半导体材料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体
维基百科,自由的百科全书
跳转到:导航, 搜索
汉漢▼
显示↓
三种导电性不同的材料比较,金属的价带与传导带之间没有距离,因此电子(红色实心圆圈)可以自由移动。绝缘体的能隙宽度最大,电子难以从价带跃迁至传导带。半导体的能隙在两者之间,电子较容易跃迁至传导带中。
半导体系指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如电脑、移动电话或是数位录放音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。
材料的导电性是由“传导带”(conduction band)中含有的电子数量决定。当电子从“价带”(valence band)获得能量而跳跃至“导电带”时,电子就可以在带间任意移动而导电。一般常见的金属材料其导电带与价电带之间的“能隙”非常小,在室温下电子很容易获得能量而跳跃至导电带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导电带,所以无法导电。
一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。
半导体通过电子传导或电洞传导的方式传输电流。电子传导的方式与铜线中电流的流动类似,即在电场作用下高度离子化(ionization)的原子将多余的电子向着负离子化程度比较低的方向传递。电洞导电则是指在正离子化的材料中,原子核外由于电子缺失形成的“空穴”,在电场作用下,空穴被少数的电子补入而造成空穴移动所形成的电流(一般称为正电流)。
材料中载子(carrier)的数量对半导体的导电特性极为重要。这可以通过在半导体中有选择的加入其他“杂质”(三、五族元素)来控制。如果我们在纯硅中掺杂(doping)少许的砷或磷(最外层有五个电子),就会多出一个自由电子,这样就形成N型半导体;如果我们
在纯硅中掺入少许的硼(最外层有三个电子),就反而少了一个电子,而形成一个电洞(hole),这样就形成P型半导体少了一个带负电荷的电子,可视为多了一个正电荷)。
目录
[隐藏]
•1概观
•2半导体的能带结构
o 2.1能量-动量色散
•3载子的产生与复合
•4半导体的掺杂
o 4.1掺杂物
o 4.2载子浓度
o 4.3掺杂对半导体能带结构的影响
•5半导体材料的制造
•6应用
•7延伸阅读
o7.1材料
o7.2物理学
o7.3工业
•8参考资料
•9相关条目
•10外部链接
o10.1半导体行业网站
[编辑]概观
半导体和绝缘体之间的差异主要来自两者的能带(band)宽度不同
半导体和绝缘体之间的差异主要来自两者的能带(band)宽度不同。绝缘体的能带比半导体宽,意即绝缘体价带中的载子必须获得比在半导体中更高的能量才能跳过能带,进入传导带中。室温下的半导体导电性有如绝缘体,只有极少数的载子具有足够的能量进入传导带。因此,对于一个在相同电场下的纯质半导体(intrinsic semiconductor)和绝缘体会有类似的电特性,不过半导体的能带宽度小于绝缘体也意味着半导体的导电性更容易受到控制而改变。
纯质半导体的电气特性可以借由植入杂质的过程而永久改变,这个过程通常称为“掺杂”(doping)。依照掺杂所使用的杂质不同,掺杂后的半导体原子周围可能会多出一个电子或一个电洞,而让半导体材料的导电特性变得与原本不同。如果掺杂进入半导体的杂质浓度够高,半导体也可能会表现出如同金属导体般的电性。在掺杂了不同极性杂质的半导体接面处会有一个内建电场(built-in electric field),内建电场和许多半导体元件的操作原理息息相关。
除了借由掺杂的过程永久改变电性外,半导体亦可因为施加于其上的电场改变而动态地变化。半导体材料也因为这样的特性,很适合用来作为电路元件,例如晶体管。晶体管属于主动式的(有源)半导体元件(active semiconductor devices),当主动元件和被动式的(无
源)半导体元件(passive semiconductor devices)如电阻器(resistor )或是电容器(capacitor)组合起来时,可以用来设计各式各样的集成电路产品,例如微处理器。
当电子从传导带掉回价带时,减少的能量可能会以光的形式释放出来。这种过程是制造发光二极管(light-emitting diode, LED)以及半导体激光(semiconductor laser)的基础,在商业应用上都有举足轻重的地位。而相反地,半导体也可以吸收光子,透过光电效应而激发出在价带的电子,产生电讯号。这即是光探测器(photodetector)的来源,在光纤通讯(fiber-optic communications)或是太阳能电池(solar cell)的领域是最重要的元件。
半导体有可能是单一元素组成,例如硅。也可以是两种或是多种元素的化合物(compound),常见的化合物半导体有砷化镓(gallium arsenide, GaAs)或是磷化铝铟镓(aluminium gallium indium phosphide, AlGaInP)等。合金(alloy)也是半导体材料的来源之一,如硅锗(silicon-germanium, SiGe)或是砷化镓铝(aluminium gallium arsenide, AlGaAs)等。
Diamantstruktur Diamantstruktur Zinkblendestruktur (Elementarzelle) [编辑]半导体的能带结构
更多资料:能带结构
半导体中的电子所具有的能量被限制在基态(ground state)与自由电子(free electron)之间的几个“能带”(energy band)里,也就是电子所具备的能量必定为不连续的能阶。当电子在基态时,相当于此电子被束缚在原子核附近;而相反地,如果电子具备了自由电子所需要的能量,那么就能完全离开此材料。每个能带都有数个相对应的量子态(quantum state),而这些量子态中,能量较低的都已经被电子所填满。这些已经被电子填满的量子态中,能量最高的就被称为价带(valence band)。半导体和绝缘体在正常情况下,几乎所有电子都在价带或是其下的量子态里,因此没有自由电子可供导电。
半导体和绝缘体之间的差异在于两者之间能隙(energy bandgap)宽度不同,亦即电子欲从价带跳入传导带(conduction band)时所必须获得的最低能量不一样。通常能隙宽度小于3电子伏特(eV)者为半导体,以上为绝缘体。
在绝对零度时,固体材料中的所有电子都在价带中,而传导带为完全空置。当温度开始上升,高于绝对零度时,有些电子可能会获得能量而进入传导带中。传导带是所有能够让电子在获得外加电场的能量后,移动穿过晶体、形成电流的最低能带,所以传导带的位置就紧邻价带之上,而传导带和价带之间的差距即是能隙。通常对半导体而言,能隙的大小约为1电子伏特上下。在传导带中,和电流行成相关的电子通常称为自由电子。又根据包利不相容原理