煤的工业分析

合集下载

煤的工业分析

煤的工业分析

煤的工业分析一、煤的化学成分和工艺性质煤是重要的工业原料。

它的用途很广泛,除作燃料用外,还是重要的化工原料。

为了合理的利用煤炭资源,必须对煤的化学成分及其性质进行研究,以便综合利用。

(一)煤的元素组成煤主要是由碳C、氢H、氧O、氮N、硫S、磷P等元素构成的有机质,以及一些矿物杂质、水分等无机质组成。

其中,有机质主要是由碳、氢、氧组成,它们占有机质的95%以上;此外,还有氮、硫、少量的磷及金属元素等。

对煤的元素组成的研究,主要是通过元素分析进行的。

1.碳碳是煤中有机物质的主要组成部分。

也是煤燃烧过程中产生热量的重要元素,每公斤纯碳完全燃烧时能放出34080.6KJ的热量。

煤中碳元素的含量是随变质程度的加深而增加。

泥炭的含碳量为50~60%,褐煤为60-77%,烟煤为74~92%,无烟煤为90~98%。

2.氢氢是煤中有机质的重要元素。

每公斤氢完全燃烧时能产生143138.3KJ的热量,约为碳的4.2倍。

煤中含氢量的多少与成煤原始物质有直接关系。

腐泥煤的氢含量比腐植煤高,一般在6%以上,有时可达11%;而腐植煤的氢含量一般不超过6%.最低为1%左右。

随着变质程度的加深,氢含量有逐渐减少的趋势。

3.氧煤中氧的含量变化很大,并随变质程度加深而降低。

泥炭中氧含量为30-40%,褐煤中氧含量高达15~30%,烟煤为1~16%,无烟煤更不,一般小于2%。

当煤氧化时,氧含量迅速增高,碳、氢含量明显降低。

因此,氧含量是确定煤层风、氧化带深度的主要指标之一。

4.氮氮在煤中含量较少,它主要来自成煤植物中的蛋白质。

碳含量小于75%的某些褐煤,氮含量可达2~2.7%,无烟煤为0.5~1.5%。

氮含量随变质程度增高稍有降低。

在高温加工时,一部分氮转化为氨及吡啶类等有机含氮化合物,这些化学产品可回收制成硫酸铵、尿素、氨水等氮肥。

5.硫硫是煤的有害物质。

它在煤中常以三种形式出现,第一种为硫化物硫,绝大部分是以黄铁矿FeS2和少量白铁矿FeS2硫形态存在;第二种为有机硫,主要来自成煤时植物和微生物中的蛋白质;第三种为硫酸盐硫,主要是石膏CaS04·2H20中的硫。

煤的工业分析

煤的工业分析

其他技术【煤的工业分析】1. 水分(1) 外在水分(Wwz)外在水分是指煤在开采、运输和洗选过程中润湿在煤的外表以及大毛细孔(直径>10-5厘米)中的水。

它以机械方式与煤相连结着,较易蒸发,其蒸汽压与纯水的蒸汽相等.在空气中放置时,外在不分不断蒸发,直至煤中水分的蒸汽压与空气的相对湿度达到平衡时为止,此时失去的水分就是外在水分.含有外在水分的煤称为应用煤, 失去外在水分的煤称为风干煤.外在水分的多少与煤粒度等有关,而与煤质无直接关系.(2)内在水分(Wnz)吸附或凝聚在煤粒内部的毛细孔(直径〈10-5厘米〉中的水,称为内在水分.内在水分指将风干煤加热到105~110时所失去的水分,它主要以物理化学方式(吸附等)与煤相连结着,较难蒸发,故蒸气压小于纯水的蒸汽压. 失去内在水分的煤称为绝对干燥或干煤.2. 分灰1).灰分的来源和种类煤灰几呼全部来源于煤中的矿物质,但煤在燃烧时,矿物质大部分被氧化,分解,并失去结晶水,因此,煤灰的组成和含量与煤中矿物质的组成和含量差别很大.我们一般说的煤的灰分实际上就是煤灰产率,煤中矿物质和灰分的来源,一般可分三种.(1)原生矿物质它是原来存在于成煤植物中的矿物质,质紧密地结合在一起,极难用机械的方法将其分开.它燃烧后形成母体灰分,这部分数量很小(2)次生矿物质当死亡植质堆积和菌解时,由风和水带来的细粘土,砂粒或由水中钙,镁,铁等离子生成的腐植酸盐及FeS2等混入而成,在煤中成包裹体存在.用显微镜观察煤的光片或薄片时,如它们均匀分布在煤中,并且颗粒很细,则很难与煤分离;如它们颗粒较大,比重与差很大,并在煤中分布不均, 则把煤破啐后尚可能将它们洗选掉.煤中的原生矿物质和次生矿物质合称为内在矿物质.来自于内在矿物质的灰分,称为内在灰分.一般次生矿物质在煤中的含量也不多,仅有少数煤层中次生矿物质较多,如迁移堆积抽形成的煤层即如此.(3)外来矿物质这种矿物质原来不含于煤层中,它是由在采煤过程中混入煤中的顶,底板和夹矸层中的矸石所形成的.其数量多少,根据开采条件在很大的范围里波动.它的主要成分为SiO2,A12O3,也有一些CaSO3,CaSO4,FeS2等。

煤的工业分析

煤的工业分析

浅谈煤的工业分析及应用一煤工业分析的概念:煤的工业分析,又叫煤的技术分析或使用分析,主要是根据技术需要测定煤经转化生成的物质或呈现的性质。

煤的全工业分析测定项目主要是水分、灰分、挥发分、固定碳。

发热量和全硫。

煤的工业分析通常指半工业分析,它包括水分、灰分、挥发分和固定碳四个项目的测定。

二水分的测定及应用:1 水的存在形式:煤中水分从结合状态来看,分为游离水和结合水两类(1)化合水以化合的方式同煤中的矿物质结合的水,级结晶水如硫酸钙Caso4.2H2O, 高岭土Ai22sio2.2H2o,化合水属于煤的固有组分,在煤中的比例极小,一般可忽略,这种水只能在高于煤的分解温度才能完全脱除,工业上一般也不测结晶水。

(2)游离水即以物理吸附或附着方式与煤结合的水分,它又分为外在水分和内在水分。

外在水分是在开采、储存、运输及洗煤时带入的,附在没颗粒表面和存在于直径大于105-㎝的毛细孔中,易于蒸发除去在空气中(温度20℃,相对湿度65%)风干1-2天后即可蒸发, 所以此类水分又叫风干水分,除去外在水分的煤叫风干煤,外在水分的含量记为Mf。

内在水分是指吸附或凝聚在煤粒内部直径小于105-㎝的毛细孔中难于蒸发除去的水分。

内在水分需要在高于水的正常沸点的温度才能除尽,故又称为烘干水分,除去内在水分的煤叫干燥煤,内在水含量记为Minh外在水的含量一般为0-30%,取决于下列变量:煤的类别、环境的相对湿度、煤中矿物成分和含量、煤颗粒大小及粒度分布、井下与地面温度、氧化、化学添加剂等。

内在水分的含量多少与煤化程度有关以烟煤为例,焦煤肥煤的水分低,低阶褐煤水分最高,到高阶无烟煤阶段,煤中的内在水分又明显增高。

(3)煤的外在水分Mf 和经换算的内在水分Minh之和称为全水分,记为Mt,它们之间关系不是简单的加和关系换算关系如下:Mt = Mf+100%fM%100 ×Minh在实际测定全水分时,不必分别测定外在水分和内在水分,可直接将试样粉碎到粒度小于3mm,然后称取试样在102-105度下烘干,称量并计算求出全水分含量。

第三章 第四节煤的工业分析

第三章 第四节煤的工业分析
仅失去外在水分的煤则称空气干燥煤,它是煤质 化验中通常采用的分析煤样。
(2)内在水分(Minh) 定义:指在一定条件下达到空气干燥状态时所 保留的水分,即存在于煤粒内部直径小于10-5cm的 毛细孔中的水分。简记符号为Minh。该水分以物理
化学方式与煤结合,其含量与煤的表面积大小和吸
附能力有关,蒸汽压小于纯水的蒸汽压,故在室温 下这部分水分不易失去。 将空气干燥煤样加热至105-110℃时失去的水 分即为内在水分。失去内在水分的煤称为干燥煤。
②测定方法。用预先干燥和已称量过的称量瓶 称取粒度小于0.2mm的空气干燥煤样(1〒 0.1) g(称准到0.0002g),平摊在称量瓶中,打开 称量瓶盖,放入预先通入干燥氮气10min并已 加热到105-110℃的干燥箱中。烟煤干燥1.5h, 褐煤和无烟煤干燥2h。从干燥箱中取出称量瓶, 立即盖上盖,放入干燥器中冷却至室温(约 20min)后称量并进行检查性干燥,每次30min。 直到连续两次干燥煤样质量的减少不超过 0.0010g或质量增加时为止。
图3-9
MHC与Vdaf的关系
最高内在水分可以作为低煤化度煤的 一个分类指标。 经风化后的煤,内在水分增加,因此, 煤的内在水分的大小,也是衡量煤风化程 度的标志之一。 煤中的化合水与煤的变质程度没有关 系,但化合水多,说明含化合水的矿物质 多,会间接地影响煤质。
3.全水分的测定
(1)测定原理 国标规定,煤中全水分测 定可采用四种方法,即通氮干燥法、空气干 燥法、微波干燥法及空气干燥的一步法和两 步法。 (2)测定方法 A、B、C、D四种方法的测 定要点及适用范围如表3-15所示。
(5)全水分分级 煤中全水分分级见表3-17。我国煤以低水 分煤和中等水分煤为主,二者共占61.90;特低水分煤次之, 约占22%;其它水分级别的煤所占比例很小。

煤炭的工业分析

煤炭的工业分析

煤炭的工业分析
O1煤的工业分析煤的工业分析又叫技术分析或实用分析,是评价煤的基本依据。

它包括煤的水分、灰分、挥发分产率和固定碳四个项目的测定。

通常,水分、灰分、挥发分产率都直接测定,固定碳不作直接测定,而是用差减法进行计算。

有时也将上述四个测定项目叫做半工业分析,再加上煤的发热量和煤中全硫的测定,则称为全工业分析。

02
常用符号和基准
分析实验项目及符号:
水分:M
moisture
灰分:A
ash
挥发分:V
vo1ati1ecompound
固定碳:FC
fixedcarbon
发热量:Q
quantityofproducedheat
矿物质:MM minera1matter
C、H、0、N、S及煤炭中化学成分仍以元素名称为代表符号。

收到基(ar):就其含义而言,是从收到的一批煤样中取出具有代表性的煤样,以此种状态的煤样测定的结果并以此基表
示的值,称为收到基。

空气干燥基(ad):是指煤样所处环境与水蒸气压达到平衡时的煤样。

在新标准中规定:煤样若在空气中连续干燥1小时后质量变化不超过0.10%,则认为达到空气干燥状态。

干基(d):以无水状态的煤样为标准的分析结果表示方法。

干燥无灰基(daf):它是以假想的无水无灰状态的煤为基准的分析结果表示方法。

煤的工业分析

煤的工业分析

04
煤的工业分析的应用
在燃烧中的应用
总结词
确定煤的燃烧性能和效率
详细描述
通过煤的工业分析,可以了解煤中水分、挥发分、灰分 和固定碳的含量,从而评估煤的燃烧性能和效率。这些 数据有助于优化燃烧过程,提高燃烧效率,减少污染物 排放。
在气化中的应用
总结词
指导煤气化工艺参数的调整
详细描述
煤气化过程中,煤的工业分析结果可以指导工艺参数 的调整,如进料量、温度、压力等,以确保气化过程 的稳定性和效率。同时,分析结果还可以预测气化产 物的组成和质量。
通过对煤的工业分析,可以优 化煤的燃烧过程,提高能源利 用效率,降低能源消耗成本。
通过煤的工业分析,可以了解 煤层的地质特征和煤质变化规 律,为煤炭资源的合理开发和 利用提供科学依据。
煤作为重要的能源来源,其品 质和供应稳定性直接关系到国 家能源安全。通过煤的工业分 析,可以监测煤的质量和保障 能源供应的稳定性。
VS
详细描述
水分测定通常采用干燥法,将一定量的煤 在一定温度下加热干燥,然后根据干燥前 后的质量差计算出水分的含量。根据不同 的加热温度和干燥方式,水分测定可分为 内水和外水。
灰分测定
总结词
灰分是煤中燃烧后剩余的矿物质,测定灰分 有助于了解煤的纯度和利用价值。
详细描述
灰分测定是将一定量的煤在815℃下完全燃 烧,然后测定残留物的质量,根据原煤质量 和残留物质量之差计算出灰分的含量。灰分 含量越高,煤的品质越低。
煤的工业分析
目录
• 引言 • 煤的工业分析的指标 • 煤的工业分析的方法 • 煤的工业分析的应用 • 煤的工业分析的发展趋势
01
引言
目的和背景
煤是世界上最重要的化石燃料之一,广泛应用于发电、工业 和居民生活等领域。煤的工业分析是为了了解煤的组成、性 质和燃烧特性,为煤的合理利用和优化提供科学依据。

煤的工业分析

煤的工业分析

3、化合水:是指以化学方式与矿物质结合、有严格的分子 比,在全水分测定后仍保留下来的水分,即通常所说的结晶 水。
化合水在煤中含量不大,通常要加热到200℃甚至500℃ 以上才能析出。如石膏(CaS04·2H20),煤的工业分析中,一 般不考虑化合水,只测定游离水。
另外,煤的有机质中氧和氢在干馏或燃烧时生成的水称 为热解水,不属于上述三种水分范围,也不是工业分析的内 容。
重要组分,配入肥煤可使焦炭熔融良好,从而提 高焦炭的耐磨强度 。
• 焦煤:(coking coal)也称冶金煤,是中等及低 挥发分的中等粘结性及强粘结性的一种烟煤。单 独炼焦时能得到块度大、裂纹少、抗碎强度高的 焦炭,其耐磨性也好。但产生的膨胀压力大,使 推焦困难,必须配入气煤、瘦煤等,以改善操作 条件和提高焦炭质量。
2、内在水分(Minh):是指在一定条件下达到空气干燥状态 时所保留的水分,即存在于煤粒内部直径小于10-5 cm的毛 细孔中的水分。
该水分以物理化学方式与煤结合,其含量与煤的表面积 大小和吸附能力有关,在室温下这部分水分不易失去,需加 热到105℃~110℃ 时才失去。
收到煤 45℃~50℃ 空气干燥煤105℃~110℃ 干燥煤
(一)煤中水分的存在形态
水分分类
内在水分 游离水 外在水分
全水分(Mt)
化合水 (煤的工业分析中不考虑)
1、外在水分(Mf ) :是指附着在煤的颗粒表面的水膜或存在于 直径大于10-5 cm的毛细孔中的水分,又称自由水分或表面水 分。
该水分以机械方式和煤结合,在常温(45℃~50℃)下较 易失去。
,在氮气流中干燥到质量恒定。根据煤样干燥后的质量损
失计算出全水分。
A
通氮干燥法
对各种煤样

煤的 工业分析

煤的  工业分析

煤的工业分析煤的工业分析,又叫煤的技术分析或实用分析,是评价煤质的基本依据。

在国家标准种,煤的工业分析包括煤的水分、灰分、挥发分和固定碳等指标的测定。

通常煤的水分、灰分、挥发分和固定碳等指标的测定。

通常煤的水分、灰分、挥发分是直接测出的,而固定碳是用差减法计算出来的。

广义上讲,煤的工业分析还包括煤的全硫分和发热量的测定,又叫煤的全工业分析。

1.煤的水分煤的水分,是煤炭计价中的一个辅助指标。

煤的水分直接影响煤的使用、运输和储存。

煤的水分增加,煤中有用成分相对减少,且水分在燃烧时变成蒸汽要吸热,因而降低了煤的发热量。

煤的水分增加,还增加了无效运输,并给卸车带来了困难。

特点是冬季寒冷地区,经常发生冻车,影响卸车,影响生产,影响车皮周转,加剧了运输的紧张。

煤的水分也容易引起煤炭粘仓而减小煤仓容量,甚至发生堵仓事故。

随着矿井开采深度的增加,采掘机械化的发展和井下安全生产的加强,以及喷露洒水、煤层注水、综合防尘等措施的实施,原煤水分呈增加的趋势。

为此,煤矿除在开采设计上和开采过程中的采煤、掘进、通风和运输等各个环节上制定减少煤的水分的措施外,还应在煤的地面加工中采取措施减少煤的水分。

1)煤中游离水和化合水煤中水分按存在形态的不同分为两类,既游离水和化合水。

游离水是以物理状态吸附在煤颗粒内部毛细管中和附着在煤颗粒表面的水分;化合水也叫结晶水,是以化合的方式同煤中矿物质结合的水。

如硫酸钙(NaSO4.2H2O)和高龄土(AL2O3.2SiO2.2H2O) 中的结晶水。

游离水在105~110C的温度下经过1~2小时可蒸发掉,而结晶水通常要在200C以上才能分解析出。

煤的工业分析中只测试游离水,不测结晶水。

2)煤的外在水分和内在水分煤的游离水分又分为外在水分和内在水分。

外在水分,是附着在煤颗粒表面的水分。

外在水分很容易在常温下的干燥空气中蒸发,蒸发到煤颗粒表面的水蒸气压与空气的湿度平衡时就不再蒸发了。

内在水分,是吸附在煤颗粒内部毛细孔中的水分。

煤的工业分析方法

煤的工业分析方法

煤的工业分析方法GB/T212-20081内容和意义工业分析也叫技术分析或实用分析,包括煤中水分M、灰分A、和挥发分V的测定及固定碳FC的计算.煤的工业分析是了解煤质特性的主要指标也是评价煤质的基本依据,根据工业分析的各项测定结果可初步判断煤的性质、种类和各种煤的加工利用效果及其工业用途.2水分的测定2.1水分测定方法煤的水分测定方法:A通氮干燥法B空气干燥法C微波干燥法方法A适用于所有煤种,方法B仅适用于烟煤和无烟煤.C适用于褐煤和烟煤水分的快速测定.在仲裁分析中遇到有用一般分析试验煤样水分进行校正以及基的换算时,应用方法A测定一般分析试验煤样的水分.2.2试验步骤本实验室采用空气干燥法称样——分析煤样1±0.1g;称准到0.0002g,平摊在称量瓶中;升温——干燥箱控温在105~110℃;鼓风——提前3~5min;注:预先鼓风是为了使温度均匀;干燥——打开称量瓶盖,置于干燥箱中:烟煤1h、无烟煤 1.5h;冷却——从烘箱中取出,立即盖上盖,放入干燥器中冷却到室温20min;称量检查性干燥:时间:30min温度:105~110℃终止条件:△m<0.0010或质量增加<2.00%不必进行检查性干燥.Mad计算结果质量减少时:以最后一次质量为计算依据质量增加时:以质量增加前一次的质量为计算依据2.3结果的计算计算公式:Mad =m1/m×100Mad——一般分析试验煤样水分的质量分数,%m——称取的一般分析试验煤样的质量,单位为克gm1——煤样干燥后失去的质量,单位为克g2.4水分测定的精密度水分Mad/%重复性限/%<5.005.00~10.00>10.000.20 0.30 0.403灰分的测定3.1灰分的定义和来源不是煤中的固有物质是矿物质完全燃烧后的衍生物原生矿物质:成煤植物中所含的无机元素次生矿物质:煤形成过程中混入或与煤伴生的矿物质外来矿物质:煤炭开采和加工处理中混入的矿物质煤中存在的矿物质主要包括粘土或页岩,方解石碳酸钙黄铁矿或白铁矿以及其他微量成分,如无机硫酸盐、氯化物和氟化物等.3.2灰的形成化学反应煤在灰化过程中发生的主要反应有:1粘土和页岩矿物质失去结晶水,这类矿物质中最普遍的是高岭土,它们在500~600℃失去结晶水.2Si02·Al23·2H20→2S i02+Al23+2H20↑CaS04·2H20→CaS04+2H20↑2碳酸钙受热分解成二氧化碳和氧化钙,后者在一定程度上与硫氧化物反应生成硫酸钙,在某种程度上还与二氧化硅反应生成硅酸钙.CaC03 →Ca0+C02↑Ca0+S03 →CaS04Ca0+Si02 →CaSi03(3)黄铁矿氧化生成三氧化二铁和硫氧化物(4)主要是SO2,一小部分SO34FeS2﹢11O2→2Fe2O3﹢8SO2↑2SO2 ﹢O22SO34与煤中有机物结合的金属元素被氧化成金属氧化物.3.3灰分测定影响因素1黄铁矿的氧化程度2方解石的分解程度3灰中固定的硫量的多少为测得有可靠的灰分值就必须——使黄铁矿氧化完全;——方解石分解完全;——三氧化硫和氧化钙间的反应降到最低程度.1采用缓慢灰化法,使煤中硫化物在碳酸盐分解前就完全氧化排出,避免硫酸钙的生成;2灰化过程中始终保持良好的通风状态,使硫化物一经生成就及时排出;3煤样在灰皿中要铺平,以避免局部过厚,一方面避免燃烧不完全,另一方面可防止底部煤样中硫化物生成的二氧化硫被上部碳酸盐分解成的氧化钙固定;4在足够高的温度下灼烧足够长的时间,以保证碳酸盐完全分解及二氧化碳完全驱除.3.4灰分的测定发法两种方法1缓慢灰化法慢灰——仲裁法2快速灰化法快灰方法A:快灰仪法方法B:马弗炉法3.4.1缓慢灰化法灰皿——新灰皿灼烧至质量恒定,存放在干燥器中;称样——分析煤样1±0.1g;称准到0.0002g,均匀地摊平在灰皿中,使其每平方厘米的质量不超过0.15g;灰化——将灰皿送入<100℃的马弗炉恒温区中,炉门留有15mm左右的缝隙,缓慢升温至500℃30min以上,保持30min,继续升温到815±10℃,灼烧1h;冷却——取出灰皿,放在耐热瓷板或石棉板上,在空气中冷却5min左右,移入干燥器中冷却至室温约20min;称量检查性灼烧:时间:每次20min温度:815±10℃终止条件:连续两次灼烧后的质量变化不超过0.0001g灰分<15%时,不必进行检查性灼烧结果计算:以最后一次灼烧后的质量为计算依据与水分的不同.3.4.2马弗炉法升温——马弗炉加热到850℃;灰皿——新灰皿要灼烧至质量恒定,灰皿放在干燥器中;称样——分析煤样1±0.1g;称准到0.0002g,均匀地摊平在灰皿中,使其每平方厘米的质量不超过0.15g;灰化——灰皿缓慢推入马弗炉,先使第一排灰皿中的煤样灰化,待5~10min后煤样不在冒烟,以不大于2cm/min的速度把其余各排灰皿顺序推入炽热部分若煤样着火发生爆燃,试验应作废;灼烧——关上炉门并留有15mm左右的缝隙,灼烧40min;冷却——取出灰皿,放在耐热瓷板或石棉板上,在空气中冷却5min左右,移入干燥器中冷却至室温约20min;称量检查性灼烧——同缓慢灰化法3.5结果的计算计算公式:Aad =m1/m×100Aad——空气干燥基灰分的质量分数,%m——称取的一般分析试验煤样的质量,单位为克gm1——灼烧后残留物的质量,单位为克g3.6灰分测定的精密度灰分质量分数/%重复性限/%再现性临界差/%<15.000.200.3015.00~30.000.300.50>30.000.500.704挥发分的测定4.1挥发分的定义定义:煤样在规定条件下,隔绝空气加热7min,校正水分后的挥发物产率即为挥发分.4.2实验步骤坩埚——在900℃下灼烧至质量恒定,总质量为15~20g,冷却放在干燥器中;预升温——将马弗炉加热至920℃左右;称样——分析煤样1±0.01g,称准至0.0002g,轻轻振动坩埚,煤样摊平,盖上盖,放在坩埚架上;加热——坩埚架送入恒温区,立即关上炉门并计时,准确加热7min,放入后要求炉温在3min 内恢复至900±10℃,此后保持在900±10℃,否则此次试验作废.加热时间包括温度恢复时间在内.冷却——空气中冷却5min左右,移入干燥器中冷却至室温约20min后称量.4.3结果计算计算公式:Vad =m1/m×100-MadVad——空气干燥基挥发分的质量分数,%m——一般分析试验煤样的质量,单位为克gm1——煤样加热后减少的质量,单位为克gMad——一般分析试验煤样水分的质量分数,%4.4挥发分测定的精密度挥发分质量分数/%重复性限/%再现性临界差/%<20.000.300.5020.00~40.000.50 1.00>40.000.80 1.504.5焦渣特征分类a.粉状1型:全部是粉末,没有相互粘着的颗粒;b.粘着2型:用手指轻碰即成粉末或基本上是粉末,其中较大的团块轻轻一碰即成粉末;c.弱粘结3型:用手指轻压即成小块;d.不熔融粘结4型:以手指用力压才裂成小块,焦渣上表面无光泽,下表面稍有银白色光泽;e.不膨胀熔融粘结5型:焦渣形成扁平的块,煤粒的界线不易分清,焦渣上表面有明显银白色金属光泽,下表面银白色光泽更明显;f.微膨胀熔融粘结6型:用手指压不碎,焦渣的上、下表面均有银白色金属光泽,但焦渣表面具有较少的膨胀泡或小气泡;g.膨胀熔融粘结7型:焦渣上、下表面有银白色金属光泽,明显膨胀,但高度不超过15mm;h.强膨胀熔融粘结8型:焦渣上、下表面有银白色金属光泽,焦渣高度大于15mm.5固定碳的计算FCad =100-Mad+Aad+VadFCad——空气干燥基固定碳的质量分数,%Mad——一般分析试验煤样水分的质量分数,%A——空气干燥基灰分的质量分数,%ad——空气干燥基挥发分的质量分数,%Vad。

煤的工业分析

煤的工业分析

煤的工业分析
一、水份
三种状态:游离水、结晶水、吸附水。

主要指吸附水:即在空气干燥状态下的试料,在105度温度下,加热一小时所放出的水份。

一般要求煤中水份不超过8%,烟煤和无烟煤的水份一般在5%以下。

二、灰份
煤的灰份是指除去水份、挥发份外,一切可燃物质在一定温度(800度上下)完全燃烧后的残留物。

主要由SiO2、Al2O3、Fe2O3、CaO、MgO等组成。

灰分高的煤发热值低,灰份越少越好,一般要求在20%以下。

灰份的组成决定了煤的灰熔点。

三、挥发份
挥发份是实验室干燥的煤在隔绝空气条件下,加热至850度时挥发出来的物质,其中包括氢气、甲烷、重碳氢化合物以及焦油、蒸汽等,波动范围5%~40%。

其中甲烷、重碳氢化合物的发热值极高,对发生炉煤气热值影响较显著。

四、固定碳
煤中的固定碳是除去灰份。

挥发份、水份以外的其余可燃物质。

一般固定碳含量高的煤,其发热值较大。

蒸发1Kg水消耗850KCa热量,水煤浆水份约40%,燃烧室温度1150度。

煤的工业分析方法

煤的工业分析方法

煤的工业分析方法煤是一种重要的化石燃料资源,在工业生产和能源消耗中起着重要的作用。

对于煤的工业分析方法,主要包括煤的品位分析、煤的物理分析、煤的化学分析和煤的热值分析等方面。

下面将对这些方法进行详细说明:1. 煤的品位分析:煤的品位是指煤中含有的固体有用成分的含量,通常以煤的灰分、挥发分、固定碳和硫分等指标来评估。

品位分析是煤炭质量控制和煤炭采购的重要依据。

一般常用的测试方法有灰分、挥发分、固定碳和硫分的测定方法。

灰分的测定采用高温加热煤样,使有机质燃尽后,残留物被称为灰分,重量差即为灰分含量;挥发分的测定通常采用在一定条件下加热煤样,通过测定挥发分的质量减少来确定挥发分含量;固定碳的测定则是指在高温条件下煤中的有机质燃尽所剩下的的残留物质,通过固定碳含量可以评估煤的燃烧性能;而硫分的测定则是通过化学方法测定煤中的硫的含量。

2. 煤的物理分析:煤的物理分析是指对煤的物理性质和结构进行研究的方法,包括煤的外观、密度、孔隙结构、煤的热重分析和煤层中气体含量的测定等。

常用的方法有煤样取样、外观观察、煤的堆积密度、孔隙度、细度以及煤中水分的测定等。

煤样取样是为了获取代表性的样品,通常采用分析中心取样器进行取样。

外观观察主要是通过目视对煤样的颜色、结构、粒度等进行观察和分析。

煤的堆积密度是指煤样在一定的条件下所占据的空间,该值与煤的堆积性能、煤的粒度等密切相关。

孔隙度则是指煤中的孔隙空间的比例,孔隙度的大小与煤的透气性和可燃性有关。

细度是指煤的颗粒大小,通常通过筛分或者显微镜下的观察来进行测定。

而煤中的水分则是通过烘干煤样中水分的失重来测定。

3. 煤的化学分析:煤的化学分析是指对煤的元素组成和化学性质进行研究的方法,主要包括元素含量的测定和煤的组成分析等。

煤的元素含量的测定通常采用仪器分析方法,如元素分析仪、原子吸收光谱仪等。

通过测定煤中的元素含量,可以评估煤炭的质量和燃烧性能。

煤的组成分析则是指对煤中的有机质和无机质的成分进行分析。

煤的工业分析方法

煤的工业分析方法

煤的工业分析方法首先,物理性能分析是对煤的物理特性进行测试和分析。

其中包括颗粒度分析、密度分析、孔隙结构分析等。

颗粒度分析是通过筛分方法对煤样进行颗粒度分布测试,可以了解煤的颗粒大小及分布情况,为煤的选煤和煤的燃烧提供依据。

密度分析是通过密度计对煤的密度进行测试,可以了解煤的密度情况,为煤的选煤和煤的运输提供依据。

孔隙结构分析是通过氮气吸附法对煤的孔隙结构进行测试,可以了解煤的孔隙结构及孔隙度情况,为煤的气体吸附和储层特征分析提供依据。

其次,化学成分分析是对煤的化学成分进行测试和分析。

其中包括元素分析、有机组分分析、硫分析等。

元素分析是通过元素分析仪对煤的主要元素含量进行测试,可以了解煤的主要元素含量情况,为煤的利用和煤的资源评价提供依据。

有机组分分析是通过有机元素分析仪对煤的有机组分进行测试,可以了解煤的有机组分情况,为煤的燃烧和煤的转化提供依据。

硫分析是通过硫分析仪对煤的硫含量进行测试,可以了解煤的硫含量情况,为煤的燃烧和煤的环保利用提供依据。

最后,热学性能分析是对煤的热学特性进行测试和分析。

其中包括发热量分析、燃烧特性分析、热解特性分析等。

发热量分析是通过热量计对煤的发热量进行测试,可以了解煤的燃烧热值情况,为煤的燃烧利用提供依据。

燃烧特性分析是通过热重分析仪对煤的燃烧特性进行测试,可以了解煤的燃烧特性,为煤的燃烧过程控制提供依据。

热解特性分析是通过热解仪对煤的热解特性进行测试,可以了解煤的热解特性,为煤的热解利用提供依据。

总之,煤的工业分析方法对于煤炭资源的开发利用具有重要意义,通过对煤的物理性能、化学成分和热学性能进行分析,可以全面了解煤的特性,为煤的利用和煤的资源评价提供科学依据。

煤的工业分析方法

煤的工业分析方法

煤的工业分析方法
煤的工业分析方法主要包括物理分析方法和化学分析方法。

物理分析方法主要包括煤的外观观察、煤的密度测定、煤的颗粒度分析、煤的热值测定、煤的水分含量测定等。

外观观察主要通过肉眼观察煤的颜色、质地、光泽等来判断煤的质量和品种。

煤的密度测定可以反映煤的密度大小,进而判断煤的质量。

煤的颗粒度分析可以测定煤的粒径大小和分布情况,对煤的利用和加工具有指导意义。

煤的热值测定可以确定煤的能量含量,是煤的重要物理性质之一。

煤的水分含量测定可以确定煤中的水分含量,影响煤的燃烧性能和利用价值。

化学分析方法主要包括煤的元素分析、煤的挥发分析、煤的固定碳分析、煤的灰分分析、煤的全硫分析、煤的有机硫分析等。

煤的元素分析可以测定煤中各种元素的含量,对煤的性质和利用具有重要意义。

煤的挥发分析可以测定煤在一定温度范围内挥发出的气体和液体含量,可以判断煤的燃烧性能。

煤的固定碳分析可以确定煤中的固定碳含量,是煤的重要组分之一。

煤的灰分分析可以测定煤中的无机灰分含量,对煤的利用和环境影响具有指导意义。

煤的全硫分析可以测定煤中的总硫含量,对煤的燃烧性能和环境影响有一定程度的影响。

煤的有机硫分析可以测定煤中有机硫的含量,对煤的燃烧性能和环境影响具有重要作用。

通过以上的物理分析方法和化学分析方法,可以全面了解煤的成分、结构、性质和利用价值,为煤矿开采、煤炭加工和燃煤利用提供科学依据。

煤的工业分析方法

煤的工业分析方法

煤的工业分析方法煤是一种重要的化石燃料,广泛应用于能源、冶金、化工、建筑等各个行业。

为了充分利用煤的价值,需要对煤进行工业分析,根据不同的分析方法得到煤的各项指标,以满足不同行业的需求。

下面将介绍一些常用的煤的工业分析方法。

1.煤的元素分析方法煤的元素分析是煤质评价的重要内容之一、常用的元素分析方法有:碳氢氮分析法、硫分析法、氧分析法等。

其中,碳氢氮分析法是对煤中的碳、氢、氧、氮四个元素进行定量分析的方法。

这种方法主要应用于对煤的燃烧性能评价、碳排放估算等方面。

2.煤的灰分分析方法煤的灰分是煤中无机杂质的含量,对煤的燃烧特性和可燃性能有一定影响。

常用的灰分分析方法有:干灼燃烧法、干孔隙燃烧法、湿孔隙燃烧法等。

其中,干灼燃烧法是将煤样加热至高温,完全燃烧除去有机物质后得到的残渣量。

这种方法适用于对煤的灰分进行定量分析。

3.煤的挥发分分析方法煤的挥发分是指在煤样加热过程中挥发出的可燃性气体和液体的量。

常用的挥发分分析方法有:烘干法、热解法、干燥无氧法等。

其中,烘干法是将煤样置于恒定温度下进行烘干,根据煤样的质量损失得到挥发分的含量。

这种方法适用于对煤的挥发分含量进行定量分析。

4.煤的发热量分析方法煤的发热量是指煤燃烧时所释放出的热能。

常用的发热量分析方法有:热值计算法、热弧法、热效应气体分析法等。

其中,热值计算法是通过准确测定煤中碳、氢、氧、硫等元素的含量,结合热值计算公式来求得煤的发热量。

这种方法适用于对煤的发热量进行定量分析。

5.煤的低温等温吸附分析方法煤的低温等温吸附是指煤在低温下对特定气体的吸附作用。

常用的低温等温吸附分析方法有:比表面积测定法、孔容测定法等。

其中,比表面积测定法是通过对煤样进行气体吸附实验,根据气体吸附量计算煤的比表面积。

这种方法适用于对煤的孔隙结构和孔隙分布进行定量分析。

总之,煤的工业分析方法有很多种,不同的分析方法适用于煤的不同特性和应用需求。

通过对煤进行科学合理的工业分析,可以为不同行业提供宝贵的参考数据,促进煤的高效利用和降低对环境的影响。

煤的工业分析

煤的工业分析

煤的⼯业分析煤的⼯业分析⼀、⽔分的测定(烟煤和⽆烟煤)1、煤中⽔分以什么形态存在?答:从⽔的不同结合状态来看,煤中⽔分存在形态⼀为游离⽔,⼀为化合⽔。

游离⽔是以吸附、附着等机械⽅式同煤结合。

化合⽔是以化合⽅式同煤中的矿物质结合,也叫结晶⽔,例好⽣⽯膏(Ca SO4.2H2O)、⾼岭⼟(Al2O3.2SiO2.2H2O)中的结晶⽔。

在煤的⼯业分析中,只测定游离⽔⽽不测定结晶⽔,因游离⽔在105~110℃的温度下经过1~2⼩时后即可全部除掉,⽽结晶⽔通常要在200℃以上才能分解析出。

2、什么叫最⾼内在⽔分,有什么测定意义?答:吸附和凝聚在煤的⽑细孔中的饱和⽔分叫最⾼内在⽔分。

由于煤的孔隙度同煤的煤化程度不⼀定规律,所以最⾼内在⽔分的⼤⼩在相当程度上能表征煤的煤化程度;尤其是能更好地区分低煤化度煤。

如年轻褐煤最⾼内在⽔分多在25%以上,少数的如云南弥勒褐煤的最⾼内在⽔分达31.8%。

最⾼内在⽔分含量⼩于2%的烟煤,⼏乎都是强粘结性和⾼发热量的肥煤和主焦煤。

⽆烟煤的最⾼内在⽔分⽐烟煤的⼜有所增⾼,这是⽆烟煤的内部孔隙⼜增⼤的缘故。

3、煤的全⽔分和应⽤煤⽔分有没有区别?答:煤的全⽔分的代表符号是WQ,应⽤煤⽔分的代表符号是W Y,两者的数值和含义有时相同,只是应⽤煤⽔分指的是已准备好并即将使⽤的煤(如在送⼊锅炉燃烧之前或送⼊焦炉炼焦之前的煤)的全部⽔分。

全⽔分通常是指煤从矿井或煤层中刚开采出来时的全部⽔分,或商品煤即将发运时的全部⽔分。

4、分析煤样⽔分(W f)和内⽔分(WNZ)的测定有何异同?答:测定这两种⽔分的煤样都是空⽓⼲燥煤样,测定的温度相同(105~110℃),不同的是煤样粒度、重量和⼲燥时间。

测定分析煤样⽔分的试样粒度在0.2mm以下,试样量为1g,烟煤的⼲燥时间为1h,⽆烟煤为1~1.5h;测定内在⽔分的试样粒度⼩于3mm,试样量为10~15g,烟煤⼲燥时间为2h,⽆烟煤为2.5~3h。

5、测定全⽔分之前要注意哪些事项?答:要注意以下事项:1)检查装煤样的铁筒或玻璃瓶的密封是否良好。

煤的工业分析国标

煤的工业分析国标
▲避免固硫作用
CaO 和 SO3 “不见面”
3.2.4 灰分测定影响因素
1) 黄铁矿的氧化程度 2)方解石的分解程度 3)灰中固定的硫量的多少 ▪ 为测得有可比性的灰分值,就必须: ——使黄铁矿氧化完全; ——方解石分解完全; ——SO3和CaO间的反应降低到最低程度。
3.2.5一般采取的措施
慢速灰化 ——使煤中硫化物在碳酸盐分解前完全氧化并 排出(避免硫酸钙的生成)
▲ “高温炉法”:缓慢推样,防止爆燃
(1) 快灰仪法
灰皿——新灰皿灼烧至恒重,保存在干燥器中; 升温——快灰仪升温至(815±10) ºC 调速——传动带调节到17mm/min左右或其他合适
的速度 (需做与缓慢灰化法的不同煤种 的对比试验,确定传送带速度); 称样——分析煤样(0.5 ±0.01)g ,称准0.0002g , 摊平; 灰化——装煤样的灰皿放在传送带上; 冷却——取出灰皿,在空气中冷却5min左右,移 入干燥器中冷却至室温(约20min); 检查性灼烧——不需要
▪ 外来矿物质:指煤炭开采和加工处理中混入的 矿物质。
3.2.3灰化过程中发生的主要反应
1 黏土和页岩矿物失去结晶水(500℃~600 ℃)
Al2O3.2SiO2.2H2O
Al2O3+ 2SiO2 +2H2O
CaSO4. 2H2O CaSO4+ 2H2O
2 碳酸钙分解
CaCO3
CaO +CO2
4 挥发分的测定
4.1 煤的挥发分的定义
煤在规定条件下(900℃),隔绝空气加热,并进 行水分校正后的挥发物质产率。
4.2 挥发分的测定意义
▲挥发分产率与煤的变质程度有密切的关系,故被 采用作为煤炭分类的第一指标;
煤种
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤的工业分析
一、水分的测定(烟煤和无烟煤)
1、煤中水分以什么形态存在?
答:从水的不同结合状态来看,煤中水分存在形态一为游离水,一为化合水。

游离水是以吸附、附着等机械方式同煤结合。

化合水是以化合方式同煤中的
矿物质结合,也叫结晶水,例好生石膏(C
a SO
4
.2H
2
O)、高岭土(Al
2
O
3
.2SiO
2
.2H
2
O)
中的结晶水。

在煤的工业分析中,只测定游离水而不测定结晶水,因游离水在105~110℃的温度下经过1~2小时后即可全部除掉,而结晶水通常要在200℃以上才能分解析出。

2、什么叫最高内在水分,有什么测定意义?
答:吸附和凝聚在煤的毛细孔中的饱和水分叫最高内在水分。

由于煤的孔隙度同煤的煤化程度不一定规律,所以最高内在水分的大小在相当程度上能表征煤的煤化程度;尤其是能更好地区分低煤化度煤。

如年轻褐煤最高内在水分多在25%以上,少数的如云南弥勒褐煤的最高内在水分达31.8%。

最高内在水分含量小于2%的烟煤,几乎都是强粘结性和高发热量的肥煤和主焦煤。

无烟煤的最高内在水分比烟煤的又有所增高,这是无烟煤的内部孔隙又增大的缘故。

3、煤的全水分和应用煤水分有没有区别?
答:煤的全水分的代表符号是W
Q
,应用煤水分的代表符号是W Y,两者的数值和含义有时相同,只是应用煤水分指的是已准备好并即将使用的煤(如在送入锅炉燃烧之前或送入焦炉炼焦之前的煤)的全部水分。

全水分通常是指煤从矿井或煤层中刚开采出来时的全部水分,或商品煤即将发运时的全部水分。

4、分析煤样水分(W f)和内水分(W
NZ
)的测定有何异同?
答:测定这两种水分的煤样都是空气干燥煤样,测定的温度相同(105~110℃),不同的是煤样粒度、重量和干燥时间。

测定分析煤样水分的试样粒度在0.2mm以下,试样量为1g,烟煤的干燥时间为1h,无烟煤为1~1.5h;测定内在水分的试样粒度小于3mm,试样量为10~15g,烟煤干燥时间为2h,无烟煤为2.5~3h。

5、测定全水分之前要注意哪些事项?
答:要注意以下事项:
1)检查装煤样的铁筒或玻璃瓶的密封是否良好。

2)用干净的软布将铁筒或玻璃瓶表面擦拭干净,用精密度为0.1 克的工业天平称重,并与标签上所注明的重量对照,如果重量减少,这减少之量标作水分
损失量,该损失量占煤样净重(标签上所注明的重量减去容器重)的百分数(W 1)在计算全水分时应加进去。

6、最在粒度不超过3mm 的煤样全水分测定结果如何计算?
答:当煤样在运输中损失的水分(W 1)小于1%时,测定结果可按下式计算:
W Q =W 1 + G 1 (100 — W 1)
G 2
式中 W Q ———煤样的全水分,%;
W 1 ———煤样在运输中损失的水分,%; G 1 ———煤样干燥后的失重,g ; G ————煤样的重量,g 。

当W 1大于1%时,表明试样在运输过程中可能受到意外损失,因此计算结果时,不以W 1作为水分损失来校正全水分值,而直接算出100×G 1/ G 作为化验室收到煤样的水分。

报出结果时,应将煤样容器的标签和密封情况一并报告。

7、怎样计算最大粒度为3~13mm 的试样全水分?
答:根据操作,计算分为三部,却运输途中的损失(W 1);化验室收到煤样后测定的外水分(W WZ );测定外在水分后,将煤样破碎到小于3mm 后测定的内在水分。

这三种水分都必须换算到以原始煤样为基准的百分数后才能相加,而得到全水结果。

计算公式如下:
1)外在水分的计算
W
WZ
式中 G 1———煤样干燥后的减重,g ;
G ———煤样重量,g ;
W 1———运输中的水分损失,%;
W /WZ ———补正后的以原始煤样为基准的外大水分,简称补正水分。

2
W WZ 式中 W NZ ———小于3mm 煤样的内在水分,%;
G 1———小于3mm 煤样干燥后的减重,g ; G ———小于3mm 煤样的重量,g 。

3)全水分的计算
W Q =W /WZ +W WZ ×100- W /WZ
100
当W
>1%时,全水分可按下式直接算出:
1
W Q=W/WZ+W WZ×100- W WZ
100
8、测定分析煤样水分(W t)和测定粒度小于3mm煤样的全水分方法有何异同?
答:测定的方法要点是相同的,如干燥温度,检查性干燥时间等,不同的有干燥时间、称样重量、称量精度等,具体见下表:
9、为什么测定煤中水分需要进行检查性干燥试验?应怎样取值?
答:测定煤中水分时,为了确保水分完全除去,需要进行检查性干燥试验。

当干燥两次重量之差小于规定值时,则认为水分已除尽。

在对此两次干燥重量结果时,要注意以下几点:
1)大于规定重量时说明水分未除尽,应继续干燥,直到小于规定的重量为止2)减重小于规定重量时说明水分已除尽,取最后一次重量作为干燥后的数据值。

3)若增重则以增重前一次重量作为干燥后的数值,因为增重说明煤样已经氧化,其测值已失去意义。

4)当水分在2%以下时,可不进行检查性干燥。

1、全水分煤样装入容器密封后,称重为600.2g,写于标签上的容器重400.0g,化验室收样后,称重,设有三种不同的情况;
1)收样后容器和试样共重仍为600.2g;
2)收样后容器和试样共重599.2g;
3)收样后容器和试样共重595.2
2、设装全水分煤样的容器标签上注明的重量为600.2g,化验室收样后称重为598.9g,已知容器重400g,将煤样一次破碎到3mm以下,测定其全水分.
3、化验室收到全水分煤样密封容器,标签上注明容器与煤样共重2293.4g,其中容器重300.0g。

收样后称量容器与煤样共重2288.0g,打开容器,从中取出部分煤样测外在水分,干燥前盘加试样共重702.4g,盘重200.0g,干燥后盘加试样共重629.5g.将测完外在水分的空气干燥煤样破碎到小于3mm,测内在水分,干燥前煤样加称量瓶共重38.80g,其中称量瓶重28.00g;干燥后,煤样加称量瓶共重38.50g,求煤样的全水分。

相关文档
最新文档