二次函数-用待定系数法求解二次函数解析式专题讲义
二次函数(基础思想)讲义
![二次函数(基础思想)讲义](https://img.taocdn.com/s3/m/11e5d66d55270722182ef75e.png)
二 次 函 数1、二次函数的常见解析式及其三要素①a 的符号决定抛物线的的开口大小、形状相同;如果a 相同,那么抛物线的开口方向、开口大小完全相同。
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .③二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=, ④当0>a 时⇔抛物线开口向上⇔顶点为其最低点⇔a b ac y 最小442-=;当0<a 时⇔抛物线开口向下⇔顶点为其最高点⇔ab ac y 最大442-=。
2、二次函数的性质:⑴增减性:以对称轴h x =为界,具有双向性。
⑵对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线的对称轴垂直平分对称点的连线. 即:若A 、B 两点是抛物线上关于对称轴h x =对称的两点,则有:①B A y y =;②h x x B A =+2(即abx x -=+21)。
基础练习题:1、抛物线y = - 2 ( x – 3 )2– 7 对称轴 x = , 顶点坐标为 ; 2、抛物线 y = 2x 2+ 12x – 25的对称轴为 x = , 顶点坐标为 . 3、若将二次函数y =x 2-2x + 3配方为y =(x -h )2+ k 的形式,则y =4、抛物线y = - 4(x +2)2+5的对称轴是 。
5、抛物线 y = - 3x 2+ 5x - 4开口 , y = 4x 2– 6x + 5 开口 .6、已知P 1(11y ,x )、P 2(22y ,x )、P 3(33y ,x )是抛物线3x 2x y 2--=上的三个点,若321x x x 1<<<,则321y y y 、、的大小关系是____________。
7、已知函数y =x 2-2x -2的图象如图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .-1≤x ≤3B .-3≤x ≤1C .x ≥-3D .x ≤-1或x ≥38、如图中有相同对称轴的两条抛物线,下列关系不正确的是( ) A h=m B k=n C k >n D h >0,k >0 9、抛物线4)2(22-+-+=m x m x y 的顶点在原点,则m= 10、如图抛物线对称轴是x=1,与x 轴交于A 、B 两点,若B 点的坐标是(3,0),则A 点的坐标是 11、请选择一组你喜欢的的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:(1)开口向下,(2)当时,y 随x 的增大而增大;当时,y 随x的增大而减小。
待定系数法求二次函数的解析式—知识讲解(基础)
![待定系数法求二次函数的解析式—知识讲解(基础)](https://img.taocdn.com/s3/m/fb2738d319e8b8f67c1cb9df.png)
待定系数法求二次函数的解析式—知识讲解(基础)【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式 1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0). 2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数;第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】类型一、用待定系数法求二次函数解析式1.(2019秋•岳池县期末)已知二次函数图象过点O (0,0)、A (1,3)、B (﹣2,6),求函数的解析式和对称轴.【答案与解析】解:设二次函数的解析式为y=ax 2+bx+c , 把O (0,0)、A (1,3)、B (﹣2,6)各点代入上式得解得,∴抛物线解析式为y=2x 2+x ;∴抛物线的对称轴x=﹣=﹣=﹣.【总结升华】若给出抛物线上任意三点,通常可设一般式:y=ax 2+bx+c (a ≠0). 举一反三:【高清课程名称:待定系数法求二次函数的解析式高清ID 号: 356565 关联的位置名称(播放点名称):例1】【变式】已知:抛物线2y ax bx c =++经过A (0,5-),B (1,3-),C (1-,11-)三点,求它的顶点坐标及对称轴.【答案】设52-+=bx ax y (a ≠0),据题意列⎩⎨⎧--=--+=-51153b a b a ,解得⎩⎨⎧=-=42b a ,所得函数为5422-+-=x x y 对称轴方程:1=x ,顶点()31-,.2.(2019•巴中模拟)已知抛物线的顶点坐标为M (1,﹣2),且经过点N (2,3),求此二次函数的解析式.【答案与解析】解:已知抛物线的顶点坐标为M (1,﹣2),设此二次函数的解析式为y=a (x ﹣1)2﹣2, 把点(2,3)代入解析式,得: a ﹣2=3,即a=5,∴此函数的解析式为y=5(x ﹣1)2﹣2. 【总结升华】本题已知顶点,可设顶点式. 举一反三:【高清课程名称:待定系数法求二次函数的解析式高清ID 号: 356565 关联的位置名称(播放点名称):例2】【变式】在直角坐标平面内,二次函数图象的顶点为(14)A -,,且过点(30)B ,. (1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.【答案】(1)223y x x =--.(2)令0y =,得2230x x --=,解方程,得13x =,21x =-.∴二次函数图象与x 轴的两个交点坐标分别为(30),和(10)-,. ∴二次函数图象向右平移1个单位后经过坐标原点. 平移后所得图象与x 轴的另一个交点坐标为(40),.3.已知二次函数的图象如图所示,求此抛物线的解析式.【答案与解析】解法一:设二次函数解析式为2y ax bx c =++(a ≠0),由图象知函数图象经过点(3,0),(0,3).则有930,3,1,2a b c c ba⎧⎪++=⎪=⎨⎪⎪-=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩∴ 抛物线解析式为223y x x =-++.解法二:设抛物线解析式为12()()y a x x x x =--(a ≠0). 由图象知,抛物线与x 轴两交点为(-1,0),(3,0). 则有(1)(3)y a x x =+-,即223y ax ax a =--. 又33a -=,∴ 1a =-.∴ 抛抛物物解析式为223y x x =-++.解法三:设二次函数解析式为2()y a x h k =-+(a ≠0). 则有2(1)y a x k =-+,将点(3,0),(0,3)代入得40,3,a k a k +=⎧⎨+=⎩ 解得1,4.a k =-⎧⎨=⎩∴ 二次函数解析式为2(1)4y x =--+,即223y x x =-++.【总结升华】二次函数的解析式有三种不同的形式,它们是相互联系、并可相互转化的,在实际解题时,一定要根据已知条件的特点,灵活选择不同形式的解析式求解.类型二、用待定系数法解题4.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y 轴交于点C .(1)求二次函数解析式; (2)求△ABC 的面积. 【答案与解析】(1)设抛物线解析式为(2)(4)y a x x =+-(a ≠0),将(3,5)代入得5(32)(34)a =+-,∴ 1a =-.∴ (2)(4)y x x =-+-. 即228y x x =-++.(2)由(1)知C(0,8), ∴ 1(42)8242ABC S =+⨯=△. 【总结升华】此题容易误将(3,5)当成抛物线顶点.将抛物线解析式设成顶点式.2019-2020学年数学中考模拟试卷一、选择题1.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:则下列关于这组数据的说法,正确的是( ) A .众数是2.3 B .平均数是2.4 C .中位数是2.5D .方差是0.012.如图,直线a ∥b .将一直角三角形的直角顶点置于直线b 上,若∠l =28°,则∠2的度数是( )A.108°B.118°C.128°D.152°3.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴的正半轴上,顶点B 在函数y =kx(x >0)的图象上,若∠C =60°,AB =2,则k 的值为( )AB C .1 D .24.在一条笔直的公路上有A 、B 两地,甲乙两人同时出发,甲骑自行车从A 地到B 地,乙骑自行车从B 地到A 地,到达A 地后立即按原路返回B 地.如图是甲、乙两人离B 地的距离(km)y 与行驶时间(h)x 之间的函数图象,下列说法中①A 、B 两地相距30千米;②甲的速度为15千米/时;③点M 的坐标为(23,20);④当甲、乙两人相距10千米时,他们的行驶时间是49小时或89小时. 正确的个数为( )A .1个B .2个C .3个D .4个5.如图,ABC ∆中,90ACB ∠=︒,4AC =,6BC =,CD 平分ACB ∠交AB 于点D ,点E 是AC 的中点,点P是CD上的一动点,则PA PE+的最小值是()A.B.6 C.D6.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.5 B.6 C.7 D.87.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=kx上(k>0,x>0),则k的值为()A.B.C.9 D.8.随着通讯市场竞争的日益激烈,某通讯公司的手机市话收费按原标准降低了a元后,再次下调了25%,现在的收费标准是每分钟b元,则原收费标准每分钟为()A.4()3b a-元B.4()3b a+元C.5()4b a-元D.5()4b a+元9.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个10.跳远项目中,以测量最靠近起跳线的点到起跳线的距离作为成绩.如图是小慧在跳远训练中的一跳,下列线段中,它的长度能作为她的成绩的是()A.线段PAB.线段PBC.线段ADD.线段BD11.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是()A.120°B.130°C.140°D.150°12.如图所示几何体的左视图是( )A. B. C. D.二、填空题13.在△ABC 中,AB =AC ,CD 是AB 边上的中线,点E 在边AC 上(不与A ,C 重合),且BE =CD .设ABBC=k ,若符合条件的点E 有两个,则k 的取值范围是_____.14.如图,两块三角尺的直角顶点靠在一起,BC=3,EF=2,G 为 DE 上一动点,把三角尺DEF 绕直角顶点 F 旋转一周,在这个旋转过程中,B ,G 两点的最小距离为_____.15.已知x 满足(x+3)3=64,则x 等于_____. 16.分解因式:29m - =___________.17.若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______. 18.如图,在平面直角坐标系中,一次函数y =x+1的图象l 与y 轴交于点C ,A 1的坐标为(1,0),点B 1在直线l 上,且A 1B 1平行于y 轴,连接CA 1、OB 1交于点P 1,过点A 1作A 1B 2∥OB 1交直线l 于点B 2,过点B 1作B 1A 2∥CA 1交x 轴于点A 2,A 1B 2与B 1A 2交于点P 2,……,按此进行下去,则点P 2019的坐标为_____.三、解答题19.在箱子中有10张卡片,分别写有1到10的十个整数,从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中,第二次再从箱子中任取一张卡片,记下它的读数y ,试求x+y 是10的倍数的概率.20.(1)计算)0-4cos60°+(13)-1. (2)先化简,再求值:(2-43-3x x x +-13x -)·(22-21-32x x x x ++-2-2x ),其中x=4.21.如图,一次函数y =kx+b 的图象与坐标轴分别交于A 、B 两点,与反比例函数y =mx的图象在第一象限的交点为C ,CD ⊥x 轴于D ,若OB =3,OD =6,△AOB 的面积为3. (1)求一次函数与反比例函数的表达式; (2)当x >0时,比较kx+b 与mx的大小.22.计算:214)0452-︒⎛⎫ ⎪⎝⎭. 23.解不等式组()214111143x x x x ⎧+-⎪⎨+--≤⎪⎩>24.如图,在ABC ∆中,90BAC ∠=︒,AB AC =,AD BC D ⊥于点.(1)如图1,点E 、F 在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =. (2)点M ,N 分别在直线AD ,AC 上,且90BMN ∠=︒. ①如图2,当点M 在AD的延长线上时,求证:AB AN +=;②当点M 在点A ,D 之间,且30AMN =︒∠时,已知AB =AM 的长.25.有一块含30°角的直角三角板OMN ,其中∠MON =90°,∠NMO =30°,ON =,将这块直角三角板按如图所示位置摆放.等边△ABC 的顶点B 与点O 重合,BC 边落在OM 上,点A 恰好落在斜边MN 上,将等边△ABC 从图1的位置沿OM 方向以每秒1个单位长度的速度平移,边AB ,AC 分别与斜边MN 交于点E ,F (如图2所示),设△ABC 平移的时间为t (s )(0<t <6).(1)等边△ABC 的边长为 ;(2)在运动过程中,当 时,MN 垂直平分AB ;(3)当0<t <6时,求直角三角板OMN 与等边△ABC 重叠部分的面积S 与时间t 之间的函数关系式.【参考答案】*** 一、选择题二、填空题13.3k <<且1k ≠ 14. 15.16.(m -3)(m +3) 17.-718.20202019221,33⎛⎫-+ ⎪⎝⎭三、解答题 19.1 【解析】 【分析】本题是一个等可能事件的概率,试验发生包含的事件是先后取两次卡片,每次都有1~10这10个结果,满足条件的事件x+y 是10的倍数的数对可以列举出结果数,根据等可能事件的概率公式得到结果. 【详解】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是先后取两次卡片,每次都有1~10这10个结果, 故形成的数对(x ,y )共有100个.满足条件的事件x+y 是10的倍数的数对包括以下10个:(1,9),(9,1),(2,8),(8,2),(3,7),(7,3),(4,6),(6,4),(5,5),(10,10).故“x+y 是10的倍数”的概率为 1100.1100P ==. 【点睛】本题考查等可能事件的概率,是一个关于数字的题目,数字问题是概率中经常出现的题目,一般可以列举出要求的事件,然后根据概率公式计算.20.(1);(2)x-2,2. 【解析】 【分析】(1)先根据二次根式的性质、绝对值的意义、零指数幂、特殊角的三角函数值及负整数指数幂的意义逐项化简,再合并同类项或同类二次根式即可;(2)先根据分式的运算法则将所给代数式化简,再把x=4代入计算即可. 【详解】解:(1)原式4×12+3(2)原式=2-43-3x x x ++1-3x ·2(-1)(-1)(-2)x x x -2-2x=2(-2)-3x x ·-1-2x x -2-2x=2(-2)-3x x ·-3-2x x=x-2,当x=4时,原式=4-2=2. 【点睛】本题考查了实数的混合运算,分式的化简求值,熟练掌握特殊角的三角函数值、负整数指数幂的意义及分式的运算法则是解答本题的关键. 21.(1) 223y x =-,12y x =;(2) 当0<x <6时,kx+b <m x ,当x >6时,kx+b >mx【解析】 【分析】(1)根据点A 和点B 的坐标求出一次函数的解析式,再求出C 的坐标6,2) ,利用待定系数法求解即可求出解析式(2)由C (6,2)分析图形可知,当0<x <6时,kx+b <m x ,当x >6时,kx+b >mx【详解】 (1)S △AOB =12OA•OB=3,∴OA=2,∴点A的坐标是(0,﹣2),∵B(3,0)∴2 30 bk b=-⎧⎨+=⎩∴232 kb⎧=⎪⎨⎪=-⎩∴y=23x﹣2.当x=6时,y=23×6﹣2=2,∴C(6,2)∴m=2×6=12.∴y=12x.(2)由C(6,2),观察图象可知:当0<x<6时,kx+b<mx,当x>6时,kx+b>mx.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于求出C的坐标22.1【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值和负指数幂的性质分别化简得出答案.【详解】解:原式=4﹣3+12=2﹣1=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.23.-5≤x<5 2【解析】【分析】分别解出两不等式的解集,再求其公共解.【详解】解:() 214111143x xx x⎧+-⎪⎨+--≤⎪⎩>①②由①得x<52;由②得x≥-5;∴不等式组的解集为-5≤x<52.【点睛】本题考查了解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.(1)见解析;(21.【解析】【分析】(1)先判断出∠BAD=∠CAD=45°,进而得出∠CAD=∠B,再判断出∠BDE=∠ADF,进而判断出△BDE≌△ADF,即可得出结论;(2)①先判断出AM=PM,进而判断出∠BMP=∠AMN,判断出△AMN≌△PMB,即可判断出AP=AB+AN,再判断出,即可得出结论;②先求出BD,再求出∠BMD=30°,最后用三角函数求出DM,即可得出结论.【详解】(1)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵AD⊥BC,∴BD=CD,∠BAD=∠CAD=45°,∴∠CAD=∠B,AD=BD,∵∠EDF=∠ADC=90°,∴∠BDE=∠ADF,∴△BDE≌△ADF(ASA),∴BE=AF;(2)①如图1,过点M作MP⊥AM,交AB的延长线于点P,∴∠AMP=90°,∵∠PAM=45°,∴∠P=∠PAM=45°,∴AM=PM,∵∠BMN=∠AMP=90°,∴∠BMP=∠AMN,∵∠DAC=∠P=45°,∴△AMN≌△PMB(ASA),∴AN=PB,∴AP=AB+BP=AB+AN,在Rt△AMP中,∠AMP=90°,AM=MP,∴,∴AM;②如图,在Rt△ABD中,AD=BD=2∵∠BMN=90°,∠AMN=30°,∴∠BMD=90°-30°=60°,在Rt△BDM中,DM=1BDtan BMD==∠,∴.【点睛】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,锐角三角函数,判断出△BDE≌△ADF是解(1)的关键,构造出全等三角形是解(2)的关键.25.(1)3;(2)3;(3)22(03)84(36)tSt+<⎪=+<<….【解析】【分析】(1)根据,∠OMN=30°和△ABC为等边三角形,求证△OAM为直角三角形,然后即可得出答案.(2)易知当点C与M重合时直线MN平分线段AB,此时OB=3,由此即可解决问题;(3)分两种情形分别求解:当0<t≤3时,作CD⊥FM于D.根据S=S△MEB﹣2S△MDC,计算即可.②当3<t <6时,S=S△MEB.【详解】解:(1)在Rt△MON中,∵∠MON=90°,ON=M=30°∴OM=6,∵△ABC为等边三角形∴∠AOC=60°,∴∠OAM=90°∴OA⊥MN,即△OAM为直角三角形,∴OA=12OM=12×6=3.故答案为3.(2)易知当点C与M重合时直线MN平分线段AB,此时OB=3,所以t=3.故答案为3.(3)易知:OM=6,MN=,S△OMN=12×6=∵∠M=30°,∠MBA=60°,∴∠BEM=90°.①当0<t≤3时,作CD⊥FM于D.∵∠ACB=60°,∠M=30°,∠FCB=∠M+∠CFM,∴∠CFM=∠M=30°,∴CF=CM,∵CD⊥FM,∴DF=DM,∴S△CMF=2S△CDM,∵△MEB∽△MON,∴2MEBMONS BMS MB⎛⎫= ⎪⎝⎭,∴S△MEB=2822t-+,∵△MDC∽△MON,∴2MDCMONS MCS MN⎛⎫= ⎪⎝⎭,∴S△MDC=2848t-+,∴S=S△MEB﹣2S△MDC=﹣284+.②当3<t<6时,S=S△MEB=2822-+,综上所述,S=22(03)(36)tt+<<<⎩….【点睛】本题属于几何变换综合题,考查了平移变换,等边三角形的性质和判定,解直角三角形,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2019-2020学年数学中考模拟试卷一、选择题1.下列计算正确的是( ) A .b 2•b 3=b 6 B .(﹣a 2)3=a 6C .(ab )2=ab 2D .(﹣a )6÷(﹣a )3=﹣a 32.如图的四个转盘中,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )A. B. C. D.3.若关于x ,y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x+3y =6的解,则k 的值为( )A.34B.43C.﹣34D.﹣434.6月15日“父亲节”,小明准备送给父亲一个礼盒(如图所示),该礼盒的俯视图是( )A. B. C. D.5.下列标志中,是中心对称图形的是( )A. B. C. D.6.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,∠CAB =30°,AC =则图中阴影部分的面积是( )A .32π-B .32π C .3924π- D .3π-7.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22S S >乙甲;②22S S <甲乙.③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的是( )A.①③B.①④C.②④D.②③8.如图所示的几何体的左视图是()A.B.C.D.9.如图,DE∥MN,Rt△ABC的直角顶点C在DE上,顶点B在MN上,且BC平分∠ABM,若∠A=58°,则∠BCE的度数为()A.29°B.32°C.58°D.64°10.如图,在菱形ABCD中,AB=8,∠B=60°,P是AB上一点,BP=5,Q是CD边上ー动点,将四边形APQD沿直线PQ折叠,A的对应点A`.当CA`的长度最小时,则CQ的长为( )A.7 B.C.D.11.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .12.如图,已知等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点O ,则下列判断不正确的是( )A .△ABC ≌△DCB B .△AOD ≌△COBC .△ABO ≌△DCOD .△ADB ≌△DAC二、填空题 13.二次函数223y x =的图象如图所示,自原点开始依次向上作内角为60度、120度的菱形(其中两个顶点在抛物线上另两个顶点在y 轴上,相邻的菱形在y 轴上有一个公共点),则第2017个菱形的周长=______.14.写出一个解为11x y =⎧⎨=-⎩的二元一次方程是_____.15.如图,在矩形ABCD 中,AB=4,AD=3,矩形内部有一动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点的距离之和PA+PB 的最小值为______.16.中国的领水面积约为3700000km 2,将3700000用科学记数法表示为_____. 17.计算:=_____.18.利用标杆测量建筑物的高度的示意图如图所示,若标杆的高为米,测得米,米,则建筑物的高为__米.三、解答题19.2019年初,电影《流浪地球》和《绿皮书》陆续热播,为了解某大学1800名学生对两部电影的喜爱程度,调查小组随机抽取了该大学20名学生对两部电影打分,过程如下.收集数据20名大学生对两部电影的打分结果如下:《流浪地球》78 75 99 98 79 67 88 78 76 98 88 79 97 91 78 80 93 90 99 99《绿皮书》88 79 68 97 85 74 96 84 92 97 89 81 91 75 80 85 91 89 97 92整理、描述数据绘制了如下频数分布直方图和统计表,请补充完整.(说明:60≤x<70表示一般喜欢,70≤x<80表示比较喜欢,80≤x<90表示喜欢,90≤x<100表示超级喜欢)分析数据、推断结论(1)估计该大学超级喜欢电影《绿皮书》的有人;(2)你认为观众更喜欢这两部电影中的(填《流浪地球》或《绿皮书》),理由是.20.随着生活水平的提高,人们对饮水品质的需求越来越高,某公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B 型净水器的数量相等(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A,B两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元,试销时A型净水器每台售价2500元,B型净水器每台售价2180元,公司决定从销售A型净水器的利润中按每台捐献a元作为公司帮扶贫困村饮水改造资金.若公司售完50台净水器并捐献扶贫资金后获得的最大利润不低于20200元但不超过23000元,求a 的取值范围.21.某学校打算假期组织老师外出旅游,初步统计,参加旅游的人数约在30~60人左右.该校联系了两家报价均为1200元的旅行社,甲旅行社的优惠措施是30人以内(包括30人)全额收费,超出部分每人打六折;乙旅行社的优惠措施是每人打九折,若人数在30人(包括30人)以上,还可免去两个人的费用. (1)该校选择哪一家旅行社合算?(2)若该校最终确定参加旅游的人数为48人,学校可给每位参加旅游的教师补贴200元,则参加旅游的教师每人至少要花多少钱?22.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D .(1)求证:∠APO =∠CPO ;(2)若⊙O 的半径为3,OP =6,∠C =30°,求PC 的长.23.(1)计算:(0+3tan30°﹣2|+11()2-(2)解方程:3+1x xx x -= 24.已知四边形ABCD 内接于O ,AB 为O 的直径,148BCD ∠=︒.(Ⅰ)如图①,若E 为AB 上一点,延长DE 交O 于点P ,连接AP ,求APD ∠的大小;(Ⅱ)如图②,过点A 作O 的切线,与DO 的延长线交于点P ,求APD ∠的大小.25.春暖花开,树木萌芽,某种时令蔬菜的价格呈上升趋势,若这种蔬菜开始时的售价为每斤20元,并且每天涨价2元,从第六天开始,保持每斤30元的稳定价格销售,直到11天结束,该蔬菜退市. (1)请写出该种蔬菜销售价格y 与天数x 之间的函数关系式;(2)若该种蔬菜于进货当天售完,且这种蔬菜每斤进价z 与天数x 的关系为z =﹣21(8)8-x +12(1≤x≤11),且x 为整数,那么该种蔬菜在第几天售出后,每斤获得利润最大?最大利润为多少?【参考答案】***一、选择题二、填空题13.806814.x+y=01516.7×10617.318.15三、解答题19.补全统计图与统计表见解析;(1)720;(2)见解析.【解析】【分析】(1)根据题干中所给数据,整理可补全直方图;再根据众数和中位数的定义可得;(2)答案不唯一,合理即可.【详解】(1)补全《流浪地球》的分布直方图如下:填统计表如下:估计该大学超级喜欢电影《绿皮书》的有1800×820=720(名),故答案为:720;(2)答案不唯一,喜欢《绿皮书》理由:在被调查者中,喜欢《绿皮书》的中位数高于喜欢的《流浪地球》中位数; 为《绿皮书》打分在80分以上的有16人,而为《流浪地球》打分在以上的只有12人.故答案为:《绿皮书》,在被调查者中,喜欢《绿皮书》的中位数高于喜欢的《流浪地球》中位数.【点睛】此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键.20.(1)每台A 型、B 型净水器的进价分别是2000元、1800元;(2)a 的取值范围是20≤a≤90.【解析】【分析】(1)根据题意可以列出相应的分式方程,从而可以解答本题;(2)根据题意可以求得x 的取值范围和利润与x 的函数关系式,然后根据一次函数的性质即可解答本题.【详解】(1)设每台A 型的进价为m 元,5000045000200m m =-, 解得,m =2000,经检验,m =2000是原分式方程的解,∴m ﹣200=1800,答:每台A 型、B 型净水器的进价分别是2000元、1800元;(2)2000x+1800(50﹣x )≤98000,解得,x≤40,设公司售完50台净水器并捐款后获得的利润为w 元,w =(2500﹣2000)x+(2180﹣1800)(50﹣x )﹣ax =(120﹣a )x+19000,当a≥120时,w≤19000不合题意,当a <120时,120﹣a <0,当x =40时,w 取得最大值,∴20200≤40(120﹣a )+19000≤23000,解得,20≤a≤90,即a 的取值范围是20≤a≤90.【点睛】本题考查一次函数的应用、一元一次不等式的应用、分式方程的应用,解答本题的关键是明确题意,利用一次函数的性质解答,注意分式方程要检验.21.(1)当旅游人数小于46人时,选乙旅行社;人数为46人时,两家旅行社费用一样;人数大于46人时,选甲旅行社;(2)820.【解析】【分析】(1)设x 人参加旅游,用x 分别表示甲和乙旅行社的费用,两费用相等则列方程求出对应的人数,谁家费用较大列不等式求出对应的人数范围.(2)人数为48人则选甲旅行社花费少,把总费用求出后再减去学校补贴总额200×48元,得到总旅游费用,再除以48记得人均费用.【详解】解:(1)设参加旅游的人数为x人(30<x<60),甲旅行社费用为y1元,乙旅行社费用为y2元,得:y1=1200×30+1200×0.6(x-30)=720x+14400y2=1200×0.9(x-2)=1080x-2160当y1=y2时,720x+14400=1080x-2160解得:x=46当y1>y2时,720x+14400>1080x-2160解得:x<46当y1<y2时,720x+14400<1080x-2160解得:x>46答:当旅游人数小于46人时,选乙旅行社;人数为46人时,两家旅行社费用一样;人数大于46人时,选甲旅行社.(2)由(1)得,人数为48人时选甲旅行社费用更低.∴(720×48+14400-200×48)÷48=820(元)答:参加旅游的教师每人至少要花820元.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,是选择方案的常考题.22.(1)详见解析;(2).【解析】【分析】(1)根据切线长定理证明;(2)根据切线的性质得到∠PAC=90°,根据勾股定理求出AP,根据含30°的直角三角形的性质计算即可.【详解】(1)证明:∵PA、PB是⊙O的切线,∴∠APO=∠CPO;(2)解:∵PA是⊙O的切线,∴∠PAC=90°,∴AP=,在Rt△CAP中,∠C=30°,∴PC=2AP=.【点睛】本题考查的是切线的性质、直角三角形的性质,掌握切线长定理、勾股定理是解题的关键.23.(1);(2)x=﹣1.5.【解析】【分析】(1)根据0指数幂、特殊的三角函数值、绝对值及负整数指数幂即可解答.(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)原式=13221+-++=+(2)去分母得:x 2=x 2﹣2x ﹣3,移项合并得:﹣2x =3,解得:x =﹣1.5,经检验x =﹣1.5是原方程的解.【点睛】本题考查了0指数幂、特殊的三角函数值、绝对值、负整数指数幂及解分式方程,掌握各种运算的法则是关键,解分式方程必须检验.24.(Ⅰ);58APD ∠=︒;(Ⅱ)26APD ∠=︒.【解析】【分析】(Ⅰ)连接BD ,根据圆内接四边形的对角互补得出BAD 32∠=︒,再根据直径所对的圆周角是直角得出ADB 90∠=︒,从而求出ABD ∠,再根据同弧所对的圆角角相等即可得出APD ∠的度数.(Ⅱ)连接AD,根据等腰三角形的性质,可得ADO OAD 32∠∠==︒,再根据切线的性质和三角形即可得出APD ∠度数.【详解】解:(Ⅰ)连接BD ,∵四边形ABCD 是圆内接四边形,∴BCD BAD 180.∠∠+=︒∵BCD 148,∠=︒∴BAD 32.∠=︒又AB 是O 的直径,∴BDA 90.∠=︒∴BAD ABD 90,∠∠+=︒∴ABD 58.∠=︒∴APD ABD 58.∠∠==︒(Ⅱ)连接AD,由(Ⅰ)可知:BAD 32,∠=︒又OA OD =,可得ADO OAD 32,∠∠==︒∵DP 切O 于点A,∴OA PA ⊥,即PAO 90.∠=︒则PAD PAO OAD 122,∠∠∠=+=︒在APD 中,∵PAD ADO APD 180,∠∠∠++=︒∴APD 26∠=︒.【点睛】本题考查了圆内接四边形定理、圆周角定理、切线的性质等知识,熟练掌握相关的定理定义是解题的关键.25.(1)202(1)218(16)30(611)x x x y x +-=+<⎧=⎨⎩…剟;(2)在第11天进货并售出后,所获利润最大,且为每件最大利润为19.125元.【解析】【分析】(1)根据销售价格随时间的变化关系设y 与x 之间的函数关系为y =kx+b,由分段函数求出其值即可;(2)根据利润=售价﹣进价就可以表示出利润与时间之间的关系,由二次函数的性质就可以求出结论.【详解】解:(1)该种蔬菜销售价格y 与天数x 之间的函数关系式:y =()()()20212181630611x x x x ⎧+-=+≤≤⎪⎨≤≤⎪⎩; (2)设利润为W,则W =y ﹣z =()()()()()()()222211218812141688113081281861188x x x x x x x x x ⎧++--=+≤≤⎪⎪⎨⎪+--=-+≤≤⎪⎩为整数为整数, W =21148x +,对称轴是直线x =0,当x >0时,W 随x 的增大而增大, ∴当x =5时,W 最大=258+14=17.125(元) W =()218188x -+,对称轴是直线x =8,当x >8时,W 随x 的增大而增大,∴当x=11时,W最大=18×9+18=1918=19.125(元)综上可知:在第11天进货并售出后,所获利润最大且为每件19.125元.【点睛】本题主要考查了二次函数的应用,待定系数法求函数的解析式的运用,二次函数的最值的运用,解答时求出利润的解析式是关键.。
待定系数法求二次函数解析式(讲义)
![待定系数法求二次函数解析式(讲义)](https://img.taocdn.com/s3/m/1d64c14fddccda38376baf72.png)
⎧⎪⎨⎪⎩待定系数法求二次函数解析式(讲义)一、【基础知识精讲】1.二次函数的意义;2.二次函数的图象;3.二次函数的性质⎧⎪⎪⎨⎪⎪⎩顶点对称轴开口方向增减性 顶点式:y=a(x-h)2+k(a ≠0)4.二次函数 待定系数法确定函数解析式 一般式:y=ax 2+bx+c(a ≠0) 两根式:y=a(x-x 1)(x-x 2)(a ≠0)5.二次函数与一元二次方程的关系。
6.抛物线y=ax 2+bx+c 的图象与a 、b 、c 之间的关系。
(二)、中考知识梳理1.二次函数的图象在画二次函数y=ax 2+bx+c(a ≠0)的图象时通常先通过配方配成y=a(x+b 2a )2+ 4a 24ac-b 的形式,先确定顶点(-b 2a ,4a24ac-b ),然后对称找点列表并画图,或直接代用顶点公式来求得顶点坐标. 2.理解二次函数的性质抛物线的开口方向由a 的符号来确定,当a>0时,在对称轴左侧y 随x 的增大而减小;在对称轴的右侧,y 随x 的增大而增大;简记左减右增,这时当x=-b 2a 时,y 最小值=4a24ac-b ;反之当a<•0时,简记左增右减,当x=-b 2a 时y 最大值=4a24ac-b . 3.待定系数法是确定二次函数解析式的常用方法一般地,在所给的三个条件是任意三点(或任意三对x,y•的值)•可设解析式为y=ax 2+bx+c,然后组成三元一次方程组来求解;在所给条件中已知顶点坐标或对称轴或最大值时,可设解析式为y=a(x-h)2+k;在所给条件中已知抛物线与x•轴两交点坐标或已知抛物线与x 轴一交点坐标和对称轴,则可设解析式为y=a(x-x 1)(x-x 2)来求解.4.二次函数与一元二次方程的关系抛物线y=ax 2+bx+c 当y=0时抛物线便转化为一元二次方程ax 2+bx+c=0,即抛物线与x 轴有两个交点时,方程ax 2+bx+c=0有两个不相等实根;当抛物线y=ax 2+bx+c 与x 轴有一个交点,方程ax 2+bx+c=0有两个相等实根;当抛物线y=ax 2+bx+c 与x 轴无交点,•方程ax 2+bx+c=0无实根.5.抛物线y=ax 2+bx+c 中a 、b 、c 符号的确定a 的符号由抛物线开口方向决定,当a>0时,抛物线开口向上;当a<0时,•抛物线开口向下;c 的符号由抛物线与y 轴交点的纵坐标决定.当c>0时,抛物线交y 轴于正半轴;当c<0时,抛物线交y 轴于负半轴;b 的符号由对称轴来决定.当对称轴在y•轴左侧时,b 的符号与a 的符号相同;当对称轴在y 轴右侧时,b 的符号与a 的符号相反;•简记左同右异.6.会构建二次函数模型解决一类与函数有关的应用性问题,•应用数形结合思想来解决有关的综合性问题.二、【典型例题精析】一般式:例1 已知二次函数的图象经过A(-1,3)、B(1,3)、C(2,6); 求它的解析式。
用待定系数法求二次函数的解析式教案
![用待定系数法求二次函数的解析式教案](https://img.taocdn.com/s3/m/9a3c54f4ba4cf7ec4afe04a1b0717fd5360cb211.png)
用待定系数法求二次函数的解析式教案用待定系数法求二次函数的解析式教案(1)年级九年级课题 26.1 用待定系数法求二次函数的解析式教学媒体多媒体教学目标知识技能会用待定系数法求二次函数解析式.过程方法根据条件恰当设二次函数解析式形式,体会二次函数解析式之间的转换.情感态度体会学习数学知识的价值,提高学生学习的兴趣.教学重点运用待定系数法求二次函数解析式.教学难点根据条件恰当设二次函数解析式形式.教学过程设计教学程序及教学内容一、情境引入已知一次函数图像上的两点的坐标,可以利用待定系数法求出它的解析式,要求二次函数的解析式,需要知道抛物线上几个点的坐标?应该怎样求出二次函数解析式?引出课题:用待定系数法求二次函数的解析式.二、探究新知1.二次函数中有几个待定系数?需要几个抛物线上的点的坐标才能求出来?抛物线经过点(-1,10),(1,4),(2, 7),求出这个二次函数的解析式。
得到:已知抛物线上的三点坐标,可以设函数解析式为,代入后得到一个三元一次方程,解之即可得到的值,从而求出函数解析式,这种解析式叫一般式.2.二次函数中有几个待定系数?需要知道图像上几个点的坐标才能求出来?抛物线的顶点坐标为(1, 2),点(1,-1)也在图像上,能求出它的函数解析式吗?得到:知道抛物线的顶点坐标,可以设函数解析式是先代入顶点坐标(1, 2)得到,再代入点(1,-1)即可得到的值,从而求出函数解析式,这种解析式叫顶点式.用待定系数法求二次函数的解析式教案(2)《用待定系数法求二次函数解析式》教学案例《用待定系数法求二次函数解析式》,“待定系数法”是数学思想方法中的一种重要的方法,在实际生活和生产实践中有着广泛的应用.学生对于“待定系数法”的学习渗透在不同的学习阶段,在初中七、八年级学生学习了正比例函数、反比例函数、一次函数时已经初步学会了用待定系数法求函数解析式;.因此这节课的学习既是前面知识的延续和深化,又为后面的学习奠定基础,起着承前启后的作用.另外,待定系数法作为解决数学实际问题的基本方法和重要手段,在其他学科中也有着广泛的应用.一.教学目标:1、理解二次函数的三种不同形式,并选择恰当的形式用待定系数法确定其解析式。
第22章《二次函数》讲义 第8讲 二次函数与方程(有答案)
![第22章《二次函数》讲义 第8讲 二次函数与方程(有答案)](https://img.taocdn.com/s3/m/2334faaa680203d8ce2f24f3.png)
第3讲 二次函数与方程、不等式1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3.两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.(1)、a+b+c 的符号:由x=1时抛物线上的点的位置确定:点在x 轴上方,则a+b+c 。
点在x 轴下方,则a+b+c 。
点在x 轴上,则a+b+c 。
(2)、a-b+c 的符号:由x=-1时抛物线上的点的位置确定:点在x 轴上方,则a -b+c 。
点在x 轴下方,则a -b+c 。
点在x 轴上,则a -b+c 。
(3)、2a±b 的符号: 由对称轴与X=1或X=-1的位置相比较的情况决定. (4)、b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0; 1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.1、二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:①、当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-. ②、当0∆=时,图象与x 轴只有一个交点;③、当0∆<时,图象与x 轴没有交点.(1)当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;(2)当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2、抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3、二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母考点1、待定系数法求二次函数解析式例1、已知点A(2,3)在函数y=ax2-x+1的图象上,则a等于()A.-1 B.1 C.2 D.-2例2、若一次函数y=x+m2与y=2x+4的图象交于x轴上同一点,则m的值为()A.m=2 B.m=±2 C.m=D.m=±例3、已知抛物线顶点为(1,3),且与y轴交点的纵坐标为-1,则此抛物线解析式是.例4、已抛物线过点A(-1,0)和B(3,0),与y轴交于点C,且BC=,则这条抛物线的解析式为.例5、二次函数y=2x2+bx+c的图象经过点(2,3),且顶点在直线y=3x-2上,则二次函数的关系式为:.例6、已知二次函数的图象经过点(0,-1)、(1,-3)、(-1,3),求这个二次函数的解析式.并用配方法求出图象的顶点坐标.例7、已知抛物线y=ax2+bx+c的顶点在直线y=x上,且这个顶点到原点的距离为又知抛物线与x轴两交点横坐标之积等于-1,求此抛物线的解析式.1、已知抛物线的顶点坐标是(2,1),且抛物线的图象经过(3,0)点,则这条抛物线的解析式是()A.y=-x2-4x-3 B.y=-x2-4x+3 C.y=x2-4x-3 D.y=-x2+4x-32、已知抛物线y=ax2+bx+c与x轴交点的横坐标的和为-4,积是-5,且抛物线经过点(0,-5),则此抛物线的解析式为( C )A.y=x2-4x-5 B.y=-x2+4x-5 C.y=x2+4x-5 D.y=-x2-4x-53、已知二次函数y=x2+bx+c的图象过A(c,0),对称轴为直线x=3,则此二次函数解析式为.4、抛物线y=ax2+bx+c中,已知a:b:c=l:2:3,最小值为6,则此抛物线的解析式为.5、已知y与x2+2成正比例,且当x=1时,y=6.(1)求y与x之间的函数关系式;(2)若点(a,12)在函数图象上,求a的值.6、如图,抛物线y=2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).(1)求抛物线的解析式及顶点D的坐标;(2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.考点2、函数与方程例1、如果抛物线y=x2+(k-1)x+4与x轴有且只有一个交点,那么正数k的值是()A.3 B.4 C.5 D.6例2、二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则以下关于m的结论正确的是()A.m的最大值为2 B.m的最小值为-2C.m是负数D.m是非负数例3、设抛物线y=x2+kx+4与x轴有两个不同的交点(x1,0),(x2,0),则下列结论中,一定成立的是()A.x12+x22=17 B.x12+x22=8 C.x12+x22<17 D.x12+x22>8例4、已知抛物线y=x2-2ax+a+2的顶点在x轴上,则方程的实数根的积为.☆例5、已知关于x的方程mx2-(3m-1)x+2m-2=0.(1)求证:无论m取任何实数时,方程恒有实数根;(2)若m为整数,且抛物线y=mx2-(3m-1)x+2m-2与x轴两交点间的距离为2,求抛物线的解析式;(3)若直线y=x+b与(2)中的抛物线没有交点,求b的取值范围.1、抛物线y=x2-2x-3与坐标轴的交点个数为()A.0个B.1个C.2个D.3个2、如图所示,抛物线y=ax2+bx+c与两坐标轴的交点分别是A、B、E,且△ABE是等腰直角三角形,AE=BE,则下列关系式中不能成立的是()A.b=0 B.S△ABE=c2 C.ac=-1 D.a+c=03、二次函数y=ax2+bx+c的图象与x轴相交于(-1,0)和(5,0)两点,则该抛物线的对称轴是.4、已知抛物线y=x2+kx+4-k交x轴于整点A、B,与y轴交于点C,则△ABC的面积为.5、已知关于x的函数y=ax2+x+1(a为常数)(1)若函数的图象与x轴恰有一个交点,求a的值;(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.考点3、二次函数与不等式(组)例1、如图,是二次函数和一次函数y2=mx+n的图象,观察图象,写出y1>y2时x的取值范围是()A.-2<x<1 B.x<-2或x>1 C.x>-2 D.x<1例2、若函数y=mx2+mx+m-2的值恒为负数,则m取值范围是()例3、已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(1,3)及部分图象(如图所示),其中图象与横轴的正半轴交点为(3,0),由图象可知:①当x 时,函数值随着x的增大而减小;②关于x的一元二次不等式ax2=bx+c>0的解是.例4、如图,已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于 A(-2,4)、B(8,2)两点,则能使关于x的不等式ax2+(b-k)x+c-m>0成立的x的取值范围是.例5、如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(2,0),B(5,3).(1)求m的值和抛物线的解析式;(2)求不等式ax2+bx+c≤x+m的解集(直接写出答案);(3)若抛物线与y轴交于C,求△ABC的面积.1、抛物线y=ax2+bx+c(a>0)和直线y=mx+n(m≠0)相交于两点P(-1,2),Q(3,5),则不等式-ax2+mx+n>bx+c的解集是()A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>32、已知:二次函数y=x2-4x+a,下列说法中错误的个数是()①当x<1时,y随x的增大而减小②若图象与x轴有交点,则a≤4③当a=3时,不等式x2-4x+a>0的解集是1<x<3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-3.A.1 B.2 C.3 D.43、直线y=-3x+2与抛物线y=x24、已知函数y=x2-2x-3的图象,根据图象回答下列问题.(1)当x取何值时y=0.(2)方程x2-2x-3=0的解是什么?(3)当x取何值时,y<0?当x取何值时,y>0?(4)不等式x2-2x-3<0的解集是什么?5、如图,二次函数的图象与x轴交于A、B 两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,-3),一次函数y2=mx+n的图象过点A、C.(1)求二次函数的解析式;(2)求二次函数的图象与x轴的另一个交点A的坐标;(3)根据图象写出y2<y1时,x的取值范围.1、一抛物线和抛物线y=-2x2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为()A.y=-2(x-1)2+3 B.y=-(2x+1)2+3C.y=-2(x+1)2+3 D.y=-(2x-1)2+32、已知关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根是1,-1,给出下列结论:①a+b+c=0;②b=0;③a=1.c=-1.其中正确的是()A.①②B.①③C.②③D.①②③3、已知:二次函数y=x2-4x-a,下列说法中错误的个数是()①若图象与x轴有交点,则a≤4②若该抛物线的顶点在直线y=2x上,则a的值为-8③当a=3时,不等式x2-4x+a>0的解集是1<x<3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-1⑤若抛物线与x轴有两个交点,横坐标分别为x1、x2,则当x取x1+x2时的函数值与x取0时的函数值相等.A.1 B.2 C.3 D.44、二次函数y=ax2+bx+c的图象如图所示,则这个二次函数的关系式为,5、如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1.若抛物线与x轴一个交点为A(3,0),则由图象可知,不等式ax2+bx+c≥0的解集是:.6、若关于x的方程3x2+5x+11m=0的一个根大于2,另一根小于2,则m的取值范围是.7、如图,已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于点A(-2,4),B(8,2),则能使y1<y2成立的x的取值范围是.8、已知点(2,5),(4,5)是抛物线y=ax2+bx+c上的两点,则这条抛物线的对称轴是.9、如图,抛物线y=ax2+bx+c经过A(-4,0)、B(1,0)、C(0,3)三点,直线y=mx+n经过A(-4,0)、C(0,3)两点.(1)写出方程ax2+bx+c=0的解;(2)若ax2+bx+c>mx+n,写出x的取值范围.10、已知抛物线y=ax2+bx+c经过点A(-1,0),且经过直线y=x-3与x轴的交点B及与y轴的交点C.(1)求抛物线的解析式;(2)求抛物线的顶点坐标.11、如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).(1)求直线AB的解析式;(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;(3)结合(1)(2)及图象,直接写出使一次函数的值大于二次函数的值的x的取值范围.1、若x1,x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为()A.x1<x2<a<b B.x1<a<x2<bC.x1<a<b<x2 D.a<x1<b<x22、已知直线与x轴交于点A,与y轴交于点B,C是x轴上一点,如果∠ABC=∠ACB,求:(1)点C的坐标;(2)图象经过A、B、C三点的二次函数的解析式.3、在直角坐标平面内,二次函数图象的经过A(-1,0)、B(3,0),且过点C(0,3).(1)求该二次函数的解析式;(2)若P是该抛物线上一点,且△ABC与△ABP面积相同,求P的坐标.1、抛物线y=x2-mx+m-2与x轴交点的情况是()A.无交点B.一个交点C.两个交点D.无法确定2、已知函数y=ax2+bx+z的图象如图所示,那么函数解析式为()A.y=-x2+2x+3 B.y=x2-2x-3 C.y=-x2-2x+3 D.y=-x2-2x-33、如图,已知直线y=kx+b(k>0)与抛物线y=x2交于A、B两点(A、B两点分别位于第二和第一象限),且A、B两点的纵坐标分别是1和9,则不等式x2-kx-b>0的解集为()A.-1<x<3 B.x<-1或x>3C.1<x<9 D.x<1或x>9(2)(3)4、已知二次函数y=2x2-(4k+1)x+2k2-1的图象与x轴交于两个不同的点,则关于x的一元二次方程2x2-(4k+1)x+2k2-1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定5、已知一条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为()A.E,F B.E,G C.E,H D.F,G6、已知抛物线y=(m-1)x2+x+1与x轴有交点,则m范围是.7、已知二次函数的图象关于直线x=3对称,最大值是0,在y轴上的截距是-1,这个二次函数解析式为.8、如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①abc<0;②b>2a;③a+b+c=0④ax2+bx+c=0的两根分别为-3和1;⑤8a+c>0.其中正确的命题是.9、如图二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)观察图象,写出A、B、C三点的坐标,并求出抛物线解析式;(2)观察图象,当x取何值时,y<0?y=0?y>0?10、已知函数y=ax2+bx+c的图象如图所示,试根据图象回答下列问题:(1)求出函数的解析式;(2)写出抛物线的对称轴方程和顶点坐标?(3)当x取何值时y随x的增大而减小?(4)方程ax2+bx+c=0的解是什么?(5)不等式ax2+bx+c>0的解集是什么?11、如图,抛物线y=-x2+3x-n经过点C(0,4),与x轴交于两点A、B.(1)求抛物线的解析式;(2)若点P是抛物线上位于x轴上方的一个动点,求△ABP面积的最大值.12、如图,△AOB是边长为2的等边三角形,过点A的直线y=点E.(1)求点E的坐标;(2)求过A、O、E三点的抛物线的解析式.参考答案第8讲二次函数与方程、不等式考点1、待定系数法求二次函数解析式例1、B例2、D例3、例4、例5、例6、例7、1、D2、C3、4、5、6、考点2、函数与方程例1、C例2、A例3、D例4、例5、解:(1)证明:分两种情况讨论.①当m=0时,方程为x-2=0,∴x=2,方程有实数根;②当m≠0,则一元二次方程的根的判别式△=[-(3m-1)]2-4m(2m-2)=9m2-6m+1-8m2+8m=m2+2m+1=(m+1)2∴不论m为何实数,△≥0成立,∴方程恒有实数根;综合①、②,可知m取任何实数,方程mx2-(3m-1)x+2m-2=0恒有实数根.(2)设x1,x2为抛物线y=mx2-(3m-1)x+2m-2与x轴交点的横坐标.令y=0,则mx2-(3m-1)x+2m-2=0∴抛物线y=mx2-(3m-1)x+2m-2不论m为任何不为0的实数时恒过定点(2,0).∵|x1-x2|=2,∴|2-x2|=2,当m=1时,y=x2-2x,把(2,0)代入,左边=右边,m=1符合题意,∴抛物线解析式为y=x2-2x答:抛物线解析式为y=x2-2x;1、D2、D3、4、5、考点3、二次函数与不等式(组)例1、B例2、C例3、例4、例5、1、C2、A3、4、5、1、C2、A3、B4、5、6、7、8、9、10、11、1、C2、3、1、C2、A3、B4、B5、C6、7、8、9、10、11、12、31。
用待定系数法求二次函数的解析式(作课)ppt(主要内容)
![用待定系数法求二次函数的解析式(作课)ppt(主要内容)](https://img.taocdn.com/s3/m/273a90164693daef5ff73d70.png)
已知抛物线与x轴的交点 或交点横坐标时,通常 设为交点式(两根式)
练习:已知二次函数y=ax2+bx+c的图象过A(0,-5),B(5, 0)两点,它的对称轴为直线x=2,那么这个二次函数的解析式 是_______y_=_(_x-_5_)(x+1),即y=x2-_4x_-_5。
分析:因为抛物线与x轴的两个交点关于抛物线的对称轴对称,
回顾:用待定系数法求解析式
已知一次函数经过点(1,3)和(-2,-12),求 这个一次函数的解析式。 设出函数的解析式 解:设这个一次函数的解析式为y=kx+b(k≠0),
因为一次函数经过点(1,3)和(-2,-12),
所以
k+b=3
根据所给条件,将已知点坐标代入
函数解析式中,得到关于解析式中
-2k+b=-12 待定系数的方程(组)
22.1.4 用待定系数法求二次函数的解析式
青苗辅导1
1
学习目标:
1、通过对用待定系数法求二次函数解析式的探究, 掌握求解析式的方法。
2、能灵活地根据条件恰当地选取解析式,体会二次 函数解析式之间的转化。
学习重点:用待定系数法求二次函数解析式。
学习难点:灵活地根据条件恰当地选取解析式。
青苗辅导1
2
求二次函数解析式的一般方法:
▪ 已知图象上三点或三组对应值, 通常选择一般式
▪ 已知图象的顶点坐标、对称轴、最值和另一个点的坐标 通常选择顶点式
▪ 已知图象与x轴的两个交点的横x1、x2和另一个点的坐标 通常选择交点式
确定二次函数的解析式时,应该根据条件的特点,恰当地
选用一种函数表达式,
青苗辅导1
26
交点式:y a(x x1)( x x2 )
二次函数-用待定系数法求解二次函数解析式专题讲义
![二次函数-用待定系数法求解二次函数解析式专题讲义](https://img.taocdn.com/s3/m/a390ea718762caaedc33d415.png)
待定系数法求解析式一、知识要点近年高频考点中考频率所占分值1、用待定系数法求解二次函数解析式 5~10分1、设一般式y=ax2+bx+c_用待定系数法求二次函数解析式2、设顶点式y=a(x-h)2+k _用待定系数法求二次函数解析式3、设交点式y=a(x-x1)(x-x2)_用待定系数法求二次函数解析式知识点回顾:二次函数的表达形式有那些?二、知识要点详解1、知识点一:设一般式y=ax2+bx+c_用待定系数法求二次函数的解析式什么叫做待定系数法?一种求未知数的方法。
将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。
然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。
根据定义待定系数法求二次函数的解析式步骤如下:(1)、找出符合方程的点;(2)、根据相应的点设不同形式的函数方程;(3)、将相应点的坐标带入(2)步骤所设的函数方程得到关于系数关系的方程或方程组;(4)、解出方程或方程组得到相应的系数(5)、将系数带入所设方程得到二次函数的解析式如题:二次函数的顶点为(2,1),函数图像经过点(1,0),求此二次函数的解析式。
解:∵二次函数的定点为(2,1)找点(1)∴设二次函数的解析式为:y=a(x-2)2+1 根据相应的点设立方程(2)∵点(1,0)在函数图像上,即(1,0)满足方程y=a(x-2)2+1∴0=a(1-2)2+1 将点带入得方程(3)解之得:a=-1 解方程(4)∴二次函数解析式为:y=-(x-2)2+1 将所求系数代入得方程解析式(5)一般式y=ax2+bx+c的求解方法:若是已知条件是图像上的三个点,则设所求二次函数y=ax2+bx+c,将已知条件代入解析式,得到关于a、b、c的三元一次方程组,解方程组求出a、b、c的值,代入方程求得解析式例题一1.已知二次函数y=ax2+bx+c的图象经过点(-1,0),(0,-2),(1,-2),则这个二次函数的解析式为____________.2.已知二次函数y=ax2+bx+c,当x=0时,y=1;当x=-1时,y=6;当x=1时,y=0.求这个二次函数的解析式.3.已知二次函数的图象经过(1,0),(2,0)和(0,2)三点,则该函数的解析式是( ) A.y=2x2+x+2B.y=x2+3x+2C.y=x2-2x+3 D.y=x2-3x+24.如图,二次函数y=ax2+bx+c的图象经过A,B,C三点,求出抛物线的解析式.5.已知抛物线C1:y=ax2+bx+c经过点A(-1,0),B(3,0),C(0,-3).(1)求抛物线C1的解析式;(2)将抛物线C1向左平移几个单位长度,可使所得的抛物线C2经过坐标原点,并写出C2的解析式.顶点式y=a(x-h)2+k的求解方法:若是已知条件是图像上的顶点(h,k)与另外一点(x,y),则设所求二次函数y=a(x-h)2+k,将已知条件(x,y)代入解析式,得到关于a的一元一次方程,解方程求出a的值,代入方程求得解析式例题二1.已知某二次函数的图象如图所示,则这个二次函数的解析式为()A.y=2(x+1)2+8B.y=18(x+1)2-8C.y=29(x-1)2+8D.y=2(x-1)2-82.二次函数y=-x2+bx+c的图象的最高点是(-1,-3),则b,c的值分别是( ) A.b=2,c=4B.b=2,c=-4C.b=-2,c=4 D.b=-2,c=-43.在直角坐标平面内,二次函数的图象顶点为A(1,-4),且过点B(3,0),求该二次函数的解析式.4.已知抛物线经过两点A(1,0),B(0,3),且对称轴是直线x=2,求其解析式.5.已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0),B(0,-3)两点,则这条抛物线的解析式为交点式y=a(x-x1)(x-x2)的求解方法:若是已知条件是图像上抛物线与x轴的交点(x1,0)、(x2,0)与另外任意一点(x3,y3),则设所求二次函数y=a(x-x1)(x-x2),将已知条件(x3,y3)代入解析式,得到关于a的一元一次方程,解方程求出a的值,代入方程求得解析式例题三1.如图,抛物线的函数表达式是( )A.y=12x2-x+4B.y=-12x2-x+4C.y=12x2+x+4D.y=-12x2+x+42.已知一个二次函数的图象与x轴的两个交点的坐标分别为(-1,0)和(2,0),与y 轴的交点坐标为(0,-2),求这个二次函数的解析式.3.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )A.y=x2-x-2B.y=-12x2-12x+2C.y=-12x2-12x+1D.y=-x2+x+24.已知抛物线与x轴的交点是A(-2,0),B(1,0),且经过点C(2,8),该抛物线的解析式为5.如图,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0),求这条抛物线的解析式.3.把二次函数253212++=x x y 的图象向右平移2个单位,再向上平移3个单位,求所得二次函数的解析式。
用待定系数法求二次函数的解析式(公开课)通用课件
![用待定系数法求二次函数的解析式(公开课)通用课件](https://img.taocdn.com/s3/m/648aa44402d8ce2f0066f5335a8102d276a2611b.png)
掌握二次函数的解析 式对于理解其性质和 解决相关问题至关重 要。
课程目标
掌握用待定系数法求二次函数解析式 的方法。
能够灵活运用待定系数法解决实际问 题。
理解二次函数解析式中各项系数的物 理意义。
02
二次函数的基本概念
二次函数定义
总结词
二次函数的一般形式是$f(x) = ax^2 + bx + c$,其中$a neq 0$。
例如,将求得的待定系数代入原方程,计算与已知点的距 离,判断是否相等,以验证结果的正确性。
05
案例分析
案例一:已知顶点坐标和另一个点的坐标
总结词
通过顶点坐标和另一个点的坐标,可以确定二次函数的解析式。
详细描述
已知二次函数的顶点坐标为(h, k)和另一个点的坐标(x1, y1),可以通过待定系数法设出二次函数的顶点式,再代 入已知点(x1, y1)求出待定系数,从而得到二次函数的解析式。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a$、 $b$和$c$是常数,且$a neq 0$ 。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形 状由系数$a$决定。
详细描述
二次函数的图像是一个抛物线。当$a > 0$时,抛物线开口向上;当$a < 0$时,抛物线开口向下。
在解决与二次函数相关的实际问题时 ,待定系数法也可以用来建立数学模 型,从而解决问题。
待定系数法的优势与局限性
优势
待定系数法可以用来求解未知量,特别是当已知某些数据时,可以方便地求解出 函数的解析式。
局限性
对于一些复杂的问题,可能需要设立多个未知数,导致方程组复杂化,计算量大 增。同时,如果已知数据不足,可能无法求解出所有未知数。
用待定系数法求二次函数的解析式-完整版PPT课件
![用待定系数法求二次函数的解析式-完整版PPT课件](https://img.taocdn.com/s3/m/218a44dd4b73f242326c5fe9.png)
归纳总结
顶点法求二次函数的方法 这种知道①设函数表达式是y=a-h2; ②先代入顶点坐标,得到关于a的一元一次方程; ③将另一点的坐标代入原方程求出a值; ④a用数值换掉,写出函数表达式
例2 一个二次函数的图象经点 0, 1,它的顶点坐标为 8,9,求这个二次函数的表达式
2∵CD∥轴,∴点C与点D关于=-3对称. ∵点C在对称轴左侧,且CD=8, ∴点C的横坐标为-7, ∴点C的纵坐标为-72+6×-7+5=12 ∵点B的坐标为0,5, ∴△BCD中CD边上的高为12-5=7, ∴△BCD的面积= 12×8×7=28
课堂小结
已知条件
待定系数法 求二次函数解析式
所选方法
(坐标代入)
3解: 方程(组) 4还原: (写解析式)
9a-3b+c=0, a-b+c=0, 解得 c=-3,
a=-1, b=-4, c=-3.
∴所求的二次函数的表达式是y=-2-4-3
归纳总结
一般式法求二次函数表达式的方法
这种已知三点求二次函数表达式的方法叫做一般式法 其步骤是: ①设函数表达式为y=a2bc; ②代入后得到一个三元一次方程组; ③解方程组得到a,b,c的值; ④把待定系数用数字换掉,写出函数表达式
解:∵(-3,0)(-1,0)是抛物线y=a2b=a-1-2其 中1、2为交点的横坐标因此得
y=a31 再把点(0,-3)代入上式得
∴a0301=-3,
解得a=-1,
∴所求的二次函数的表达式是 y=-31,即y=-2-4-3
y 2 1
-4 -3 -2 -1-O1 1 2 x -2 -3 -4 -5
归纳总结
22
二 顶点法求二次函数的表达式
选取顶点(-2,1)和点(1,-8),试求出这个二 次函数的表达式 解:设这个二次函数的表达式是y=a-h2,把顶点(-2, 1)代入y=a-h2得
用待定系数法求二次函数解析式(专题复习)
![用待定系数法求二次函数解析式(专题复习)](https://img.taocdn.com/s3/m/bc39f42231b765ce05081486.png)
知识回顾 Knowledge Review
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
3.交点式 y=a(x-x1)(x-x2) 知道抛物线与x轴的两个交点的坐
标,或一个交点的坐标及对称轴方程或顶 点的横坐标时选用两根式比较简便. (1)当△=b2- 4ac≥0 ,抛物线与x轴相交
y=ax2+bx+c=a(x-x1)(x-x2) △=b2- 4ac>0 ,交点有两个, 分别是: (x1, 0)和(x2, 0) △=b2- 4ac =0,交点只有一个 即顶点[-b/2a,(4ac-b2)/4a] △=b2- 4ac <0 ,无交点
解:设二次函数解析式为y=ax2+bx+c ∵ 图象过B(0,2) ∴ c=2 ∴ y=ax2+bx+2 ∵ 图象过A(2,-4),C(-1,2)两点 ∴ -4=4a+2b+2
2=a-b+2 解得 a=-1,b=-1 ∴ 函数的解析式为:
y=-x2-x+2
2. 顶点式 y=a(x-h)2+k (a≠0)已知对称轴
y=a(x-1)2+4 ∵抛物线过点(-1, 0) ∴ 0=a(-1-1)2+4 得 a= -1
∴ 函数的解析式为: y= -1(x-1)2+4= -x2+2x+3
解法3:(交点式) 由题意可知两根为x1=-1、x2=3 设二次函数解析式为y=a(x-x1)(x-x2) 则有: y=a(x+1)(x-3) ∵ 函数图象过点(1,4) ∴ 4 =a(1+1)(1-3) 得 a= -1 ∴ 函数的解析式为:
待定系数法求二次函数的解析式—知识讲解(提高)
![待定系数法求二次函数的解析式—知识讲解(提高)](https://img.taocdn.com/s3/m/1772da3a05087632301212bc.png)
待定系数法求二次函数的解析式—知识讲解〔提高〕【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式 1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0). 2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数; 第四步,复原:将求出的待定系数复原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】类型一、用待定系数法求二次函数解析式1. 已知抛物线y ax bx c =++2经过A ,B ,C 三点,当x ≥0时,其图象如图1所示.求抛物线的解析式,写出顶点坐标.图1【答案与解析】设所求抛物线的解析式为y ax bx c =++2〔a ≠0〕. 由图象可知A ,B ,C 的坐标分别为〔0,2〕,〔4,0〕,〔5,-3〕.∴=++=++=-⎧⎨⎪⎩⎪c a b c a b c 216402553,,,解之,得a b c =-==⎧⎨⎪⎪⎪⎩⎪⎪⎪12322,,∴抛物线的解析式为y x x =-++123222 y x x x =--+=--+1232123225822()()∴该抛物线的顶点坐标为()32258,.【总结升华】这道题的一个特点是题中没有直接给出所求抛物线经过的点的坐标,需要从图象中获取信息.已知图象上三个点时,通常应用二次函数的一般式列方程求解析式.要特别注意:如果这道题是求“图象所表示的函数解析式”,那就必须加上自变量的取值范围x ≥0.2. 一条抛物线y x mx n =++142经过点()032,与()432,.求这条抛物线的解析式. 【答案与解析】抛物线y x mx n =++142经过点〔032,〕和(,)432, ∴这条抛物线的对称轴是直线x =2.设所求抛物线的解析式为y x h =-+1422().将点(,)032代入,得1402322()-+=h ,解得h =12. ∴这条抛物线的解析式为y x =-+142122(),即y x x =-+14322. 【总结升华】解析式中的a 值已经知道,只需求出m n ,的值。
待定系数法求二次函数的解析式—知识讲解
![待定系数法求二次函数的解析式—知识讲解](https://img.taocdn.com/s3/m/fc16900eb80d6c85ec3a87c24028915f804d8416.png)
待定系数法求二次函数的解析式—知识讲解一般来说,二次函数的一般形式为:y = ax^2 + bx + c (其中a、b、c为常数,且a≠0)。
我们可以使用待定系数法来求解二次函数的解析式,具体步骤如下:1.设定待定系数:我们设定系数a、b、c的值为待定系数。
即假设a、b、c的值为未知数。
2.建立方程:根据二次函数的一般形式y = ax^2 + bx + c,我们可以将二次函数转化为一元二次方程。
在方程中,将x、y的值用待定系数a、b、c表示。
3.解方程:根据设定的待定系数,将二次方程化简为标准形式,并利用解一元二次方程的方法求解出待定系数的值。
4.得出结果:通过求解出的待定系数,我们可以得出二次函数的解析式。
下面我们通过一个具体的例子来说明待定系数法的应用。
例:已知二次函数图像经过点(1,3),(-2,2)和(3,4),求解此二次函数的解析式。
解:根据已知条件,我们可以列出三个方程:(1,3):a+b+c=3(-2,2):4a-2b+c=2(3,4):9a+3b+c=4根据设定的待定系数a、b、c,化简以上方程可以得到:a+b+c=3----(1)4a-2b+c=2----(2)9a+3b+c=4----(3)我们可以使用消元法或代入法来求解此方程组。
首先,将方程(2)的2倍加到方程(1)中,可以得到:6a-2b+2c=6然后,将方程(3)的3倍减去方程(1)中,可以得到:24a+6b-3c=6现在我们得到了两个新的方程:6a-2b+2c=6----(4)24a+6b-3c=6----(5)再将方程(5)的3倍加到方程(4)中,可以得到:6a+4c=24我们可以解得:a=3-2c将上式代入方程(1)中,可以得到:(3-2c)+b+c=3整理可得:b-c=0b=c所以,我们可以令b=c。
现在我们得到了a=3-2c和b=c。
将a、b、c的值代入方程(1)中,可以得到:(3-2c)+c+c=3化简可得:-2c+3=3-2c=0c=0将c=0代入a=3-2c和b=c中,可以得到:a=3b=0所以,二次函数的解析式为:y=3x^2通过以上步骤,我们成功使用待定系数法求解了二次函数的解析式。
用待定系数法求二次函数解析式.---说课稿docx
![用待定系数法求二次函数解析式.---说课稿docx](https://img.taocdn.com/s3/m/5d9632c1f605cc1755270722192e453610665bd4.png)
《用待定系数法求二次函数解析式》说课稿一、教材分析1、教材的地位和作用:求函数解析式是初中数学主要内容之一,求二次函数的解析式也是联系高中数学的重要纽带。
求函数的解析式,应恰当地选用函数解析式的形式。
在新课标里求函数解析式也是中考的必考内容,而在初中阶段主要学习了正比例函数、一次函数、反比例函数、二次函数。
2、学习目标(1)通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法;(2)能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。
3、教学的重点:通过教学,让学生掌握用待定系数法求:(1)已知图象上任意三点坐标的二次函数解析式;(2)已知图象的顶点和另一点的坐标的二次函数解析式;4、教学难点:会通过对题目中已知条件的分析,恰当地选取选择解析式。
二、学情分析在学习本节课前,学生已经掌握用待定系数法求一次函数的解析式。
本节课的学习,可运用类比的思想方法,用待定系数法求二次函数的解析式.在授课时注重引导、启发、研究和探讨以符合学生的心理发展特点,从而促进知识的掌握和思维能力的进一步发展。
三、教学程序本节课的教学过程由(一)复习导入(二)创设问题,引入新课(三)实践探究、交流新知(四)开放训练、体现应用四个教学环节构成。
(一)复习导入教师通过多媒体展示三个问题,学生思考后回答。
1.一次函数y=kx+b(k≠0)有几个待定系数?2.通常需要已知几个点的坐标求出它的解析式?3.一般步骤是什么?目的是让学生体会各个不同的条件在不同表达式中的应用方法。
(二)创设问题,引入新课教师通过多媒体展示以下思考题:1.求二次函数y=ax2+bx+c的解析式的关键是什么?需要几个抛物线上的点的坐标才能求出来?2.已知一个二次函数的图象经过(-1,10),(1,4),能否求出二次函数的解析式.师生活动:学生感知问题,独立思考.明确此种情形下不能求出二次函数的解析式(三)实践探究、交流新知例1已知一个二次函数的图象经过(-1,10),(1,4),(2,7)三点,求这个函数的解析式.练习:已知一个二次函数的图象过点A(-1,0), B(-3,0), C(0,-3)三点,求这个函数的解析式.小结:因为过任意三点,可以用“一般式”,求解列出三元一次方程组,注意消元,求出a、b、c值,即可写出函数解析式。
待定系数法求二次函数的解析式—知识讲解
![待定系数法求二次函数的解析式—知识讲解](https://img.taocdn.com/s3/m/9d3c5b71842458fb770bf78a6529647d26283479.png)
待定系数法求二次函数的解析式—知识讲解设定二次函数的解析式为$f(x)=ax^2+bx+c$,其中$a$、$b$和$c$为待定系数。
一、已知函数的根情况一:已知函数的两个根$x_1$和$x_2$,则有以下条件:$$f(x_1)=0$$$$f(x_2)=0$$代入二次函数解析式,可得:$$a{x_1}^2+b{x_1}+c=0$$$$a{x_2}^2+b{x_2}+c=0$$将上述方程组化简,得:$$a{x_1}^2+b{x_1}=-c$$$$a{x_2}^2+b{x_2}=-c$$注意到$x_1$和$x_2$为已知值,$a$、$b$和$c$为待定系数,上述方程可以看作是一个关于$a$、$b$和$c$的线性方程组。
通过解这个方程组,即可求出$a$、$b$和$c$。
情况二:已知函数的一个根$x_1$和函数经过的一个点$(x_3,y_3)$,则有以下条件:$$f(x_1)=0$$$$f(x_3)=y_3$$代入二次函数解析式,可得:$$a{x_1}^2+b{x_1}+c=0$$$$a{x_3}^2+b{x_3}+c=y_3$$将上述方程组化简,得:$$a{x_1}^2+b{x_1}=-c$$$$a{x_3}^2+b{x_3}=y_3-c$$同样地,将上述方程看作是一个关于$a$、$b$和$c$的线性方程组,求解即可得到$a$、$b$和$c$的值。
二、已知函数的值当已知二次函数经过的两个点$(x_1,y_1)$和$(x_2,y_2)$时,同样可以通过设定$a$、$b$和$c$为待定系数,列出方程组来求解。
将已知点代入二次函数解析式,可得:$$a{x_1}^2+b{x_1}+c=y_1$$$$a{x_2}^2+b{x_2}+c=y_2$$进一步化简,得:$$a{x_1}^2+b{x_1}=y_1-c$$$$a{x_2}^2+b{x_2}=y_2-c$$同样地,上述方程可看作是一个关于$a$、$b$和$c$的线性方程组,通过求解该方程组,即可求出$a$、$b$和$c$的值。
第2课时 用待定系数法求二次函数的解析式(教案)
![第2课时 用待定系数法求二次函数的解析式(教案)](https://img.taocdn.com/s3/m/396b17db0875f46527d3240c844769eae109a367.png)
第2课时用待定系数法求二次函数的解析式(教案)第2课时用待定系数法求二次函数的解析式教学目标:知识与技能】学会利用已知点的坐标用待定系数法求解二次函数的解析式。
过程与方法】介绍二次函数的三点式、顶点式、交点式,结合已知点,灵活地选择恰当的解析式求法。
情感态度】通过用待定系数法求解二次函数解析式的过程,发现二次函数三点式、顶点式与交点式之间的区别及各自的优点,培养学生思维的灵活性。
教学重点:用待定系数法求二次函数的解析式。
教学难点:选择恰当的解析式求法。
教学内容:一、情境导入,初步认识已知一次函数图象上两个点的坐标,可以用待定系数法求出它的解析式。
那么,要求出一个二次函数的表达式,需要几个独立的条件呢?经过交流,明确确定一个二次函数表达式需要三个独立的条件。
二、思考探究,获取新知求二次函数y=ax²+bx+c的解析式,关键是求出待定系数a、b、c的值。
由已知条件(如二次函数图象上的三个点的坐标)列出关于a、b、c的方程组,并求出a、b、c,就可以写出二次函数表达式。
在利用待定系数法求二次函数解析式时,一般可分以下几种情况:1)顶点在原点,可设为y=ax²;2)对称轴是y轴(或顶点在y轴上),可设为y=ax²+k;3)顶点在x轴上,可设为y=a(x-h)²;4)抛物线过原点,可设为y=ax²+bx;5)已知顶点(h,k)时,可设顶点式为y=a(x-h)²+k;6)已知抛物线上三点时,可设三点式为y=ax²+bx+c;7)已知抛物线与x轴两交点坐标为(x₁,0),(x₂,0)时,可设交点式为y=a(x-x₁)(x-x₂)。
三、典例精析,掌握新知根据下列条件,分别求出对应的二次函数解析式。
方法二:根据题意,我们设所求二次函数的解析式为y=a(x-h)²+k(a≠0),则有h=-1,k=3.代入(2,5)得到5=a×9+3,解得a=2/9.因此,所求二次函数的解析式为y=2/9(x+1)²+3,即y=2/9x²+4/9x+29/9.教学说明:可以让学生先独立思考,完成后交流结果,对出现的问题进行自查并反思,加深印象。
二次函数解析式求法(待定系数法)
![二次函数解析式求法(待定系数法)](https://img.taocdn.com/s3/m/ad0cd6a7bed5b9f3f90f1cb8.png)
二次函数解析式求法------待定系数法1.二次函数的三种常用形式一般式:()20y ax bx ca =++≠; 顶点式:()()20y a x h k a =−+≠;交点式:()()()120y a x x x x a =−−≠. 2.求二次函数解析式的一般方法已知图象上三点或三点的对应值,通常选择一般式()20y ax bx c a =++≠;已知图象上顶点坐标(或对称轴和最值),通常选择顶点式()()20y a x h k a =−+≠;已知图象与x 轴的两个交点的横坐标x 1,x 2,通常选择交点式()()()120y a x x x x a =−−≠.3.待定系数法求二次函数解析式的一般步骤用待定系数法确定二次函数解析式的基本方法分四步完成:一设:指先设出恰当的二次函数解析式;二代:指根据题中所给条件,代入二次函数解析式,得到关于a 、b 、c (或h ,k )的方程组;三解:指解方程或方程组;四还原:指将求出的a 、b 、c (或h ,k )代回原解析式中.例题1、已知一个二次函数的图象经过(3,0)、(0,﹣3)、(1,﹣4)三点,求这个二次函数的解析式.2.已知抛物线y=ax2+bx+c经过(﹣1,﹣22),(0,﹣8),(2,8)三点.(1)求出抛物线解析式;(2)判断点(﹣2,﹣40)是否在该抛物线上?说明理由.3、.已知抛物线的顶点坐标是(﹣1,2),且过点(0,32).(1)求此抛物线所对应的函数表达式;(2)求证:对任意实数m,点M(m,﹣m2)都不在此抛物线上.4、在直角坐标平面内,二次函数图象的顶点为(14)A−,,且过点(30)B,.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.变式练习1、已知一抛物线与x轴的交点是)0,2A,B(1,0),且经过点(−C(2,8).(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标.2、已知二次函数的图象如图所示,求此抛物线的解析式.3.根据下列条件,分别求出对应的二次函数解析式.(1)已知抛物线的顶点是(1,2),且过点(2,3);(2)已知二次函数的图象经过(1,-1),(0,1),(-1,13)三点;(3)已知抛物线与x轴交于点(1,0),(3,0),且图象过点(0,-3).4.已知抛物线2=++的顶点坐标为(3,-2),且与x轴两交点间的距离为y ax bx c4,则抛物线的解析式为___ _____.5.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y轴交于点C.(1)求二次函数解析式;(2)求△ABC的面积.。
用待定系数法求二次函数的解析式精要ppt课件
![用待定系数法求二次函数的解析式精要ppt课件](https://img.taocdn.com/s3/m/cdae715f54270722192e453610661ed9ad5155a2.png)
y=a(x_-_x_1)(x_-__x_2 ) (a≠0)
(x1,0),( x2,0)
交点式
5
例题选讲
例1
已知一个二次函数的图象过点(-1,10)、
(1,4)、(2,7)三点,求这个函数的解析式?
一般式:
y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
顶点式: y=a(x-h)2+k
6
(x1,0),( x2,0)
交点式
4
求出下表中抛物线与x轴的交点坐标,看看你有什么发现?
抛物线解析式
y=a(x-1)(x-3)(a≠0)
抛物线与x轴交点坐标 (x1,0),( x2,0)
(1,0)(3,0)
y=a(x-2)(x+1)(a≠0) y=a(x+4)(x+6)(a≠0)
(2,0)(-1,0) (-4,0)(-6,0)
一设:指先设出适当二次函数的解析式
二代:指根据题中所给条件,代入二次函数的 解析式,得到关于a、b、c的方程组 三解:指解此方程或方程组 四还原:指将求出的a、b、c还原回原解析式中
13
熟能生巧
1、已知二次函数的图像过点(0, 0),(1,-3),(2,-7) 三点,则该二次函数关系式为__y___-__1_x_2_-__5_x_。
22
2、ห้องสมุดไป่ตู้二次函数的图像有最高点为(1,-6),且经过点 (2,-8),则此二次函数的关系式__y__-_2_(_x _-_1)_2_-_6__
3、若二次函数的图像与x轴的交点坐标为(1,0)、(2,0) 且过点(3,4),则此二次函数的关系式为_y___2(_x_-_1_)_(x_-__2_)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
待定系数法求解析式
一、知识要点
近年高频考点中考频率所占分值
1、用待定系数法求解二次函数解析式 5~10分
1、设一般式y=ax2+bx+c_用待定系数法求二次函数解析式
2、设顶点式y=a(x-h)2+k _用待定系数法求二次函数解析式
3、设交点式y=a(x-x1)(x-x2)_用待定系数法求二次函数解析式
知识点回顾:
二次函数的表达形式有那些?
二、知识要点详解
1、知识点一:设一般式y=ax2+bx+c_用待定系数法求二次函数的解析式
什么叫做待定系数法?
一种求未知数的方法。
将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。
然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。
根据定义待定系数法求二次函数的解析式步骤如下:
(1)、找出符合方程的点;
(2)、根据相应的点设不同形式的函数方程;
(3)、将相应点的坐标带入(2)步骤所设的函数方程得到关于系数关系的方程或方程组;
(4)、解出方程或方程组得到相应的系数
(5)、将系数带入所设方程得到二次函数的解析式
如题:
二次函数的顶点为(2,1),函数图像经过点(1,0),求此二次函数的解析式。
解:∵二次函数的定点为(2,1)找点(1)∴设二次函数的解析式为:
y=a(x-2)2+1 根据相应的点设立方程(2)∵点(1,0)在函数图像上,即(1,0)满足方程y=a(x-2)2+1
∴0=a(1-2)2+1 将点带入得方程(3)
解之得:a=-1 解方程(4)
∴二次函数解析式为:y=-(x-2)2+1 将所求系数代入得方程解析式(5)
一般式y=ax2+bx+c的求解方法:
若是已知条件是图像上的三个点,则设所求二次函数y=ax2+bx+c,将已知条件代入解析式,得到关于a、b、c的三元一次方程组,解方程组求出a、b、c的值,代入方程求得解析式
例题一
1.已知二次函数y=ax2+bx+c的图象经过点(-1,0),(0,-2),(1,-2),则这个二次函数的解析式为____________.
2.已知二次函数y=ax2+bx+c,当x=0时,y=1;当x=-1时,y=6;当x=1时,y=0.求这个二次函数的解析式.
3.已知二次函数的图象经过(1,0),(2,0)和(0,2)三点,则该函数的解析式是( ) A.y=2x2+x+2B.y=x2+3x+2
C.y=x2-2x+3 D.y=x2-3x+2
4.如图,二次函数y=ax2+bx+c的图象经过A,B,C三点,
求出抛物线的解析式.
5.已知抛物线C1:y=ax2+bx+c经过点A(-1,0),B(3,0),C(0,-3).
(1)求抛物线C1的解析式;
(2)将抛物线C1向左平移几个单位长度,可使所得的抛物线C2经过坐标原点,并写出C2的解析式.
顶点式y=a(x-h)2+k的求解方法:
若是已知条件是图像上的顶点(h,k)及另外一点(x,y),则设所求二次函数y=a(x-h)2+k,将已知条件(x,y)代入解析式,得到关于a的一元一次方程,解方程求出a的值,代入方程求得解析式
例题二
1.已知某二次函数的图象如图所示,则这个二次函数的解析式为( )
A.y=2(x+1)2+8
B.y=18(x+1)2-8
C.y=2
9(x-1)
2+8
D.y=2(x-1)2-8
2.二次函数y=-x2+bx+c的图象的最高点是(-1,-3),则b,c的值分别是( ) A.b=2,c=4B.b=2,c=-4
C.b=-2,c=4 D.b=-2,c=-4
3.在直角坐标平面内,二次函数的图象顶点为A(1,-4),且过点B(3,0),求该二次函数的解析式.
4.已知抛物线经过两点A(1,0),B(0,3),且对称轴是直线x=2,求其解析式.
5.已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过
A(-1,0),B(0,-3)两点,则这条抛物线的解析式为
交点式y=a(x-x1)(x-x2)的求解方法:
若是已知条件是图像上抛物线与x轴的交点(x1,0)、(x2,0)及另外任意一点(x3,y3),则设所求二次函数y=a(x-x1)(x-x2),将已知条件(x3,y3)代入解析式,得到关于a的一元一次方程,解方程求出a的值,代入方程求得解析式
例题三
1.如图,抛物线的函数表达式是( )
A.y=1
2x
2-x+4
B.y=-1
2x
2-x+4
C.y=1
2x
2+x+4
D.y=-1
2x
2+x+4
2.已知一个二次函数的图象与x轴的两个交点的坐标分别为(-1,0)和(2,0),与y 轴的交点坐标为(0,-2),求这个二次函数的解析式.
3.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( )
A.y=x2-x-2
B.y=-1
2x
2-
1
2x+2
C.y=-1
2x
2-
1
2x+1
D.y=-x2+x+2
4.已知抛物线与x轴的交点是A(-2,0),B(1,0),且经过点C(2,8),该抛物线的解析式为
5.如图,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0),求这条抛物线的解析式.
3.把二次函数
25
3212++=x x y 的图象向右平移2个单位,再向上平移3个单位,求所得二次函数的解析式。
4、如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A ,C 分别在
x 轴、y 轴的正半轴上,二次函数y =-2
3x 2+bx +c 的图象经过B ,C 两点.求该二次函数的解析式.
五、真题在线
1.(2008山东威海)已知二次函数
的图象过点A (1,2),B (3,2),C (5,7).若
点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数
的图象上,则下列结论正确的是 A .y 1<y 2<y 3
B .y 2<y 1<y 3
C .y 3<y 1<y 2
D .y 1<y 3<y
2、(2008年浙江省绍兴市)已知点,
均在抛物线
上,下列说法中正确的
是( ) A .若,则 B .若,则 C .若
,则
D .若
,则
3、(2008年天津市)把抛物线向上平移5个单位,所得抛物线的解析式为( )
A .
B .
C .
D .
4、(2008年福建省福州市)10.已知抛物线与轴的一个交点为
,
则代数式
的值为( )
A .2006
B .2007
C .2008
D .2009
5、(2008年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. (1) 求该抛物线的解析式;
(2) 若该抛物线与x 轴的另一个交点为E.
求四边形ABDE 的面积; (注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为
)
六、作业设计:
经典在线
1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式。
2.已知抛物线的顶点(-1,-2)且图象经过(1,10),求此抛物线解析式。
能力拓展
1、二次函数y= ax2+bx+c,当x<6时y随x的增大而减小,x>6时y随x的增大而增大,其最小值为-12,其图象与x轴的交点的横坐标是8,求此函数的解析式。
2、二次函数的图象与x轴两交点之间的距离是2,且过(2,1)、(-1,-8)两点,求此二次函数的解析式。
真题在线
1、(2008 河南实验区)如图是二次函数图像的一部分,
该图在轴右侧与轴交点的坐标是
2、.(2008年乐山市)已知二次函数的图象如图所示,令
,则()
A.M>0 B. M<0 C. M=0 D. M的符号不能确定
3、(2008年陕西省)已知二次函数(其中),
关于这个二次函数的图象有如下说法:
①图象的开口一定向上;
②图象的顶点一定在第四象限;
③图象与轴的交点至少有一个在轴的右侧.
以上说法正确的个数为()
A.0 B.1 C.2 D.3
4、(2008年江苏省无锡市)已知抛物线与它的对称轴相交于点,与轴交
于,与轴正半轴交于.
(1)求这条抛物线的函数关系式;。