第10章 回归分析
第10章 线性相关与回归
直线回归方程的用途 1.两变量间存在直线关系时,直 线方程可定量地描述两变量间的线性 依存关系。 2.根据直线回归方程由已知变量 值估计未知变量值:如统计预测。
应用直线回归方程时应注意的问题 1.求出样本资料的直线回归方程 后应进行假设检验。 2.应用直线回归方程时,要注意 方程只适用于自变量X的样本数据波动 范围,不能任意外延其应用范围。
在进行假设检验时,无效假设H0 为:ρ=0,即两变量间无直线相关关系; 备择假设H1为:ρ≠0,两变量间有直 线相关关系。常用的假设检验方法是t 检验,检验统计量t值的计算公式如下:
r0 tr Sr
r 1 r n2
2
,v n2
例9-2 就例9-1资料,问某地4岁 儿童体重与体表面积间是否有直线关系?
反双曲正切变换:
z tanh r
或
1
1 1 r z ln 2 1 r
z u
Z的1-α可信区间计算公式:
2
n 3 , z u 2
n3
缩写
z u
a2
n3
ρ的1-α可信区间计算公式:
tanh z u 2
缩写
n 3 , z u 2
XY (3) 58.113 62.5282 64.296 65.0916 73.3862 82.3918 83.952 90.9198 92.34 102.576 ∑XY=775.5946
X
2
Y
2
(4) 121.00 139.24 144.00 151.29 171.61 187.69 207.36 222.01 231.04 256.00 2 ∑X =1831.24
5.4 5.2
回归分析(5)概要
(1) 新引进的自变量只能依赖于 原始变量,而不能与未知参数有关。 若模型 1 中的 b 未知,则模型 1 不能线 性化。 可线性化的非线性回归模型称为 本质线性回归模型,不可线性化的非 线性回归模型称为本质非线性回归模 型。
2018/10/29 7
(2) 非线性化模型能否线性化不 仅与回归函数的形式有关,而且与误 差项的形式也有关。 例如,模型 3 的误差项为乘性误 差项,可以线性化,而模型 4 的误差 项为加性误差项,不可以线性化。 在对非线性回归模型进行线性化 时,总是假定误差项满足可线性化条
34
具体回归方程为 y 62.349 0.840 x1
5.685 x2 其标准化形式为 0.164 x2
2 0.037 x1
y 62.349 0.164 x1
2 0.785 x1
2018/10/29
35
例10.3 用均匀设计法研究从烤烟 中提取粗蛋白的实验条件。目标变量 y 是提取的蛋白质尝试,三个实验因 子分别为:提取液pH值x1,提取时间 x2的,提取温度x1。 采用U7(73)均匀设计表, 试验安排 与结果如下表:
, xp x
p
原模型化为多元线性回归模型
5
y 0 1 x1
pxp
对模型3,可先两边取对数,得 ln y ln a bx 然后再令
y ln y, 0 ln a, 1 b 原模型化为线性回归模型 y 0 1 x
2018/10/29 44
由于本例中最好的实验条件是 x1 13.1, x2 48.0, x3 60 根据前述分析,影响蛋白提取浓度的 最主要因素是提取时间,提取时间应 在48h以上;提取液pH值是第二重要 因素, pH 值应比 13.10 再低些;提取 温度应该控制在60º C以上。
伍德里奇《计量经济学导论》(第6版)复习笔记和课后习题详解-第二篇(第10~12章)【圣才出品】
第二篇时间序列数据的回归分析第10章时间序列数据的基本回归分析10.1 复习笔记考点一:时间序列数据★★1.时间序列数据与横截面数据的区别(1)时间序列数据集是按照时间顺序排列。
(2)时间序列数据与横截面数据被视为随机结果的原因不同。
(3)一个时间序列过程的所有可能的实现集,便相当于横截面分析中的总体。
时间序列数据集的样本容量就是所观察变量的时期数。
2.时间序列模型的主要类型(见表10-1)表10-1 时间序列模型的主要类型考点二:经典假设下OLS的有限样本性质★★★★1.高斯-马尔可夫定理假设(见表10-2)表10-2 高斯-马尔可夫定理假设2.OLS估计量的性质与高斯-马尔可夫定理(见表10-3)表10-3 OLS估计量的性质与高斯-马尔可夫定理3.经典线性模型假定下的推断(1)假定TS.6(正态性)假定误差u t独立于X,且具有独立同分布Normal(0,σ2)。
该假定蕴涵了假定TS.3、TS.4和TS.5,但它更强,因为它还假定了独立性和正态性。
(2)定理10.5(正态抽样分布)在时间序列的CLM假定TS.1~TS.6下,以X为条件,OLS估计量遵循正态分布。
而且,在虚拟假设下,每个t统计量服从t分布,F统计量服从F分布,通常构造的置信区间也是确当的。
定理10.5意味着,当假定TS.1~TS.6成立时,横截面回归估计与推断的全部结论都可以直接应用到时间序列回归中。
这样t统计量可以用来检验个别解释变量的统计显著性,F统计量可以用来检验联合显著性。
考点三:时间序列的应用★★★★★1.函数形式、虚拟变量除了常见的线性函数形式,其他函数形式也可以应用于时间序列中。
最重要的是自然对数,在应用研究中经常出现具有恒定百分比效应的时间序列回归。
虚拟变量也可以应用在时间序列的回归中,如某一期的数据出现系统差别时,可以采用虚拟变量的形式。
2.趋势和季节性(1)描述有趋势的时间序列的方法(见表10-4)表10-4 描述有趋势的时间序列的方法(2)回归中的趋势变量由于某些无法观测的趋势因素可能同时影响被解释变量与解释变量,被解释变量与解释变量均随时间变化而变化,容易得到被解释变量与解释变量之间趋势变量的关系,而非真正的相关关系,导致了伪回归。
第十章 直线回归与相关分析
115 125 128 143 132 121 129 112 120 130 125.5
135 137 128 127 155 132 148 117 134 132 134.5
图10-2 NaCl含量对单位叶面积干物重影响的散点图
Y . X X
含义是:对于变量X的每一个值,都有一个Y 的分布,这个分布的平均数就是该线性函数。
ˆ a bX Y
回归截距 与x值相对应的依变量y的点估计值
此方程称为Y对X的直线回归方程(linear regression equation),画出的直线称为回归线 ( regression line)。
ˆ Y a bx
ˆi ) 2 L ( yi y
i 1 n
Y
最小
编号 1 2 3 4 5 血球体积x /mm3 45 52 56 48 42 红血球数y /106 6.53 6.30 9.52 7.50 6.99 6 7 8 9 10 编号 血球体积x /mm3 35 58 40 39 50 红血球数y /106 5.90 9.49 6.20 6.55 8.72
n n
整理后得:
an b xi yi i1 i1 n n n a xi b xi2 xi yi i1 i1 i1
解正规方程得:
x y ( x )( y ) / n b x ( x ) / n ( x x)( y y) = S S ( x x)
第二节:一元线性回归 1 散点图的绘制
2 一元正态线性回归模型 3 直线回归方程的参数估计和回归方 程的建立 4 直线回归的假设检验
5 直线回归的方差分析
6 直线回归的意义( 自学)
6.3-第六章-多项式回归-响应面
1 X
x12
x22
xk21
x12
x122
x1k2
1 x1n x2n xkn 1 x1n x12n x1kn
和
y 1
Y
y2
y n
求得 XX、XY和( XX)-1,并由
b=( XX)-1( XY)获得相应的多项式回归统计数。
(四) 多项式回归方程的估计标准误
y 的总平方和 SSy 可分解为回归和离回归两部分:
曲线回归分析方法的主要内容有:
① 确定两个变数间数量变化的某种特定的规则或规 律;
② 估计表示该种曲线关系特点的一些重要参数,如 回归参数、极大值、极小值和渐近值等;
③ 为生产预测或试验控制进行内插,或在论据充足 时作出理论上的外推。
第一节 曲线的类型与特点
一、指数函数曲线 二、对数函数曲线 三、幂函数曲线 四、双曲函数曲线 五、S型曲线
F
Qk
Uk /k /[n(k 1
)]
(11·24)
可测验多项式回归关系的真实性。
相关指数:Ry·x,x2, ,,kxk次多项式的回归平方
和占Y总平方和的比率的平方根值,可用来表示Y与X
的多项式的相关密切程度。
Ry· x,x2, ,xk Uk /SSy
(11·25)
决定系数:在Y 的总变异中,可由X 的k 次多项式
3 162.5 204.4 238.9 275.1 237.9 204.5 192.5
6 216.4 276.7 295.9 325.3 320.5 286.9 219.9
氮肥 9
274.7 342.8 363.3 336.3 353.7 322.5 278.0
12 274.3 343.4 361.7 381.0 369.5 345.9 319.1
多元统计分析(何晓群)第十章 路径分析
耐用性
使用的简单性 感知价值 通话效果 客户忠诚度
价格
e5
e6
图10—2
10.1.2 内生变量和外生变量
路径图上的变量分为两大类:一是外生变量 (exogenous variable, 又称独立变量,源变量), 它不受模型中其他变量的影响,如图10—2的耐用 性、使用的简单性、通话效果和价格;与此相反, 另一类是内生变量(endogenous variable, 又称因 变量或下游变量),在路径图上至少有一个箭头指 向它,它被模型中的其他一些变量所决定,如图 10—2的感知价值由耐用性、使用的简单性、通话 效果和价格四个变量和随机误差e5决定,忠诚度取 决与四个外生变量、感知价值和随机误差e6。此 外,我们可以将路径图中不影响其他变量的内生变 量成为最终结果变量(ultimate response variable),最终结果变量不一定只有一个。图 10—2中忠诚度是最终结果变量。
(3) 每一内生变量的误差项不得与其前置变量相 关,同时也不得与其他内生变量机器误差项相关。 这是对模型递归性的要求。另外,模型不考虑外生 变量的相关性,即不对外生变量的相关性进行分析。 (4) 模型中得因果关系必须为单向,不得包括各 种形式的反馈作用。这同样是对模型递归性的要求。 (5) 各变量均为可观测变量,并且各变量的测量 不能存在误差。这两个弱点在SEM技术中得到了克 服,已经发展了一套成熟的处理隐变量和测量误差 的技术。 (6) 变量间的多重共线性程度不能太高,否则路 径系数估计值的误差将会很大。
10.1.3 直接作用和间接作用
其他变量(A)对内生变量(B)的影响有两种情况: 若A直接通过单向箭头对B具有因果影响,称A对B 有直接作用(direct effect);若A对B 的作用是间 接地通过其他变量(C)起作用称A对B有间接作用 (indirect effect),称C为中间变量(mediator variable)。变量间的间接作用常常由多种路径最终 总合而成。图10—2中,四个外生变量耐用性、使 用的简单性、通话效果和价格既对忠诚度有直接作 用,同时又通过感知价值对忠诚度具有间接作用。
高考数学一轮复习第10章算法初步与统计第4课时线性回
(4)某同学研究卖出的热饮杯数y与气温 x(℃)之间的关系,得 回归方程 y =-2.352x+147.767,则气温为2 ℃时,一定可卖出 143杯热饮. (5)事件X,Y关系越密切,则由观测数据计算得到的K2的观 测值越大. (6)由独立性检验可知,在犯错误的概率不超过1%的前提下 认为物理成绩优秀与数学成绩有关,某人数学成绩优秀,则他 有99%的可能物理优秀.
∧
直线方程: y =0.254x+0.321.由回归直线方程可知,家庭年收入 每增加1万元,年饮食支出平均增加________万元.
2 n ( ad - bc ) 构造一个随机变量 K 2 = , ( a+ b)( c+d )(a + c)( b +d )
其中 n=a+b+ c+d 为样本容量.
(3)独立性检验. 利用随机变量 K2 来确定是否能有一定把握认为“两个分类 变量有关系”的方法称为两个分类变量的独立性检验.
1.判断下面结论是否正确(打“√”或“×”). (1)相关关系与函数关系都是一种确定性的关系,也是一种 因果关系. (2)“名师出高徒”可以解释为教师的教学水平与学生的水 平成正相关关系. (3)只有两个变量有相关关系,所得的回归模型才有预测价 值.
答案
C
解析 由已知,变量 x,y 成负相关,排除 A,B. ∵回归直线 - 必过点(x,y),经验算可知,选项 C 满足.
4.(2018· 河南开封一模)下列说法错误的是(
)
A.自变量取值一定时,因变量的取值带有一定随机性的两 个变量之间的关系叫做相关关系 B.在线性回归分析中,相关系数 r 的值越大,变量间的相 关性越强 C.在残差图中,残差点分布的带状区域的宽度越狭窄,其 模型拟合的精度越高 D.在回归分析中,R2 为 0.98 的模型比 R2 为 0.80 的模型拟 合的效果好
应用回归分析 第十章
第10章 含定性变量的回归模型10.1 一个学生使用含有季节定性自变量的回归模型,对春夏秋冬四个季节引入4个0-1型自变量,用SPSS 软件计算的结果中总是自动删除了其中的一个自变量,他为此感到困惑不解。
出现这种情况的原因是什么? 答:假如这个含有季节定性自变量的回归模型为:其中含有k 个定量变量,记为x i 。
对春夏秋冬四个季节引入4个0-1型自变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到一次观测值,则样本设计矩阵为:显然,(X,D)中的第1列可表示成后4列的线性组合,从而(X,D)不满秩,参数无法唯一求出。
这就是所谓的“虚拟变量陷井”,应避免。
当某自变量x j 对其余p-1个自变量的复判定系数2j R 超过一定界限时,SPSS 软件将拒绝这个自变量x j 进入回归模型。
称Tol j =1-2j R 为自变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0.0001。
也就是说,当2j R >0.9999时,自变量x j 将被自动拒绝在回归方程之外,除非我们修改容忍度的默认值。
而在这个模型中出现了完全共线性,所以SPSS 软件计算的结果中总是自动删除了其中的一个定性自变量。
10.2对自变量中含有定性变量的问题,为什么不对同一属性分别建立回归模型,而采取设虚拟变量的方法建立回归模型?答:原因有两个,以例10.1说明。
一是因为模型假设对每类家庭具有相同的斜率和误差方差,把两类家庭放在一起可以对公共斜率做出最佳估计;二是对于其tt t t kt k t t D D D X X Y μαααβββ++++++=332211110 ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=000110010110001010010010100011)(616515414313212111k k k k k k X X X X X X X X X X X XD X,⎪⎪⎪⎪⎪⎭⎫⎝⎛=k βββ 10β⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4321ααααα他统计推断,用一个带有虚拟变量的回归模型来进行也会更加准确,这是均方误差的自由度更多。
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第10章 时间序列数据的基本回归分析【圣才出
第10章时间序列数据的基本回归分析10.1复习笔记一、时间序列数据的性质时间序列数据与横截面数据的区别:(1)时间序列数据集是按照时间顺序排列。
(2)时间序列数据与横截面数据被视为随机结果的原因不同。
①横截面数据应该被视为随机结果,因为从总体中抽取不同的样本,通常会得到自变量和因变量的不同取值。
因此,通过不同的随机样本计算出来的OLS估计值通常也有所不同,这就是OLS统计量是随机变量的原因。
②经济时间序列满足作为随机变量是因为其结果无法事先预知,因此可以被视为随机变量。
一个标有时间脚标的随机变量序列被称为一个随机过程或时间序列过程。
搜集到一个时间序列数据集时,便得到该随机过程的一个可能结果或实现。
因为不能让时间倒转重新开始这个过程,所以只能看到一个实现。
如果特定历史条件有所不同,通常会得到这个随机过程的另一种不同的实现,这正是时间序列数据被看成随机变量之结果的原因。
(3)一个时间序列过程的所有可能的实现集,便相当于横截面分析中的总体。
时间序列数据集的样本容量就是所观察变量的时期数。
二、时间序列回归模型的例子1.静态模型假使有两个变量的时间序列数据,并对y t和z t标注相同的时期。
把y和z联系起来的一个静态模型(staticmodel)为:10 1 2 t t t y z u t nββ=++=⋯,,,,“静态模型”的名称来源于正在模型化y 和z 同期关系的事实。
若认为z 在时间t 的一个变化对y 有影响,即1t t y z β∆=∆,那么可以将y 和z 设定为一个静态模型。
一个静态模型的例子是静态菲利普斯曲线。
在一个静态回归模型中也可以有几个解释变量。
2.有限分布滞后模型(1)有限分布滞后模型有限分布滞后模型(finitedistributedlagmodel,FDL)是指一个或多个变量对y 的影响有一定时滞的模型。
考察如下模型:001122t t t t ty z z z u αδδδ--=++++它是一个二阶FDL。
第10章:定量预测5-因果关系分析法
ˆ Y t 1
=Yt(1+A%+B%+C%+D%+· · · · · · · · · · · · · · )
• 表示t+1期预测对象的预测值;表示t期预测对象的 实际值;A%表示预测对象受第一个因素影响的程 度;B%表示预测对象受第二个因素影响的程度; 以此类推。例如:见下页
• 例1: 已知某空调制造公司2006年销售中央 空调750套。市场调研人员通过对历史统计 资料的研究估计出,未来各因素影响销售 量的程度为:商品质量的提高和价格的降 低可使销量增加30%;国家经济政策的变 动(如紧缩)可能使销量减少10%;由于 规格不全而失去部分顾客,可能使未来销 量减少5%;居民收入的增加可能使未来销 量增加20%;同类产品的竞争可能使销量 减少8%,预测2007年企业空调的销售量?
• 4 变量遗漏问题 当回归结果与经济理论不一致时,重要变量 的遗漏可能是最主要的原因。 比如:有一个大学生进行需求预测,根据收 集到的历史资料进行回归后得到的预测方程为: Q=7.8+3.42P,价格系数为正值,并在统计上显 著。对这样的一个结果,我们认为不合常理,一 个解释是:价格一直上涨,但收入和人口数也增 加,价格和收入、人口呈现正相关,所以3.42反 映收入和人口增加而导致需求的增加。因此,为 了分别找出这些影响,全面合理的解释因变量的 变化,就需要在回归方程中增加新的变量。
解决方法:对自变量之间是否存在高度相关 进行检验,从方程中取消一个高度相关的 自变量。 多重共线性举例说明: SPSS的多重共线性诊断功能 Collinearty Diagnostics 数据10-2
• 我们曾经收集1985-2005年粮食产量(因变量)、 耕地面积、劳动人口等9个变量的数据,分别进 行一元回归。可决系数R2结果如下表(一般认为 可决系数大于0.7效果较好,否则效果较差。)
《回归分析》课件 刘超——回归分析教学大纲-hep
回归分析教学大纲概述本书主要内容、特点及全书章节主要标题并附教学大纲本书基于归纳演绎的认知规律,把握统计理论的掌握能力和统计理论的应用能力的平衡,依据认知规律安排教材各章节内容。
教材不仅阐述了回归分析的基本理论和具体的应用技术,还按照认知规律适当拓宽学生思维,介绍了伴前沿回归方法。
教材采用了引例、解题思路、解题模型、概念、案例、习题、统计软件七要素合一的教材内容安排模式,有助于培养学生的统计思维与统计能力。
全书共分14章,包括绪论、一元线性回归、多元线性回归、模型诊断、自变量的问题、误差的问题、模型选择、收缩方法、非线性回归、广义线性模型、非参数回归、机器学习的回归模型、人工神经网络以及缺失数据等内容。
第1章对回归分析的研究内容和建模过程给出综述性介绍;第2章和第3章详细介绍了一元和多元线性回归的参数估计、显著性检验及其应用;第4章介绍了回归模型的诊断,对违背回归模型基本假设的误差和观测的各种问题给出了处理方法;第5章介绍了回归建模中自变量可能存在的问题及处理方法,包括自变量的误差、尺度变化以及共线性问题;第6章介绍了回归建模中误差可能存在的问题及处理方法,包括广义最小二乘估计、加权最小二乘估计;第7章介绍了模型选择方法,包括基于检验的方法、基于标准的方法;第8章介绍了模型估计的收缩方法,包括岭回归、lasso、自适应lasso、主成分法、偏最小二乘法;第9章介绍了非线性回归,包括因变量、自变量的变换以及多项式回归、分段回归、内在的非线性回归等方法;第10章介绍了广义线性模型,包括logistic回归、Softmax回归、泊松回归等;第11章介绍了非参数回归的方法,包括核估计、局部回归、样条、小波、非参数多元回归、加法模型等方法;第12章介绍了机器学习中可用于回归问题的方法,包括决策树、随机森林、AdaBoost模型等;第13章介绍了人工神经网络在回归分析中的应用;第14章介绍了常见的数据缺失问题及处理方法,包括删除、单一插补、多重插补等。
第10章时间序列数据的基本回归分析
第10章时间序列数据的基本回归分析时间序列数据是指按时间顺序排列的一系列观测值,具有时间依赖性的特点。
在时间序列数据中,我们通常会面临许多问题,如预测未来的走势、分析变量间的关系等。
回归分析是一种用来建立变量间关系的统计方法,因此在时间序列数据中,同样可以使用回归分析方法来建立变量间的关系模型。
在进行时间序列数据的基本回归分析时,我们首先需要确定一个主要的解释变量(自变量)和一个被解释变量(因变量)。
主要的解释变量用来解释被解释变量的变化,从而确定它们之间的关系。
然后,我们需要对数据进行可视化和统计分析,以了解数据的特征和趋势。
首先,我们可以使用时间序列图来可视化数据的变化趋势。
时间序列图是一种按照时间顺序展示数据的图表,通过观察时间序列图,我们可以判断数据是否存在趋势、季节性或周期性等特征。
如果数据存在明显的趋势,我们可以使用线性回归模型来建立变量间的关系。
如果数据存在明显的季节性或周期性,我们可以使用季节性模型或周期模型来建立变量间的关系。
此外,我们还可以通过自相关函数(ACF)和偏自相关函数(PACF)来判断数据是否存在自相关性。
然后,我们可以使用普通最小二乘法(OLS)来估计回归模型的参数。
OLS是一种通过最小化观测值与模型估计值之间的差异来估计参数的方法。
对于时间序列数据,我们需要进行数据的平稳化处理,以确保模型的有效性。
常见的平稳化方法包括差分法和对数变换法。
通过平稳化处理后,我们可以得到平稳时间序列数据,然后应用OLS方法来估计模型的参数。
最后,我们可以使用统计检验来评估回归模型的拟合程度和显著性。
常见的统计检验包括F检验和t检验。
F检验用来评估模型的整体显著性,而t检验用来评估模型的各个参数的显著性。
如果模型的F检验和t检验显著,则说明回归模型能够很好地解释因变量的变化,并且模型参数是统计显著的。
总结起来,时间序列数据的基本回归分析包括确定主要的解释变量和被解释变量、可视化和统计分析数据、估计回归模型的参数、以及评估模型的拟合程度和显著性。
第十章 简单回归分析
在医学研究中,经常需要研究两个变量之间 的相互关系和相互依存关系,如血糖与胰岛 素水平、年龄与血压等,把这种统计分析方 法叫做双变量关系的统计。
相关 ---- 变量间在数量上的相互关系 回归 ---- 变量间在数量上的依存关系
第一节 线性回归
一、基本概念 1.直线回归(linear regression) :当一变量随 另一变量有规律的依存变化时,此依存变化 的数量关系称为直线回归关系。 直线回归是回归分析中最基本、最简单的 一种,故又称为简单回归或简单线性回归。
表10-1 21例肝癌病人血清胆固醇与甘油三脂相关性研究
病人序号
血清胆固醇
甘油三脂
1
3.89
1.71
2
3.41
1.01
3
5.70
0.97
4
6.84
1.78
5
2.93
1.25
6
3.98
0.70
7ห้องสมุดไป่ตู้
4.23
1.33
8
4.43
0.72
9
2.58
0.34
10
4.40
1.24
11
3.77
1.00
12
3.42
0.79
n 21
3. 计算 lXX 、lYY 及 lXY
lXX
X 2 ( X )2 363 .33 85.012 / 21 19.20 n
lYY 23.12 20.892 / 21 2.34
lXY
87.82
85.01 20.89 21
3.26
4. 求回归系数和截距a值:
b lXY 3.26 0.1698 lXX 19.20
第10章 回归分析
7
解: 依题意,实验次数n=5,y~x为一元线性关系y=a+bx。根据最小二乘 法原理,有:
i 1 2 3 4 5
xi 2 4 5 8 9 28
yi 2.01 2.98 3.50 5.02 5.07 18.58
x i2 4 16 25 64 81 190
yi2 4.04 8.88 12.25 25.20 25.70 76.07
xiyi 4.02 11.92 17.50 40.16 45.63 119.23
解得a=1.155,b=0.4573。 因此关系式为:y=1.155+0.4573x。
如果用简化算法,则有:
故关系式为:y=1.155+0.4573x,即两种计算方法结果是一致的。 可见,根据实验数据建立回归方程,可采用最小二乘法,基本步骤为: ① 根据实验数据画出散点图; ② 确定经验公式的函数类型; ③ 通过最小二乘法得到正规方程组; ④ 求解正规方程组,得到回归方程的表达式。 其实①②两点正是第9章建立数学模型的过程,所以建立数学模型是回 归分析的前提。
13
[例10-2] 试用相关系数检验法对例10-l中得到的经验公式进行显著性检验 (α=0.05)。 解:
当α=0.05,n=5时,查得相关系数临界值 r0.05,3=0.8783。所以r>r, f, 所得的经验公式有意义。
14
应当指出的是,相关系数r有一个明显的缺点:即它接近于1的程度与实 验数据组数n有关。当n较小时,|r|容易接近于1;当n较大时,|r| 容易偏小。特别是当n=2时,因两点确定一条直线,|r|总等于1。所 以,只有当实验次数n较多时,才能得出真正有实际意义的回归方程。
2
回归分析的主要内容: 确定回归方程,检验回归方程的可信性 10.2 一元线性回归分析 10.2.1 一元线性回归方程的建立 一元线性回归分析又称直线拟合,是处理两个变量x和y之间关系的方法。 所谓一元是指只有一个自变量x,因变量y在某种程度上是随x变化的。 设有一组实验数据,实验值为 (xi, yi) (i=1,2,…,n)。若x,y符合线性关 系,或已知经验公式为直线形式,就可拟合为直线方程,即:
第10章相关分析及回归分析
第八章相关与回归分析一、本章重点1.相关系数的概念及相关系数的种类。
事物之间的依存关系,能够分为函数关系和相关关系。
相关关系又有单向因果关系和互为因果关系;单相关和复相关;线性相关和非线性相关;不相关、不完全相关和完全相关;正相关和负相关等类型。
2.相关分析,着重掌握如何画相关表、相关图,如何测定相关系数、测定系数和进行相关系数的推断。
相关表和相关图是变量间相关关系的生动表示,对于未分组资料和分组资料计算相关系数的方式是不同的,一元线性回归中相关系数和测定系数有着紧密的关系,取得样本相关系数后还要对整体相关系数进行科学推断。
3.回归分析,着重掌握一元回归的大体原理方式,一元回归是线性回归的基础,多元线性回归和非线性回归都是以此为基础的。
用最小平方式估量回归参数,回归参数的性质和显著性査验,随机项方差的估量,回归方程的显菁性査验, 利用回归方程进行预测是回归分析的主要内容。
4.应用相关与回归分析应注意的问题。
相关与回归分析都有它们的应用范围,必需明白在什么情形下能用,什么情形下不能用。
相关分析和回归分析必需以定性分析为前提,不然可能会闹岀笑话,在进行预测时选取的样本要尽可能分散,以减少预测误差,在进行预测时只有在现有条件不变的情形下才能进行,若是条件发生了转变,原来的方程也就失去了效用。
二、难点释疑本章难点在于计算公式多,不容易记忆,所以更要注重计算的练习。
为了辜握大体计算的内容,最少应认真理解书上的例题,做完本指导书上的全数计算题。
初学者可能会感到本章公式多且复杂,难于记忆,其实只要抓住Lxx、Lxy. Lyy 这三个记号,记住它们的展开式,几个主要的公式就不难记忆了。
若是能自己把这些公式推证一下,弄清其关系,那就更易记住了。
三、练习题(一)填空题1事物之间的依存关系,按照其彼此依存和制约的程度不同,能够分为()和()两种。
2.相关关系按相关关系的情形可分为()和();按自变量的多少分()和();按相关的表现形式分()和();按相关关系的紧密程度分()、()和();按相关关系的方向分()。
第10章 直线回归与相关分析
回归方程的基本条件(性质): 回归方程的基本条件(性质): 性质1 性质1 性质2 性质2 性质3 性质3
ˆ 最小; Q = ∑( y − y)2 = 最小;
ˆ ∑( y − y) = 0
; 。
回 归 直 线 通 过 点 (x, y)
2
ˆ Q = ∑( yi − yi ) = ∑[ yi − (a + bxi )]
二、直线回归的显著性检验
回归关系的假设测验: 回归关系的假设测验: 对于样本的回归方程,必须测定其来自无 对于样本的回归方程,必须测定其来自无 直线回归关系总体的概率大小。只有当这种概 直线回归关系总体的概率大小。 率小于0.05或0.01时,我们才能冒较小的危 或 率小于 时 险确认其所代表的总体存在着直线回归关系。 险确认其所代表的总体存在着直线回归关系。 这就是回归关系的假设测验 。 回归关系的假设测验有两种方法: 测验或F 回归关系的假设测验有两种方法:t测验或F测验
由于x变数的实测区间为[31.7,44.2], 由于x变数的实测区间为[31.7,44.2], [31.7 在应用=48.5-1.1x于预测时,需限定x 在应用=48.5-1.1x于预测时,需限定x的区间 =48.5 于预测时 为[31.7,44.2];如要在x<31.7或>44.2的 [31.7,44.2];如要在x 31.7或 44.2的 区间外延,则必须有新的依据。 区间外延,则必须有新的依据。
整理后可得: 整理后可得:
na + ( ∑ xi )b = ∑ yi ( ∑ xi ) a + ( ∑ x i ) b = ∑ x i y i
2
上式叫做a与b的正规方程组 正规方程组。 正规方程组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
38
第10章 回归分析
⑤选中标志。选择95%的置信度 ⑥在“输出区域”中输入D1单元格,表示输出结果的起点。 单击“确定”按钮。得多元回归计算结果如下图所示。
上一页
下一页
返回本节首页
39
第10章 回归分析
10.4.2 回归输出结果解释
1. 回归统计表 调整复测定系数为28.99%,这说明两种媒 体的广告支出只能解释销售额变动的29%, 大约销售额变动的71%要由其他因素的变动 71% 来解释。 估计标准误差为210.9553,说明实际值与估 计值之间的误差 。
操作过程:
①打开“第10章 简单线性回归.xls”工作簿,选择“饭店” 工作表,如下图所示。
上一页
下一页
返回本节首页
7
第10章 回归分析
②从“插入”菜单中选择“图表”选项,打开“图表向导”对话 框如下图所示。在“图表类型”列表中选择XY散点图,单击 “下一步”按钮。
上一页
下一页
返回本节首页
8
第10章 回归分析
上一页
下一页
返回本节首页
3
第10章 回归分析
10.1.2 回归分析的主要内容
回归参数估计 方程拟合效果评价 回归参数的推断
上一页
下一页
返回本节首页
4
第10章 回归分析
10.2 图表分析与回归函数分析
10.2.1 利用图表进行回归分析 10.2.2 Excel中的回归分析工作表函数 10.2.3 利用工作表函数进行回归分析
下一页
返回本节首页
33
第10章 回归分析
图中,回归参数如下: Intercept:截距β0 第二、三行:β0(截距) 和β1(斜率)的各项指标。 第二列:回归系数β0(截距)和β1(斜率)的值。 第三列:回归系数的标准误差 第四列:根据原假设Ho:β0=β1=0计算的样本 统计量t的值。 第五列:各个回归系数的p值(双侧) 第六列:β0和β195%的置信区间的上下限。
上一页 下一页 返回本节首页
34
第10章 回归分析
10.4 多元回归分析
10.4.1 案例研究:销售额与广告媒体的关系 10.4.2 回归输出结果解释
上一页
下一页
返回本章首页
35
第10章 回归分析
10.4.1 案例研究: 销售额与广告媒体的关系
例 某VCD连锁店非常想知道在电视台做广告与在广播 电台做广告哪种媒体更有效。它收集了连锁店各个 商店的每月销售额(万元)和每月用在以上两种媒 介的广告支出。试问: 在显著性水平为0.05的基础上,销售额是否同两种媒 介的广告有关? 每种媒介上的广告支出额对销售额的影响如何? 哪种广告形式带来的成本效益更高?
上一页
下一页
返回本章首页
2
第10章 回归分析
10.1.1 回归分析的概念
现实世界中大多数现象表现为相关关系,人们 通过大量观察,将现象之间的相关关系抽象概 括为函数关系,并用函数形式或模型来描述与 推断现象间的具体变动关系,用一个或一组变 量的变化来估计与推算另一个变量的变化。这 种分析方法称为回归分析。
图4 上一页 下一页 返回本节首页
15
第10章 回归分析
10.2.2 Excel中的回归分析 工作表函数
截距函数INTERCEPT 功能:利用已知的 x 值与 y 值计算回归直线在y 轴 的截距。 语法结构: INTERCEPT(known_y's,known_x's) 斜率函数SLOPE 功能:返回根据 known_y‘s 和 known_x’s 中的数据 点拟合的线性回归直线的斜率。 语法结构:SLOPE(known_y's,known_x's)
⑦打开“类型”页面,选择“线性”选项,Excel将显示一条拟合数 据点的直线。 ⑧打开“选项”页面如图3所示,在对话框下部选择“显示公式”和 “显示R平方根”选项,单击“确定”按钮,便得到趋势回归图如 图4所示。
图上一页
下一页
返回本节首页
14
第10章 回归分析
250 200 150 100 50 0 0 5 10 15 20 25 30 y = 5x + 60 2 R = 0.9027
上一页
下一页
返回本节首页
11
第10章 回归分析
⑥如图1所示,用鼠标激活散点图,把鼠标放在任一数据点上,单击鼠标 右键,打开菜单,在菜单栏里选择“填加趋势线”选项,打开趋势线 对话框如图2所示。
图1 上一页 下一页 返回本节首页
12
第10章 回归分析
图2 上一页
下一页
返回本节首页
13
第10章 回归分析
③在数据区域中输入B2:C11,选择“系列产生在—— 列”,如下图所示,单击“下一步”按钮。
上一页
下一页
返回本节首页
9
第10章 回归分析
④打开“图例”页面,取消图例,省略标题,如下图所 示。
上一页
下一页
返回本节首页
10
第10章 回归分析
⑤单击“完成”按钮,便得到XY散点图如下图所示。
250 200 150 100 50 0 0 5 10 15 20 25 30
ˆ y = 256.4565 +15.7151x1 +12.75x2
广播广告支出的回归系数的t统计量的p值近似 等于0.013。说明在显著性水平0.05时要拒绝 原假设,而在0.1显著水平时接受原假设。此 题中的p值证明每月用于广播的广告支出同 VCD盘的销售额是相关的。
上一页 下一页 返回本节首页
16
第10章 回归分析
测定系数函数RSQ 功能:返回根据 known_y‘s 和 known_x’s 中数 据点 计算得出的 Pearson 乘积矩相关系数的平方。 语法结构:RSQ(known_y's,known_x's) 估计标准误差函数STEYX 功能:返回通过线性回归法计算 y 预测值时所产生 的标准误差。标准误差用来度量根据单个 x 变量计算出的 y 预测值的误差量。 语法结构:STEYX(known_y's,known_x's)
③在“分析工具”列表中选择“回归”选项,单击 “确定”按钮,打开“回归”对话框如下图所示。
上一页
下一页
返回本节首页
27
第10章 回归分析
④在Y值输入区域中输入C1:C16。 ⑤在X值输入区域中输入B1:B16。 ⑥选择“标志”,置信度选择95%。 ⑦在“输出选项”中选择“输出区域”,在其右边的位置输入 “D1”,单击 “确定”按钮。输出结果如下图所示。
第十章 回归分析
10.1 10.2 10.3 10.4 10.5 10.6 线性回归分析的基本原理 图表分析与回归函数分析 Excel 回归分析工具 多元回归分析 非线性回归分析 品质变量回归分析
下一页 返回目录
1
第10章 回归分析
10.1 线性回归分析的基本原理
10.1.1 回归分析的概念 10.1.2 回归分析的主要内容
上一页 下一页 返回本节首页
24
第10章 回归分析
操作过程:
①打开“第10章 简单线性回归.xls”工作簿,选择“住 房”工作表如下图所示。
上一页
下一页
返回本节首页
25
第10章 回归分析
②在“工具”菜单中选择“数据分析”选项,打开 “数据分析”对话框如下图所示。
上一页
下一页
返回本节首页
26
第10章 回归分析
上一页 下一页 返回本节首页
36
第10章 回归分析
操作过程:
① 打 开 “ 第 10 章 多 元 回 归 分 析 .xls” 工 作 簿 , 选 择 “VCD”工作表,如下图所示。
上一页
下一页
返回本节首页
37
第10章 回归分析
②在“工具”菜单中选择“数据分析”选项,打开 “数据分析”对话框,在“分析工具”列表中选择 “回归”选项,单击“确定”按钮,进入“回归” 对话框。 ③在“Y值输入区域”中输入A1:A21单元格,它代表 销售额的数据范围。 ④在“X值输入区域”中输入B1:C21单元格,这里包 括“广播”与“电视”两个自变量,回归工具要求 自变量之间必须是相邻的,不能隔开。
第10章 回归分析
10.3 Excel 回归分析工具
10.3.1 回归分析工具的主要内容 10.3.2 回归分析工具的应用 10.3.3 回归分析工具的输出解释
上一页
下一页
返回本章首页
21
第10章 回归分析
10.3.1 回归分析工具的主要内容
回归分析工具是通过对一组观察值使用“最小 平方法”进行直线拟合,以分析一个或几个自 变量对单个因变量的影响方向与影响程度的方 法。它是Excel中数据分析工具的一个内容。回 归分析的对话框如图5所示 。
上一页 下一页 返回本节首页
40
第10章 回归分析
2. 方差分析表 方差分析的目的是进行回归方程的回归效果 检验,F统计量的P值约等于0.021,小于显 著水平0.05,说明方程回归效果显著,方程 中至少有一个回归系数显著不为零。
上一页
下一页
返回本节首页
41
第10章 回归分析
3. 回归参数表 回归方程为:
上一页
下一页
返回本节首页
28
第10章 回归分析
10.3.3 回归分析工具的 输出解释
Excel的回归分析工具计算简便,但内容丰富, 计算结果共分为三个模块: 回归统计表 方差分析表 回归参数
上一页
下一页
返回本节首页
29
第10章 回归分析
1. 回归统计表
回归统计表包括以下几部分内容: Multiple R(复相关系数R):R2的平方根,又称为相 关系数,它用来衡量变量x和y之间相关程度的大小。 上节例中:R为0.848466,表示二者之间的关系是 高度正相关。 R Square(复测定系数R2 ):用来说明用自变量解释因 变量变差的程度,以测量同因变量y的拟合效果。 上节例中:复测定系数为0.719894,表明用自变量可 解释因变量变差的71.99%。