概率与统计 (2)

合集下载

全国自考概率论与数理统计(二)试题和答案

全国自考概率论与数理统计(二)试题和答案

B)14.设随机变量X 的分布律为,F (x )是X 的分布函数,则F (1)=______.正确答案:(2分) 2/315.设随机变量X 的概率密度为f (x )=2010,x x ≤≤⎧⎨⎩,,其他,则12P X ⎧⎫>⎨⎬⎩⎭=______.正确答案:(2分)3/416.已知随机变量X ~N (4,9),P {X >c }=P {X ≤c },则常数c =______. 正确答案:(2分) 417.设二维随机变量(X ,Y )的分布律为则常数a =______. 正确答案:(2分) 0.218.设随机变量X 与Y 相互独立,且X ~N (0,l),Y ~N (-1,1),记Z =X -Y ,则Z ~______. 正确答案:(2分) N(1,2)19.设随机变量X 服从参数为2的泊松分布,则E (X 2)=______. 正确答案:(2分) 620.设X ,Y 为随机变量,且E (X )=E (Y )=1,D (X )=D (Y )=5,ρXY =0.8,则E (XY )=______. 正确答案:(2分) 521.设随机变量X 服从区间[-1,3]上的均匀分布,随机变量Y =0111X X <⎧⎨≥⎩,,,,则E (Y )=______. 正确答案:(2分) 1/222.设随机变量X ~B (100,0.2),()x Φ为标准正态分布函数,()2.5Φ=0.9938,应用中心极限定理,可得P {20≤x ≤30)≈______. 正确答案:(2分) 0.493823.设总体X ~N (0,l),x 1,x 2,x 3,x 4为来自总体X 的样本,则统计量22221234x x x x +++~______.正确答案:(2分)x2(4)24.设总体X~N(μ,1),μ未知,x1,x2,…,x n为来自该总体的样本,x为样本均值,则μ的置信度为1-α的置信区间是______.正确答案:(2分)]1,1[22nuxnuxaa+-25.某假设检验的拒绝域为W,当原假设H0成立时,样本值(x1,x2,…,x n)落入W的概率为0.1,则犯第一类错误的概率为______.正确答案:(2分)0.1三、计算题(本大题共2小题,每小题8分,共16分)26.设二维随机变量(X,Y)的概率密度为26,01,01,()0,x y x yf x⎧≤≤≤≤⎪=⎨⎪⎩ 其他.求:(1)(X,Y)关于X的边缘概率密度f X(x);(2)P{X>Y}.正确答案:27.设总体X的概率密度为1,0,()0,0,xe xf xxθθ-⎧>⎪=⎨⎪≤⎩其中未知参数θ>0,x1,x2,…,x n是来自该总体的样本,求θ的极大似然估计.四、综合题(本大题共2小题,每小题12分,共24分)正确答案:28.有甲、乙两盒,甲盒装有4个白球1个黑球,乙盒装有3个白球2个黑球,从甲盒中任取1个球,放入乙盒中,再从乙盒中任取2个球.(1)求从乙盒中取出的是2个黑球的概率;(2)已知从乙盒中取出的是2个黑球,问从甲盒中取出的是白球的概率.正确答案:29.设随机变量X~N(0,l),记Y=2X.求:(1)P{X<-1>;(2)P{|X|<1};(3)Y的概率密度.(附:Φ(1)=0.8413)正确答案:五、应用题(10分)30.某产品的次品率为0.l,检验员每天抽检10次,每次随机取3件产品进行检验,且不存在误检现象,设产品是否为次品相互独立,若在一次检验中检出次品多于1件,则调整设备,以X表示一天调整设备的次数,求E(X).正确答案:。

概率论与数理统计(二)

概率论与数理统计(二)

欢迎阅读内容串讲第一章 随机事件及其概率1. 事件的关系与运算必然事件:Ω—随机试验全部结果构成的集合。

不可能事件:φ 一般事件A :A φ⊂⊂Ω若A 若A 11111,,nnni i i i i i i i A A A A ∞=====等等。

例1 2(1(2(3(4(5))()()(AB P A P B A P -=-(6)若n A A A ,,21两两互不相容,则∑===ni i ni i A P A P 11)()((7)若n A A A ,,21相互独立,则例2 设1.0)(,4.0)(,2.0)(===AB P B P A P则5.0)()()(1)(1)(=+--=⋃-=⋃AB P B P A P B A P B A P3.古典概型古典概型:当随机试验的结果为有限个且诸结果等可能发生时,任一事件A 的概率为例3 从五个球(其中两个白球、三个红球)中任取两球,设A :取到两个白球;B :一白一红球,求)(),(B P A P(1)无放回抽样:(2)有放回抽样:每次有放回的取一球,连取两次[注]:若设X 为两次有放回取球中取到白球数,则X ~)52,2(B ,从而)(=P A P 4(1(2例103 (3,j i j i ,,≠)(i B(4例5 某工厂生产的产品以100个为一批,在进行抽样检查时,只从每批中抽取10个来检查,如果发现其中有次品,则认为这批产品是不合格的,设每批产品中的次品最多不超过4个,并且恰有)4,3,2,1(=i i 个次品的概率如下(1)求各批产品通过的概率;(2)求通过检查的各批产品中恰有i 个次品的概率。

)4,3,2,1(=i解:(1)设事件i B 是恰有i 个次品的一批产品)4,3,2,1(=i ,则由题设设事件A 是这批产品通过检查,即抽样检查的10个产品都是合格品,则我们有1)(0=B A P由全概率公式,即得8142.0)()()(40≈=∑=i i i B A P B P A P(2)由Bayes 公式,所求概率分别为5.事件的独立性(1)定义:A 、B 相互独立等价于)()()(B P A P B A P ⋅=(2)若n A A A ,,,21 相互独立,则有)()()()(2121n n A P A P A P A A A P =(3)有放回抽样中的诸事件是相互独立的。

概率论与数理统计2含答案

概率论与数理统计2含答案

一.填空题(共10分)已知P(A)=12,P BA c h=34,P(B) =58,则P( A ∣B ) =______ 。

设随机变量X 服从参数为 λ 的泊松分布,且已知P{ X= 7 } =P{ X= 9 },则 λ =___________。

3、样本(,,,)X X X n 12 来自总体2~(, )X N μσ,则22(1)~n n S σ- ______________;()~n X S μ- ____________。

其中X 为样本均值,S n X X n i n 22111=--=∑()。

4、设X X X n 12,, 是来自正态总体N (,)μσ2的样本,记1nn i ii Y a X ==∑,若n Y 为μ的无偏估计,则12,,...n a a a 满足的等式为 。

5、设总体~(1,)X B p ,其中未知参数01<<p , X X X n 12,, 是X 的 样本,则p的矩估计为________,样本的似然函数为_________。

(f x p p p x x(;)()=-1 为 X的 概 率 密 度 函 数 ) 二、选择题(共10分)6、4, 1, 0.6XY DX DY ρ===,则(32)D X Y -=( )。

( A ) 40 ( B ) 34 ( C ) 25.6( D ) 17.67、样本(,,,)X X X n 12 来自总体X ,已知X 服从参数λ=1的指数分布,则Max X X X n {,,,}12 的分布函数为( )。

( A )F z z e z z()=<-≥R S T - 0010 ( B ) F z z e z z n()()=<-≥R S T - 0010 ( C ) F z z e z z ()=<≥R S T - 000 ( D )0 0()n 0nzz F Z e z -<⎧=⎨≥⎩ 8、随机变量~(1,1)X N ,记X 的概率密度为f(x),分布函数为F( x ),则有( )。

最新 年月全国自考概率论与数理统计(二)试题及答案

最新 年月全国自考概率论与数理统计(二)试题及答案

1 / 10全国2018年7月自学考试概率论与数理统计(二)课程代码:02197试卷来自百度文库 答案由绥化市馨蕾園的王馨磊导数提供一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A ={2,4,6,8},B ={1,2,3,4},则A -B =( ) A .{2,4} B .{6,8} C .{1,3}D .{1,2,3,4}.B AB A B A B A B A 中的元素,故本题选中去掉集合合说的简单一些就是在集的差事件,记作与事件不发生”为事件发生而解:称事件“-2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为( )A .15B .14C .13D .12.31789105678;844104104848410C C C P C C ,故选本题的概率件正品中取,共有从件中没有次品,则只能若种取法;件,共有件产品中任取解:从=⨯⨯⨯⨯⨯⨯== 3.设事件A ,B 相互独立,()0.4,()0.7,P A P A B =⋃=,则()P B =( ) A .0.2 B .0.3 C .0.4D .0.52 / 10()()()()()()()()()()()()()().5.04.04.07.0D B P B P B P B P A P B P A P AB P B P A P B A P B P A P AB P B A ,故选,解得代入数值,得,所以,相互独立,,解:=-+=-+=-+=⋃= 4.设某实验成功的概率为p ,独立地做5次该实验,成功3次的概率为( )A .35CB .3325(1)C p p -C .335C pD .32(1)p p -()()()()()().1335.,...2,1,0110~23355B p p C P k n n k p p C k P k A p p A n p n B X kn kk n n ,故选,所以,本题,次的概率恰好发生则事件,的概率为次检验中事件重贝努力实验中,设每定理:在,解:-====-=<<-5.设随机变量X 服从[0,1]上的均匀分布,Y =2X -1,则Y 的概率密度为( )A .1,11,()20,,Y y f y ⎧-≤≤⎪=⎨⎪⎩其他 B .1,11,()0,,Y y f y -≤≤⎧=⎨⎩其他C .1,01,()20,,Y y f y ⎧≤≤⎪=⎨⎪⎩其他D .1,01,()0,,Y y f y ≤≤⎧=⎨⎩其他()()[]()()()()()()[]()[][][]..01,121.01,1211.01,1212121.01,12121211,1212112010101110~A y y y y f y f y y h y h f y f y h y y h y y x x y x x f U X X Y X Y X 故选其他,,其他,,其他,,,得其他,,由公式,,即,其中,解得由其他,,,,,,解:⎪⎩⎪⎨⎧-∈=⎪⎩⎪⎨⎧-∈⨯=⎪⎩⎪⎨⎧-∈⎪⎭⎫ ⎝⎛+=⎩⎨⎧-∈'=='+=-∈+=-=⎪⎩⎪⎨⎧≤≤=-=3 / 106.设二维随机变量(X ,Y )的联合概率分布为( )则c =A .112B .16C .14 D .13()().611411211214161.1,...2,1,0B c c P j i P Y X jij iij ,故选,解得由性质②,得②,①:的分布律具有下列性质,解:==+++++==≥∑∑7.已知随机变量X 的数学期望E (X )存在,则下列等式中不恒成立....的是( ) A .E [E (X )]=E (X ) B .E [X +E (X )]=2E (X ) C .E [X -E (X )]=0D .E (X 2)=[E (X )]2()()()().D C B A XE X E E X E X 均恒成立,故本题选、、由此易知,即,期望的期望值不变,的期望是解:=8.设X 为随机变量2()10,()109E X E X ==,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤( )A .14 B .518 C .34D .109364 / 10()()()()(){}(){}.416961091001092222A X P X D X E X P X E X E X D ,故选所以;切比雪夫不等式:,解:=≤≥-≤≥-=-=-=εε 9.设0,1,0,1,1来自X ~0-1分布总体的样本观测值,且有P {X =1}=p ,P {X =0}=q ,其中0<p <1,q =1-p ,则p 的矩估计值为( ) A .1/5 B .2/5 C .3/5D .4/5()()().53ˆ5301ˆC px p q p X E x X EX E x ,故选,所以,本题,,即估计总体均值用样本均值矩估计的替换原理是:解:===⨯+⨯== 10.假设检验中,显著水平α表示( ) A .H 0不真,接受H 0的概率 B .H 0不真,拒绝H 0的概率 C .H 0为真,拒绝H 0的概率D .H 0为真,接受H 0的概率{}.00C H H P ,故选为真拒绝即拒真,表示第一类错误,又称解:显著水平αα=二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

自考概率论与数理统计二试题及答案解析

自考概率论与数理统计二试题及答案解析

自考概率论与数理统计二试题及答案解析10月高等教育自学考试全国统一命题考试概率论与数理统计(二) 试卷(课程代码 02197)本试卷共4页,满分l00分,考试时间l50分钟。

考生答题注意事项:1.本卷所有试题必须在答题卡上作答。

答在试卷上无效,试卷空白处和背面均可作草稿纸。

2.第一部分为选择题。

必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。

3.第二部分为非选择题。

必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。

4.合理安排答题空间,超出答题区域无效。

第一部分选择题(共20分)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.设A与B是两个随机事件,则P(A-B)=2.设随机变量石的分布律为A.O.1 B.O.2 C.O.3 D.0.63.设二维随机变量∽,n的分布律为且X与y相互独立,则下列结论正确的是A.d=0.2,b=0,2 B.a=0-3,b=0.3C.a=0.4,b=0.2 D.a=0.2,b=0.44.设二维随机变量(x,D的概率密度为5.设随机变量X~N(0,9),Y~N(0,4),且X 与Y相互独立,记Z=X-Y,则Z~6.设随机变量x服从参数为jl的指数分布,贝JJ D(X)=7.设随机变量2服从二项分布召(10,0.6),Y服从均匀分布U(0.2),则E(X-2Y)=A.4 B.5 C.8 D.108.设(X,Y)为二维随机变量,且D(.固>0,D(功>0,为X与y的相关系数,则第二部分非选择题(共80分)二、填空题(本大题共l5小题,每小题2分,共30分)11.设随机事件A,B互不相容,P(A)=0.6,P(B)=0.4,则P(AB)=_______。

12.设随机事件A,B相互独立,且P(A)=0.5,P(B)=0.6,则=________。

概率论与数理统计(二)作业题2

概率论与数理统计(二)作业题2

概率论与数理统计(二) 作业题2(课程代码:02197)一、单项选择题1.设A ,B 为随机事件,则事件A 发生必然导致事件B 发生表示为 ( )A .B A ⊂ B. A B ⊂ C. B A - D. A B -2.掷一颗质地均匀的骰子,则出现偶数点的概率是( ) A.218. 0 C.1 D.以上都不对 3.在n 重贝努利试验中,设每次试验中事件A 发生的概率为)10(<<p p ,则事件A 恰好发生k 次的概率为( ) A. kn knk kn p p C -=-∑)1(0, B. kn k k n p p C --)1(, C.k k n p C , D. kn k n p C --)1(4.设随机变量X 的概率分布为则=k ( )A.0.1B.0.2C.0.3D.0.45.设随机变量X 在区间]4,2[上服从均匀分布,则=<<}32{X P ( )A.}5.45.3{<<X PB.}5.25.1{<<X PC.}5.35.2{<<X PD.}5.55.4{<<X P6.设随机变量X 的分布函数)(x F ,下列结论不一定成立的是( )A. 1)(=+∞FB. 0)-(=∞FC. 1)(0≤≤x FD. )(x F 为连续函数7.设二维随机变量),(Y X 的联合概率密度函数为⎩⎨⎧<<<<=其他,010,10,),(y x k y x f ,则常数=k ( )A.1B.0.1C.2D.0.28.设随机变量X ~B(5,p ),且E(X)=1.6,则p =( )A. 1.5B. 0.6C. 0.32D. 19.设(X,Y)为二维随机变量,且D(X)>0,D(Y)>0,则下列等式成立的是( ) A.)()()(Y E X E XY E = B.)()(),(Y D X D Y X Cov XYρ=C.)()()(Y D X D Y X D +=+D.),(2)2,2(Y X Cov Y X Cov =10.设总体X 服从正态分布)1,(μN ,n x x x ,,,21 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验假设0100:,:μμμμ≠=H H ,则检验用的统计量是( ) A.n s x /0μ- B.)(0μ-x n C.1/0--n s x μ D.)(10μ--x n二、填空题11. 设B A ,是两个随机事件,已知,4.0)(,5.0)(==A B P A P 则=)(AB P 12.已知P(A)=1/2,P(B)=1/3,且A,B 相互独立,则=)(B A P _________13.一批产品中有7个正品3个次品,现从中抽取两次,每次取一件,取后放回,则抽到两件为正品的概率是14.设随机变量)2.0,4(~B X ,则=>}3{X P 15. 设随机变量Y X ,相互独立,且{}{}311,211=≤=≤Y P X P , 则{}=≤≤1,1Y X P 16.设随机变量X 的分布律为令12+=X Y ,则=)(Y E _______________17.设随机变量),1,0(~N X 则它的概率密度=)(x ϕ__________________18. 设随机变量),1,0(~N X )(x Φ为其分布函数,则()=-Φ+Φx x )(____________ 19.设X 为连续型随机变量,c 是一个常数,则{}==c X P _________20.设随机变量()ρσσμμ;,,,~),(222121N Y X ,且Y X 与相互独立,则=ρ 21.设n X X X ,,,21 是来自正态总体),(2σμN 的样本,其样本均值和样本方差分别为()2121111∑∑==--==n i i n i i X X n S X n X 和,则()~122σS n -__________________22.设12100,,,X X X 是来自正态总体2(60,20)N 的样本,X 为样本均值,则~X __________23.设总体X 服从区间],0[θ上的均匀分布)0(>θ,n x x x ,,,21 是来自总体的样本,则θ的矩估计=θˆ24. 设21ˆ,ˆθθ是未知参数θ的两个无偏估计,如果)ˆ()ˆ(21θθD D <,则更为有效的估计是 ___25.设样本n x x x ,,,21 来自正态总体)9,(~μN X ,假设检验问题为0:,0:10≠=μμH H ,则在显著性水平α下,检验的拒绝域=W _三、计算题26.已知随机变量X 的分布函数为20,0(),011,1x F x Ax x x <⎧⎪=≤<⎨⎪≥⎩,求:(1)常数A ;(2)112P X ⎧⎫-<<⎨⎬⎩⎭.四、证明题27.若事件A B与,与也相互独立.、相互独立,证明:A B A B五、综合题28.设随机变量(,)X Y在区域D上服从均匀分布,其中D为x轴、y轴与直线=+所围成的三角形区域,求:21y xf x y;(1)联合概率密度(,)f x f y,并判定,X Y是否相互独立.(2)边缘概率密度(),()X Y29.设随机变量(,)X Y的分布律为求:(1) (),()D X D Y.E X E Y; (2) (),()六、应用题30.已知男子有5%的色盲患者,女子有0.25%的色盲患者,今从男女比例为1︰4的人群中随机挑选一人.求(1)选到一名色盲患者的概率;(2)若选到一名色盲患者,此人是女性的概率是多少?。

填空 解答概率论与数理统计(二)

填空 解答概率论与数理统计(二)

11.一口袋中装有3只红球,2只黑球,今从中任意取出2只球,则这2只球恰为一红一黑的概率是.12.设P(A)=12,P(B|A)=25,则P(AB)= .13.则常数a= .14.设随机变量X~N(0,1),Ф(x)为其分布函数,则Ф(x)+Ф(-x)= .15.已知连续型随机变量X的分布函数为F x e xx xxx(),;(),;,.=<+<⎧⎨⎪⎪⎪⎩⎪⎪⎪1313102 12≤≥设X的概率密度为f(x),则当x<0,f(x)= .16.设随机变量X与Y相互独立,且P{X≤1}=12,P{Y≤1}=13,则P{X≤1,Y≤1}= .17.设随机变量X服从参数为2的泊松分布,则E(X2)= .18.设随机变量X的概率密度为f(x)=1222πe xx--∞<<+∞,,则E(X+1)= .19.设随机变量X与Y相互独立,且D(X)=1,D(Y)=2,则D(X-Y)= .20.设随机变量X~U[0,1],由切比雪夫不等式可P{|X-12|≥13}≤.21.= .22.设总体X~N((,),,,μσ212X X…,X n为来自总体X的样本,X为样本均值,则D(X)= .23.设总体X服从正态分布N(,)μσ2,其中μ未知,X1,X2,…,X n为其样本。

若假设检验问题为H0:σ2=1↔≠H121:σ,则采用的检验统计量应为.24.设某个假设检验问题的拒绝域为W,且当原假设H0成立时,样本值(x1,x2,…,x n)落入W的概率为0.15,则犯第一类错误的概率为25.设样本X1,X2,…,X n来自正态总体N(,)μ1,假设检验问题为:H0:μ=0↔≠H1:μ,则在H0成立的条件下,对显著水平α,拒绝域W应为.三、证明题(共8分)26.设A、B为两个随机事件,0<P(B)<1,且P(A|B)=P(A|B),证明事件A与B相互独立。

四、计算题(共8分)27.设随机变量X的概率密度为f(x)=cx xα,;,.01<<⎧⎨⎪⎩⎪其它且E(X)=0.75,求常数c和α.五、综合题(本大题共两小题,每小题12分,共24分)28.设二维随机向量(X,Y)的联合概率密度为f(x,y)=e x yy-<<⎧⎨⎪⎩⎪,;,.0其它(1)求(X,Y)分别关于X和Y的边缘概率密度f x(x),f Y(y);(2)判断X与Y是否相互独立,并说明理由;(3)计算P{X+Y≤1}.29.设随机变量X1与X2相互独立,且X1~N(,)μσ2,X2~N(,)μσ2,令X=X1+X2,Y=X1-X2.求:(1)D(X),D(Y);(2)X与Y的相关系数ρXY.六、应用题(共10分)30.某大学从来自A,B两市的新生中分别随机抽取5名与6名新生,测其身高(单位:cm)后算得x=175.9,y=172.0;s21=11.3,s22=9.1.假设两市新生身高分别服从正态分布X~N(,)μσ12,Y~N(,)μσ22,其中σ2未知。

概率与统计2

概率与统计2

初中毕业生学业考试(以下简称中考)是义务教育阶段的终结性考试,其目的是全面、准确地考查初中毕业生在学科学习方面所达到的水平。

由于中考兼有衡量学生是否达到毕业标准和作为高中阶段学校招生的重要依据的双重功能,所以一直是社会各界关注的热点,一定程度上成了教学的“指挥棒”,怎么考在很大程度上决定了教师怎样教和学生怎样学。

《2006年课程改革实验区初中毕业数学学业考试命题指导》根据课程标准的理念、中考的性质与目的及数学学科特点,对中考数学命题提出了如下指导思想:“1、数学学业考试要有利于引导和促进数学教学全面落实《课程标准》所设立的课程目标,有利于引导改善学生的数学学习方式,提高学生数学学习的效率,有利于高中阶段学校综合、有效地评价学生的数学学习状况。

2、数学学业考试既要重视对学生学习数学知识与技能的评价,也要重视对学生在数学思考能力和解决问题能力等方面发展状况的评价。

3、数学学业考试命题应当面向全体学生,根据学生的年龄特征、思维特点、数学背景和生活经验编制试题,使具有不同的认知特点、不同的数学发展程度的学生都能表现自己的数学学习状况,力求公正、客观、全面、准确地评价学生通过初中教育阶段的数学学习所获得的发展状况。

”一、2006年中考数学试卷统计与概率的分析。

1、统计与概率是近年来教材增加较多的部分,也是考察的一个重点部分。

义务教育的一项任务是应该让未来的公民学会搜索,整理数据和运用数据的能力。

能够处理来自社会上方方面面的工作。

而数学中表格、图象和图形是一种最直关、最形象和最集中的交流语言,其中包含着大量丰富的有价值的信息资源。

2、初中阶段统计与概率学习的内容有:七年级的统计图的画法,事件发生的可能性,简单概率的计算。

八年级中平均数、中位数、众数的学习,数据的收集与处理,数据波动的情况。

九年级中的频率与概率及统计与概率。

这些内容一般都是通过实际情景的呈现来进行教学的。

在学业考中,这部分的内容的分值约占全卷总分的五分之一,成为中考的又一重点和亮点。

概率论与数理统计-第二章习题附答案

概率论与数理统计-第二章习题附答案

概率论与数理统计-第二章习题附答案习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生.写出随机变量X 的分布律. 解X0 1P1-p p2. 已知随机变量X 只能取-1,0,1,2四个值,且取这四个值的相应概率依次为c c c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠<X X P .解 由离散型随机变量的分布律的性质知,13571,24816c c c c+++= 所以3716c =.所求概率为P {X <1| X≠}=258167852121}0{}1{=++=≠-=cc c c X P X P .3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p 的二项分布, 若{P X ≥51}9=, 求{P Y ≥1}. 解 注意p{x=k}=kk n knC p q -,由题设5{9P X =≥21}1{0}1,P X q =-==- 故213q p =-=. 从而{P Y≥32191}1{0}1().327P Y =-==-=4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927, 求每次试验成功的概率.解 设每次试验成功的概率为p , 由题意知至少成功一次的概率是2719,那么一次都没有成功的概率是278. 即278)1(3=-p , 故 p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ.解 由泊松分布的分布律可知6=λ.6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大号码, 写出随机变量X 的分布律.解 X 的分布律是X3 4 5 P 110 31035 习题2-3X -1 01P0.15 0.200.65求分布函数F (x ), 并计算概率P {X <0}, P {X <2},P {-2≤X <1}.解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1;(4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩(2){11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+- 11111().24242ππππ=+⋅---= 3. 设随机变量X 的分布函数为F (x )=0, 0, 01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P {0.3 <X <0.7}, P {0<X ≤2}.解 P {X 1}(1)0F -=-=≤,P {0.3<X <0.7}=F (0.7)-F {0.3}-P {X =0.7}=0.2,P {0<X ≤2}=F (2)-F (0)=1.习题2-41. 选择题(1) 设2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩如果c =( ), 则()f x 是某一随机变量的概率密度函数.(A) 13. (B) 12. (C) 1. (D) 32. 本题应选(C ).(2) 设~(0,1),X N 又常数c 满足{}{}P X c P X c =<≥, 则c 等于( ).(A) 1. (B) 0. (C) 12. (D) -1. 本题应选(B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).(A) cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它. (B) 1,2,()20,x f x <=⎧⎪⎨⎪⎩其它.(C)22()2,0,()20,0.≥x x f x x μσπσ--=<⎧⎪⎨⎪⎩ (D)e ,0,()0,0.≥x x f x x -=<⎧⎨⎩本题应选(D).(6) 设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{1}{1},P X P Y μμ-<>-< 则下式中成立的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) μ1<μ2. (D) μ1 >μ2.答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A) 2u α . (B) 21α-u . (C) 1-2u α.(D)α-1u .答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布, 要使1{2}4P k X k <<=成立, 应当怎样选择数k ? 解X 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩由题意可知221{2}(2)()(1e )(1e )e e 4k k k kP k X k F k F k λλλλ----=<<=-=---=-.于是ln 2k λ=.3. 设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它,要使{}{}≥P X a P X a =<(其中a >0)成立, 应当怎样选择数a ?解 由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是34d 0.5ax x =⎰, 因此42a =. 4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 由()()F x f x '=得2,01,()0,其它.x x f x <<⎧=⎨⎩(2) 22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )= 2,01,0,x x ⎧⎨⎩ ≤≤ 其它,求P {X ≤12}与P {14X <≤2}. 解{P X≤12201112d 2240}x x x ===⎰; 1{4P X <≤12141152}2d 1164x x x ===⎰.6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得1222011201111d ()d []122x x A x x x Ax x A =+-=+-=-⎰⎰, 于是 2A =; (2) 由公式()()d x F x f x x -∞=⎰可得(过程简略)220,0,1()221, 2.1,021,12x F x x x x x x x =->⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它,对X 独立观察3次, 求至少有2次的结果大于1的概率. 解 2115{1}(1)d 48P X x x >=+=⎰.所以, 3次观察中至少有2次的结果大于1的概率为223333535175()()()888256C C +=.8. 设~(0,5)X U , 求关于x 的方程24420x Xx ++=有实根的概率.解 若方程有实根, 则 21632X -≥0, 于是2X ≥2. 故方程有实根的概率为P {2X ≥2}=21{2}P X -<1{22}P X =--<<21d 5x =-215=-10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解 因为()~2,X N σ2,所以~(0,1)X Z N μσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--, 于是22()10.3Φσ-=, 从而2()0.65Φσ=. 所以{{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=.习题2-52. 设~(1,2),23X N Z X =+, 求Z 所服从的分布及概率密度.解 若随机变量2~(,)X N μσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a μσ=++ 这里1,2μσ==所以Z ~(5,8)N .概率密度为()f z =2(5)16,4x x π---∞<<+∞. 3. 已知随机变量X 的分布律为X-1137P 0.37 0.05 0.2 0.13 0.25(1) 求Y =2-X 的分布律; (2) 求Y =3+X 2分布律.解 (1)2-X-5 -1 1 2 3P 0.25 0.13 0.2 0.05 0.37 (2) 3+X 23 4 12 52P 0.05 0.57 0.13 0.254. 已知随机变量X 的概率密度为()X f x =1142ln 20x x <<⎧⎪⎨⎪⎩, , , 其它,且Y =2-X , 试求Y 的概率密度.解 )(y F Y={P Y ≤}{2y P X =-≤}{y P X =≥2}y -1{2}P X y =-<-=1-2()d yX f x x--∞⎰. 于是可得Y 的概率密度为121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2Y X =的概率密度.解 因为对于0<y <4,(){Y F y P Y=≤2}{y P X =≤}{y P y =-X y ()()XX F y F y =--.于是随机变量2Y X =的概率密度函数为()Y f y ()22X X f y f y yy=-0 4.4y y=<< 即 ()04,40,.其它f y y y=<<⎩。

概率论与数理统计第二章课后习题及参考答案

概率论与数理统计第二章课后习题及参考答案

于是, X 的分布律为
P ( X k ) p k 1 (1 p ) (1 p ) k 1 p , k 2,3, .
7.随机变量 X 服从泊松分布,且 P ( X 1) P ( X 2) ,求 P ( X 4) 及 P ( X 1) .
3
解: P ( X 1) P ( X 2) ,
(3) 方法 1: P (1 X 3) P ( X 1) P ( X 1) P ( X 2) 1 . 方法 2: P (1 X 3) F (3) F (1 0) 1 0 1 . 4.一制药厂分别独立地组织两组技术人员试制不同类型的新药.若每组成功的 概率都是 0.4,而当第一组成功时,每年的销售额可达 40000 元;当第二组成 功时,每年的销售额可达 60000 元,若失败则分文全无.以 X 记这两种新药 的年销售额,求 X 的分布律. 解:设 Ai {第 i 组取得成功}, i 1,2 , 由题可知, A1 , A2 相互独立,且 P ( A1 ) P ( A2 ) 0.4 . 两组技术人员试制不同类型的新药, 共有四种可能的情况:A1 A2 ,A1 A2 ,A1 A2 ,
2
P ( X 0) P ( A1 A2 ) P ( A1 ) P ( A2 ) 0.36 ,
60000 0.24
40000 0.24
0 0.36
5.对某目标进行独立射击,每次射中的概率为 p ,直到射中为止,求: (1) 射击次数 X 的分布律;(2) 脱靶次数 Y 的分布律. 解:(1) 由题设, X 所有可能的取值为 1,2,…, k ,…, 设 Ak {射击时在第 k 次命中目标},则
1 ln 3) ;(3) 分布函数 F ( x) . 2

2009-2011年自考概率论与数理统计(二)试题及答案论

2009-2011年自考概率论与数理统计(二)试题及答案论

全国2009年7月自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A 与B 互不相容,且P(A)>0,P(B)>0,则有( ) A.P(A)=1-P(B) B.P(AB)=P(A)P(B) C.P(A B )=1D.P(AUB)=P(A)+P(B)2.设A 、B 相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( ) A.P(AB)=0 B.P(A-B)=P(A)P(B ) C.P(A)+P(B)=1D.P(A | B)=03.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( ) A.0.125 B.0.25 C.0.375D.0.504.设函数f (x)在[a ,b]上等于sin x ,在此区间外等于零,若f (x)可以作为某连续型随机变量的概率密度,则区间[a ,b]应为( ) A.[2π-,0]B.[0,2π]C.[0,π]D.[0,2π3] 5.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤<=其它021210)(x x x xx f ,则P(0.2<X<1.2)= ( )A.0.5B.0.6C.0.66D.0.76.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( )A.61 B.41 C.31 D.21 7.221αβ则有( )A.α=91,β=92B. α=92,β=91C. α=31,β=32D. α=32,β=31 8.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( ) A.-2B.0C.21 D.29.设μn 是n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中发生的概率,则对于任意的ε>0,均有}|{|lim n εμ>-∞→p nP n( )A.=0B.=1C.>0D.不存在10.对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H 0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( ) A.必接受H 0 B.可能接受H 0,也可能拒绝H 0 C.必拒绝H 0D.不接受,也不拒绝H 0二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

《概率论与数理统计(二)》复习题

《概率论与数理统计(二)》复习题

《概率论与数理统计(二)》复习题一、单项选择题1.设A,B 为随机事件,则事件“A ,B 至少有一个发生”可表示为 A.AB B.AB C.A BD.A B2.设随机变量2~(,)X N μσ,Φ()x 为标准正态分布函数,则{}P X x >= A.Φ(x ) B.1-Φ(x ) C.Φx μσ-⎛⎫⎪⎝⎭D.1-Φx μσ-⎛⎫ ⎪⎝⎭3.设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~A.211(,)N μσB.221()N μσC.212(,)N μσD.222(,)N μσ4.设随机事件A 与B 互不相容,且()0P A >,()0P B >,则A. ()1()P A P B =-B. ()()()P AB P A P B =C. ()1P A B =D. ()1P AB =5.设随机变量~(,)X B n p ,且()E X =2.4,()D X =1.44,则A. n =4, p =0.6B. n =6, p =0.4C. n =8, p =0.3D. n =24, p =0.16.设随机变量2~(,)X N μσ,Y 服从参数为(0)λλ>的指数分布,则下列结论中不正确...的是 A.1()E X Y μλ+= B.221()D X Y σλ+=+C.1(),()E X E Y μλ==D.221(),()D X D Y σλ==7.设总体X 服从[0,θ]上的均匀分布(参数θ未知),12,,,n x x x 为来自X 的样本,则下列随机变量中是统计量的为 A. 11ni i x n =∑B. 11ni i x n θ=-∑C. 11()ni i x E X n =-∑D. 2111()n i x D X n =-∑8.设12,,,n x x x 是来自正态总体2(,)N μσ的样本,其中μ未知,x 为样本均值,则2σ的无偏估计量为 A. 11()1ni i x n μ=--∑2 B. 11()ni i x n μ=-∑2C. 11()1ni i x x n =--∑ 2 D.11()ni i x x n =-∑ 29.设A,B 为B 为随机事件,且A B ⊂,则AB 等于A.ABB.BC.AD.A10.设A ,B 为随机事件,则()P A B -=A.()()P A P B -B.()()P A P AB -C.()()()P A P B P AB -+D.()()()P A P B P AB +-11.设随机变量X 的概率密度为1,3<x<6,()30,f x ⎧⎪=⎨⎪⎩其他,则{}3<4=P X ≤A.{}1<2P X ≤B.{}4<5P X ≤C.{}3<5P X ≤D.{}2<7P X ≤12.已知随机变量X 服从参数为λ的指数分布,则X 的分布函数为A.e ,0,()0, 0.x x F x x λλ-⎧>=⎨≤⎩B.1e ,0,()0, 0.x x F x x λλ-⎧->=⎨≤⎩C.1e ,0,()0, 0.x x F x x λ-⎧->=⎨≤⎩D.1e ,0,()0, 0.x x F x x λ-⎧+>=⎨≤⎩13.设随机变量X 的分布函数为F(x),则A.()1F -∞=B.(0)0F =C.()0F +∞=D.()1F +∞=14.设随机变量X 与Y 相互独立,它们的概率密度分别为(),()X Y f x f y ,则(X ,Y )的概率密度为 A.[]1()()2X Y f x f y + B.()()X Y f x f y +C.1()()2X Y f x f y D.()()X Y f x f y15.设随机变量~(,)X B n p ,且() 2.4,() 1.44E X D X ==,则参数n,p 的值分别为 A.4和0.6 B.6和0.4 C.8和0.3D.3和0.816.设随机变量X 的方差D(X)存在,且D(X)>0,令Y X =-,则X γρ= A.1- B.0 C.1 D.2二、填空题1. 一口袋中装有3只红球,2只黑球,今从中任意取出2只球,则这2只球恰为一红一黑的概率是____________.2. 设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A )=______________.3. 设A,B,C 为三个随机事件,P(A)=P(B)=P(C)=41,P(AB)=P(AC)=P(BC)=61,P(ABC)=0,则P(A B C)=___________. 4. 设X 为连续随机变量,c 为一个常数,则P {X =c }=_____________.5. 已知连续型随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<=.2,1;20),1(31;0,31)(≥≤x x x x e x F x设X 的概率密度为f(x),则当x<0,f(x)= _______________.6. 已知随机变量X 的分布函数为F X (x),则随机变量Y=3X+2的分布函F Y (y)=_________.7. 设随机变量X ~N (2,4),则P {X≤2}=____________.8. 设随机变量X 的概率密度为f(x)=+∞<<-∞-x ex ,2122π,则E(X+1)=___________.9. 设随机变量X 与Y 相互独立,且X ~N (0,5),Y ~X 2(5),则随机变量YX Z =服从自由度为5的_______________分布。

02197--概率论与数理统计(二)

02197--概率论与数理统计(二)

[单项选择题]1.设分别为随机变量的分布函数,为使是某一随机变量的分布函数,在下列给定的各组值中应取(A、)。

2.设是随机变量,其分布函数分别为,为使是某一随机变量的分布函数,在下列给定的各组数值中应取(C、)3.设随机变量的概率分布为且满足,则的相关系数为(A、0)4.设A、B、C为三个事件,P(AB)>0且P(C|AB)=1,则有(C、P(C)≥P (A)+P(B)-1)5.设x₁,x₂,··· ···,xⁿ为正态总体N(μ,4)的一个样本,表示样本均值,则μ的置信度为1-α的置信区间为(D、)6.设总体X服从正态分布N(μ,σ²),X₁,X₂,··· ···,X n是来自X 的样本,则σ²的最大似然估计为( A、 )7.设是未知参数的一个估计量,若,则是的( D.有偏估计 )8.在对单个正态总体均值的假设检验中,当总体方差已知时,选用( B、u检验法)9.若X~t(n)那么χ²~(A、F(1,n))10.对于事件A,B,下列命题正确的是(D、)11.设X~N(μ,σ²),那么当σ增大时,P{|X-μ|<σ}=(C、不变)12.已知随机变量X的密度函数f(x)=(λ>0,A为常数),则概率P{λ<X<λ+a}(a>0)的值(C、与λ无关,随a的增大而增大)13.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则 (D、)。

14.设 X1, X2为来自总体N(μ, 1) 的一个简单随机样本, 则下列估计量中μ的无偏估计量中最有效的是 ( A、设随机变量X的概率密度为f(x),则f(x)一定满足【C、】16.设随机变量X与Y的方差分别是25和16,协方差为8,则相关系数ρXY=【C、】17.已知随机变量与相互独立,且它们在区间[-1,3]和[2,4]上服从均匀分布,则【A、3】18.若X,Y相互独立,则下列正确的是【C、】设X~N(0,1), Y~N(μ,σ²), 则Y与X之间的关系是【A、】设A, B为随机事件, A错误!未找到引用源.B,(B、)A,B,C是任意事件,在下列各式中,不成立的是(B、(A∪B)-A=B)设随机变量且相互独立,根据切比雪夫不等式有(D、≥5/12)设A,B,C为三个事件,且A,B相互独立,则以下结论中不正确的是(D、)设离散型随机变量X和Y的联合概率分布为,若X,Y独立,则α,β的值为(A、)设总体X的数学期望为μ,X₁,X₂,··· ···,X n为来自X的样本,则下列结论中正确的是(A、X₁是μ的无偏估计量)已知是来自总体的样本,则下列是统计量的是(B、)设X,Y是相互独立的两个随机变量,它们的分布函数分别为F x(x),F y(y),则Z = max {X,Y} 的分布函数是(C、)对于任意两个随机变量X和Y,若E(XY)=E(X)-E(Y),则(B、D(X+Y)=D(X)+D(Y) ) 设A,B为任二事件,则(D、)设Φ(x)是标准正态分布函数,则Φ(0)= 【B、】设随机变量X与Y相互独立,且P{X≤1}=1/4,P{Y≤1}=1/3,则P{X≤1,Y≤1}=【C、】设随机事件A与B互不相容,且, ,则【D、】设A和B相互独立,,,则【B、】袋中有5个白球和3个黑球,从中任取两个,则取到的两个球是白球的概率是【A、】下列关于“统计量”的描述中,不正确的是【C、统计量表达式中不含有参数】设A,B为随机事件,则下列说法正确的是【B、】设随机变量X的取值范围是[-1,1],以下函数可以作为X的概率密度的是【C、】已知随机变量X的分布函数为C、7/12设随机变量X服从参数为的指数分布,则下列各项中正确的是(D、)设二维随机变量(X, Y)的概率密度为,则常数c=(A、)将一枚硬币重复郑n次,以X和Y分别表示正面向上和反面向上的次数,则X 与Y的相关系数等于(A、-1)是来自总体X~N(0,1)的一部分样本,设:,则Z/Y~(D、F(8,8))X₁,X₂独立,且分布率为(i=1,2),那么下列结论正确的是(C、P{X₁=X₂}=1/2)下列二无函数中,( B、) 可以作为连续型随机变量的联合概率密度。

2007年4月全国自考概率论与数理统计(二)真题参考答案

2007年4月全国自考概率论与数理统计(二)真题参考答案

2007年4月全国自考概率论与数理统计(二)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A与B互为对立事件,且P(A)>0,P(B)>0,则下列各式中错误的是()A.P(A)=1-P(B)B.P(AB)=P(A)P(B)C.P(AB)=1D.P(A∪B)=1答案:B2.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=()A.P(AB)B.P(A)C.P(B)D. 1答案:D3.下列各函数中可作为随机变量分布函数的是()A.F1(x)=2x,0≤x≤1;0,其他B.F2(x)=0,x<0;x,0≤x<1;1,x≥1.C.F3(x)=-1,x<-1;x,-1≤x<1;1,x≥1D.F4(x)=0,x<0;2x,0≤x<1;2,x≥1.答案:B4.设随机变量X的概率密度为f(x)=|x|4,-2<x<2;0,其他,则P{-1<X<1}=()A.14B.12C.34D. 1答案:A5.设二维随机变量(X,Y)的分布律为YX-10100.10.30.210.20.10.1,则P{X+Y=0}=()A.0.2B.0.3C.0.5D.0.7答案:C6.设二维随机变量(X,Y)的概率密度为f(x,y)=c,-1<x<1,-1<y<1;0,其他,则常数c=()A.14B.12C. 2D. 4答案:A7.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是()A.E(X)=0.5,D(X)=0.5B.E(X)=0.5,D(X)=0.25C.E(X)=2,D(X)=4D.E(X)=2,D(X)=2答案:D8.设随机变量X与Y相互独立,且X~N(1,4),Y~N(0,1),令Z=X-Y,则E(Z2)=()A. 3B. 4C. 5D. 6答案:D9.已知D(X)=4,D(Y)=25,Cov(X,Y)=4,则ρXY=()A.0.004B.0.04C.0.4D. 4答案:C10.设总体X服从正态分布N(μ,1),x1,x2,…,xn为来自该总体的样本,为样本均值,s为样本标准差,欲检验假设H0∶μ=μ0;H1∶μ≠μ0,则检验用的统计量是()A.-μ0s/nB.n(-μ0)C.-μ0s/n-1D.n-1(-μ0)答案:B二、填空题(本大题共15小题,每空2分,共30分)请在每小题的空格中填上正确答案。

《概率论与数理统计(二)》 复习题

《概率论与数理统计(二)》 复习题

概率论与数理统计(二)复习题之一一、单项选择题1. 设A ,B 是互不相容事件,则=+)(B A P【 】A. )(1A P -B. )(1B P -C. )()(1B P A P --D. )()(B P A P ⋅2. 某种规格的电子元件正常使用200小时的概率是0.8,正常使用250小时的概率为0.6,现有一个该种元件已经正常使用了200小时,则能够使用250小时的概率为【 】A. 0.48B. 0.6C. 0.8D. 0.753. 设随机变量ξ的分布律为22()0123!kP k k e k ξ===⋅⋅⋅⋅,,,,,,则(2)D ξ=【 】A. 2B. 4C. 6D. 84. 设12n X X X ⋅⋅⋅,,,是取自总体2~X N μσ(,)的样本,则对任意0>ε,下列各式成立的是【 】A. {}22n P X n σμεε-<≥B. {}221P X n σμεε--≥≥C. {}22P X n σμεε-≥≤D. {}22P X n n σμεε-≥≤5. 设随机变量X Y (,)的联合分布为则X Y (,)的协方差covX Y =(,)【 】A. 0B. 1C.81D. 81-6. 设随机变量X Y ,同分布,概率密度为 2120()0x x f x θθ⎧<<⎪⎪=⎨⎪⎪⎩其他,, 若[]1(2)E C X Y θ+=,则C 的值为【 】A.21B.31 C. 221θD. θ327. 123X X X ,,都服从[02],上的均匀分布,则123(32)E X X X -+=【 】A. 1B. 3C. 4D. 28. 随机变量Y X +=ξ与Y X -=η不相关的充分必要条件为【 】A. ()()E X E Y =B. 2222()()()()E X E X E Y E Y -=-C. 22()()E X E Y =D. 2222()()()()E X E X E Y E Y +=+9. 某生产线的产品合格率为0.85,使用某种仪器作产品的抽样检测,仪器检查结果的正确率为0.90,现任取一件产品经仪器检查为合格,而该件产品确实合格的概率为 【 】A. 0.85B. 1C. 0.98D. 0.9410. 设总体2~X N μσ(,),统计假设为0H :0μμ=对1H :0μμ≠,若用t 检验法,则在显著水平α的拒绝域为【 】A. 12(1)t tn α--< B. 12(1)t tn α-≥-C. 1(1)t t n α-≥-D. 1(1)t t n α---< 二、填空题11. 将3人以相同的概率分配到4间房的每一间中,则恰好3间房中各有1人的概率是________。

概率论与数理统计试题及答案 (2)

概率论与数理统计试题及答案 (2)

一.选择题(18分,每题3分)1. 如果 1)()(>+B P A P ,则 事件A 与B 必定 ( ))(A 独立; )(B 不独立; )(C 相容; )(D 不相容.2. 已知人的血型为 O 、A 、B 、AB 的概率分别是0.4; 0.3;0.2;0.1。

现任选4人,则4人血型全不相同的概率为: ( ))(A 0.0024; )(B 40024.0; )(C 0. 24; )(D 224.0.3. 设~),(Y X ⎩⎨⎧<+=.,0,1,/1),(22他其y x y x f π 则X 与Y 为 ( ))(A 独立同分布的随机变量; )(B 独立不同分布的随机变量;)(C 不独立同分布的随机变量;)(D 不独立也不同分布的随机变量. 4. 某人射击直到中靶为止,已知每次射击中靶的概率为0.75. 则射击次数的数学期望与方差分别为 ( ))(A 4934与; )(B 16934与; )(C 4941与; (D) 9434与.5. 设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是( ))(A 32112110351ˆX X X ++=μ; )(B 3212949231ˆX X X ++=μ; )(C 3213216131ˆX X X ++=μ; )(D 32141254131ˆX X X ++=μ. 6. 检验假设222201:10,:10H H σσ≤>时,取统计量)(~10)(22212n Xini χμχ-=∑=,其拒域为(1.0=α) ( ))(A )(21.02n χχ≤;)(B )(21.02n χχ≥;)(C )(205.02n χχ≤;)(D )(205.02n χχ≥.二. 填空题(15分,每题3分)1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P .2. 设随机变量X 的分布律为⎪⎪⎭⎫⎝⎛-+c b a 4.01.02.04321,则常数c b a ,,应满足的条件 为 .3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率=>>),(b Y a X P .4. 设随机变量)2,2(~-U X ,Y 表示作独立重复m 次试验中事件)0(>X 发生的次数,则=)(Y E ,=)(Y D . 5.设),,,(21n X X X 是从正态总体),(~2σμN X 中抽取的样本,则 概率 =≤-≤∑=)76.1)(37.0(222012012σσX XP ii .5. 设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信 度为1α-的单侧置信区间的下限为 . 三. 计算题 (54分,每题9分)1.自动包装机把白色和淡黄色的乒乓球混装入盒子,每盒装12只,已知每盒内装有的白球的个数是等可能的。

概率论与数理统计(二) 自考试题及答案

概率论与数理统计(二) 自考试题及答案

概率论与数理统计(二) 自考试题及答案一、填空题(共14题,共28分)1.一枚硬币连丢3次,观察正面H﹑反面T出现的情形.样本空间是:S=2.丢一颗骰子.A:出现奇数点,则A=();B:数点大于2,则B=()3.一枚硬币连丢2次,A:第一次出现正面,则A=();B:两次出现同一面,则=();C:至少有一次出现正面,则C=()4.一枚硬币连丢3次,观察出现正面的次数.样本空间是:S=5.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A 、B、C都不发生表示为:6.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A与B都发生,而C不发生表示为:7.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A与B都不发生,而C发生表示为:8.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中最多二个发生表示为:9.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中至少二个发生表示为:10.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中不多于一个发生表示为:11.设S{x:0x5},A{x:1x3},B{x:24}:则12.设S{x:0x5},A{x:1x3},B{x:24}:则AB=13.丢甲、乙两颗均匀的骰子,已知点数之和为7,则其中一颗为1的概率是14.已知P(A)1/4,P(B|A)1/3,P(A|B)1/2,则二、问答题(共9题,共54分)15.有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人抽“中‘的概率相同。

16.第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随机地取一个球,求取到红球的概率。

17.某班有30个同学,其中8个女同学,随机地选10个,求正好有2个女同学的概率18.某班有30个同学,其中8个女同学,随机地选10个,求最多有2个女同学的概率19.某班有30个同学,其中8个女同学,随机地选10个,求至少有2个女同学的概率20.某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率,(2)任取一出厂产品,求未经调试的概率。

概率论与数理统计答案(2)

概率论与数理统计答案(2)

习题二1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ==========故所求分布律为2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律; (2) X 的分布函数并作图; (3)133{},{1},{1},{12}222P X P X P X P X ≤<≤≤≤<<.【解】313315122133151133150,1,2.C 22(0).C 35C C 12(1).C 35C 1(2).C 35X P X P X P X ========== 故X 的分布律为(2) 当x <0时,F (x )=P (X ≤x )=0当0≤x <1时,F (x )=P (X ≤x )=P (X =0)=2235当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数0,022,0135()34,12351,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩(3)1122()(),2235333434(1)()(1)02235353312(1)(1)(1)2235341(12)(2)(1)(2)10.3535P X F P X F F P X P X P X P X F F P X ≤==<≤=-=-=≤≤==+<≤=<<=--==--=3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示击中目标的次数.则X =0,1,2,3.31232233(0)(0.2)0.008(1)C 0.8(0.2)0.096(2)C (0.8)0.20.384(3)(0.8)0.512P X P X P X P X ============故X 的分布律为分布函数0,00.008,01()0.104,120.488,231,3x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2)(2)(3)0.896P X P X P X ≥==+==4.(1) 设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a . (2) 设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a .【解】(1) 由分布律的性质知1()e !kk k P X k a a k λλ∞∞======∑∑故 ea λ-=(2) 由分布律的性质知111()N Nk k aP X k a N======∑∑即 1a =.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率.【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7)(1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+(3,3)P X Y ==33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++22223333C (0.6)0.4C (0.7)0.3(0.6)(0.7)+0.32076=(2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ (2,1)(3,1)(3,2)P X Y P X Y P X Y ==+==+==12322333C 0.6(0.4)(0.3)C (0.6)0.4(0.3)=++ 33221233(0.6)(0.3)C (0.6)0.4C 0.7(0.3)++ 31232233(0.6)C 0.7(0.3)(0.6)C (0.7)0.3+=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有()0.01P X N ><即2002002001C (0.02)(0.98)0.01k k kk N -=+<∑利用泊松近似2000.02 4.np λ==⨯=41e 4()0.01!kk N P X N k -∞=+≥<∑ 查表得N ≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?【解】设X 表示出事故的次数,则X ~b (1000,0.0001)(2)1(0)(1)P X P X P X ≥=-=-=0.10.11e0.1e --=--⨯8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则1422355C (1)C (1)p p p p -=-故 13p =所以 4451210(4)C ()33243P X ===.9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率.【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3)5553(3)C (0.3)(0.7)0.16308kk k k P X -=≥==∑(2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3)7773(3)C (0.3)(0.7)0.35293k k k k P Y -=≥==∑10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间隔起点无关(时间以小时计).(1) 求某一天中午12时至下午3时没收到呼救的概率; (2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1)32(0)eP X -== (2) 52(1)1(0)1eP X P X -≥=-==-11.设P {X =k }=kkkp p --22)1(C , k =0,1,2P {Y =m }=mm m p p --44)1(C , m =0,1,2,3,4 分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=59,试求P {Y ≥1}. 【解】因为5(1)9P X ≥=,故4(1)9P X <=. 而 2(1)(0)(1)P X P X p <===-故得 24(1),9p -=即 1.3p =从而 465(1)1(0)1(1)0.8024781P Y P Y p ≥=-==--=≈ 12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X 为2000册书中错误的册数,则X~b (2000,0.001).利用泊松近似计算,20000.0012np λ==⨯=得 25e 2(5)0.00185!P X -=≈= 13.进行某种试验,成功的概率为34,失败的概率为14.以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率. 【解】1,2,,,X k =113()()44k P X k -==(2)(4)(2)P X P X P X k =+=++=+321131313()()444444k -=++++213141451()4==- 14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率;(2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X ,则X~b (2500,0.002),则所求概率为(200030000)(15)1(14)P X P X P X >=>=-≤由于n 很大,p 很小,λ=np =5,故用泊松近似,有514e 5(15)10.000069!kk P X k -=>≈-≈∑(2) P (保险公司获利不少于10000)(30000200010000)(10)P X P X =-≥=≤510e 50.986305!kk k -=≈≈∑ 即保险公司获利不少于10000元的概率在98%以上P (保险公司获利不少于20000)(30000200020000)(5)P X P X =-≥=≤55e 50.615961!kk k -=≈≈∑ 即保险公司获利不少于20000元的概率约为62% 15.已知随机变量X 的密度函数为f (x )=A e |x |, ∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ). 【解】(1) 由()d 1f x x ∞-∞=⎰得||1e d 2e d 2x x A x A x A ∞∞---∞===⎰⎰故 12A =. (2) 11011(01)e d (1e )22x p X x --<<==-⎰(3) 当x <0时,11()e d e 22x x x F x x -∞==⎰当x ≥0时,0||0111()e d e d e d 222x x x x x F x x x x ---∞-∞==+⎰⎰⎰ 11e 2x-=-故 1e ,02()11e 02xx x F x x -⎧<⎪⎪=⎨⎪-≥⎪⎩16.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1) 在开始150小时内没有电子管损坏的概率;(2) 在这段时间内有一只电子管损坏的概率; (3) F (x ). 【解】(1) 15021001001(150)d .3P X x x ≤==⎰ 33128[(150)]()327p P X =>==(2) 1223124C ()339p ==(3) 当x <100时F (x )=0当x ≥100时()()d xF x f t t -∞=⎰100100()d ()d x f t t f t t -∞=+⎰⎰2100100100d 1xt t x==-⎰ 故 1001,100()0,0x F x xx ⎧-≥⎪=⎨⎪<⎩ 17.在区间[0,a ]上任意投掷一个质点,以X 表示这质点的坐标,设这质点落在[0,a ]中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数. 【解】 由题意知X ~∪[0,a ],密度函数为1,0()0,x af x a⎧≤≤⎪=⎨⎪⎩其他 故当x <0时F (x )=0当0≤x ≤a 时01()()d ()d d xx xx F x f t t f t t t a a-∞====⎰⎰⎰当x >a 时,F (x )=1 即分布函数0,0(),01,x x F x x a a x a<⎧⎪⎪=≤≤⎨⎪>⎪⎩ 18.设随机变量X 在[2,5]上服从均匀分布.现对X 进行三次独立观测,求至少有两次的观测值大于3的概率. 【解】X ~U [2,5],即1,25()30,x f x ⎧≤≤⎪=⎨⎪⎩其他 5312(3)d 33P X x >==⎰故所求概率为22333321220C ()C ()33327p =+= 19.设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1()5E .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}. 【解】依题意知1~()5X E ,即其密度函数为51e ,0()50,xx f x -⎧>⎪=⎨⎪≤⎩x 0该顾客未等到服务而离开的概率为25101(10)e d e 5x P X x -∞->==⎰2~(5,e )Y b -,即其分布律为225525()C (e )(1e ),0,1,2,3,4,5(1)1(0)1(1e )0.5167kk k P Y k k P Y P Y ----==-=≥=-==--=20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服从N (40,102);第二条路程较长,但阻塞少,所需时间X 服从N (50,42). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些? 【解】(1) 若走第一条路,X~N (40,102),则406040(60)(2)0.977271010x P X P Φ--⎛⎫<=<== ⎪⎝⎭若走第二条路,X~N (50,42),则506050(60)(2.5)0.993844X P X P Φ--⎛⎫<=<== ⎪⎝⎭++故走第二条路乘上火车的把握大些. (2) 若X~N (40,102),则404540(45)(0.5)0.69151010X P X P Φ--⎛⎫<=<== ⎪⎝⎭若X~N (50,42),则504550(45)( 1.25)44X P X P Φ--⎛⎫<=<=- ⎪⎝⎭1(1.25)0.1056Φ=-=故走第一条路乘上火车的把握大些. 21.设X ~N (3,22),(1) 求P {2<X ≤5},P {4<X ≤10},P {|X |>2},P {X >3}; (2) 确定c 使P {X >c }=P {X ≤c }.【解】(1) 23353(25)222X P X P ---⎛⎫<≤=<≤⎪⎝⎭11(1)(1)1220.841310.69150.5328ΦΦΦΦ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭=-+=433103(410)222X P X P ----⎛⎫-<≤=<≤ ⎪⎝⎭770.999622ΦΦ⎛⎫⎛⎫=--=⎪ ⎪⎝⎭⎝⎭(||2)(2)(2)P X P X P X >=>+<-323323222215151122220.691510.99380.6977X X P P ΦΦΦΦ-----⎛⎫⎛⎫=>+< ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫=--+-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+-=333(3)()1(0)0.522X P X P Φ->=>=-=- (2) c=322.由某机器生产的螺栓长度(cm )X ~N (10.05,0.062),规定长度在10.05±0.12内为合格品,求一螺栓为不合格品的概率. 【解】10.050.12(|10.05|0.12)0.060.06X P X P ⎛-⎫->=>⎪⎝⎭1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=23.一工厂生产的电子管寿命X (小时)服从正态分布N (160,σ2),若要求P {120<X ≤200}≥0.8,允许σ最大不超过多少? 【解】120160160200160(120200)X P X P σσσ---⎛⎫<≤=<≤⎪⎝⎭ 404040210.8ΦΦΦσσσ-⎛⎫⎛⎫⎛⎫=-=-≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故 4031.251.29σ≤= 24.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩(1) 求常数A ,B ; (2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-=⎧⎪⎨=⎪⎩得11A B =⎧⎨=-⎩(2) 2(2)(2)1eP X F λ-≤==-33(3)1(3)1(1e )e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-⎧≥'==⎨<⎩25.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ),并画出f (x )及F (x ).【解】当x <0时F (x )=0当0≤x <1时0()()d ()d ()d xxF x f t t f t t f t t -∞-∞==+⎰⎰⎰20d 2xx t t ==⎰当1≤x<2时()()d xF x f t t -∞=⎰1011122()d ()d ()d d (2)d 132222212xx f t t f t t f t tt t t tx x x x -∞==+=+-=+--=-+-⎰⎰⎰⎰⎰当x ≥2时()()d 1x F x f t t -∞==⎰故 220,0,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩26.设随机变量X 的密度函数为(1) f (x )=a e|x |,λ>0;(2) f (x )=⎪⎩⎪⎨⎧<≤<<.,0,21,1,10,2其他x xx bx 试确定常数a ,b ,并求其分布函数F (x ). 【解】(1) 由()d 1f x x ∞-∞=⎰知||21ed 2e d x x aa x a x λλλ∞∞---∞===⎰⎰故 2a λ=即密度函数为 e ,02()e 02xx x f x x λλλλ-⎧>⎪⎪=⎨⎪≤⎪⎩当x ≤0时1()()d e d e 22xx x x F x f x x x λλλ-∞-∞===⎰⎰ 当x >0时0()()d e d e d 22xxx x F x f x x x x λλλλ--∞-∞==+⎰⎰⎰11e 2xλ-=-故其分布函数11e ,02()1e ,02xx x F x x λλ-⎧->⎪⎪=⎨⎪≤⎪⎩(2) 由12201111()d d d 22b f x x bx x x x ∞-∞==+=+⎰⎰⎰得 b =1 即X 的密度函数为2,011(),120,x x f x x x<<⎧⎪⎪=≤<⎨⎪⎪⎩其他当x ≤0时F (x )=0 当0<x <1时0()()d ()d ()d xxF x f x x f x x f x x -∞-∞==+⎰⎰⎰2d 2x x x x ==⎰当1≤x <2时012011()()d 0d d d xxF x f x x x x x x x-∞-∞==++⎰⎰⎰⎰312x=- 当x ≥2时F (x )=1 故其分布函数为20,0,012()31,1221,2x x x F x x x x ≤⎧⎪⎪<<⎪=⎨⎪-≤<⎪⎪≥⎩27.求标准正态分布的上α分位点, (1)α=0.01,求z α; (2)α=0.003,求z α,/2z α.【解】(1) ()0.01P X z α>=即 1()0.01z αΦ-= 即 ()0.09z αΦ= 故 2.33z α= (2) 由()0.003P X z α>=得1()0.003z αΦ-=即 ()0.997z αΦ= 查表得 2.75z α= 由/2()0.0015P X z α>=得/21()0.0015z α-Φ=即 /2()0.9985z αΦ= 查表得 /2 2.96z α= 28.设随机变量X 的分布律为2 1 0 1 3求Y =X 2的分布律.【解】Y 可取的值为0,1,4,91(0)(0)5117(1)(1)(1)615301(4)(2)511(9)(3)30P Y P X P Y P X P X P Y P X P Y P X =======-+==+====-=====故Y 的分布律为29.设P {X =k }=(2)k, k =1,2,…,令 1,1,.X Y X ⎧=⎨-⎩当取偶数时当取奇数时 求随机变量X 的函数Y 的分布律. 【解】(1)(2)(4)(2)P Y P X P X P X k ===+=++=+242111()()()222111()/(1)443k =++++=-=2(1)1(1)3P Y P Y =-=-==30.设X ~N (0,1).(1) 求Y =e X 的概率密度; (2) 求Y =2X 2+1的概率密度; (3) 求Y =|X |的概率密度.【解】(1) 当y ≤0时,()()0Y F y P Y y =≤=当y >0时,()()(e )(ln )xY F y P Y y P y PX y =≤=≤=≤ln ()d yX f x x -∞=⎰故 2/2ln d ()1()(ln ),0d y Y Y x F y f y f y y y y -===> (2)2(211)1P Y X =+≥=当y ≤1时()()0Y F y P Y y =≤=当y >1时2()()(21)Y F y P Y y P X y =≤=+≤212y P X P X ⎛-⎛⎫=≤=≤≤ ⎪ ⎝⎭⎝()d X f x x =故 d ()()d Y Y XX f y F y f f y ⎤⎛==+⎥ ⎥⎝⎦(1)/4,1y y --=>(3) (0)1P Y ≥=当y ≤0时()()0Y F y P Y y =≤=当y >0时()(||)()Y F y P X y P y X y =≤=-≤≤ ()d yX yf x x -=⎰故d()()()()d Y Y X X f y F y f y f y y==+- 2/2,0y y -=> 31.设随机变量X ~U (0,1),试求: (1) Y =e X 的分布函数及密度函数; (2) Z =2ln X 的分布函数及密度函数.【解】(1) (01)1P X <<=故 (1e e )1XP Y <=<= 当1y ≤时()()0Y F y P Y y =≤=当1<y <e 时()(e )(ln )XY F y P y P X y =≤=≤ln 0d ln yx y ==⎰当y ≥e 时()(e )1XY F y P y =≤=即分布函数0,1()ln ,1e 1,e Y y F y y y y ≤⎧⎪=<<⎨⎪≥⎩故Y 的密度函数为11e ,()0,Y y y f y ⎧<<⎪=⎨⎪⎩其他 (2) 由P (0<X <1)=1知(0)1P Z >=当z ≤0时,()()0Z F z P Z z =≤=当z >0时,()()(2ln )Z F z P Z z P X z =≤=-≤/2(ln )(e )2z z P X P X -=≤-=≥/21/2ed 1e z z x --==-⎰即分布函数-/20,0()1-e ,Z z z F z z ≤⎧=⎨>⎩0 故Z 的密度函数为/21e ,0()20,z Z z f z z -⎧>⎪=⎨⎪≤⎩032.设随机变量X 的密度函数为f (x )=22,0π,π0,.xx ⎧<<⎪⎨⎪⎩其他试求Y =sin X 的密度函数. 【解】(01)1P Y <<=当y ≤0时,()()0Y F y P Y y =≤=当0<y <1时,()()(sin )Y F y P Y y P X y =≤=≤(0arcsin )(πarcsin π)P X y P y X =<≤+-≤<arcsin π220πarcsin 22d d ππyy x x x x -=+⎰⎰222211arcsin 1πarcsin ππy y =+--()()2arcsin πy =当y ≥1时,()1Y F y = 故Y 的密度函数为22,01π()10,Y y f y y⎧<<⎪=-⎨⎪⎩其他 33.设随机变量X 的分布函数如下:⎪⎩⎪⎨⎧≥<+=.)3(,)2(,)1(,11)(2x x x x F试填上(1),(2),(3)项. 【解】由lim ()1x F x →∞=知②填1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章统计与统计案例
第一节随机抽样
A级·基础过关
|固根基|
1.(2019届济南模拟)高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为()
A.13 B.17
C.19 D.21
解析:选C因为47-33=14,所以由系统抽样的定义可知,样本中的另一个学生的编号为5+14=19.
2.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽取的数是39,则在第1小组1~16中随机抽到的数是() A.5 B.7
C.11 D.13
解析:选B间隔数k=800
50
=16,即每16人抽取一个人.由于39=2×16
+7,所以第1小组中抽取的数为7.
3.(2019届福州综合质量检测)在检测一批相同规格共500 kg航空用耐热垫片的品质时,随机抽取了280片,检测到有5片非优质品,则这批航空用耐热垫片中非优质品约为()
A.2.8 kg B.8.9 kg
C.10 kg D.28 kg
解析:选B由题意,可知抽到非优质品的概率为
5
280
,所以这批航空用耐
热垫片中非优质品约为500×5
280
≈8.9(kg),故选B.
4.一个单位有职工800人,其中具有高级职称的有160人,具有中级职称的有320人,具有初级职称的有200人,其余人员有120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是()
A.12,24,15,9 B.9,12,12,7
C.8,15,12,5 D.8,16,10,6
解析:选D因为40
800
=1
20
,故各层中依次抽取的人数分别为160×1
20
=8,
320×1
20
=16,200×1
20
=10,120×1
20
=6.
5.(2019届南昌模拟)某校为了解学生学习的情况,采用分层抽样的方法从高一1 000人、高二1 200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=()
A.860 B.720
C.1 020 D.1 040
解析:选D根据分层抽样方法,得
1 200
1 000+1 200+n
×81=30,解得n=1 040.
故选D.
6.(2019届南昌模拟)我国古代数学名著《九章算术》有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%).现抽样取米一把,取得235粒米中夹秕n粒,若这批米合格,则n不超过()
A.6粒B.7粒
C.8粒D.9粒
解析:选B由题意得,
n
235×100%≤3%,解得n≤7.05,所以若这批米合
格,则n不超过7粒.故选B.
7.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.
若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是()
A.3 B.4
C.5 D.6
解析:选B因为35÷7=5,所以可将编号为1~35的35个数据分成7组,每组有5个数据,在区间[139,151]上共有20个数据,分在4个小组中,每组取1人,共取4人.
8.(2019届郑州模拟)一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在笫7组中抽取的号码是________.
解析:因为m=6,k=7,m+k=13,所以在第7小组中抽取的号码是63.
答案:63
9.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2∶3∶5,现用分层抽样的方法抽取一个容量为n的样本,其中A型号产品有16件,那么此样本的容量n=________.
解析:因为分层抽样为等比抽样,所以16
n
=2
2+3+5
,解得n=80.
答案:80
10.(2019届成都龙泉联考)某学校高一、高二、高三年级的学生人数之比为4∶3∶3,现用分层抽样的方法从该校高中三个年级的学生中抽取一个容量为80的样本,则应从高一年级抽取________名学生.
解析:从高一年级抽取的学生人数为80×
4
4+3+3
=32.
答案:32
11.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”“锻炼”“看电视”和“其他”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制了如图所示的统计图.
根据统计图所提供的信息,解答下列问题:
(1)本次共调查了________名市民;
(2)补全条形统计图;
(3)该市共有480万市民,估计该市市民晚饭后1小时内“锻炼”的人数.
解:(1)本次共调查的市民人数为800÷40%=2 000.
(2)晚饭后选择“其他”的人数为2 000×28%=560,晚饭后选择“锻炼”的人数为2 000-800-240-560=400.
将条形统计图补充完整,如图所示.
(3)因为晚饭后选择“锻炼”的人数所占的比例为400÷2 000=20%,所以该市市民晚饭后1小时内锻炼的人数为480×20%=96(万).
B级·素养提升
|练能力|
12.某市为最大限度的吸引“高精尖缺”人才,向全球“招贤纳士”,推出了人才引入落户政策.随着人口增多,住房要求也随之而来,选择购买商品房时,住户对商品房的户型结构越来越重视,因此某商品房调查机构随机抽取n名市民,针对其居住的户型结构和满意度进行了调查.如图1调查的是所有市民中四
居室共200户,所占比例为1
3,二居室住户占
1
6.如图2是用分层抽样的方法从所
有调查的市民的满意度问卷中,抽取10%的调查结果绘制成的统计图,则下列说法正确的是( )
A .样本容量为70
B .样本中三居室住户共抽取了25户
C .根据样本可估计对四居室满意的住户有70户
D .样本中对三居室满意的有15户
解析:选D 先根据题图1求出总体数量及样本容量,再根据分层抽样及题图2确定样本中三居室户数及满意人数. 选项 正误 原因
A × 总体容量为600,样本容量为600×10%=60
B × 样本中三居室住户共抽取600×⎝ ⎛
⎭⎪⎫1-13-16×10%=30(户)
C
×
对四居室满意的住户共有200×10%×40%=8(户)
D

样本中三居室住户有300×10%=30(户),对三居室满意的住户
有30×50%=15(户)
63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________.
解析:分组间隔为64
8=8,∵在第一组中随机抽取的号码为5,∴在第6组中抽取的号码为5+5×8=45.
答案:45
14.(2019届滨州模拟)某学校三个兴趣小组的学生人数分布如下表(每名学生只参加一个小组)(单位:人).
从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________.
解析:由分层抽样知识,得1230=45+1545+15+30+10+a +20,∴a =30.
答案:30
15.某社区为丰富居民节日活动,组织了“迎新春”象棋大赛,已知报名的选手情况如下表所示:
2人.若对中年组和老年组分别利用分层抽样的方法抽取部分报名者参加比赛,已知老年组抽取了5人,其中女性3人,中年组抽取了7人.
(1)求表格中的数据a ,b ,c ,d ;
(2)若从选出的中年组的选手中随机抽取2名进行比赛,求至少有1名女性选手的概率.
解:(1)依题意,在老年组中,女性抽取了3人,则男性抽取了2人,∴抽样比为216=18,
∴c =3÷
1
8=24,
∴由题意知,b =c +2=26. ∴a =91-26=65,d =16+24=40. (2)由已知,中年组共抽取了7人,
∴抽样比为7
91=
1
13,
∴中年组抽取男性65×1
13=5(人),女性7-5=2(人),
记5名男性分别为A,B,C,D,E,2名女性分别为e,f,则从中随机选取2名,共有21种不同的结果,分别为{A,B},{A,C},{A,D},{A,E},{A,e},{A,f},{B,C},{B,D},{B,E},{B,e},{B,f},{C,D},{C,E},{C,e},{C,f},{D,E},{D,e},{D,f},{E,e},{E,f},{e,f}.其中至少有1名女性包含11种不同的结果,分别为{A,e},{A,f},{B,e},{B,f},{C,e},{C,f},{D,e},{D,f},{E,e},{E,f},{e,f}.
∴所求概率为P=11 21.。

相关文档
最新文档