人教版初中数学实数解析

合集下载

人教版七年级数学下册《实数大小比较》150题及解析

人教版七年级数学下册《实数大小比较》150题及解析

初一数学下册知识点《实数大小比较》经典例题及解析题号一二三四总分得分一、选择题(本大题共68小题,共204.0分)1.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()A. 0或B. 0或2C. 1或D. 或-【答案】A【解析】解:当1≤x<2时,x2=1,解得x1=,x2=-(舍去);当0≤x<1时,x2=0,解得x=0;当-1≤x<0时,x2=-1,方程没有实数解;当-2≤x<-1时,x2=-2,方程没有实数解;所以方程[x]=x2的解为0或.故选:A.根据新定义和函数图象讨论:当1≤x<2时,则x2=1;当0≤x<1时,则x2=0;当-1≤x <0时,则x2=-1;当-2≤x<-1时,则x2=-2;然后分别解关于x的一元二次方程即可.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了实数的大小比较.2.四个实数0、、-3.14、2中,最小的数是()A. 0B.C. -3.14D. 2【答案】C【解析】解:根据实数比较大小的方法,可得-3.14<0<<2,所以最小的数是-3.14.故选:C.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3.下列四个数:-3,-,-π,-1,其中最小的数是()A. -πB. -3C. -1D. -【答案】A【解析】解:∵-1>->-3>-π,∴最小的数为-π,故选:A.将四个数从大到小排列,即可判断.本题考查实数的大小比较,记住任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.4.在实数-,-2,0,中,最小的实数是()A. -2B. 0C. -D.【答案】A【解析】解:实数-,-2,0,中,最小的实数是-2,故选:A.根据负数的绝对值越大,这个数越小,然后根据正数大于0,负数小于0进行大小比较即可.此题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.5.已知,,,那么a,b,c的大小关系是()A. a<b<cB. b<a<cC. c<b<aD. c<a<b【答案】B【解析】解:∵a-b=-1-(2-)=-(1+)≈2.449-2.414>0,∴a>b;∵a-c=-1-(-2)=+1-≈2.414-2.449<0,∴a<c;于是b<a<c,故选B.利用作差法比较a和b、b和c、a和c的大小,再比较a、b、c三者的大小.此题主要考查了实数的大小的比较,其中比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.6.在实数0,-2,,3中,最大的是()A. 0B. -2C.D. 3【答案】D【解析】【分析】本题考查了实数的大小比较,要注意无理数的大小范围.根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<<3,实数0,-2,,3中,最大的是3.故选D.7.在实数-3,-1,0,1中,最小的数是()A. -3B. -1C. 0D. 1【答案】A【解析】解:∵-3<-1<0<1,∴最小的是-3.故选:A.根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数.此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.8.在实数-3,2,0,-4中,最大的数是()A. -3B. 2C. 0D. -4【答案】B【解析】【分析】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:∵-4<-3<0<2,∴四个实数中,最大的实数是2.故选B.9.在实数﹣2,2,0,﹣1中,最小的数是( )A. ﹣2B. 2C. 0D. ﹣1【答案】A【解析】【分析】此题考查了有理数大小比较,熟练掌握两个负数比较大小的方法是解本题的关键.找出实数中最小的数即可.【解答】解:在实数-2,2,0,-1中,最小的数是-2,故选:A.10.下列实数中,最小的数是()A. B. 0 C. 1 D.【答案】A【解析】解:根据题意得:-<0<1<,则最小的数是-.故选:A.将各项数字按照从小到大顺序排列,找出最小的数即可.此题考查了实数大小比较,正确排列出数字是解本题的关键.11.四个实数-2,0,-,1中,最大的实数是()A. -2B. 0C. -D. 1【答案】D【解析】解:∵-2<-<0<1,∴四个实数中,最大的实数是1.故选:D.根据正数大于0,0大于负数,正数大于负数,比较即可.本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.12.如图,数轴上A、B两点分别对应实数a,b,则下列结论正确的是()A. a<bB. a=bC. a>bD. ab>0【答案】C【解析】解:∵b在原点左侧,a在原点右侧,∴b<0,a>0,∴a>b,故A、B错误,C正确;∵a、b异号,∴ab<0,故D错误.故选:C.根据各点在数轴上的位置判断出a、b的符号,再比较出其大小即可.本题考查的是实数大小比较及数轴的特点,熟知数轴上各数的特点是解答此题的关键.13.下面实数比较大小正确的是()A. 3>7B.C. 0<-2D. 22<3【答案】B【解析】解:A、3<7,故本选项错误;B、∵≈1.7,≈1.4,∴>,故本选项正确;C、0>-2,故本选项错误;D、22>3,故本选项错误.故选B.根据实数比较大小的法则对各选项进行逐一分析即可.本题考查的是实数的大小比较,熟知实数比较大小的法则是解答此题的关键.14.下列四个实数中,比-1小的数是()A. -2B. 0C. 1D. 2【答案】A【解析】解:∵-1<0,1>0,2>0,∴可排除B、C、D,∵-2<0,|-2|>|-1|,∴-2<-1.故选:A.根据实数比较大小的法则进行比较即可.本题考查的是实数比较大小的法则,即任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.15.在,0,-1,这四个实数中,最大的是()A. B. 0 C. -1 D.【答案】D【解析】解:∵正实数都大于0,负实数都小于0,正实数大于一切负实数,0<<1,1<<2,∴-1<0<<,故选D.利用任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可.本题主要考查了比较实数的大小,掌握任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,是解答此题的关键.16.下列各数中最小的是()A. 0B. -3C. -D. 1【答案】B【解析】解:因为在A、B、C、D四个选项中只有B、C为负数,故应从B、C中选择;又因为|-3|>|-|=2,所以-3<-,故选B.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可解答.此题主要考查了实数的大小的比较,实数比较大小的方法:(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数绝对值大的反而小.17.在0,,-1,这四个实数中,最大的数是()A. -1B. 0C.D.【答案】D【解析】解:∵正数大于0、0大于负数,∴这4个数中较大为是和,而>,∴是4个数中最大的,故选D.根据正数大于0、0大于负数解答可得.本题主要考查实数的大小比较,解题的关键是熟练掌握正数大于0、0大于负数.18.在有理数-1,0,3,中,最大的数是()A. -1B. 0C. 3D.【答案】C【解析】解:在实数-1,0,3,中,最大的数是3,故选:C.根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行比较即可.此题主要考查了实数的比较大小,关键是掌握任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.19.在0,2,-3,-这四个数中,最小的数是()A. 0B. 2C. -3D. -【答案】C【解析】解:根据实数比较大小的方法,可得-3<-<0<2,所以最小的数是-3.故选:C.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.20.已知:,,,则a,b,c的大小关系是A. B. C. D.【答案】A【解析】【分析】比较根指数不同的根式的大小,可以首先把它们化为根指数相同的根式,然后只需比较被开方数的大小.先把它们化为根指数相同的根式,再比较被开方数的大小即可解决问题.【解答】解:根据二次根式的性质,化简a=1.4,1.4=<,即a<b.又∵=,=,∴a<b<c.故选A.21.实数a,b在数轴上的对应点的位置如图所示,把-a,-b,0按照从小到大的顺序排列,正确的是()A. -a<0<-bB. 0<-a<-bC. -b<0<-aD. 0<-b<-a【答案】C【解析】解:∵从数轴可知:a<0<b,∴-a>-b,-b<0,-a>0,∴-b<0<-a,故选:C.根据数轴得出a<0<b,求出-a>-b,-b<0,-a>0,即可得出答案.本题考查了数轴,有理数的大小比较的应用,能根据数轴得出-b<0<-a,是解此题的关键.22.已a,b为实数,ab=1,M=,N=,则M,N的大小关系是()A. M>NB. M=NC. M<ND. 无法确定【答案】B【解析】解:M==,∵ab=1,∴==1.N==,∵ab=1,∴==1,∴M=N.故选B.23.比较实数:2、、的大小,正确的是()A. <2<B. 2<<C. <<2D. 2<<【答案】A【解析】解:∵2=<,∴2<,∵<=2,∴<2,∴<2<.故选:A.应用放缩法,判断出2、、的大小关系即可.此题主要考查了实数大小比较的方法,要熟练掌握,注意放缩法的应用.24.四个实数-2,0,-,-1中,最大的实数是()A. -2B. 0C.D. -1【答案】B【解析】解:∵-2,-,-1均为负数,负数小于零,∴最大的实数是0,故选:B.根据负实数都小于0即可得出答案.本题主要考查实数的大小比较,解题的关键是熟练掌握正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.25.已知a=,b=,c=,则下列大小关系正确的是()A. a>b>cB. c>b>aC. b>a>cD. a>c>b【答案】A【解析】解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选:A.将a,b,c变形后,根据分母大的反而小比较大小即可.此题考查了实数比较大小,将a,b,c进行适当的变形是解本题的关键.26.实数a,b在数轴上对应的点如图所示,则a,b,-a,-b这四个数中最小的数是()A. aB. bC. -aD. -b【答案】D【解析】解:如图,-b<a<-a<b,故最小的数是-b,故选:D.在数轴上把-a,-b表示出来,再根据数轴上右边的数大于左边的数,即可解答.本题考查了实数大小比较,解决本题的关键是熟记数轴上右边的数大于左边的数.27.在实数|-3|,-2,0,1中最大的数是()A. |-3|B. -2C. 0D. 1【答案】A【解析】解:|-3|=3,∴|-3|是最大的数,故选:A.根据实数的大小比较法则即可求出答案.本题考查实数的大小比较,解题的关键是熟练运用实数的大小的比较方法,本题属于基础题型.28.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A. aB. bC. cD. d【答案】A【解析】解:根据图示,可得3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a.故选:A.首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可.此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围.29.在实数0,-2,,2中,最大的是()A. 0B. -2C.D. 2【答案】C【解析】解:根据实数比较大小的方法,可得>2>0>-2,故实数0,-2,,2其中最大的数是.故选:C.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.30.下列各数中最大的数是()A. πB. 3C.D. -3【答案】A【解析】解:根据实数比较大小的方法,可得π>3>>-3.故选:A.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.31.如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是()A. aB. bC.D.【答案】D【解析】解:∵负数小于正数,∴<a<b<,在区间(0,1)上的实数的倒数比实数本身大.所以>b.故选D.由于负数小于正数,所以a,比b,小,在区间(0,1)上的实数的倒数比实数本身大.本题考查知识点为:负数小于正数,在区间(0,1)上的实数的倒数比实数本身大.32.比较2,,的大小,正确的是()A. B. C. D.【答案】A【解析】解:∵2=,∴<,∵=2,∴<2,∴<<,故选A.先把2写成与的形式,再按照实数大小比较的法则判断即可.此题考查了实数的大小比较法则,解题的关键是牢记法则,此题比较简单,易于掌握.33.如果m>0,n<0,m<|n|,那么m,n,-m,-n的大小关系是()A. -n>m>-m>nB. m>n>-m>-nC. -n>m>n>-mD. n>m>-n>-m 【答案】A【解析】解:根据正数大于一切负数,只需分别比较m和-n,n和-m.再根据绝对值的大小,得-n>m>-m>n.故选A.先确定m、n、-m、-n的符号,再根据正数大于0,负数小于0即可比较m,n,-m,-n 的大小关系.此题主要考查了实数的大小的比较,两个负数,绝对值大的反而小.34.在实数-,π,0,-3中,最小的实数是()A. -B. πC. 0D. -3【答案】D【解析】解:根据实数比较大小的方法,可得-3<-<0<π,∴最小的实数是-3.故选:D.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.35.下列各组数的大小关系正确的是()A. +0.3<-0.1B. 0<-|-7|C. -<-1.414D. ->-【答案】C【解析】解:A、+0.3>-0.1,故本选项不符合题意;B、0>-|-7|,故本选项不符合题意;C、∵1.4142=1.999396,∴-<-1.414,故本选项符合题意;D、-<-,故本选项不符合题意;故选:C.先根据实数的大小比较法则比较数的大小,再得出选项即可.本题考查了实数的大小比较法则、相反数和绝对值,能熟记实数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.36.在-3,0,,,这四个数中,最小的数是()A. -3B. 0C.D.【答案】D【解析】【分析】此题主要考查了实数比较大小,正确掌握比较方法是解题关键.直接利用负数比较大小的方法结合实数比较大小的方法分析得出答案.【解答】解:∵|-3|=3,|-|=>3,∴-3>-,∴>0>-3>-,故最小的数是:-.故选D.37.在实数-3、0、-、3中,最小的实数是()A. -3B. 0C. -D. 3【答案】A【解析】解:∵1<2<4,∴1<<2.∴-1>->-2.∵3>2,∴-3<-2.∴-3<-2<-<0<3.∴其中最小的实数是-3.故选:A.先估算出-的大小,然后再比较即可.本题主要考查的是比较实数的大小,估算出-的大小是解题的关键.38.下列各数中,最小的数是()A. -2B. 0C.D. -π【答案】D【解析】解:|-|=,则|-|>0>-2>-π,故最小的数是:-π.故选:D.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.39.在下列实数中,最小的是()A. -B. -C. 0D.【答案】A【解析】解:,∴这四个数中最小的是.故选:A.根据实数的大小比较的法则进行比较即可.本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.40.实数a,b在数轴上的对应点的位置如图所示.把-a,b,0按照从小到大的顺序排列,正确的是()A. -a<0<bB. 0<-a<bC. b<0<-aD. b<-a<0【答案】B【解析】解:由数轴可知,a<0<b,|a|<|b|,∴0<-a<b,故选:B.根据数轴确定a,b的符号和绝对值的大小,根据实数的大小比较法则解答.本题考查的是数轴的概念,实数的大小比较,根据数轴的概念正确判断实数的大小是解题的关键.41.下列整数中,最接近﹣π+1的数是()A. ﹣3B. 0C. ﹣1D. ﹣2【答案】D【解析】【分析】本题考查实数比大小,深刻理解实数中正数>0>负数,两个负数比较大小,绝对值越大的反而越小.据此先估算π的近似值,再通过法则比较即可得出结论.【解答】解:∵π≈3.14∴-π≈-3.14,∴﹣π+1=-2.14,∴最接近的数为-2.故选D.42.四个实数0、、-3.14、2中,最小的数是()A. 0B.C. -3.14D. 2【答案】C【解析】【分析】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵-3.14<0<<2,∴最小的数是-3.14,故选C.43.实数a,b,c在数轴上的对应点的位置如图所示,则下列结论正确的是( )A. B. C. D.【答案】C【解析】解:由数轴可知,-4<a<-3,-1<b<0,2<c<3,∴|c|<|a|,A错误;ac<0,B错误;c-b>0,C正确;b+c>0,D错误;故选:C.根据数轴确定a,b,c的范围,根据绝对值的性质,有理数的运算法则计算,判断即可.本题考查的是数轴,绝对值,有理数的乘法,加法和减法,掌握数轴的定义,绝对值的性质是解题的关键.44.下列各数中最小的数是()A. -πB. -3C. -D. 0【答案】A【解析】解:根据实数比较大小的方法,可得-π<-3<-<0,∴各数中最小的数是-π.故选:A.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.45.实数a在数轴上对应的点如图所示,则a,-a,1的大小关系正确的是()A. -a<a<1B. a<-a<1C. 1<-a<aD. a<1<-a【答案】D【解析】解:由数轴上a的位置可知a<0,|a|>1;设a=-2,则-a=2,∵-2<1<2∴a<1<-a,故选项A,B,C错误,选项D正确.故选D.本题首先运用数形结合的思想确定a的正负情况,然后根据相反数意义即可解题.此题主要考查了比较实数的大小,解答此题的关键是根据数轴上a的位置估算出a的值,设出符合条件的数值,再比较大小即可.46.实数中,最小的数是()A. B. -1 C. 0 D. 3【答案】A【解析】【分析】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得,∴中,最小的数是.故选A.47.下列各实数中最小的是()A. |-2|B. 0C. -D. -【答案】C【解析】解:根据实数比较大小的方法,可得-<-<0<|-2|,∴各实数中最小的是-.故选:C.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.48.实数a在数轴上对应的点如图所示,则a,-a,-1的大小关系正确的是()A. a<-a<-1B. -a<a<-1C. -1<-a<aD. a<-1<-a【答案】C【解析】【分析】此题主要考查了比较实数的大小,解答此题的关键是根据数轴上a的位置估算出a的值,设出符合条件的数值,再比较大小即可.本题首先运用数形结合的思想确定a的正负情况,然后根据相反数意义即可解题.【解答】解:由数轴上a的位置可知a>0,|a|<1;设a=0.5,则-a=-0.5,∵-1<-0.5<0.5∴-1<-a<a,故选项A,B,D错误,选项C正确.故选C.49.比实数小的数是()A. 2B. 3C. 4D. 5【答案】A【解析】解:∵4<6<9,∴2<<3,∴比实数小的数是2,故选:A.根据实数的估计解答即可.本题考查了实数的大小比较,解决本题的关键是熟记0大于负数,负数比较大小绝对值大的反而小.50.如图,若A是实数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A. a<1<-aB. a<-a<1C. 1<-a<aD. -a<a<1【答案】A【解析】【分析】本题考查了实数与数轴的对应关系,数轴上的数右边的数总是大于左边的数,根据数轴可以得到a<1<-a,据此即可确定哪个选项正确.【解答】解:∵实数a在数轴上原点的左边,∴a<0,但|a|>1,-a>1,则有a<1<-a.故选A.51.下列四个数:-3,-,-π,-,其中最大的数是()A. -3B. -C. -πD. -【答案】D【解析】解:∵|-3|=3,|-|=,|-π|=π,|-|=,<<3<π,∴最大的数是-.故选:D.根据负数相比较,绝对值大的反而小解答.本题考查了有理数比较大小,(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数,绝对值大的反而小.52.如图,点A是实数a在数轴上对应的点,则a,-a,1的大小关系表示正确的是()A. -a>1>aB. -a>a>1C. 1>-a>aD. 1>a>-a【答案】A【解析】解:如图所示:a<-1,则-a>1,故-a>1>a.故选:A.直接利用数轴得出a的取值范围,进而比较大小即可.此题主要考查了实数比较大小,正确利用数轴是解题关键.53.已知0<x<1,那么在x,,,x2中最小的数是( )A. xB. x2C.D.【答案】B【解析】【分析】本题考查了实数的大小比较,解本题的关键是特殊值法.根据0<x<1,可设x=,从而得出分别为,2,,,再找出最小值即可.【解答】解:∵0<x<1,∴设x=,∴分别为,2,,,∴的值最小.故选B.54.下列各数中,最小实数是()A. 0B.C.D.【答案】B【解析】【分析】此题主要考查了实数的大小的比较,实数比较大小的方法:(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数绝对值大的反而小.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可解答.【解答】解:因为在A、B、C、D四个选项中只有B、D选项为负数,故应从B、C选项中选择;又因为|-3|>|-1|,所以-3<-1,因此最小的实数是-3.故选B.55.实数、在数轴上的位置如图所示,则化简的结果为()A. B. C. D.【答案】B【解析】【分析】本题考查了实数与数轴,利用两数相加取绝对值较大加数的符号得出和的符号,小数减大数差为负数是解题关键;由a、b在数轴上的位置,得且,所以,,根据结果的正负性去掉绝对值符号化简即可得到答案.【解答】解:由a、b在数轴上的位置,得且,∴,,∴===故答案为B.56.数轴上实数b的对应点的位置如图所示.比较大小:b+1________0,应该是()A. <B. ≥C. ≤D. >.【答案】A【解析】【分析】本题主要考查的是实数与数轴、不等式的基本性质,熟练掌握相关知识是解题的关键.依据表示b的数在数轴上的位置可知:-2<b<-1,然后依据不等式的性质进行变形即可.【解答】解:由题图知-2<b<-1,所以-1<b+1<0,故选A.57.在0,2,(-3)0,-5这四个数中,最大的数是()A. 0B. 2C. (-3)0D. -5【答案】B【解析】【分析】先利用a0=1(a≠0)得(-3)0=1,再利用两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可得出结果.本题主要考查了有理数的大小比较和零指数幂,掌握有理数大小比较的法则和a0=1(a≠0)是解答本题的关键.【解答】解:在0,2,(-3)0=1,-5这四个数中,最大的数是2,故选B.58.在-1,-2,0,1这四个数中,最小的数是( )A. -1B. -2C. 0D. 1【答案】B【解析】【分析】本题考查了有理数大小比较有关知识,根据正数大于0,0大于负数,正数大于负数,同为负数时,绝对值大的负数反而小,比较即可.【解答】解:∵-2<-1<0<1,∴四个实数中,最小的实数是-2.故选B.59.在3,,-4,这四个数中,最大的是( )A. 3B.C. -4D.【答案】D【解析】【分析】本题考查的是实数的大小比较及估算无理数的大小,熟知实数比较大小的法则是解答此题的关键.先估算出和的值,再根据实数比较大小的法则进行比较即可.【解答】解:∵2<<3,又∵3<<4,∴-4<<3<,∴最大的数是.故选D.60.在3,0,-2,-四个数中,最小的数是()A. 3B. 0C. -2D. -【答案】C【解析】解:∵-2<-<0<3,∴四个数中,最小的数是-2,故选:C.依据比较有理数大小的方法判断即可.本题主要考查的是比较有理数的大小,熟练掌握比较有理数大小的法则是解题的关键.61.已知,那么在、、、中最小的数是().A. B. C. D.【答案】B【解析】【分析】此题主要考查了实数比较大小,正确掌握实数的比较大小的方法是解题关键.直接利用x的取值范围,进而比较各数大小.【解答】解:∵-1<x<0,∴>-x2>x>2x,∴在x、2x、、-x2中最小的数是:2x.故选:B.62.在-3,,-1,0这四个实数中,最大的是()A. -3B.C. -1D. 0【答案】B【解析】解:∵正实数都大于0,负实数都小于0,正实数大于一切负实数,∴-3<-1<0<,∴最大.故选:B.利用任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可.本题主要考查了比较实数的大小,掌握任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,是解答此题的关键.63.下列判断错误的是( )A. B.C. D.【答案】C【解析】【分析】本题考查了实数的大小比较和二次根式的性质,把根号外的因式平方后移入根号内,根据此时被开方数的大小比较即可.【解答】解:A.1.52=2.25, 32=9 , 22=4,2.25<9<4,故正确;B.22=4,()2=5,2.52=6.25,4<5<6.25,故正确;C.12=1,(-)2=8-2=8-1=8-7=8-,2=8-6=8-,8-<8-<8-所以,故错误;D.=5-2=,1=5-4=5->,故正确.故选C.64.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A. a>bB. |a|>|b|C. ab>0D. -a<b【答案】B【解析】【分析】本题考查实数与数轴、绝对值以及实数的大小比较,解答本题的关键是明确题意,利用数形结合的思想解答.根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,-2<a<-1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B正确,ab<0,故选项C错误,-a>b,故选项D错误,故选:B.65.有理数a,b在数轴上的位置如图所示,下列结论正确的是()A. -a<-b<a<bB. a<-b<b<-aC. -b<a<-a<bD. a<b<-b<-a 【答案】B【解析】【分析】本题主要考查的是数轴,比较实数的大小的有关知识,根据数轴得到a<0<b且|a|>b,然后再进行大小比较即可.【解答】。

初中数学七年级下册第六章:实数知识讲解

初中数学七年级下册第六章:实数知识讲解

举一反三:
【变式】已知 x、y 是实数,且 3x 4 +(y2-6y+9)=0,若 axy-3x=y,则实数 a 的值是( )
1
A.
4
1
B.-
4
7
C.
4
7
D.-
4
【答案】A. ∵ 3x 4 +(y-3)2=0,
3, 4
a3
1 1 3
.
4,
a4
1 . 1 4
1, 3
3
4
a5
1. 1 ( 1)
3, 4
a6
1 1 3
.
4, ……..三个一循环,因此 a2009
a2
1 1 ( 1)
3 .
4
3
4
3
类型三、实数大小的比较
3.若 a 2007 , b 2008 ,试不用将分数化小数的方法比较 a、b 的大小.
2008
要点诠释:
若 a a, 则 a 0、 a -a, 则 a 0、 a-b 表示的几何意义就是在数轴上表示数 a 与数 b 的点之间
的距离.
考点三、实数与数轴 规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可. 每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.
C.3 个
D.4 个
【答案】C;
【解析】在上面所给的实数中,只有 3 , ,-0.1010010001…这三个数是无理数,其它五个数都是
2
有理数,故选 C. 【点评】对实数分类,不能只为表面形式迷惑,而应从最后结果去判断.首先明确无理数的概念,即
“无限不循环小数叫做无理数”.一般来说,用根号表示的数不一定就是无理数,如 4 =2 是

人教版初中数学《第六章《实数》》单元教材教学分析

人教版初中数学《第六章《实数》》单元教材教学分析
4、能用有理数估计一个无理数的大致范围。
重点、难点与关键
重点:算术平方根的概念和求法以及实数的概念。
难点:平方根和
教学方法和手段的设计
绝大部分同学都能跟上现有的进度,上课发言尚积极,个别同学表现的还比较出色,但也有部分同学的理解能力和接受能力不尽人意,从课堂上看,他们的注意力不能长时间集中,很容易分心,作业错误比较多,对于老师的问题一问三不知,在今后的教学过程中对这些孩子要特别注意。
单元目标
1、了解算术平方根、平方根、立方根的概念,会有根号表示数的算术平方根、平方根、立方根。
2、了解开方与乘方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根。3、了解开方和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值。
学生思想教育和行为习惯的培养及学习方法
部分学生有主动学习的行为,比较喜欢上数学课,学习热情也很高,并喜欢与老师友好相处,同学之间、师生之间常在一起交流学习体会。但仍有少部分学生学习懒散、学习习惯差,如:粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,依赖同学的帮助,学困生抄作业现象比较严重。对学困生,要进一步培养他们的学习兴趣,尽量杜绝抄作业现象,使每个人在原有的基础上有所进步。
人教版初中数学《第六章《实数》》单元教材教学分析
学段及学科
初中数学
教材版本人教版单源自名称《第六章《实数》》单元教材主题内容与价值作用
本章内容属于“数与代数”领域,有关数的内容,学生在七年级上册已经系统地学过有理数,对有理数的概念和运算等有了较深的认识。本章是在有理数的基础上学习实数的初步知识,本章很多内容是有理数相关内容的延续和推广,因此,编写时注意了加强知识间的相互联系,突出类比的作用,使学生更好的体会数的扩充过程中表现出来的概念、运算等的一致性和发展变化。本章前两节“平方根”“立方根”在内容和展开方式上是基本平行的,因此,编写“立方根”时充分利用了类比的方法,通过类比“平方根”展开“立方根”的内容。这样的编著写方法,有助于加强知识间的相互联系,通过类比已学的知识学习新知识,使学生的学习形成正迁移。

人教版初中七年级数学下册第六单元《实数》知识点总结(含答案解析)

人教版初中七年级数学下册第六单元《实数》知识点总结(含答案解析)

一、选择题1.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤B .①③⑥C .④⑤⑥D .③④⑤2.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .43.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;④16的平方根是4±,其中正确的个数有( )A .0个B .1个C .2个D .3个 4.观察下列各等式: 231-+=-5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( )A .-130B .-131C .-132D .-1335.16的算术平方根是( )A .2B .4C .2±D .-46.下列各数中无理数共有( )①–0.21211211121111,②3π,③227,④8,⑤39. A .1个B .2个C .3个D .4个 7.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+8.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间 9.下列计算正确的是( )A .11-=-B .2(3)3-=-C .42=±D .31182-=- 10.下列选项中,属于无理数的是( )A .πB .227-C .4D .011.和数轴上的点一一对应的数是( )A .自然数B .有理数C .无理数D .实数12.下列有关叙述错误的是( )A .2是正数B .2是2的平方根C .122<<D .22是分数 13.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >-> B .1a a a >-> C .1a a a >>- D .1a a a ->> 14.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9 15.在0,3π5227,9 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ).A .1个B .2个C .3个D .4个二、填空题16.213a -=,31a b -+的平方根是4±,c 433a b c ++的平方根.17.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=918.已知1x -的算术平方根是3,24x y ++的立方根也是3,求23x y -的值. 19.定义新运算:对于任意实数a ,b ,都有()1a b a a b ⊕=-+,等式右边是通常的加法、减法及乘法运算,比如:252(25)12(3)1615⊕=⨯-+=⨯-+=-+=-,则(2)3-⊕=________.20.计算:2(3.14)|2|ππ---=________.21.已知()253|53|0x y -++--=.(1)求x ,y 的值;(2)求xy 的算术平方根.22.定义一种新运算;观察下列各式; 131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-= (1)请你想一想:a b = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.23.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______.24.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______. 25.已知1×1=1;11×11=121;111×111=12321;1111×1111=1234321,则111111×111111=_____.26.规定,()221x f x x =+,例如:()223931310f ==+,221113310113f ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫÷ ⎪⎝⎭,通过观察,那么()()()()11111239910099982f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+++++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()100f +=______.三、解答题27.已知290x ,310y +=,求x y +的值. 28.计算:201()( 3.14)20|252π---+--29.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a +4b 的平方根.30.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时,;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,.(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0];(3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.。

人教版数学七年级下册第六章实数基础知识点讲解+典型例题讲解.doc

人教版数学七年级下册第六章实数基础知识点讲解+典型例题讲解.doc

【本文档由书林工作坊整理发布,谢谢你的下载和关注!】平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】知识点一、平方根和算术平方根的概念 1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a a a 的算术平方根”,a 叫做被开方数.要点诠释:a a a 0,a ≥0. 2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为(0)a a ≥a 是a 的算术平方根.知识点二、平方根和算术平方根的区别与联系 1.区别:(1)定义不同;(2)结果不同:a a2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根. (2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质20||000a a a a a a a >⎧⎪===⎨⎪-<⎩()20a aa =≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.62500250=62525= 6.25 2.5=0.06250.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4 D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为25=5,所以本说法正确;B.因为±1=±1,所以l 是l 的一个平方根说法正确;C.因为±()24-=±16=±4,所以本说法错误;D.因为0±=0,0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(2)164=±.( ) (3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×, 提示:(2)164=;(4)25是425的算术平方根. 2、 填空:(1)4-是 的负平方根. (2116表示 的算术平方根,116= . (3181的算术平方根为 . (43x =,则x = ,若23x =,则x = .【思路点拨】(3)181就是181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个 【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1)325 (2)8136+(3)0.040.25- (4)40.36121⋅【答案】(1)15;(2)15;(3)-0.3;(4)6553、使代数式1x +有意义的x 的取值范围是______________. 【答案】x ≥1-;【解析】x +1≥0,解得x ≥1-.【总结升华】当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. 举一反三:【变式】(2015春•中江县期中)若+(3x+y ﹣1)2=0,求5x+y 2的平方根.【答案】解:∵+(3x+y ﹣1)2=0, ∴,解得,,∴5x+y 2=5×1+(﹣2)2=9,∴5x+y 2的平方根为±=±3.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x 值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】立方根【学习目标】1. 了解立方根的含义;2. 会表示、计算一个数的立方根,会用计算器求立方根.【要点梳理】要点一、立方根的定义如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3=,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.x a要点诠释:一个数a3a a是被开方数,3是根指数. 开立方和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.要点诠释:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数. 要点三、立方根的性质33a a -=-33a a =()33a a =要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题. 要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.例如,30.000 2160.06=,30. 2160.6=,3 2166=,3216000 60=. 【典型例题】 类型一、立方根的概念1、(2016春•吐鲁番市校级期中)下列语句正确的是( ) A .如果一个数的立方根是这个数本身,那么这个数一定是0 B .一个数的立方根不是正数就是负数 C .负数没有立方根D .一个不为零的数的立方根和这个数同号,0的立方根是0 【思路点拨】根据立方根的定义判断即可. 【答案】D ;【解析】A .如果一个数的立方根是这个数本身,那么这个数一定是0或1或-1,故错误;B .一个数的立方根不是正数就是负数,错误,还有0;C .负数有立方根,故错误;D .正确.【总结升华】本题考查了立方根,解决本题的关键是熟记立方根的定义. 举一反三:【变式】下列结论正确的是( )A .64的立方根是±4B .12-是16-的立方根 C .立方根等于本身的数只有0和1D .332727-=-【答案】D.类型二、立方根的计算2、求下列各式的值:(1)327102-- (2)3235411+⨯ (3)336418-⋅ (4)23327(3)1-+--- (5)10033)1(412)2(-+÷-- 【答案与解析】解:(1)310227-- (2)3321145⨯+ (3)331864⋅-3642743==33=116425=729=9⨯+ 1=241=2⎛⎫⨯- ⎪⎝⎭-(4)23327(3)1-+---=331=1-++(5)310031(2)2(1)4--÷+-3=21247=1=33÷++【总结升华】立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方.举一反三:【变式】计算:(1)30.008-=______;(2)=364611______; (3)=--312719______.(4)=-33511)(______. 【答案】(1)-0.2;(2)54;(3)23;(4)45. 类型三、利用立方根解方程3、(2015春•北京校级期中)(x ﹣2)3=﹣125.【思路点拨】利用立方根的定义开立方解答即可. 【答案与解析】 解:(x ﹣2)3=﹣125, 可得:x ﹣2=﹣5, 解得:x=﹣3.【总结升华】此题考查立方根问题,关键是先将x ﹣2看成一个整体. 举一反三:【变式】求出下列各式中的a :(1)若3a =0.343,则a =______;(2)若3a -3=213,则a =______; (3)若3a +125=0,则a =______;(4)若()31a -=8,则a =______.【答案】(1)a =0.7;(2)a =6;(3)a =-5;(4)a =3. 类型四、立方根实际应用4、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少?【思路点拨】铁块排出的643cm 水的体积,是铁块的体积,也是高为169πcm 烧杯的体积. 【答案与解析】解:铁块排出的643cm 的水的体积,是铁块的体积.设铁块的棱长为y cm ,可列方程364,y =解得4y =设烧杯内部的底面半径为x cm ,可列方程216649x ππ⨯=,解得x =6. 答:烧杯内部的底面半径为6cm ,铁块的棱长 4cm .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合. 举一反三:【变式】将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________.(不计损耗) 333a b +.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实数(基础)【学习目标】1. 了解无理数和实数的意义;2. 了解有理数的概念、运算法则在实数范围内仍适用 . 【要点梳理】要点一、有理数与无理数有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….③带有根号的数,但根号下的数字开方开不尽,如5.要点二、实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.要点三、实数大小的比较对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大. 正实数大于0,负实数小于0,两个负数,绝对值大的反而小. 要点四、实数的运算有理数关于相反数和绝对值的意义同样适合于实数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用. 【典型例题】类型一、实数概念1、指出下列各数中的有理数和无理数: 332222,,,9,8,9,0,,12,55,0.1010010001 (7)3π-【思路点拨】对实数进行分类时,应先对某些数进行计算或化简,然后根据它的最后结果进行分类,不能仅看到根号表示的数就认为是无理数.π是无理数,化简后含π的代数式也是无理数.【答案与解析】有理数有3222,9,8,0,,73--无理数有32,,9,12,55,0.1010010001π-……【总结升华】有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:0.1010010001…….③带有根号的数,但根号下的数字开方开不尽,如55,39,2,12-.举一反三: 【变式】(2015春•聊城校级月考)在下列语句中: ①无理数的相反数是无理数; ②一个数的绝对值一定是非负数; ③有理数比无理数小;④无限小数不一定是无理数. 其中正确的是( )A .②③B .②③④C .①②④D .②④ 【答案】C ;解:①因为实数包括有理数和无理数,无理数的相反数 不可能式有理数,故本选项正确; ②一个数的绝对值一定≥0,故本选项正确;③数的大小,和它是有理数还是无理数无关,故本选项是错误的; ④无限循环小数是有理数,故本选项正确.类型二、实数大小的比较2、比较520.5的大小. 【答案与解析】解:作商,得5250.5=51>,即5210.5>50.5>. 【总结升华】根据若a ,b 均为正数,则由“1a b >,1a b =,1ab<”分别得到结论“a b >,a b =,a b <,”从而比较两个实数的大小.比较大小的方法有作差法和作商法等,根据具体情况选用适当的方法.举一反三:【变式】比较大小___ 3.14π-- 7___54__2323___32 32 9___0- 3___10-- |43|___(7)--- 【答案】<; >; <; <; <; >; <.3、(2015•枣庄)实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .ac >bcB .|a ﹣b|=a ﹣bC .﹣a <﹣b <cD .﹣a ﹣c >﹣b ﹣c【答案】D ;【解析】解:∵由图可知,a <b <0<c , ∴A 、ac <bc ,故A 选项错误; B 、∵a <b , ∴a ﹣b <0,∴|a ﹣b|=b ﹣a ,故B 选项错误; C 、∵a <b <0,∴﹣a >﹣b ,故C 选项错误; D 、∵﹣a >﹣b ,c >0,∴﹣a ﹣c >﹣b ﹣c ,故D 选项正确. 故选:D .【总结升华】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.类型三、实数的运算4、化简:(1)|2 1.4|- (2)|7|74||-- (3)|12|+|23|+|32|--- 【答案与解析】 解:|2 1.4|-2 1.4=-|7|74||-- =|74+7|- =274-|12|+|23|+|32|---2132231=-+-+-=.【总结升华】有理数关于相反数和绝对值的意义同样适合于实数.有理数的运算法则及运算性质等同样适用.5、若2|2|3(4)0a b c ---=,则a b c -+=________.【思路点拨】由有限个非负数之和为零,则每个数都应为零可得到方程中a ,b ,c 的值.【答案】3; 【解析】解:由非负数性质可知:203040a b c -=⎧⎪-=⎨⎪-=⎩,即234a b c =⎧⎪=⎨⎪=⎩,∴ 2343a b c -+=-+=.【总结升华】初中阶段所学的非负数有|a |,2,a a ,非负数的和为0,只能每个非负数分别为0 . 举一反三:【变式】已知2(16)|3|30x y z ++++-=,求xyz 的值.【答案】解:由已知得1603030x y z +=⎧⎪+=⎨⎪-=⎩,解得1633x y z =-⎧⎪=-⎨⎪=⎩.∴xyz =(16)(3)312-⨯-⨯=.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实数全章复习与巩固(基础)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】类型项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

人教版初中数学《实数》单元教材教学分析

人教版初中数学《实数》单元教材教学分析
2、要从全套教科书的结构上来认识本章的地位,并把握好要求,切勿增加算数平方根的性质和二次根式方面的内容。
课时安排
第一课时:算术平方根
第二课时:平方根、
第三课时:立方很
第四课时:乘方与开方
第五课时:无理数和实数的概念
第六课时:无理数和实数及其运章
……
说明
人教版初中数学《实数》单元教材教学分析
学段及学科
初中数学
教材版本
人教版
单元名称
《实数》
单元教材主题内容与价值作用
本章从《数学课程标准》看,是关于数的内容,初中阶段主要学习有理数和实数,是“数与代数“的重要内容。本章的主要内容有数的开方、平方根、立方根、无理数和实数及其运章。
本章是进一步二次根式、一元二次方程以及函数等知识的基础。因此,让学生正确而深刻地理解实数是非常重要的。本章不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想感受数学美的有效载体,也是发展学生逻辑思维能力的重要内容。
难点:平方根的概念、无理数的概念是本章教学的主要难点。
关键:无理数的概念。
教学方法和手段的设计
1、数开形结合的思想
2、对立统一的思想:
3、分教育和行为习惯的培养及学习方法
1、要重视从有理数到实数的发展过程的教学,要重返运用实际例子克服这一数的扩展中的抽象性,使学生体验到平方根、无理数、实数等概念是由于人们生活和生产实践的需要而产生的。在我们的周围普遍存在着。可通过实际例子帮助学生了解这些抽象的实际意义,并学会在实际情境中使用它们。
单元目标
(1)了解平方根、算术平方根、立方很的概念,会用根号表示数的平方根、算术平方根、立方根。
(2)了解乘方与开方互为逆运算。
(3)了解无理数和实数的概念,知道实数与数轴上的点一—对应,能求实数的相反数与绝

人教版初中数学《实数》知识点总结

人教版初中数学《实数》知识点总结

实数一、平方根1、平方根:如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(也叫做a 的二次方根)。

正数a 的平方根记作a ±,通常记作:x =a ±一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。

求一个数a 的平方根的运算叫做开平方,其中,a 称为被开方数.2、算术平方根:如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根,记作a ,读作“根号a ”。

正数和零的算术平方根都只有一个,0的算术平方根是0。

算术平方根具有双重非负性,即:0≥a (a ≥0)算术平方根是非负数、被开方数为非负数, 算术平方根是平方根中正的一个值。

性质公式:0(a ≥0)2(0)a a =≥|a |; 二、立方根立方根:如果一个数x 的立方等于a ,即3x a =,那么这个数x 就叫做a 的立方根(也叫做a 的三次方根)a ”(注意:这里的3表示的是开根的次数,也叫根指数。

一般的,平方根可以省写根的次数,但是,当根的次数在两次以上的时候,则不能省略.)一个正数的立方根是一个正数,一个负数的立方根是一个负数,0的立方根是0。

求一个数a 的立方根的运算叫做开立方,其中,a 称为被开方数。

性质公式: 33a a -=-a =3a =三、实数1、无理数:无限不循环小数叫做无理数。

2、实数:有理数与无理数统称为实数。

实数和数轴上的点一一对应。

3、实数的分类:一是分类是:正实数、负实数、0;另一种分类是:有理数、无理数。

整数、分数统称为有理数。

整数包括正整数、零、负整数。

分数包括正分数、负分数。

自然数包括零和正整数。

4、有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数不能写成分数形式。

≈1.414 3≈1.732 ≈2.236 6≈≈3.162⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎭⎩⎪⎫⎧⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数和无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数 112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400 212=441 222=484 232=529 242=576 252=62523=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729。

中考数学知识点总结 实数 (6大知识点+例题) 新人教版

中考数学知识点总结 实数 (6大知识点+例题) 新人教版

中考数学知识点总结 实数 (6大知识点+例题) 新人教版基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

人教版初中七年级数学下册第六单元《实数》知识点复习(含答案解析)

人教版初中七年级数学下册第六单元《实数》知识点复习(含答案解析)

一、选择题1.下列各式计算正确的是( )A B = ±2 C = ±2 D . A 解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A 计算正确;故选:A .【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.2.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、=不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.3.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .6C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….4.下列实数220.010*******;; (相邻两个1之依次多一个0);2,其中无理数有( )A .2个B .3个C .4个D .5个B解析:B【分析】根据无理数、有理数的定义即可判定选择项.【详解】4=-,是有理数;3.14是有限小数,是有理数;227是分数,是有理数;,0.010010001(相邻两个1之依次多一个0)2,是无理数,共3个,故选:B .【点睛】本题考查了无理数的定义,注意无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.在0.010010001,3.14,π,1.51,27中无理数的个数是( ). A .5个B .4个C .3D .2个D解析:D【分析】 根据无理数的概念解题,找出无理数的个数即可,无限不循环小数称为无理数;【详解】在0.010010001,3.14,π,1.51,27中无理数有π共2个, 故选D .【点睛】本题考查了无理数的概念,正确掌握无理数的概念是解题的关键;6 )A .8B .8-C .D .± D 解析:D【分析】8=,再根据平方根的定义,即可解答.【详解】8=,8的平方根是±故选:D .【点睛】8=.7.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >->B .1a a a >->C .1a a a >>-D .1a a a ->> C 解析:C【分析】可以用取特殊值的方法,因为a >1,所以可设a=2,然后分别计算|a|,-a ,1a ,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a =, ∵2>12>-2, ∴|a|>1a>-a ; 故选:C .【点睛】 此类问题运用取特殊值的方法做比较简单.8.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- D 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.下列等式成立的是( )A .±1B =±2C 6D 3A 解析:A【分析】分别根据算术平方根、立方根的定义逐一判断即可.【详解】A .书写规范,故本选项符合题意;B.算术平方根只能是正数不能是负数,故本选项不合题意;C.立方根与被开方数符号一致,故本选项符合题意;D.33=27,27的立方根才等于3,故本选项不合题意.故选:A .【点睛】本题主要考查了算术平方根与立方根的定义,熟练掌握算术平方根的性质是解答本题的关键.10.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个B解析:B【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①没有最小的整数,所以原说法错误;②有理数包括正数、0和负数,所以原说法错误;③﹣2π是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确; ⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误; 故其中错误的说法的个数为6个.故选:B .【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.二、填空题11.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-画图见解析【分析】先把各数化简在数轴上表示出各数再根据在数轴上右边的数总比左边的数大把这些数按从大到小的顺序用>连接起来【详解】解:在数轴上表示为:按从大到小的顺序用>连接为:【点睛】本题主要考查了解析:画图见解析,()239201272>-->>-->->- 【分析】先把各数化简,在数轴上表示出各数,再根据“在数轴上,右边的数总比左边的数大”把这些数按从大到小的顺序用“>”连接起来.【详解】解:3273-=-,()22--=,11--=-,93=,224-=-,在数轴上表示为:按从大到小的顺序用>()239201272>-->>-->->-. 【点睛】本题主要考查了实数的大小比较,解题的关键是准确在数轴上表示实数,并利用数轴对实数的大小进行比较.12.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …}, 无理数集合{ …}.见解析【分析】先求出立方根再根据整数负分数正有理数无理数的定义即可得【详解】解析:见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3=-,13.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.14.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.10202550【分析】①由魔术数的定义分别对345三个数进行判断即可得到5为魔术数;②由题意根据魔术数的定义通过分析即可得到答案【详解】解:根据题意①把3写在1的右边得13由于13不能被3整除故3 解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”; ②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题.15.已知5的整数部分为a ,5-b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-16.一个正数的两个平方根分别为27a -与34a -+,则这个正数为_______.169【分析】根据一个正数的两个平方根互为相反数求出a 的值就可以算出这个正数【详解】解:解得∴这个正数是故答案是:169【点睛】本题考查平方根解题的关键是掌握平方根的性质解析:169【分析】根据一个正数的两个平方根互为相反数,求出a 的值,就可以算出这个正数.【详解】解:()27340a a -+-+=,解得3a =-,()23713⨯--=-,∴这个正数是()213169-=. 故答案是:169.【点睛】本题考查平方根,解题的关键是掌握平方根的性质.17.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:ab = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.(1)4a+b ;(2);(3)6a-3b-12【分析】(1)观察得到新运算等于第一个数乘以4加上第二个数据此列式即可;(2)根据新运算分别计算出与即可得到答案;(3)根据新运算分别化简再将ab 的值代解析:(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】(1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可;(2)根据新运算分别计算出a b 与b a 即可得到答案; (3)根据新运算分别化简再将a 、b 的值代入计算. 【详解】(1)ab =4a+b , 故答案为:4a+b ; (2)a b =4a+b ,b a =4b+a , ∵a b , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+ =4(a-b )+(2a+b )=4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键.18.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。

人教版初中数学第六章实数知识点

人教版初中数学第六章实数知识点

第六章实数6.1 平方根1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟).一个数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根.正数a的平方根记做“”.2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”.正数和零的算术平方根都只有一个,零的算术平方根是零.()()a aaa a⎧≥⎪==⎨-<⎪⎩;注意a的双重非负性:0a≥⎪⎩例:求下列各数的算术平方根(1)64;(2)2)3(-;(3)49151.例:若数m的平方根是32+a和12-a,求m的值.解:∵负数没有平方根,故m必为非负数.(1)当m为正数时,其平方根互为相反数,故(32+a)+(12-a)=0,解得3=a,故32+a=9332=+⨯,912312-=-=-a,从而8192==a.(2)当m为0时,其平方根仍是0,故032=+a且0433=-a,此时两方程联立无解.GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF例:估计10+1的值是( )(A )在2和3之间 (B )在3和4之间 (C )在4和5之间(D )在5和6之间6.2 立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根).其中3是根指数.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零. 注意:33a a -=-,这说明三次根号内的负号可以移到根号外面.例:已知:M a a b =++-82是a +8的算术数平方根,N b a b =--+324是b -3立方根,求M N +的平方根.分析:由算术平方根及立方根的意义可知a +≥8022243a b a b +-=⎧⎨-+=⎩,解方程组,得:a b ==13,GAGGAGAGGAFFFFAFAF代入已知条件得:M N ==903,,∴M N +=+=+=903033故M +N 的平方根是±3.6.3 实数 1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数整数包括正整数、零、负整数. 正整数又叫自然数.正整数、零、负整数、正分数、负分数统称为有理数.2、无理数:无限不循环小数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;GAGGAGAGGAFFFFAFAF(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o等 例:在所给的数据:,13,π,0.57, 0.585885888588885…(相邻两个5之间8的个数逐次增加1个)其中无理数个数( B ).(A)2个 (B)3 (C)4个 (D)5个3、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立. 4、绝对值一个数的绝对值就是表示这个数的点与原点的距离,0a ≥.零的绝对值是它本身,若a a =,则0a ≥;若a a =-,则0a ≤.正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小. 5、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立.倒数等于本身的数是1和-1.零没有倒数. 例:比较a aa 、、1的大小.GAGGAGAGGAFFFFAFAF①当01<<a 时,取a =001.,则110001aa ==、.,显然有1aa a >>GAGGAGAGGAFFFFAFAF②当a =1时,a aa ==1,③当a >1时,仿①取特殊值可得a a a>>1 例:解方程()2136x +=.解:∵()2136x +=∴x+1看着是36的平方根. 16x +=±. ∴15x=, 27x =-.例:已知一个数的平方根是2a -1和a -11,求这个数.解:由2a -1+a -11=0,得a =4,∴2a -1=2×4-1=7.∴这个数为72=49.例:已知2a -1和a -11是一个数的平方根,求这个数.解:根据平方根的定义,可知2a -1和a -11相等或互为相反数. 当2a -1=a -11时,a =-10,∴2a -1=-21,这时所求得数为(-21)2=441;当2a -1+a -11=0时,a =4,∴2a -1=7,这时所求得数为72=49. 综上可知所求的数为49或441.实数大小进行比较的常用方法方法一:差值比较法差值比较法的基本思路是设a ,b 为任意两个实数,先求出a 与b 的差,再GAGGAGAGGAFFFFAFAF根据当a -b ﹥0时,得到a ﹥b.当a -b ﹤0时,得到a ﹤b.当a -b =0,得到a=b.例1:(1)比较513-与51的大小. (2)比较1-2与1-3的大小.解 ∵513--51=523-<0 , ∴513-<51. 解 ∵(1-2)-(1-3)=23->0 , ∴1-2>1-3.方法二:商值比较法商值比较法的基本思路是设a ,b 为任意两个正实数,先求出a 与b 得商.当ba <1时,a <b ;当ba >1时,a >b ;当ba =1时,a=b.来比较a 与b 的大小.例2:比较513-与51的大小.GAGGAGAGGAFFFFAFAF解:∵513-÷51=13-<1 ∴513-<51 方法三:倒数法倒数法的基本思路是设a ,b 为任意两个正实数,先分别求出a 与b 的倒数,再根据当a1>b1时,a <b.来比较a 与b 的大小.例3:比较2004-2003与2005-2004的大小.解∵200320041-=2004+2003,200420051-=2005+2004又∵2004+2003<2005+2004 ∴2004-2003>2005-2004(超纲,不作要求)方法四:平方法平方法的基本是思路是先将要比较的两个数分别平方,再根据a >0,b >0时,可由2a >2b 得到a >b 来比较大小,这种方法常用于比较无理数的大小. 例5:比较62+与53+的大小解:1228)62(2+=+, 2)53(+=8+215.又∵8+212<8+215 ∴62+<53+.方法五:估算法估算法的基本是思路是设a ,b 为任意两个正实数,先估算出a ,b 两数或两数中某部分的取值范围,再进行比较.例4:比较8313-与81的大小解:∵3<13<4 ∴13-3<1 ∴8313-<81方法六:移动因式法(穿墙术)移动因式法的基本是思路是,当a>0,b>0,若要比较形如a db c与的大小,可先把根号外的因数a与c平方后移入根号内,再根据被开方数的大小进行比较.例6:比较27与33的大小GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF解:∵27=722•=28,33=332•=27.又∵28>27, ∴27>33.方法七:取特值验证法比较两个实数的大小,有时取特殊值会更简单.例7:当10 x 时,2x ,x ,x1的大小顺序是______________.解:(特殊值法)取x =21,则:2x =41,x1=2.∵41<21<2,∴2x <x <x1.例:设a =20,b =(-3)2,cd =112-⎛⎫⎪⎝⎭,则a 、b 、c 、d 按由小到大的顺序排列正确的是( )A.c <a <d <bB.b <d <a <cC.a <c <d <bD.b <c <a <d 分析 可以分别求出a 、b 、c 、d 的具体值,从而可以比较大小. 解:∵a =20=1,b =(-3)2=9,cd =112-⎛⎫⎪⎝⎭=2<1<2<9,∴c <a <d <b .故应选A .除以上七种方法外,还有利用数轴上的点,右边的数总比左边的数大;以及绝对值比较法等比较实数大小的方法.对于不同的问题要灵活用简便合理的方法来解题.能快速地取得令人满意的结果.精品文档如有侵权请联系告知删除,感谢你们的配合!22721 58C1 壁< Q28079 6DAF 涯r37902 940E 鐎*[25846 64F6 擶35585 8B01 謁kiU27717 6C45 汅GAGGAGAGGAFFFFAFAF。

人教版初中数学《实数》单元教材教学分析

人教版初中数学《实数》单元教材教学分析
本章还通过一一个例题学习了实数的简单运算,安排这个例题的目的是要说明有理数的运算法则和运算性质等在实数范围内仍然成立,关于实数的运算在后面的二次根式-章中还要继续研究。
另外,本章也提前渗透了--些数学思想和方法。比如,本章的数学活动1,涉及到勾股定理的内容,让学生利用勾股定理,在数轴上画出表示几个无理数的点。这里只是结合无理数渗透了勾股定理,关于勾股定理以后还要进行专门的研究。
学生思想教育和行为习惯的培养及学习方法
本册书对于某些内容采用提前渗透、逐步提高的编写方式。例如,对于平面直角坐标系,在第6章平面直角坐标系中研究了平面内的点与有序数对的对应关系,其中点的坐标都是有理数,在本章将把点的坐标由有理数的情形扩展到实数范围,并建立平面内的点与有序实数对的一--对应关系,为后续学习函数的图象、函数与方程和不等式的关系等打下基础。
单元目标
1.了解算术平方根、平方根、立方根的概念,会用根号表示数的算术平方根、平方根、立方根;
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根;
3.了解无理数和实数的概念,知道实数与数轴上的点一-一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大到实数后,一些概念、运算等的一-致性及其发展变化;
第五课时:实数
第六课时:实数的大小和运算
……
说明
对于平移变换,教课书在第5章相交线与平行线中安排了一节平移,探讨得出平移前后的两个图形的对应点的连线平行且相等等平移变换的基本性质,又在第6章平面直角坐标系中安排了用坐标方法研究平移的内容,从坐标的角度进一步认识平移变换,这时平移中遇到的坐标都是有理数的情况。在本章,由于建立了点与有序实数对的一--*对应关系,本章又在实数范围内研究平移的内容,为后续学习利用平移变换探索平面图形的几何性质以及综合运用几种变换(平移、旋转、轴对称、相似等)进行图案设计等打下基础。

初中数学实数大小进行比较的10种方法大全解析

初中数学实数大小进行比较的10种方法大全解析

初中数学实数大小进行比较的10种方法大全解析比较实数大小是数学中一项基本的运算,掌握不同方法进行实数大小的比较对于学习数学和解题非常重要。

下面将详细介绍初中数学中比较实数大小的10种方法,并附上解析。

方法一:整数比较法整数比较法适用于比较两个整数大小的情况。

首先比较整数的位数,位数相同从高位开始比较,如果出现不同的位数则较大的整数就是更大的数。

如果位数相同且各个位上的数字也相同,则两个整数相等。

方法二:小数比较法小数比较法适用于比较两个小数的大小。

首先比较小数的整数部分,整数部分大的小数就是更大的数。

如果整数部分相同,则比较小数部分,小数部分大的小数就是更大的数。

如果整数部分和小数部分均相同,则两个小数相等。

方法三:分数比较法分数比较法适用于比较两个分数的大小。

首先将两个分数的分母通分,然后比较分子的大小,分子大的分数就是更大的数。

如果分子相同,则比较分母的大小,分母小的分数就是更大的数。

如果分子和分母均相同,则两个分数相等。

方法四:百分数比较法百分数比较法适用于比较两个百分数的大小。

首先将两个百分数转换为小数,然后比较小数的大小即可。

方法五:绝对值比较法绝对值比较法适用于比较两个实数的大小。

首先求出两个实数的绝对值,然后比较绝对值的大小,绝对值大的数就是更大的数。

如果绝对值相同,则比较原实数的符号,正数较大于负数,绝对值相同的正数比较各位数的大小,位数大的数较大。

方法六:万分比比较法方法七:科学计数法比较法科学计数法比较法适用于比较两个使用科学计数法表示的数的大小。

首先将两个数都转换为标准的科学计数法表示,然后比较指数的大小,指数大的数就是更大的数。

如果指数相同,则比较尾数的大小,尾数大的数就是更大的数。

方法八:符号比较法符号比较法适用于比较两个实数的大小。

首先比较两个实数的符号,正数大于负数,正数大于零,负数小于零。

如果两个实数符号相同,则比较两个数的绝对值大小来确定大小关系。

方法九:数轴比较法数轴比较法适用于比较多个实数的大小关系。

人教版实数运算说课稿

人教版实数运算说课稿

人教版实数运算说课稿一、说课背景及目标在初中数学教学中,实数运算是学生数学学习的基础,也是后续学习代数、几何等高级数学概念的前提。

人教版数学教材系统地介绍了实数的概念、性质以及运算规则,旨在培养学生的逻辑思维能力和数学运算技能。

本次说课将以人教版初中数学教材为蓝本,重点讲解实数的运算法则和应用,确保学生能够准确掌握实数的加减乘除、乘方开方等基本运算,并能在实际问题中灵活运用。

二、教学内容与结构本次说课内容将围绕实数运算展开,分为以下几个部分:1. 实数的概念与分类:介绍实数的基本定义,包括有理数和无理数,并解释它们之间的关系和区别。

2. 实数的性质:探讨实数的基本性质,如封闭性、有序性等,并引入绝对值的概念。

3. 实数的加减法:详细讲解实数加减法的运算规则,包括正负数的运算和零的特殊情况。

4. 实数的乘除法:阐述实数乘除法的运算法则,强调乘法分配律、结合律和除法的倒数概念。

5. 乘方与开方:介绍乘方和开方的定义、性质和计算方法,以及它们在实际问题中的应用。

6. 实数的混合运算:讲解实数混合运算的顺序和运算法则,如何正确处理运算中的括号和优先级。

7. 实际应用:通过实际问题,让学生理解实数运算在生活中的应用,提高解题能力和数学思维。

三、教学方法与手段为了确保学生能够有效吸收和掌握实数运算的知识,本次说课将采用以下教学方法和手段:1. 直观教学:利用数轴、图表等直观教具,帮助学生形象理解实数的概念和性质。

2. 互动讨论:鼓励学生参与课堂讨论,通过小组合作解决问题,培养他们的合作精神和交流能力。

3. 案例分析:选取典型的实数运算问题,引导学生分析问题、寻找解决方案,提高他们的解题技巧。

4. 反复练习:设计多样化的练习题,让学生通过大量练习巩固所学知识,提高运算速度和准确性。

5. 反馈与评价:及时对学生的练习和测试进行反馈,帮助他们找出错误和不足,调整学习方法。

四、教学评价与反思教学评价是检验教学效果的重要环节。

人教版数学七年级下册6.3《实数》教学设计

人教版数学七年级下册6.3《实数》教学设计

人教版数学七年级下册6.3《实数》教学设计一. 教材分析人教版数学七年级下册6.3《实数》是学生在掌握了有理数知识的基础上,进一步学习实数的定义、性质和运算。

本节内容是整个初中数学的重要基础,对学生来说是全新的概念。

教材从学生的实际出发,通过引入无理数的概念,让学生感受实数的广泛性,进而引入实数的概念,使学生对实数有一个直观的认识。

二. 学情分析学生在学习本节内容前,已经掌握了有理数的知识,对数的运算、大小比较等有一定的基础。

但实数是一个全新的概念,与有理数有很大的区别。

学生在学习过程中,可能对无理数的概念、实数的性质和运算产生困惑。

因此,在教学过程中,要注重引导学生从实际出发,理解实数的定义,掌握实数的性质和运算。

三. 教学目标1.了解实数的定义,掌握实数的性质和运算。

2.能够运用实数解决实际问题,提高解决问题的能力。

3.培养学生的抽象思维能力,提高学生的数学素养。

四. 教学重难点1.实数的定义和性质。

2.实数的运算。

五. 教学方法1.情境教学法:通过生活实例,引导学生从实际出发,理解实数的定义和性质。

2.互动教学法:引导学生参与课堂讨论,提高学生的思维能力和解决问题的能力。

3.实践操作法:通过大量的练习,让学生掌握实数的运算方法。

六. 教学准备1.准备相关的生活实例,用于导入新课。

2.准备PPT,展示实数的性质和运算。

3.准备练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如计算房屋面积、身高、体重等,引导学生从实际出发,了解无理数的概念。

进而引出实数的概念,让学生对实数有一个直观的认识。

2.呈现(10分钟)通过PPT展示实数的性质和运算,让学生对实数有一个全面的认识。

主要包括实数的定义、性质(如正实数、负实数、零实数等)和运算(如加法、减法、乘法、除法等)。

3.操练(10分钟)让学生进行实数运算的练习,巩固所学知识。

可以设置一些具有挑战性的题目,让学生在解决问题过程中,加深对实数运算的理解。

人教版初中七年级下册数学精品授课课件 第六章 实数 第六章 实数 单元解读课件

人教版初中七年级下册数学精品授课课件 第六章 实数 第六章 实数 单元解读课件

04
能用有理数估 计一个无理数 的大致范围
教材分析
01 教学重点
本章的重点是算术平方 根、平方根的概念和求法以 及实数的概念,它们是理解 立方根的概念和求法、实数 的有关概念和运算的基础.
02 教学难点
平方根和实数的概念 理解实数与数轴的关系, 将
9个概念 3个性质
平方根
性质 开平方
定义 性质 开立方
立方根
实数
数轴 运算
有理数
无理数
实数与数轴 上的点一一
对应
实数的运算性质、 运算法则、运算 律与有理数相同
整体规划
本章内容属于“数与式”主题. 在这之前,七 年级上册已经系统地学过有理数,对有理数的概念 和运算等有了较深刻的认识. 本章是在有理数的基 础上学习实数的初步知识,很多内容是有理数相关 内容的延续和推广. 因此,在本章的学习过程中, 应加强知识间的相互联系,突出类比的作用,使学 生更好地体会数的扩充过程中表现出来的概念、运 算等的一致性和发展变化.
小节分析
研究 立方根的概念 和求法.从具
体给概论开呼学 习 目 标出念立你的立立,方关计 方12完求3...方然运系算 运了了体全一根后算,出 算解解会立个的讨与研发的立开立方数方立方数的根方根(立的与的及方概立唯对根念方一应. ,互性的3 a会为,负用逆分整运清数算立)表,方的示会根立a用与方的立平根立方方,方运根会根算的用.求区计千别算以.器内 立究征使类内教 学 内 容方立,用比容根方最计平,方系的将的根后算方分根,方新方的介器根析的研法旧法研特绍求的它概究知..究类念立识立比,方联方平然根系根方后的起的根讨特来概的论征,念内立,丰和容方最富求,运后学法分算介生.析从与绍对它具开使无们体立用理之的方计数间计运算的的算算器认联出的求识系发呼立.与给你方区出关根别立,

人教版初中数学实数全集汇编及解析

人教版初中数学实数全集汇编及解析

人教版初中数学实数全集汇编及解析一、选择题1.王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示-1的点为圆心,正方形的对角线长为半径画弧交数轴于点A ”.则数轴上点A 所表示的数是( )A 2-1B 2+1C 2D 2【答案】A【解析】【分析】先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式为:两点间的距离=较大的数-较小的数,便可求出-1和A 之间的距离,进而可求出点A 表示的数.【详解】 22112+=-1和A 2.∴点A 2.故选A .【点睛】本题考查的是勾股定理及两点间的距离公式,本题需注意:知道数轴上两点间的距离,求较小的数,就用较大的数减去两点间的距离.2.已知,x y 为实数且110x y +-=,则2012x y ⎛⎫ ⎪⎝⎭的值为( ) A .0B .1C .-1D .2012 【答案】B【解析】【分析】利用非负数的性质求出x 、y ,然后代入所求式子进行计算即可.【详解】由题意,得x+1=0,y-1=0,解得:x=-1,y=1, 所以2012x y ⎛⎫ ⎪⎝⎭=(-1)2012=1,故选B.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.3.在-2,4,2,3.14, 327-,5π,这6个数中,无理数共有( ) A .4个B .3个C .2个D .1个【答案】C 【解析】-2,42=, 3.14, 3273-=-是有理数; 2,5π是无理数; 故选C. 点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,如3 ,35 等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个).4.在2,﹣1,0,5,这四个数中,最小的实数是( )A .2B .﹣1C .0D .5 【答案】B【解析】【分析】将四个数按照从小到大顺序排列,找出最小的实数即可.【详解】四个数大小关系为:1025-<<<,则最小的实数为1-,故选B .【点睛】此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.5.-2的绝对值是( ) A .B .C .D .1 【答案】A【解析】【分析】根据差的绝对值是大数减小数,可得答案.【详解】-2的绝对值是2-. 故选A .【点睛】本题考查了实数的性质,差的绝对值是大数减小数.6.估计的值在()A.0到1之间B.1到2之间C.2到3之间D.3到4之间【答案】B【解析】【分析】利用“夹逼法”估算无理数的大小.【详解】=﹣2.因为9<11<16,所以3<<4.所以1<﹣2<2.所以估计的值在1到2之间.故选:B.【点睛】本题考查估算无理数的大小.估算无理数大小要用逼近法.7.51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间【答案】B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴5,∴5,故选B.【点睛】5是解题关键.8.如图,数轴上的点可近似表示630)6÷()A.点A B.点B C.点C D.点D【答案】A【解析】【分析】先化简原式得45-,再对5进行估算,确定5在哪两个相邻的整数之间,继而确定45-在哪两个相邻的整数之间即可.【详解】原式=45-,由于25<<3,∴1<45-<2.故选:A.【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.9.下列说法正确的是()A.﹣81的平方根是±9 B.7的算术平方根是7C.127的立方根是±13D.(﹣1)2的立方根是﹣1【答案】B【解析】【分析】由平方根、算术平方根及立方根的定义依次判定各项即可解答.【详解】选项A,﹣81没有平方根,选项A错误;选项B,7的算术平方根是7B,选项正确;选项C,127的立方根是13,选项C错误;选项D,(﹣1)2的立方根是1,选项D错误.故选B.【点睛】本题考查了平方根、算术平方根及立方根的应用,熟知平方根、算术平方根及立方根的定义是解决问题的关键.10.若将三个数-3,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A.3B7C11D.无法确定【答案】B【解析】【分析】【详解】解:根据二次根式的估算可知-2<-3<-1,2<7<3,3<11<4,因此可知墨迹覆盖的是7.故选B.11.若a30=-3,则估计a的值所在的范围是()A.1<a<2 B.2<a<3 C.3<a<4 D.4<a<5【答案】B【解析】【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.【详解】∵25<30<36,∴5<30<6,∴5−3<30−3<6−3,即2<30−3<3,∴a的值所在的范围是2<a<3.故选:B.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D【答案】B【解析】【分析】≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.3 1.732【详解】≈-,3 1.732()---≈,1.7323 1.268()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以3- 表示的点与点B 最接近,故选B.13.如图,已知x 2=3,那么在数轴上与实数x 对应的点可能是( )A .P 1B .P 4C .P 2或P 3D .P 1或P 4【答案】D【解析】试题解析:∵x 2=3,∴3根据实数在数轴上表示的方法可得对应的点为P 1或P 4.故选D .14.101的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∵310<<4,∴410<1<5.故选C .【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出310<<4是解题的关键,又利用了不等式的性质.15.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.16.下列说法中,正确的是( )A .-2是-4的平方根B .1的立方根是1和-1C .-2是(-2)2的算术平方根D .2是(-2)2的算术平方根【答案】D【解析】【分析】根据平方根、算术平方根、立方根的定义进行解答即可.【详解】A . -4没有平方根,故A 错误;B . 1的立方根是1,故B 错误;C . (-2)2的算术平方根是2,故C 错误;D . 2是(-2)2的算术平方根,故D 正确故选:D【点睛】本题主要考查的是算术平方根与平方根\立方根,掌握算术平方根与平方根\立方根的定义是解题的关键.17.已知下列结论:①在数轴上的点只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是() A.①②B.②③C.③④D.②③④【答案】B【解析】【分析】根据实数与数轴的关系,有理数是无限循环小数或有限小数,无理数是无限不循环小数,可得答案.【详解】解:①数轴上的点表示实数,故①错误;②任何一个无理数都能用数轴上的点表示,故②正确;③实数与数轴上的点一一对应,故③正确;④有理数有无限个,无理数有无限个,故④错误;故选:B.【点睛】本题考查了实数与数轴,实数与数轴上的点一一对应,掌握实数与数轴的关系是解题的关键.18.下列说法正确的是()A.无限小数都是无理数B.1125-没有立方根C.正数的两个平方根互为相反数D.(13)--没有平方根【答案】C【解析】【分析】根据无理数、立方根、平方根的定义解答即可.【详解】A、无限循环小数是有理数,故不符合题意;B、1125-有立方根是15-,故不符合题意;C、正数的两个平方根互为相反数,正确,故符合题意;D、﹣(﹣13)=13有平方根,故不符合题意,故选:C.【点睛】本题考查了无理数、立方根、平方根,掌握无理数、立方根、平方根的定义是解题的关键.19.14的算术平方根为( ) A .116 B .12± C .12-D .12 【答案】D【解析】【分析】根据算术平方根的定义求解即可.【详解】∵21()2=14, ∴14的算术平方根是12,故选:D .【点睛】本题考查了算术平方根的定义,熟记概念是解题的关键.20.如图,数轴上的点P 表示的数可能是( )A 5B .5C .-3.8D .10-【答案】B【解析】【分析】【详解】5 2.2≈,所以P 点表示的数是5-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学实数解析
一、选择题
1.下列五个命题:
①如果两个数的绝对值相等,那么这两个数的平方相等;
②内错角相等;
③在同一平面内,垂直于同一条直线的两条直线互相平行;
④两个无理数的和一定是无理数;
⑤坐标平面内的点与有序数对是一一对应的.
其中真命题的个数是()
A.2个B.3个C.4个D.5个
【答案】B
点睛:本题考查了实数与数轴的对应关系,注意利用“数形结合”的数学思想解决问题.
9.估计 +1的值在( )
A.2和3之间B.3和4之间C.4和5之间D.5和6之间
【答案】B
【解析】
分析:直接利用2< <3,进而得出答案.
详解:∵2< <3,
∴3< +1<4,
故选B.
点睛:此题主要考查了估算无理数的大小,正确得出 的取值范围是解题关键.
A.点AB.点BC.点CD.点D
【答案】B
【解析】
【分析】
,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.
【详解】




因为0.268<0.732<1.268,
所以 表示的点与点B最接近,
故选B.
A. B. C. D.
【答案】C
【解析】
【分析】
对每个选项进行计算,即可得出答案.
【详解】
A. ,原选项错误,不符合题意;
B. ,原选项错误,不符合题意;
C. ,原选项正确,符合题意;
D. ,原选项错误,不符合题意.
故选:C
【点睛】
本题考查平方根、算术平方根、立方根的计算,重点是掌握平方根、算术平方根、立方根的性质.
A.0个B.1个C.2个D.3个
【答案】D
【解析】
【详解】
①实数和数轴上的点是一一对应的,正确;
②无理数是开方开不尽的数,错误;
③负数没有立方根,错误;
④16的平方根是±4,用式子表示是± =±4,错误;
⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确.
错误的一共有3个,故选D.
5.在-2, , ,3.14, , ,这6个数中,无理数共有( )
故选:A.
【点睛】
此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.
8.如图所示,数轴上表示3、 的对应点分别为C、B,点C是AB的中点,则点A表示的数是( )
A.- B.3- C.6- D. -3
【答案】C
【解析】
点C是AB的中点,设A表示的数是c,则 ,解得:c=6- .故选C.
18.实数a、b满足 +4a2+4ab+b2=0,则ba的值为( )
A.2B. C.﹣2D.﹣
【答案】B
【解析】
【分析】
【详解】
解:化简得 +(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,
所以,ba=2﹣1= .
故选:B.
【点睛】
本题考查非负数的性质.
19.设 .则 在两个相邻整数之间,那么这两个整数是()
【答案】B
【解析】
解:由于16<19<25,所以4< <5,因此6< +2<7.故选B.
点睛:本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.
12.用“ ”定义一种新运算:对于任意有理数 和 , ( 为常数),如: .若 ,则 的值为()
故选A.
14.若x使(x﹣1)2=4成立,则x的值是( )
A.3B.﹣1C.3或﹣1D.±2
【答案】C
【解析】
试题解析:∵(x-1)2=4成立,
∴x-1=±2,
解得:x1=3,x2=-1.
故选C.
15.计算|1+ |+| ﹣2|=( )
A.2 ﹣1B.1﹣2 C.﹣1D.3
【答案】D
【解析】
【分析】
7.实数 在数轴上的对应点的位置如图所示,若 ,则下列结论中一定成立的是()
A. B. C. D.
【答案】A
【解析】
【分析】
利用特殊值法即可判断.
【详解】
∵a<c<b, ,∴ ,故A正确;
若a<c<0,则 错误,故B不成立;
若0<a<b,且 ,则 ,故C不成立;
若a<c<0<b,则abc<0,故D不成立,
【详解】
由题意,得
x+1=0,y-1=0,
解得:x=-1,y=1,
所以 =(-1)2012=1,
故选B.
【点睛】
本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.
4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是 =±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )
【详解】
∵64的算术平方根是8,8的立方根是2,
∴这个数的立方根是2.
故选D.
【点睛】
本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义.
3.已知 为实数且 ,则 的值为( )
A.0B.1C.-1D.2012
【答案】B
【解析】
【分析】
利用非负数的性质求出x、y,然后代入所求式子进行计算即可.
A.4个B.3个C.2个D.1个
【答案】C
【解析】
-2, ,3.14, 是有理数;
, 是无理数;
故选C.
点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,如 , 等;②圆周率π;③构造的无限不循环小数,如 (0的个数一次多一个).
6.下列各式中,正确的是()
A.7B.8C.9D.10
【答案】C
【解析】
【分析】
先根据 计算出a的值,进而再计算 的值即可.
【详解】
因为 ,
所以 ,
则 ,
故选:C.
【点睛】
此题考查了定义新运算以及代数式求值.熟练运用整体代入思想是解本题的关键.பைடு நூலகம்
13.下列说法:①36的平方根是6;②±9的平方根是 3;③ = ;④ 0.01是0.1的平方根;⑤ 的平方根是4;⑥ 81的算术平方根是±9.
【答案】C
【解析】
【分析】
由无理数的估算,得到 , , ,然后进行判断,即可得到答案.
【详解】
解:∵ ,
∴ ,即3<甲<4,
∵ ,
∴ ,即1<乙<2,
∵ ,
∴ ,即4<丙<5,
∴乙 甲 丙;
故选:C.
【点睛】
本题考查了实数比较大小,以及无理数的估算,解题的关键是熟练掌握无理数的估算,以及比较大小的法则.
【点睛】
本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.
2. 的立方根是()
A.±2B.±4C.4D.2
【答案】D
【解析】
【分析】
如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.
其中正确的说法是()
A.0B.1C.3D.5
【答案】A
【解析】
【分析】
依据平方根、算术平方根的定义解答即可.
【详解】
①36的平方根是±6;故此说法错误;
②-9没有平方根,故此说法错误;
③ ,故 = 说法错误;
④ 0. 1是0. 01的平方根,故原说法错误;
⑤ 的平方根是±4,故原说法错误;
⑥ 81的算术平方根是9,故原说法错误.
17.实数 的大小关系是()
A. B.
C. D.
【答案】D
【解析】
【分析】
先把3化成二次根式和三次根式的形式,再把3和 做比较即可得到答案.
【详解】
解:∵
∴ ,

故 ,
故D为答案.
【点睛】
本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较.
【解析】
【分析】
根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.
【详解】
①正确;
②在两直线平行的条件下,内错角相等,②错误;
③正确;
④反例:两个无理数π和-π,和是0,④错误;
⑤坐标平面内的点与有序数对是一一对应的,正确;
故选:B.
根据绝对值的性质去掉绝对值的符号后进行合并即可.
【详解】
原式=1+ +2﹣
=3,
故选D.
【点睛】
本题考查了实数的运算,熟练掌握绝对值的性质是解本题的关键.
16.已知甲、乙、丙三个数,甲 ,乙 ,丙 ,则甲、乙、丙之间的大小关系,下列表示正确的是().
A.甲 乙 丙B.丙 甲 乙C.乙 甲 丙D.甲 丙 乙
10.下列式子中,计算正确的是()
A.- =-0.6B. =-13
C. =±6D.- =-3
【答案】D
【解析】
A选项中,因为 ,所以 ,故A中计算错误;
B选项中,因为 ,所以B中计算错误;
C选项中,因为 ,所以C中计算错误;
D选项中,因为 ,所以D中计算正确;
故选D.
相关文档
最新文档