110°,DE=DB=AD,∴∠BDE=360°﹣110°×2=140°,∴∠DAE=∠BDE=70°,又∵Rt△ABC中,∠BAC=90°﹣35°=55°,∴∠CAE=55°+70°=125°,故答案为:125.三、解答题(本大题共7题,满分78分)19.计算:.【分析】直接利用二次根式的性质和零指数幂的性质、绝对值的性质分别化简得出答案.解:原式==﹣2++1=﹣1.20.先化简,再求值:,其中x=.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.解:原式==,当时,原式=.21.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与y 轴的正半轴交于点B,与反比例函数y=(x>0)的图象交于点C,且AB=BC,点C 的纵坐标为4.(1)求直线AB的表达式;(2)过点B作BD∥x轴,交反比例函数y=的图象于点D,求线段CD的长度.【分析】(1)过点C作CH⊥x轴,垂足为H,如图,利用平行线分线段成比例得到==1,则OH=OA=2,则点C的坐标为(2,4),然后利用待定系数法求直线AB 的解析式;(2)把C点坐标代入y=中求出m=8,再利用直线解析式确定点B的坐标为(0,2),接着利用BD∥x轴得到点D纵坐标为2,根据反比例解析式确定点D坐标,然后根据两点间的距离公式计算CD的长.解:(1)过点C作CH⊥x轴,垂足为H,如图,∴==1,∵A(﹣2,0),∴AO=2,∴OH=OA=2,∵点C的纵坐标为4,∴点C的坐标为(2,4),设直线AB的表达式y=kx+b(k≠0),把A(﹣2,0),C(2,4)代入得,解得,∴直线AB的表达式y=x+2;(2)∵反比例函数y=的图象过点C(2,4),∴m=2×4=8,∵直线y=x+2与y轴的正半轴交于点B,∴点B的坐标为(0,2),∵BD∥x轴,∴点D纵坐标为2,当y=2时,=2,解得x=4,∴点D坐标为(4,2),∴CD==2.22.如图1,由于四边形具有不稳定性,因此在同一平面推矩形的边可以改变它的形状(推移过程中边的长度保持不变).已知矩形ABCD,AB=4cm,AD=3cm,固定边AB,推边AD,使得点D落在点E处,点C落在点F处.(1)如图2,如果∠DAE=30°,求点E到边AB的距离;(2)如图3,如果点A、E、C三点在同一直线上,求四边形ABFE的面积.【分析】(1)过点E作EH⊥AB轴,垂足为H,根据矩形的性质得到∠DAB=90°,AD∥EH,根据平行线的性质得到∠DAE=∠AEH,求得∠AEH=30°,解直角三角形即可得到结论;(2)过点E作EH⊥AB,垂足为H.根据矩形的性质得到AD=BC.得到BC=3cm.根据勾股定理得到cm,根据平行线分线段成比例定理得到cm,根据四边形的性质得到AD=AE=BF,AB=DC=EF.求得四边形ABCD是平行四边形,于是得到结论.解:(1)如图2,过点E作EH⊥AB轴,垂足为H,∵四边形ABCD是矩形,∴∠DAB=90°,∴AD∥EH,∴∠DAE=∠AEH,∵∠DAE=30°,∴∠AEH=30°.在直角△AEH中,∠AHE=90°,∴EH=AE•cos∠AEH,∵AD=AE=3cm,∴cm,即点E到边AB的距离是cm;(2)如图3,过点E作EH⊥AB,垂足为H.∵四边形ABCD是矩形,∴AD=BC,∵AD=3cm,∴BC=3cm,在直角△ABC中,∠ABC=90°,AB=4cm,∴cm,∵EH∥BC,∴,∵AE=AD=3 cm,∴,∴cm,∵推移过程中边的长度保持不变,∴AD=AE=BF,AB=DC=EF,∴四边形ABCD是平行四边形,∴cm2.23.已知:如图,在梯形ABCD中,CD∥AB,∠DAB=90°,对角线AC、BD相交于点E,AC⊥BC,垂足为点C,且BC2=CE•CA.(1)求证:AD=DE;(2)过点D作AC的垂线,交AC于点F,求证:CE2=AE•AF.【分析】(1)根据相似三角形的判定定理得到△BCE∽△ACB,根据相似三角形的性质得到∠CBE=∠CAB,根据等角的余角相等得到∠BEC=∠DAE,根据等腰三角形的判定定理证明;(2)根据平行线分线段成比例定理得到,,得到,整理得到CE2=AE•EF,根据等腰三角形的三线合一得到AF=EF,证明结论.【解答】证明:(1)∵BC2=CE•CA,∴,又∠ECB=∠BCA,∴△BCE∽△ACB,∴∠CBE=∠CAB,∵AC⊥BC,∠DAB=90°,∴∠BEC+∠CBE=90°,∠DAE+∠CAB=90°,∴∠BEC=∠DAE,∵∠BEC=∠DEA,∴∠DAE=∠DEA,∴AD=DE;(2)∵DF⊥AC,AC⊥BC,∴∠DFE=∠BCA=90°,∴DF∥BC,∴,∵DC∥AB,∴,∴,∴CE2=AE•EF,∵AD=DE,DF⊥AC,∴AF=EF,∴CE2=AE•AF.24.如图,在平面直角坐标系xOy中,抛物线y=x2+bx经过点A(2,0).直线y=x﹣2与x轴交于点B,与y轴交于点C.(1)求这条抛物线的表达式和顶点的坐标;(2)将抛物线y=x2+bx向右平移,使平移后的抛物线经过点B,求平移后抛物线的表达式;(3)将抛物线y=x2+bx向下平移,使平移后的抛物线交y轴于点D,交线段BC于点P、Q,(点P在点Q右侧),平移后抛物线的顶点为M,如果DP∥x轴,求∠MCP的正弦值.【分析】(1)根据待定系数法即可求得抛物线的解析式,化成顶点式即可求得顶点坐标;(2)根据图象上点的坐标特征求得B(4,0),然后分两种情况讨论求得即可;(3)设向下平移后的抛物线表达式是:y=x2﹣2x+n,得点D(0,n),即可求得P(2,n),代入y=x﹣2求得n=﹣1,即可求得平移后的解析式为y=x2﹣2x﹣2.求得顶点坐标,然后解直角三角形即可求得结论.解:(1)由题意,抛物线y=x2+bx经过点A(2,0),得0=4+2b,解得b=﹣2,∴抛物线的表达式是y=x2﹣2x.∵y=x2﹣2x=(x﹣1)2﹣1,∴它的顶点C的坐标是(1,﹣1).(2)∵直线与x轴交于点B,∴点B的坐标是(4,0).①将抛物线y=x2﹣2x向右平移2个单位,使得点A与点B重合,此时平移后的抛物线表达式是y=(x﹣3)2﹣1.②将抛物线y=x2﹣2x向右平移4个单位,使得点O与点B重合,此时平移后的抛物线表达式是y=(x﹣5)2﹣1.(3)设向下平移后的抛物线表达式是:y=x2﹣2x+n,得点D(0,n).∵DP∥x轴,∴点D、P关于抛物线的对称轴直线x=1对称,∴P(2,n).∵点P在直线BC上,∴.∴平移后的抛物线表达式是:y=x2﹣2x﹣2.∴新抛物线的顶点M的坐标是(1,﹣2).∴MC∥OB,∴∠MCP=∠OBC.在Rt△OBC中,,由题意得:OC=2,,∴.即∠MCP的正弦值是.25.如图,已知半圆⊙O的直径AB=10,弦CD∥AB,且CD=8,E为弧CD的中点,点P在弦CD上,联结PE,过点E作PE的垂线交弦CD于点G,交射线OB于点F.(1)当点F与点B重合时,求CP的长;(2)设CP=x,OF=y,求y与x的函数关系式及定义域;(3)如果GP=GF,求△EPF的面积.【分析】(1)如图1,连接EO,交弦CD于点H,根据垂径定理得EO⊥AB,由勾股定理计算,可得EH的长,证明∠HPE=∠HGE=45°,则PE=GE.从而可得结论;(2)如图2,连接OE,证明△PEH∽△EFO,列比例式可得结论;(3)如图3,作PQ⊥AB,分别计算PE和EF的长,利用三角形面积公式可得结论.解:(1)连接EO,交弦CD于点H,∵E为弧CD的中点,∴EO⊥AB,∵CD∥AB,∴OH⊥CD,∴CH=,连接CO,∵AB=10,CD=8,∴CO=5,CH=4,∴,∴EH=EO﹣OH=2,∵点F与点B重合,∴∠OBE=∠HGE=45°,∵PE⊥BE,∴∠HPE=∠HGE=45°,∴PE=GE,∴PH=HG=2,∴CP=CH﹣PH=4﹣2=2;(2)如图2,连接OE,交CD于H,∵∠PEH+∠OEF=90°,∠OFE+∠OEF=90°,∴∠PEH=∠OFE,∵∠PHE=∠EOF=90°,∴△PEH∽△EFO,∴,∵EH=2,FO=y,PH=4﹣x,EO=5,∴,∴.(3)如图3,过点P作PQ⊥AB,垂足为Q,∵GP=GF,∴∠GPF=∠GFP,∵CD∥AB,∴∠GPF=∠PFQ,∵PE⊥EF,∴PQ=PE,由(2)可知,△PEH∽△EFO,∴,∵PQ=OH=3,∴PE=3,∵EH=2,∴,∴,∴,∴.。
2019-2020学年上海市奉贤区九年级第二学期(二模)考试数学(答案部分)
奉贤区2019学年度九年级数学质量调研参考答案及评分说明(202005)一、选择题:(本大题共6题,每题4分,满分24分)1.D ; 2.A ; 3.A ; 4.B ; 5.C ; 6.B . 二、填空题:(本大题共12题,每题4分,满分48分) 三、解答题(本大题共7题,其中19-22题每题10分,23、24题每题12分,25题14分,满分78分)19.解原式=1214(-+ ······································· (每个2分,共8分)211=. ······························································ (2分)20.解原式=2336(3)3x x x x ··························································· (4分)=2331(3)33x x x x x . ···································································· (3分)当3x 时,原式133633. ·················································· (3分)21.(1)解:过点C 作CH y 轴,垂足为H ,得//CH x 轴.∴BC CHAB AO . ··················································································· (1分)∵A (-2,0),∴AO =2,∴CH =2.∵点C 的纵坐标为4,∴点C 的坐标为(2,4).······································· (2分) 设直线AB 的表达式(0)y kxb k,由它经过点A 、C ,得2024k b kb, 解得12k b. ···································· (2分)∴直线AB 的表达式2y x .(2)∵反比例函数y =xm的图像交于点C (2,4),∴8=m . ······················ (1分) ∵直线AB 与与y 轴的正半轴交于点B ,∴点B 的坐标为(0,2). ·············· (1分) ∵BD ∥x 轴,∴点D 纵坐标为2. ·························································· (1分) ∵点D 在反比例函数y =x 8的图像上,∴点D 坐标为(4,2). ···················· (1分)∴22=+=222)(44)(2--CD . ····························································· (1分)7. 3ab ;8. 3x;9. 15x =;10. 11x y =⎧⎨=⎩;11.13;12. 减小;13.106.1;14.12a b - ;15.360;16.40; 17.18r <<; 18.125.22.(1)过点E 作EH AB 轴,垂足为H . ············································· (1分) ∵四边形ABCD 是矩形,∴∠DAB =90°,∴AD //EH . ∴∠DAE =∠AEH . ·············································································· (1分) ∵∠DAE =30°,∴∠AEH =30°.在直角△AEH 中,∠AHE =90°,∴AEH cos AE EH ∠⋅=. ························· (2分)∵AD=AE =3cm ,∴233233=⨯=EH cm . ············································· (1分) 即点E 到边AB 的距离是233cm .(2)过点E 作EH AB ,垂足为H . ∵四边形ABCD 是矩形,∴AD=BC . ∵AD =3cm ,∴BC=3cm .在直角△ABC 中,∠ABC =90°,AB =4cm ,,∴225ACAB BC cm .································································ (1分) ∵EH //BC ,∴AEEHACBC. ∵AE=AD=3 cm ,∴354EH.∴95EH cm . ··········································· (2分) ∵推移过程中边的长度保持不变,∴,AD AE BF AB DC EF .∴四边形ABCD 是平行四边形. ····························································· (1分) ∴936455ABFE S AB EH 平行四边形cm 2. ·············································· (1分)23.证明:(1)∵CA CE BC ⋅=2,∴BCCA CEBC. ··········································· (1分) ∵BCA ECB ∠=∠,∴△BCE ∽△ACB . ············································ (1分) ∴CBE CAB . ······································································· (1分) ∵AC ⊥BC ,∠DAB=90°,∴90BEC CBE ∠+∠=︒,90DAE CAB ∠+∠=︒. ∴BEC DAE . ········································································· (1分) ∵BEC DEA ,∴DAE DEA . ·············································· (1分) ∴AD DE . ·················································································· (1分) (2)∵DF ⊥AC, AC ⊥BC ,∴∠DFE=∠BCA =90°.∴//DF BC .∴CE BE EF DE=. ················································································· (2分) ∵//DC AB ,∴BE AEDE CE=. ····························································· (1分) ∴CE AEEF CE=. ···················································································· (1分) ∵AD DE ,DF ⊥AC ,∴AF EF . ···················································· (1分)∴2CE AE EF =⋅. ·············································································· (1分)24.解:(1)由题意,抛物线2y x bx 经过点A (2,0),得042b , 解得 2b····················································· (2分) ∴抛物线的表达式是22y x x =-. ·························································· (1分) 它的顶点C 的坐标是(1,-1). ······························································ (1分) (2)∵直线122y x =-与x 轴交于点B , ∴点B 的坐标是(4,0) . ················· (1分) ①将抛物线22y x x =-向右平移2个单位,使得点A 与点B 重合,此时平移后的抛物线表达式是231()y x =--. ······································ (2分) ②将抛物线22y x x =-向右平移4个单位,使得点O 与点B 重合,此时平移后的抛物线表达式是251()y x =--. ······································· (1分) (3)设向下平移后的抛物线表达式是:22y x x n =-+,得点D (0,n ). ∵DP ∥x 轴,∴点D 、P 关于抛物线的对称轴直线1x 对称,∴P (2,n ).∵点P 在直线BC 上,∴12212n =⨯-=-.∴平移后的抛物线表达式是:222y x x =--. ·········································· (2分) ∴新抛物线的顶点M 的坐标是(1,-2). ················································ (1分) ∴MC //OB ,∴∠MCP =∠OBC . 在Rt △OBC 中,sin OCOBC BC, 由题意得:OC =2,25BC , ∴25sin sin 525MCPOBC. ····················································· (1分)即∠MCP25.解:(1)联结EO ,交弦CD 于点H .∵E 为弧CD 的中点,∴EO ⊥AB . ······························································ (1分) ∵CD ∥AB ,∴OH ⊥CD .∴CH=12CD .联结CO ,∵AB =10,CD =8,∴CO=5,4CH =.∴3OH =. ·········································································· (1分) ∴2EH EO OH =-=.∵点F 与点B 重合,∴45OBE HGE ∠=∠=︒.∵PE ⊥BE ,∴45HPE HGE ∠=∠=︒,∴PE GE =. ········································ (1分) ∴2PH HG ==.∴2CP CH PH =-=. ·············································································· (1分) (2)∵∠PEH+∠OEF=90°,∠OFE+∠OEF=90°,∴∠PEH=∠OFE .∵∠PHE=∠EOF=90°,∴PEH ∆∽EFO ∆. ·············································· (2分) ∴EH PHFO EO=. ∵245EH FO y PH x EO ,,,===-=,∴245xy -=. ··································· (1分) ∴10034y x x()=≤<-. ··········································································· (2分) (3)过点P 作PQAB ,垂足为Q .∵GP =GF ,∴∠GPF=∠GFP . ································································· (1分) ∵CD ∥AB ,∴∠GPF=∠PFQ .∵PE ⊥EF ,∴PQ=PE . ·········································································· (1分) 由(2)可知,PEH ∆∽EFO ∆,∴PE PHEF EO=. ∵PQ=OH=3,∴PE=3.∵2EH ,=∴PH ==∴3EF =.∴EF = ························································································ (2分)∴11322EPF S PE EF ∆=⋅⋅=⨯⨯=················································· (1分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市奉贤区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.如果两个实数a、b满足a+b=0,那么a、b一定是()A.都等于0 B.一正一负 C.互为相反数D.互为倒数2.若x=2,y=﹣1,那么代数式x2+2xy+y2的值是()A.0 B.1 C.2 D.4.3.一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.一组数据3,3,2,5,8,8的中位数是()A.3 B.4 C.5 D.8.5.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线之间对称D.周长相等的两个三角形一定关于某条直线之间对称6.已知⊙O1与⊙O2外离,⊙O1的半径是5,圆心距O1O2=7,那么⊙O2的半径可以是()A.4 B.3 C.2 D.1二、填空题:(本大题共12题,每题4分,满分48分)7.化简:=.8.因式分解:a2﹣a=.9.函数y=的定义域是.10.一个不透明的袋子中装有若干个除颜色外形状大小完全相同的小球.如果其中有2个白球n个黄球,从中随机摸出白球的概率是,那么n=.11.不等式组的解集是.12.已知反比例函数,在其图象所在的每个象限内,y的值随x值的增大而(填“增大”或“减小”).13.直线y=kx+b(k≠0)平行于直线且经过点(0,2),那么这条直线的解析式是.14.小明在高为18米的楼上看到停在地面上的一辆汽车的俯角为60°,那么这辆汽车到楼底的距离是.(结果保留根号)15.如图,在△ABC中,点D在边BC上,且DC=2BD,点E是边AC的中点,设,那么=;(用不的线性组合表示)16.四边形ABCD中,AD∥BC,∠D=90°,如果再添加一个条件,可以得到四边形ABCD是矩形,那么可以添加的条件是.(不再添加线或字母,写出一种情况即可)17.如图,在Rt△ABC中,∠ACB=90°,AD是边BC边上的中线,如果AD=BC,那么cot∠CAB的值是.18.如图,在△ABC中,∠B=45°,∠C=30°,AC=2,点D在BC上,将△ACD沿直线AD翻折后,点C 落在点E处,边AE交边BC于点F,如果DE∥AB,那么的值是.三、解答题:(本大题共7题,满分78)19.计算:.20.解方程:.21.已知,如图,在Rt△ABC中,∠ACB=90°,AB=4,AD是∠BAC的平分线,过点D作DE⊥AD,垂足为点D,交AB于点E,且.(1)求线段BD的长;(2)求∠ADC的正切值.22.今年3月5日,某中学组织六、七年级200位学生参与了“走出校门,服务社会”的活动,该校某数学学习小组的同学对那天参与打扫街道、敬老院服务和社区文艺演出的三组人数进行分别统计,部分数据如图所示:(1)参与社区文艺演出的学生人数是人,参与敬老院服务的学生人数是人;(2)该数学学习小组的同学还发现,六、七年级参与打扫街道的学生人数分别比参与敬老院服务的学生人数多了40%和60%,求参与敬老院服务的六、七年级学生分别有多少人?23.已知:如图,梯形ABCD中,DC∥AB,AD=BC=DC,AC、BD是对角线,E是AB延长线上一点,且∠BCE=∠ACD,联结CE.(1)求证:四边形DBEC是平行四边形;(2)求证:AC2=AD•AE.24.已知在平面直角坐标系xOy(如图)中,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)与点C(3,0),与y轴交于点B,点P为OB上一点,过点B作射线AP的垂线,垂足为点D,射线BD交x轴于点E.(1)求该抛物线的解析式;(2)连结BC,当P点坐标为(0,)时,求△EBC的面积;(3)当点D落在抛物线的对称轴上时,求点P的坐标.25.如图,边长为5的菱形ABCD中,cosA=,点P为边AB上一点,以A为圆心,AP为半径的⊙A与边AD交于点E,射线CE与⊙A另一个交点为点F.(1)当点E与点D重合时,求EF的长;(2)设AP=x,CE=y,求y关于x的函数关系式及定义域;(3)是否存在一点P,使得=2?若存在,求AP的长;若不存在,请说明理由.上海市奉贤区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.如果两个实数a、b满足a+b=0,那么a、b一定是()A.都等于0 B.一正一负 C.互为相反数D.互为倒数【考点】实数的运算.【专题】计算题;实数.【分析】利用相反数的性质判断即可.【解答】解:由a+b=0,得到a,b互为相反数,故选C【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.若x=2,y=﹣1,那么代数式x2+2xy+y2的值是()A.0 B.1 C.2 D.4.【考点】代数式求值.【分析】首先利用完全平方公式的逆运算,然后代入即可.【解答】解:x2+2xy+y2=(x+y)2=(2﹣1)2=1,故选B.【点评】本题主要考查了代数式求值,利用完全平方公式的逆运算,然后代入是解答此题的关键.3.一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【分析】首先确定k,k>0,必过第二、四象限,再确定b,看与y轴交点,即可得到答案.【解答】解:∵y=﹣2x+3中,k=﹣2<0,∴必过第二、四象限,∵b=3,∴交y轴于正半轴.∴过第一、二、四象限,不过第三象限,故选:C.【点评】此题主要考查了一次函数的性质,直线所过象限,受k,b的影响.4.一组数据3,3,2,5,8,8的中位数是()A.3 B.4 C.5 D.8.【考点】中位数.【分析】根据中位数计算:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:把这组数据按照从小到大的顺序排列为:2,3,3,5,8,8,∴这组数据的中位数是=4,故选B.【点评】本题考查了中位数的定义,解题的关键是牢记定义,此题比较简单,易于掌握.5.下列说法中,正确的是()A.关于某条直线对称的两个三角形一定全等B.两个全等三角形一定关于某条直线对称C.面积相等的两个三角形一定关于某条直线之间对称D.周长相等的两个三角形一定关于某条直线之间对称【考点】轴对称的性质.【分析】认真阅读各选项提供的已知条件,根据轴对称的性质对个选项逐一验证,其中选项A是正确的.【解答】解:A、关于某条直线对称的两个图形能够完全重合,所以关于某条直线对称的两个三角形是全等三角形,正确;B、全等三角形不一定关于某直线对称,错误;C、面积相等的两个三角形不一定关于某条直线之间对称,错误;D、周长相等的两个三角形不一定关于某条直线之间对称,错误;故选A【点评】主要考查了轴对称的性质;找着每个选项正误的具体原因是正确解答本题的关键.6.已知⊙O1与⊙O2外离,⊙O1的半径是5,圆心距O1O2=7,那么⊙O2的半径可以是()A.4 B.3 C.2 D.1【考点】圆与圆的位置关系.【分析】由⊙O1与⊙O2外离,⊙O1的半径是5,圆心距O1O2=7,可求得⊙O2的半径<2,继而求得答案.【解答】解:∵⊙O1与⊙O2外离,圆心距O1O2=7,∴⊙O1与⊙O2的半径和<7,∵⊙O1的半径是5,∴⊙O2的半径<2,∴⊙O2的半径可以是:1.故选D.【点评】此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.化简:=4.【考点】二次根式的性质与化简.【分析】根据二次根式的性质,化简即可.【解答】解:,故答案为:4.【点评】本题考查了二次根式的性质,解决本题的关键是熟记二次根式的性质.8.因式分解:a2﹣a=a(a﹣1).【考点】因式分解-提公因式法.【分析】直接提取公因式a,进而分解因式得出即可.【解答】解:a2﹣a=a(a﹣1).故答案为:a(a﹣1).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.函数y=的定义域是x≠1.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.一个不透明的袋子中装有若干个除颜色外形状大小完全相同的小球.如果其中有2个白球n个黄球,从中随机摸出白球的概率是,那么n=1.【考点】概率公式.【分析】根据有2个白球n个黄球,从中随机摸出白球的概率是,列出等式解答即可.【解答】解:∵有2个白球n个黄球,从中随机摸出白球的概率是,∴=,解得n=1;故答案为:1.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.不等式组的解集是x>3.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x>3,解②得x>﹣4.则不等式组的解集是:x>3.故答案是:x>3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.12.已知反比例函数,在其图象所在的每个象限内,y的值随x值的增大而减小(填“增大”或“减小”).【考点】反比例函数的性质.【分析】根据反比例函数的性质,k=3>0,y随x的增大而减小.【解答】解:反比例函数y=中,k=3>0,故每个象限内,y随x增大而减小.故答案为:减小.【点评】本题考查了反比例函数的性质,应注意y=中k的取值.13.直线y=kx+b(k≠0)平行于直线且经过点(0,2),那么这条直线的解析式是y=x+2.【考点】反比例函数与一次函数的交点问题.【分析】根据两直线平行的问题得到k=,然后把(0,2)代入y=x+b,求出b的值即可.【解答】解:根据题意得k=,把(0,2)代入y=x+b得b=2,所以直线解析式为y=x+2.故答案为y=x+2.【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.14.小明在高为18米的楼上看到停在地面上的一辆汽车的俯角为60°,那么这辆汽车到楼底的距离是6米.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】由俯角的正切值和楼高可求得这辆汽车到楼底的距离.【解答】解:由于楼高18米,塔顶看停在地面上的一辆汽车的俯角为60°,则这辆汽车到楼底的距离为=6(米).故答案是:6米.【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.15.如图,在△ABC中,点D在边BC上,且DC=2BD,点E是边AC的中点,设,那么=﹣;(用不的线性组合表示)【考点】*平面向量.【分析】由在△ABC中,点D在边BC上,且DC=2BD,点E是边AC的中点,设,可表示出与,然后利用三角形法则求解即可求得答案.【解答】解:∵DC=2BD,点E是边AC的中点,设,∴==,==,∴=﹣=﹣.故答案为:﹣.【点评】此题考查了平面向量的知识.注意掌握三角形法则的应用是解此题的关键.16.四边形ABCD中,AD∥BC,∠D=90°,如果再添加一个条件,可以得到四边形ABCD是矩形,那么可以添加的条件是AD=BC.(不再添加线或字母,写出一种情况即可)【考点】矩形的判定.【分析】添加AD=BC,再有条件AD∥BC可得四边形ABCD是平行四边形,再加上条件∠D=90°可根据有一个角是直角的平行四边形是矩形判定四边形ABCD是矩形.【解答】解:添加AD=BC,∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵∠D=90°,∴四边形ABCD是矩形,故答案为:AD=BC.【点评】此题主要考查了矩形的判定,关键是掌握有一个角是直角的平行四边形是矩形.17.如图,在Rt△ABC中,∠ACB=90°,AD是边BC边上的中线,如果AD=BC,那么cot∠CAB的值是.【考点】解直角三角形;含30度角的直角三角形.【专题】计算题.【分析】设AD=BC=2x,利用中线定义得到CD=BD=x,则可根据勾股定理表示出AC,然后利用余切的定义求解.【解答】解:设AD=BC=2x,则CD=BD=x,在Rt△ACD中,AC===x,在Rt△ABC中,cot∠CAB===.故答案为.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.解决本题的关键是灵活运用勾股定理和锐角三角函数的定义.18.如图,在△ABC中,∠B=45°,∠C=30°,AC=2,点D在BC上,将△ACD沿直线AD翻折后,点C 落在点E处,边AE交边BC于点F,如果DE∥AB,那么的值是+1.【考点】翻折变换(折叠问题).【分析】作AM⊥BC垂足为M,先求出AM、BM、MC,再证明CA=CF,由此即可解决问题.【解答】解:如图作AM⊥BC垂足为M,∵△ADE是由△ADC翻折,∴∠C=∠E=30°,∵AB∥DE,∴∠E=∠BAF=30°,∴∠AFC=∠B+∠BAF=75°,∴∠CAF=180°﹣∠AFC﹣∠C=75°,∴∠CAF=∠CFA=75°,∴CA=CF=2,在RT△AMC中,∵∠C=30°,AC=2,∴AM=1,MC=,∵∠B=∠BAM=45°,∴MB=AM=1,∴BC=1+,BF=1+﹣2=﹣1∴==+1.故答案为+1.【点评】本题考查翻折变换、等腰三角形的判定和性质、勾股定理等知识,添加辅助线构造直角三角形是解决问题的关键,解题时要善于发现特殊三角形,属于中考常考题型.三、解答题:(本大题共7题,满分78)19.计算:.【考点】实数的运算;分数指数幂;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用立方根定义计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1﹣﹣2+2﹣=1﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解方程:.【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是(x2﹣4),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x2﹣4),得(x+2)2﹣(x﹣2)=16,解得x1=2,x2=﹣5.检验:把x=2代入(x2﹣4)=0,所以x=2是原方程的增根.把x=﹣5代入(x2﹣4)=21≠0,∴原方程的解为x=﹣5.【点评】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.已知,如图,在Rt△ABC中,∠ACB=90°,AB=4,AD是∠BAC的平分线,过点D作DE⊥AD,垂足为点D,交AB于点E,且.(1)求线段BD的长;(2)求∠ADC的正切值.【考点】相似三角形的判定与性质;解直角三角形.【分析】(1)根据余角的性质得到∠CAD=∠DAB,推出∠BAD=∠BDE,得到△BED∽△BDA,由相似三角形的性质得到BD2=BE•BA,即可得到结论;(2)由余角的性质得到∠ADE=∠AED,根据余角的性质得到,根据三角形函数的定义即可得到结论.【解答】解:(1)∵DE⊥AD,∴∠BDE=∠CAD=90°﹣∠CDA,∵∠CAD=∠DAB,∴∠BAD=∠BDE,∵∠B=∠B,∴△BED∽△BDA,∴BD2=BE•BA,∵AB=4,,∴BE=1,∴BD2=1×4=4,∴BD=2;(2),∵DE⊥AD,∴∠AED=90°﹣∠DAE,∵∠ADE=90°﹣∠CAD,∵∠CAD=∠DAB,∴∠ADE=∠AED,∵△BED∽△BDA,∴,∴tan∠ADE=tan∠AED===2.【点评】本题考查了相似三角形的判定和性质,三角函数的定义,熟练掌握相似三角形的判定和性质是解题的关键.22.今年3月5日,某中学组织六、七年级200位学生参与了“走出校门,服务社会”的活动,该校某数学学习小组的同学对那天参与打扫街道、敬老院服务和社区文艺演出的三组人数进行分别统计,部分数据如图所示:(1)参与社区文艺演出的学生人数是50人,参与敬老院服务的学生人数是60人;(2)该数学学习小组的同学还发现,六、七年级参与打扫街道的学生人数分别比参与敬老院服务的学生人数多了40%和60%,求参与敬老院服务的六、七年级学生分别有多少人?【考点】扇形统计图.【分析】(1)用学生总数乘以参与社区文艺演出的学生所占百分比得到参与社区文艺演出的学生人数;用学生总数分别减去打扫街道、社区文艺演出的人数得到参与敬老院服务的学生人数;(2)设六年级参与敬老院服务的学生有x人,则七年级参与敬老院服务的学生有(60﹣x)人,根据六、七年级参与打扫街道总人数为90人列出方程求解可得.【解答】解:(1)参与社区文艺演出的学生人数是:200×25%=50人,参与敬老院服务的学生人数是:200﹣90﹣50=60人;(2)设六年级参与敬老院服务的学生有x人,则七年级参与敬老院服务的学生有(60﹣x)人,根据题意,得:(1+40%)x+(1+60%)(60﹣x)=90,解得:x=30,答:六年级参与敬老院服务的学生有30人,则七年级参与敬老院服务的学生有30人.【点评】本题主要考查读扇形统计图和列方程解决实际问题的能力,根据扇形统计图读出有用信息依据计算公式计算是基础,抓住相等关系列方程解决实际问题是关键.23.已知:如图,梯形ABCD中,DC∥AB,AD=BC=DC,AC、BD是对角线,E是AB延长线上一点,且∠BCE=∠ACD,联结CE.(1)求证:四边形DBEC是平行四边形;(2)求证:AC2=AD•AE.【考点】相似三角形的判定与性质;平行四边形的判定.【专题】证明题.【分析】(1)由等腰梯形的性质得出∠ADC=∠BCD,由SAS证明△ADC≌△BCD,得出∠ACD=∠BDC,由等腰三角形的性质和已知条件得出∠BCE=∠CBD,证出BD∥CE,即可得出结论;(2)证出CE=AC,证明△EAC∽△EBC,得出对应边成比例,即可得出结论.【解答】证明:(1)∵梯形ABCD中,DC∥AB,AD=BC=DC,∴∠ADC=∠BCD,在△ADC和△BCD中,,∴△ADC≌△BCD(SAS),∴∠ACD=∠BDC,∵BC=DC,∴∠CBD=∠BDC,∴∠CBD=∠ACD,∵∠BCE=∠ACD,∴∠BCE=∠CBD,∴BD∥CE,又∵DC∥AB,∴四边形DBEC是平行四边形;(2)由(1)得:四边形DBEC是平行四边形,∴∠E=∠BDC,∵DC∥AB,∴∠BAC=∠ACD,∵∠BCE=∠ACD,∴∠BAC=∠BCE=∠E,∴CE=AC,又∵∠B=∠B,∴△EAC∽△EBC,∴,即,∴AC2=AD•AE.【点评】本题考查了平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、等腰梯形的性质、等腰三角形的性质等知识;熟练掌握平行四边形的判定与性质,证明三角形相似得出比例式是解决问题(2)的关键.24.已知在平面直角坐标系xOy(如图)中,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)与点C(3,0),与y轴交于点B,点P为OB上一点,过点B作射线AP的垂线,垂足为点D,射线BD交x轴于点E.(1)求该抛物线的解析式;(2)连结BC,当P点坐标为(0,)时,求△EBC的面积;(3)当点D落在抛物线的对称轴上时,求点P的坐标.【考点】二次函数综合题.【分析】(1)将A、C点的坐标代入抛物线解析式,得到关于b、c的二元一次方程,解方程即可得出结论;(2)由∠APO、∠AED均匀∠PAO互余得出∠APO=∠AED,再结合∠AOP=∠BOE=90°可得出△AOP∽△BOE,由相似三角形的性质得出,代入数据可得出OE的长度,结合C点坐标可得出CE 长度,将CE、OB的长度代入三角形的面积公式,即可得出结论;(3)令对称轴与x轴的交点为H,过点B作BF⊥直线x=1于点F,先证△ADH∽△DBF,再由相似三角形的性质找出,设DH=a,由此可得出关于a的一元二次方程,解方程可求出a的值,再根据可得出OP的长度,从而得出P点的坐标.【解答】解:(1)将点A(﹣1,0),点C(3,0)的坐标代入抛物线解析式,得:,解得:.故该抛物线的解析式为y=﹣x2+2x+3.(2)∵BD⊥AD,∴∠ADE=90°,∴∠PAO+∠APO=∠PAO+∠AED=90°,∴∠APO=∠AED=∠BEO,又∵∠AOP=∠BOE=90°,∴△AOP∽△BOE,∴.令x=0,y=3,即点B的坐标为(0,3),∵点A(﹣1,0),点C(3,0),点P(0,),∴OE=2,∴CE=OC﹣OE=3﹣2=1.S△EBC=CE•OB=.(3)抛物线对称轴直线x=﹣=1,令对称轴与x轴的交点为H,过点B作BF⊥直线x=1于点F,如图所示.∵DH⊥x轴,BF⊥FD,∴∠AHD=∠DFB=90°,∵∠BDF+∠BDA+∠ADH=180°,∠BDA=90°,∠BDF+∠DBF=90°,∴∠ADH=∠DBF,∴△ADH∽△DBF,∴.设DH=a.∵AH=2,DF=BO﹣DH=3﹣a,FB=1,∴有,解得:a1=1,a2=2.又∵,∴OP=或1.故点P的坐标为(0,1)或(0,).【点评】本题考查了待定系数法求函数解析式、相似三角形的判定及性质、解一元二次方程,解题的关键:(1)待定系数法求解析式的系数;(2)找出线段CE的长度;(3)由相似三角形的性质找出关于a的一元二次方程.本题属于中档题,(1)难度不大;(2)(3)有点难度.解决该类问题,利用相似三角形的性质找出比例关系,解方程即可得出结论.25.如图,边长为5的菱形ABCD中,cosA=,点P为边AB上一点,以A为圆心,AP为半径的⊙A与边AD交于点E,射线CE与⊙A另一个交点为点F.(1)当点E与点D重合时,求EF的长;(2)设AP=x,CE=y,求y关于x的函数关系式及定义域;(3)是否存在一点P,使得=2?若存在,求AP的长;若不存在,请说明理由.【考点】圆的综合题.【分析】(1)由平行四边形的性质得到∠AEF=DAB,再利用cos∠DAB=cos∠AEF==即可求解;(2)由平行四边形的性质得到∠CGD=∠BAD,再利用勾股定理即可求解;(3)由平行四边形的性质得到∠GCE=∠HAE=∠DAB,利用cosA=计算即可.【解答】解:(1)过点A作AH⊥EF于点H,∴EF=2EH,∵点E与点D重合,∴EF∥AB,∴∠AEF=DAB,∴cos∠DAB=cos∠AEF==,∵AE=5,∴EH=3,∴EF=6;(2)如图,过点C作CG⊥AD,在Rt△CGD中,cos∠CGD=cos∠BAD=,∴DG=3,CG=4,在Rt△CGE中,GE=8﹣x,∴y2=16+(8﹣x)2,y=(0<x≤5),(3)∵cos∠DAB=,∴tan∠DAB=,∵∠GCE=∠HAE=∠DAB,∴tan∠DAB==,∴x=,即:AP的长为.【点评】此题是圆的综合题,主要考查了圆的性质,平行四边形的性质,勾股定理以及锐角三角函数,锐角三角函数的运用是解本题的关键.。