高中数学必修4平面向量知识点与典型例题总结(师)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学》必会基础题型——《平面向量》

【基本概念与公式】 【任何时候写向量时都要带箭头】

1.向量:既有大小又有方向的量。记作:AB 或a 。

2.向量的模:向量的大小(或长度),记作:||AB 或||a 。

3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。

4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】

5.平行向量(共线向量):方向相同或相反的向量。

6.相等向量:长度和方向都相同的向量。

7.相反向量:长度相等,方向相反的向量。AB BA =-。

8.三角形法则:

AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)

9.平行四边形法则:

以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。

10.共线定理://a b a b λ=⇔。当0λ>时,a b 与同向;当0λ<时,a b 与反向。

11.基底:任意不共线的两个向量称为一组基底。

12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+

13.数量积与夹角公式:||||cos a b a b θ⋅=⋅; cos ||||a b

a b θ⋅=⋅

14.平行与垂直:1221//a b a b x y x y λ⇔=⇔=;121200a b a b x x y y ⊥⇔⋅=⇔+= 题型1.基本概念判断正误:

(1)共线向量就是在同一条直线上的向量。

(2)若两个向量不相等,则它们的终点不可能是同一点。

(3)与已知向量共线的单位向量是唯一的。

(4)四边形ABCD 是平行四边形的条件是AB CD =。

(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。

(6)因为向量就是有向线段,所以数轴是向量。 (7)若a 与b 共线, b 与c 共线,则a 与c 共线。

(8)若ma mb =,则a b =。

(9)若ma na =,则m n =。

(10)若a 与b 不共线,则a 与b 都不是零向量。

(11)若||||a b a b ⋅=⋅,则//a b 。

(12)若||||a b a b +=-,则a b ⊥。

题型2.向量的加减运算

1.设a 表示“向东走8km ”, b 表示“向北走6km ”,则||a b += 。

2.化简()()AB MB BO BC OM ++++= 。

3.已知||5OA =,||3OB =,则||AB 的最大值和最小值分别为 、 。

4.已知AC AB AD 为与的和向量,且,AC a BD b ==,则AB = ,AD = 。

5.已知点C 在线段AB 上,且35

AC AB =

,则AC = BC ,AB = BC 。 题型3.向量的数乘运算

1.计算:(1)3()2()a b a b +-+= (2)2(253)3(232)a b c a b c +---+-=

2.已知(1,4),(3,8)a b =-=-,则132

a b -= 。 题型4.作图法球向量的和

已知向量,a b ,如下图,请做出向量132a b +和322

a b -。 a

b 题型5.根据图形由已知向量求未知向量

1.已知在ABC ∆中,D 是BC 的中点,请用向量AB AC ,

表示AD 。 2.在平行四边形ABCD 中,已知,AC a BD b ==,求AB AD 和。

题型6.向量的坐标运算

1.已知(4,5)AB =,(2,3)A ,则点B 的坐标是 。

2.已知(3,5)PQ =--,(3,7)P ,则点Q 的坐标是 。

3.若物体受三个力1(1,2)F =,2(2,3)F =-,3(1,4)F =--,则合力的坐标为 。

4.已知(3,4)a =-,(5,2)b =,求a b +,a b -,32a b -。

5.已知(1,2),(3,2)A B ,向量(2,32)a x x y =+--与AB 相等,求,x y 的值。

6.已知(2,3)AB =,(,)BC m n =,(1,4)CD =-,则DA = 。

7.已知O 是坐标原点,(2,1),(4,8)A B --,且30AB BC +=,求OC 的坐标。

题型7.判断两个向量能否作为一组基底

1.已知12,e e 是平面内的一组基底,判断下列每组向量是否能构成一组基底:

A.1212e e e e +-和

B.1221326e e e e --和4

C.122133e e e e +-和

D.221e e e -和

2.已知(3,4)a =,能与a 构成基底的是( ) A.34(,)55 B.43(,)55 C.34(,)55-- D.4(1,)3

-- 题型8.结合三角函数求向量坐标

1.已知O 是坐标原点,点A 在第二象限,||2OA =,150xOA ∠=,求OA 的坐标。

2.已知O 是原点,点A 在第一象限,||43OA =60xOA ∠=,求OA 的坐标。

题型9.求数量积

1.已知||3,||4a b ==,且a 与b 的夹角为60,求(1)a b ⋅,(2)()a a b ⋅+,

(3)1()2

a b b -⋅,(4)(2)(3)a b a b -⋅+。

2.已知(2,6),(8,10)a b =-=-,求(1)||,||a b ,(2)a b ⋅,(3)(2)a a b ⋅+,

(4)(2)(3)a b a b -⋅+。

题型10.求向量的夹角

1.已知||8,||3a b ==,12a b ⋅=,求a 与b 的夹角。

2.已知(3,1),(23,2)a b ==-,求a 与b 的夹角。

相关文档
最新文档