七年级数学下册平方差公式练习题及答案【打印版】
七年级数学下册平方差公式练习题及答案【打印版】
七年级数学下册平方差公式练习题及答案【打印版】(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b) C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2A.1个 B.2个 C.3个 D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是___________。
23 三、计算题9.利用平方差公式计算:2023×1913.10.计算:(a+2)(a 2+4)(a 4+16)(a -2).B 卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6 B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3 D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.4②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=______________________.②(a-b)(a2+ab+b2)=__________________.③(a-b)(a3+a2b+ab2+b3)=_____________________.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.5参考答案A卷一、1.D2.C 点拨:一个算式能否用平方差公式计算,•关键要看这个算式是不是两个数的和与这两个数的差相乘的形式,选项A,B,D都不符合平方差公式的结构特征,•只有选项C可以用平方差公式计算,故选C.3.D 点拨:①(3a+4)(3a-4)=(3a)2-42=9a2-16,②(2a2-b)(2a2+b)=(2a2)2-b2=4a4-b2,③(3-x)(x+3)=32-x2=9-x2,④(-x+y)(x+y)=-(x-y)(x+y)=-(x2-y2)=-x2+y2,故选D.4.C 点拨:因为(x+y)(x-y)=x2-y2,又x2-y2=30,x-y=-5,所以-5(x+y)=30,x+y=-6,•故选C.二、5.4x2-y2点拨:(-2x+y)(-2x-y)=(-2x)2-y2=4x2-y2.6.-3x2-2y2点拨:因为(-3x2+2y2)(-3x2-2y2)=(-3x2)2-(2y2)2=9x4-4y4,所以本题应填写-3x2-2y2.7.a;b-1点拨:把a+b-1转化为a+(b-1),把a-b+1转化为a-(b-1),可得(a+b-1)(a-b+1)=[a+(b-1)][a-(b-1)]=a2-(b-1)2.8.10 点拨:设较大的正方形的边长为a,较小的正方形的边长为b,则a+b=5,•a-b=2,所求的面积差为a2-b2,而(a+b)(a-b)=a2-b2,故a2-b2=10.67三、9.解:2023×1913=(20+23)×(20-23)=202-(23)2=400-49=39959. 点拨:先把两个因数分别转化成两数的和与这两个数的差,再利用平方差公式计算.10.解:(a+2)(a 2+4)(a 4+16)(a -2)=(a -2)(a+2)(a 2+4)·(a 4+16)=(a 2-4)(a 2+4)(a 4+16)=(a 4-16)(a 4+16)=a 8-162=a 8-256. 点拨:根据题中因式的结构特征,•依次运用平方差公式进行计算.B 卷一、1.解:(1)(2+1)(22+1)(24+1)…(22n +1)+1=(2-1)(2+1)(22+1)(24+1)…(22n +1)+1=(22-1)(22+1)(24+1)…(22n +1)+1=(24-1)(24+1)…(22n +1)+1=…=[(22n )2-1]+1=24n -1+1=24n ;(2)(3+1)(32+1)(34+1)…(32008+1)-401632=12(3-1)(3+1)(32+1)(34+1)…(32008+1)-401632=12(32-1)(32+1)·(34+1)…(32008+1)-401632=…=12(34-1)(34+1)…(32008+1)-401632=…=12(34016-1)-401632=401632-12-401632=-12.2.解:2009×2007-20082=(2008+1)×(2008-1)-20082=20082-1-20082=-1.(1)22007200720082006-⨯=220072007(20071)(20071)-+⨯-=2220072007(20071)--=2007(2)22007200820061⨯+=22007(20071)(20071)1+⨯-+=222007200711-+=2220072007=1.点拨:把式子中乘积部分的运算通过变形转化为平方差公式的结构形式,然后运用平方差公式化繁为简.二、3.解:x(x+2)+(2x+1)(2x-1)=5(x2+3),x2+2x+4x2-1=5x2+15,x2+4x2-5x2+2x=15+1,2x=16,x=8.三、4.解:(2a+3)(2a-3)=(2a)2-32=4a2-9(平方米).答:改造后的长方形草坪的面积是(4a2-9)平方米.四、5.D 点拨:A选项a3+a3=2a3;B选项(-a)3·(-a)5=a8;C选项(-2a2b)·4a=-8a3b;D选项正确,故选D.6.a2-1C卷1.(1)1-x n+1(2)①-63;②2n+1-2;③x100-1(3)①a2-b2②a3-b3③a4-b48点拨:(1),(3)题根据观察到的规律正确填写即可;(2)题①中利用观察到的规律可知,原式=1-26=1-64=-63;②中原式=2(1+2+22+…+2n-1)=-2(1-2)(1+2+22+…+2n-1)=-2(1-2n)=-2+2·2n=2n+1-2;③中原式=-(1-x)(1+x+x2+…+x97+x98+x99)=-(1-x100)=x100-1.2.解:(m+2n)(m-2n)=m2-4n2.点拨:本题答案不唯一,只要符合要求即可.3.解:题图1中的阴影部分(四个等腰梯形)的面积为a2-b2,题图2•中的阴影部分(平行四边形)的底为(a+b),这个底上的高为(a-b),故它的面积为(a+b)(a-b),•由此可验证:(a+b)(a-b)=a2-b2.图1 图29。
七年级数学下---平方差、完全平方公式专项练习题
七年级数学下---平方差、完全平方公式专项练习题平方差:一、选择题1.平方差公式〔a+b〕〔a-b〕=a2-b2中字母a,b表示〔〕A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.以下多项式的乘法中,可以用平方差公式计算的是〔〕A.〔a+b〕〔b+a〕 B.〔-a+b〕〔a-b C.〔13a+b〕〔b-13a〕 D.〔a2-b〕〔b2+a〕3.以下计算中,错误的有〔〕 A.1个 B.2个 C.3个 D.4个①〔3a+4〕〔3a-4〕=9a2-4;②〔2a2-b〕〔2a2+b〕=4a2-b2;③〔3-x〕〔x+3〕=x2-9;④〔-x+y〕·〔x+y〕=-〔x-y〕〔x+y〕=-x2-y2.4.假设x2-y2=30,且x-y=-5,那么x+y的值是〔〕A.5 B.6 C.-6 D.-5 二、填空题: 5、〔a+b-1〕〔a-b+1〕=〔_____〕2-〔_____〕2.6.〔-2x+y〕〔-2x-y〕=______.7.〔-3x2+2y2〕〔______〕=9x4-4y4.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:〔a+2〕〔a2+4〕〔a4+16〕〔a-2〕.B卷:提高题1.计算:〔1〕〔2+1〕〔22+1〕〔24+1〕…〔22n+1〕+1〔n是正整数〕;〔2〕〔3+1〕〔32+1〕〔34+1〕…〔32021+1〕-401632.2.式计算:2021×2007-20212.3.解方程:x〔x+2〕+〔2x+1〕〔2x-1〕=5〔x2+3〕.〔1〕计算:22007200720082006-⨯.〔2〕计算:22007200820061⨯+.4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,那么改造后的长方形草坪的面积是多少?5.以下运算正确的选项是〔〕 A.a3+a3=3a6 B.〔-a〕3·〔-a〕5=-a8C.〔-2a2b〕·4a=-24a6b3 D.〔-13a-4b〕〔13a-4b〕=16b2-19a26.计算:〔a+1〕〔a-1〕=______.C卷:课标新型题1.〔规律探究题〕x≠1,计算〔1+x〕〔1-x〕=1-x2,〔1-x〕〔1+x+x2〕=1-x3,〔1-x〕〔•1+x+x2+x3〕=1-x4.〔1〕观察以上各式并猜想:〔1-x〕〔1+x+x2+…+x n〕=______.〔n为正整数〕〔2〕根据你的猜想计算:①〔1-2〕〔1+2+22+23+24+25〕=______.②2+22+23+…+2n=______〔n为正整数〕.③〔x-1〕〔x99+x98+x97+…+x2+x+1〕=_______.〔3〕通过以上规律请你进展下面的探索:①〔a -b 〕〔a+b 〕=_______. ②〔a -b 〕〔a 2+ab+b 2〕=______. ③〔a -b 〕〔a 3+a 2b+ab 2+b 3〕=______.2.〔结论开放题〕请写出一个平方差公式,使其中含有字母m ,n 和数字4.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+;ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(;bc ac ab c b a c b a 222)(2222---++=++1、m 2+n 2-6m+10n+34=0,求m+n 的值2、0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
平方差公式练习题(打印版)
平方差公式练习题(打印版)# 平方差公式练习题(打印版)## 一、基础练习题1. 计算下列平方差:- \( a^2 - b^2 \)- \( (x + 2)^2 - (x - 2)^2 \)2. 利用平方差公式,简化以下表达式:- \( (3x + 1)^2 - (3x - 1)^2 \)- \( (2y + 3)^2 - (2y - 3)^2 \)3. 计算下列多项式的差,并用平方差公式简化:- \( (x + y)^2 - (x - y)^2 \)- \( (a + b)^2 - (a - b)^2 \)## 二、进阶练习题4. 若 \( x^2 - 4 = 0 \),求 \( x^4 - 16 \) 的值。
5. 已知 \( a^2 - b^2 = 20 \),求 \( (3a + 3b)^2 - (3a - 3b)^2 \)。
6. 利用平方差公式证明:- \( (x + y + z)^2 - (x - y - z)^2 = 4xy + 4xz + 4yz \)## 三、应用题7. 一个长方形的长是宽的两倍,若长和宽都增加2米,面积增加了40平方米。
求原长方形的长和宽。
8. 在一个正方形的四个角上各剪去一个边长为1米的正方形,求剩下的图形面积。
9. 一个数的平方减去另一个数的平方等于这个数的两倍,求这个数。
## 四、探索题10. 探索并证明:\( (a + b + c)^2 - (a - b + c)^2 = 4ab \)。
11. 给定 \( a^2 - b^2 = 25 \) 和 \( c^2 - d^2 = 36 \),求\( (a + b + c + d)^2 - (a - b + c - d)^2 \)。
12. 证明:对于任意实数 \( x \) 和 \( y \),都有 \( (x^2 +y^2)^2 = (x^2 - y^2)^2 + 4x^2y^2 \)。
## 答案提示:- 对于基础练习题,可以直接应用平方差公式 \( (a + b)(a - b) =a^2 - b^2 \) 进行计算。
七年级数学下---平方差、完全平方公式专项练习题
A .(a+b )(b+a )B .(-a+b )(a -bC .( a+b )(b - a )D .(a 2-b )(b 2+a ) ×21 . 10.计算:(a+2)(a 2+4)(a 4+16)(a -2).(2)(3+1)(32+1)(34+1)…(32008+1)-. 七年级数学下---平方差、完全平方公式专项练习题平方差:一、选择题1.平方差公式(a+b )(a -b )=a 2-b 2 中字母 a ,b 表示()A .只能是数B .只能是单项式C .只能是多项式D .以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()1 13 33.下列计算中,错误的有( ) A .1 个B .2 个C .3 个D .4 个①(3a+4)(3a -4)=9a 2-4; ②(2a 2-b )(2a 2+b )=4a 2-b 2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.4.若 x 2-y 2=30,且 x -y=-5,则 x+y 的值是( )A .5B .6C .-6D .-5二、填空题:5、(a+b -1)(a -b+1)=(_____)2-(_____)2.6.(-2x+y )(-2x -y )=______.7.(-3x 2+2y 2)(______)=9x 4-4y 4.8.两个正方形的边长之和为 5,边长之差为 2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题 9.利用平方差公式计算:20 2 13 3B 卷:提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);340162(1)计算: .(2)计算: .C .(-2a 2b )·4a=-24a 6b3D .(- a -4b )( a -4b )=16b 2- a 22 2.式计算:2009×2007-20082.3.解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3).2007200722007 2 - 2008 ⨯ 20062008 ⨯ 2006 + 14.广场内有一块边长为 2a 米的正方形草坪,经统一规划后,南北方向要缩短 3 米,东西方向要加长 3 米,则改造后的长方形草坪的面积是多少?5.下列运算正确的是( ) A .a 3+a 3=3a 6B .(-a )3·(-a )5=-a 81 1 1 3 3 96.计算:(a+1)(a -1)=______.C 卷:课标新型题1.(规律探究题)已知 x≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x +x 3)=1-x 4.(1)观察以上各式并猜想:(1-x )(1+x+x 2+…+x n )=_____ _.(n 为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______. ②2+22+23+…+2n =______(n 为正整数).③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.(3)通过以上规律请你进行下面的探索:2 3、已知 (a + b )2 = 16, a b = 4, 求 与 (a - b )2 的值。
(完整版)平方差公式练习题精选(含答案)(可编辑修改word版)
(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算 (1)(5+6x) (5-6x)(2)(x-2y) (x+2y)(3)(-m+n)(-m-n)3 利用平方差公式计算(1)(1)(- 1 41x-y)(- x+y)4(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(1a+b)(b-1a)D.(a2-b)(b2+a)3 38.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y(x+y)=-x2-y2.A.1 个B.2 个C.3 个D.4 个9.若x2-y2=30,且x-y=-5,则x+y 的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)= .11.(-3x2+2y2)()=9x4-4y4.12.(a+b-1)(a-b+1)=()2-()2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是.14.计算:(a+2)(a2+4)(a4+16)(a-2).( x- y )1 利用完全平方公式计算:完全平方公式(1)( 1 2 2x+ y)32 (2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)2 2 利用完全平方公式计算:(1) 1 2 2 2(2)(1.2m-3n)22 3123 22(3)(- a+5b) (4)(- x- y)2 4 33 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(3)(a+b)2-(a-b)2(4)(a+b-c)2(5)(x-y+z)(x+y+z)(6)(mn-1)2—(mn-1)(mn+1)4 先化简,再求值:(x+y)2 —— 4xy, 其中 x=12,y=9。
(完整word版)平方差公式与完全平方公式试题(含答案)1[1]2,推荐文档
乘法公式的复习一、复习 :(a+b)(a-b)=a 2-b 2(a+b)2 =a2+2ab+b2(a-b)2=a2-2ab+b2 (a+b)(a 2 -ab+b2)=a 3+b3(a-b)(a2+ab+b2)=a 3-b3概括小结公式的变式,正确灵巧运用公式:①地点变化, x y y x x2y2②符号变化, x y x y x 2 y2 x 2 y2③指数变化, x2 y2x2 y2x4y4④系数变化, 2a b2a b4a2b2⑤换式变化, xy z m xy z mxy 2z m2x2y2z m z mx 2y2z22zm zm mx 2y2z222zm m⑥增项变化, x y z x y zx y 2z2x y x y z2x2xy xy y2 z2x22xy y2 z2⑦连用公式变化, x y x y x2 y2x2 y2 x2 y2x4 y4⑧逆用公式变化,x y z 2x y z 2x y z x y z x y z x y z2x2y 2z4xy 4xz例 1.已知a b 2 , ab1,求a2b2的值。
解:∵ (a b)2a22ab b2∴ a 2b2=(a b) 22ab ∵ a b 2 , ab 1∴ a 2b2=22 2 1 2例 2.已知a b 8 , ab 2 ,求(a b)2的值。
解:∵ (a b) 2 a 22ab b 2(a b)2a22ab b 2∴∵(a b) 2(a b) 24ab∴ (a b) 24ab =(a b) 2 a b 8, ab 2∴ ( a b) 282 4 2 56例 3:计算 19992-2000 ×1998〖分析〗本题中 2000=1999+1,1998=1999-1,正好切合平方差公式。
解: 19992 -2000 ×1998 =1999 2- (1999+1)×( 1999-1 )=19992- (19992-1 2)=19992-1999 2+1 =1例 4:已知 a+b=2,ab=1,求 a2+b2和(a-b) 2的值。
(完整版)平方差公式练习题精选(含答案)
(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算(1)(5+6x) (5-6x)(2)(x-2y) (x+2y)(3)(-m+n)(-m-n)3利用平方差公式计算(1)(1)(-41x-y)(-41x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)8.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y(x+y)=-x2-y2.A.1个B.2个C.3个D.4个9.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)=______.11.(-3x2+2y2)(______)=9x4-4y4.12.(a+b-1)(a-b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.14.计算:(a+2)(a2+4)(a4+16)(a-2).完全平方公式1利用完全平方公式计算:(1)(21x+32y)2 (2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)2 2利用完全平方公式计算:(1)(21x-32y 2)2 (2)(1.2m-3n)2(3)(-21a+5b)2 (4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(3)(a+b)2-(a-b)2 (4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2 —— 4xy,其中x=12,y=9。
平方差公式练习题精选(含答案)
平方差公式练习题精选(含答案)平方差公式是一种用于计算两个数的平方差的公式,可以用于简化计算。
下面给出了一些例子:1.(m+2)(m-2) = m^2 - 42.(1+3a)(1-3a) = 1 - 9a^23.(x+5y)(x-5y) = x^2 - 25y^24.(y+3z)(y-3z) = y^2 - 9z^2利用平方差公式,可以简化计算,例如:1.(5+6x)(5-6x) = 25 - 36x^22.(x-2y)(x+2y) = x^2 - 4y^23.(-m+n)(-m-n) = m^2 - n^2有些多项式的乘法可以用平方差公式计算,例如:7.B。
(-a+b)(a-b)有些计算中存在错误,例如:8.②(2a2-b)(2a2+b)=4a4-b2完全平方公式是一种用于计算两个数的平方和的公式,可以用于简化计算。
下面给出了一些例子:1.(x+y)^2 = x^2 + 2xy + y^22.(-2m+5n)^2 = 4m^2 - 20mn + 25n^23.(2a+5b)^2 = 4a^2 + 20ab + 25b^24.(4p-2q)^2 = 16p^2 - 16pq + 4q^2利用完全平方公式,可以简化计算,例如:1.(x-y^2)^2 = x^2 - 2xy^2 + y^42.(1.2m-3n)^2 = 1.44m^2 - 7.2mn + 9n^23.(-a+5b)^2 = a^2 - 10ab + 25b^24.(-x-y)^2 = x^2 + 2xy + y^2最后,我们可以用完全平方公式计算一些复杂的表达式,例如:14.(a+2)(a^2+4)(a^4+16)(a-2) = (a^6 - 4a^5 - 24a^4 - 64a^3+ 16a^2 + 128a + 128)完全平方公式还可以用于解方程,例如:9.x+y = -310.4x^2 - y^211.(3x^2+2y^2)^2 = 9x^4 - 4y^412.(a+b)^2 - (a-b+1)^2 = 4ab - 2a + 2b13.31.下列运算中,正确的是()A.(a+3)(a-3)=a2-9B.(3b+2)(3b-2)=9b2-4C.(3m-2n)(-2n-3m)=-12mnD.(x+2)(x-3)=x2-x-62.在下列多项式的乘法中,可以用平方差公式计算的是()C.(-a+b)(a-b)3.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是()B.64.若(x-5)2=x2+kx+25,则k=()D.-105.9.8×10.2=100.366.a2+b2=(a+b)2-2ab=(a-b)2+2ab7.(x-y+z)(x+y+z)=x2+y2+z2+2xy+2xz+2yz8.(a+b+c)2=a2+b2+c2+2ab+2ac+2bc9.(x+3)2-(x-3)2=12x+1810.1) 4a2-9b22) p4-q23) x2-4xy+4y24) 4x2+4xy+y211.1) 4a4-b22) 4xy(x+y)12.剩余的空地面积为(m-2n)2-n2(m-2n)2-n2,验证了平方差公式:(a-b)(a+b)=a2-b2.13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k 的值为()D.±214.已知a+=3,则a2+2,则a+的值是()B.715.若 $a-b=2$,$a-c=1$,则 $(2a-b-c)^2+(c-a)^2$ 的值为()答案:B。
平方差公式专题练习50题有答案
平方差公式专项练习50题(有答案)知识点:(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方差特点:具有完全相同的两项具有互为相反数的两项使用注意的问题:1、是否符合平方差公式使用的特点2、判断公式中的“a”和“b”是一个数还是一个代数式3、对“式”平方时要把全部平方,切忌出现漏乘系数的错误,如(a+2b)(a-2b)不要计算成a2-2b24、最好先把能用平方差的式子变形为(a+b)(a-b)的形式,再利用公式进行计算。
专项练习:1.9.8×10.22.(x-y+z)(x+y+z)3.(12x+3)2-(12x-3)24.(2a-3b)(2a+3b)5.(-p2+q)(-p2-q)6.(-1+3x)(-1-3x)7.(x+3) (x2+9) (x-3)8.(x+2y-1)(x+1-2y)9.(x-4)(4+x )10.(a+b+1)(a+b-1)11.(8m+6n )(8m-6n )12. (4a -3b )(-4a -3b )13. (a+b)(a-b )(a ²+b ²)14..15..16..17..,则18. 1.01×0.9919.20.21.22.23.23.24.25.26.27.28.29.30.(2a-b)(2a+b)(4a2+b2)=(4a2-b2)(4a2+b2)31.(x+y-z)(x-y+z)-(x+y+z)(x-y-z).32. 2023×191333.(a+2)(a2+4)(a4+16)(a-2).34.(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);35.(3+1)(32+1)(34+1)…(32008+1)-4016 3236. 2009×2007-20082.37.22007200720082006-⨯.38.22007 200820061⨯+.39.解不等式(3x-4)2>(-4+3x)(3x+4).40.x(x+2)+(2x+1)(2x-1)=5(x2+3),41.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?42.先化简,再求值,其中43.解方程:.44.计算:45.求值:46.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.47(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.48.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1所示,然后拼成一个平行四边形,如图2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.49.你能求出的值吗?50.观察下列各式:根据前面的规律,你能求出的值吗?平方差公式50题专项练习答案: 1.9.8×10.2=(10-0.2)(10+0.2)=10-0.2=100-0.04=99.96.2.(x-y+z )(x+y+z )=x 2+z 2-y 2+2xz3.(12x+3)2-(12x -3)2=(12x+3+12x -3)[12x+3-(12x -3)]=x ·6=6x .4.(2a-3b )(2a+3b )= 4a 2-9b 2;5.(-p 2+q )(-p 2-q )=(-p 2)2-q 2=p 4-q 26.(-1+3x )(-1-3x )=1-9x ²7.(x+3) (x 2+9) (x-3) =x 4-818.(x+2y-1)(x+1-2y)= x ²-4y ²+4y-19.(x-4)(4+x )=x ²-1610.(a+b+1)(a+b-1)=(a+b )²-1=a ²+2ab+b ²-111.(8m+6n )(8m-6n )=64m ²-36n ²12. (4a -3b )(-4a -3b )=13. (a+b)(a-b )(a ²+b ²)=.14.. 15.. 答: 16.. 答: 17..,则18.1.01×0.99=0.9999 19.= 20.= 21.=22.= 23. =8096 23. =24. =125. =26. =27. =28. =29. =.30.(2a-b)(2a+b)(4a2+b2)=(4a2-b2)(4a2+b2)=(4a2)2-(b2)2=16a4-b4.31.(x+y-z)(x-y+z)-(x+y+z)(x-y-z).=[x+(y-z)][x-(y-z)]-[x+(y+z)][x-(y+z)]=x2-(y-z)2-[x2-(y+z)2]=x2-(y-z)2-x2+(y+z)2=(y+z)2-(y-z)2=(y+z+y-z)[y+z-(y-z)]=2y·2z=4yz.32. 2023×1913=(20+23)×(20-23)=202-(23)2=400-49=39959.33.(a+2)(a2+4)(a4+16)(a-2)=(a-2)(a+2)(a2+4)·(a4+16)=(a2-4)(a2+4)(a4+16)=(a4-16)(a4+16)=a8-162=a8-256.34. 解:(1)(2+1)(22+1)(24+1)…(22n+1)+1=(2-1)(2+1)(22+1)(24+1)…(22n+1)+1=(22-1)(22+1)(24+1)…(22n+1)+1=(24-1)(24+1)…(22n+1)+1=…=[(22n)2-1]+1=24n-1+1=24n;35.(3+1)(32+1)(34+1)…(32008+1)-4016 32=12(3-1)(3+1)(32+1)(34+1)…(32008+1)-401632=12(32-1)(32+1)·(34+1)…(32008+1)-401632=…=12(34-1)(34+1)…(32008+1)-401632=…=12(34016-1)-401632=401632-12-401632=-12.36. 2009×2007-20082=(2008+1)×(2008-1)-20082=20082-1-20082=-1.37.22007200720082006-⨯=220072007(20071)(20071)-+⨯-=2220072007(20071)--=2007.38.22007200820061⨯+=22007(20071)(20071)1+⨯-+=222007200711-+=2220072007=1.39.解不等式(3x-4)2>(-4+3x)(3x+4).(3x-4)2>(-4+3x)(3x+4),(3x)2+2×3x·(-4)+(-4)2>(3x)2-42,9x2-24x+16>9x2-16,-24x>-32.x<43.40.x(x+2)+(2x+1)(2x-1)=5(x2+3),x2+2x+4x2-1=5x2+15,x2+4x2-5x2+2x=15+1,2x=16,x=8.41.解:(2a+3)(2a-3)=(2a)2-32=4a2-9(平方米).42. 原式=43.解方程:.百度文库- 让每个人平等地提升自我44.计算: =5050.45.求值: =46.(1)1-x n+1(2)①-63;②2n+1-2;③x100-1(3)①a2-b2②a3-b3③a4-b4点拨:(1),(3)题根据观察到的规律正确填写即可;(2)题①中利用观察到的规律可知,原式=1-26=1-64=-63;②中原式=2(1+2+22+…+2n-1)=-2(1-2)(1+2+22+…+2n-1)=-2(1-2n)=-2+2·2n=2n+1-2;③中原式=-(1-x)(1+x+x2+…+x97+x98+x99)=-(1-x100)=x100-1.47.解:(m+2n)(m-2n)=m2-4n2.点拨:本题答案不唯一,只要符合要求即可.48.解:题图1中的阴影部分(四个等腰梯形)的面积为a2-b2,题图2•中的阴影部分(平行四边形)的底为(a+b),这个底上的高为(a-b),故它的面积为(a+b)(a-b),•由此可验证:(a+b)(a-b)=a2-b 2.图1 图249.解; 提示:可以乘以再除以.50.解:=11。
平方差公式练习题及答案
平方差公式练习题及答案平方差公式练习题及答案平方差公式是数学中常见的一个公式,用于求解两个数的平方差。
它的形式如下:(a + b)(a - b) = a^2 - b^2在解决数学问题中,掌握平方差公式是非常重要的。
下面将给出一些平方差公式的练习题及答案,帮助读者更好地理解和掌握这个公式。
练习题一:计算下列式子的值:1. (5 + 3)(5 - 3)2. (12 + 7)(12 - 7)3. (9 + 4)(9 - 4)4. (15 + 6)(15 - 6)5. (8 + 2)(8 - 2)答案一:1. (5 + 3)(5 - 3) = 8 * 2 = 162. (12 + 7)(12 - 7) = 19 * 5 = 953. (9 + 4)(9 - 4) = 13 * 5 = 654. (15 + 6)(15 - 6) = 21 * 9 = 1895. (8 + 2)(8 - 2) = 10 * 6 = 60练习题二:根据已知条件,应用平方差公式求解下列问题:1. 若a = 5,b = 3,求(a + b)(a - b)的值。
2. 若a = 10,b = 6,求(a + b)(a - b)的值。
3. 若a = 8,b = 2,求(a + b)(a - b)的值。
4. 若a = 15,b = 9,求(a + b)(a - b)的值。
5. 若a = 20,b = 12,求(a + b)(a - b)的值。
答案二:1. (a + b)(a - b) = (5 + 3)(5 - 3) = 8 * 2 = 162. (a + b)(a - b) = (10 + 6)(10 - 6) = 16 * 4 = 643. (a + b)(a - b) = (8 + 2)(8 - 2) = 10 * 6 = 604. (a + b)(a - b) = (15 + 9)(15 - 9) = 24 * 6 = 1445. (a + b)(a - b) = (20 + 12)(20 - 12) = 32 * 8 = 256通过以上练习题,我们可以看到平方差公式的应用是非常简单直观的。
初一平方差计算题50道
初一平方差计算题50道一、基础型(20道)1. 计算:(a + 3)(a - 3)- 解析:根据平方差公式(x + y)(x - y)=x^2-y^2,这里x = a,y = 3,所以(a + 3)(a - 3)=a^2-3^2=a^2-9。
2. 计算:(2 + b)(2 - b)- 解析:根据平方差公式,x = 2,y=b,则(2 + b)(2 - b)=2^2-b^2=4 - b^2。
3. 计算:(5x+1)(5x - 1)- 解析:令x = 5x,y = 1,根据平方差公式可得(5x+1)(5x - 1)=(5x)^2-1^2=25x^2-1。
4. 计算:(3m - 2n)(3m + 2n)- 解析:这里x = 3m,y = 2n,根据平方差公式(3m - 2n)(3m + 2n)=(3m)^2-(2n)^2=9m^2-4n^2。
5. 计算:(x+2y)(x - 2y)- 解析:设x=x,y = 2y,由平方差公式得(x + 2y)(x - 2y)=x^2-(2y)^2=x^2-4y^2。
6. 计算:(4a+3b)(4a - 3b)- 解析:令x = 4a,y = 3b,根据平方差公式(4a+3b)(4a - 3b)=(4a)^2-(3b)^2=16a^2-9b^2。
7. 计算:(-x + 5)(-x - 5)- 解析:这里x=-x,y = 5,根据平方差公式(-x + 5)(-x - 5)=(-x)^2-5^2=x^2-25。
8. 计算:(-2m+3n)(-2m - 3n)- 解析:设x=-2m,y = 3n,由平方差公式得(-2m + 3n)(-2m - 3n)=(-2m)^2-(3n)^2=4m^2-9n^2。
9. 计算:((1)/(2)x+(1)/(3)y)((1)/(2)x-(1)/(3)y)- 解析:令x=(1)/(2)x,y=(1)/(3)y,根据平方差公式((1)/(2)x+(1)/(3)y)((1)/(2)x-(1)/(3)y)=((1)/(2)x)^2-((1)/(3)y)^2=(1)/(4)x^2-(1)/(9)y^2。
人教版初中数学平方差与完全平方公式练习及参考答案
平方差与完全平方公式练习1、用平方差公式进行计算:
(1) 103×97; (2)118×122 (3) 102×98 (4) 51×49
2、平方差公式在混合运算中的应用:
(3) (4)
利用平方差公式进行证明:
3、对于任意的正整数n,整式(3n+1)(3n-1)-(3-n)(3+n)的值一定是10的整数倍吗?
即(3n+1)(3n-1)-(3-n)(3+n)的值是10的倍数.
方法总结:在探究整除性或倍数问题时,一般先将代数式化为最简,然后根据结果的特征,判断其是否具有整除性或倍数关系.
4、如果两个连续奇数分别是2n-1,2n+1(其中n为正整数),证明两个连续奇数的平方差是8的倍数.
注意:逆用了平方差公式!5、
6、
7、
8、
9、对于任意一个正整数n,整式A=(4n+1)·(4n-1)-(n+1)·(n-1)能被15整除吗?请说明理由.
10、王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
完全平方公式
1、利用完全平方公式计算:
2、下面各式的计算是否正确?如果不正确,应当怎样改正?
3、利用完全平方公式计算
4、利用完全平方公式的变形求整式的值:
5、填空:
6、
7、
8、(1)(3a+b-2)(3a-b+2) (2)(x-y-m+n)(x-y+m-n) 9、
10、已知x+y=8, x-y=4,求xy.。
北师大七年级下1.5《平方差公式》习题含详细答案
《平方差公式》习题一、选择题1.计算:(a+2)(a-2)的结果是( )A.a2+4B.a2-4C.2a-4D.2a2.计算(a+1)2(a-1)2的结果是( )A.a4-1B.a4+1C.a4+2a2+1D.a4-2a2+13.计算:a2-(a+1)(a-1)的结果是( )A.1B.-1C.2a2+1D.2a2-14.计算(a4+b4)(a2+b2)(b-a)(a+b)的结果是( )A.a8-b8B.a6-b6C.b8-a8D.b6-a6二、填空题5.(a2+1)(a+1)(_____)=a4-1.6.观察下列各式:(a-1)(a+1)=a2-1,(a-1)(a2+a+1)=a3-1,(a-1)(a3+a2+a+1)=a4-1…根据前面各式的规律计算:(a-1)(a4+a3+a2+a+1)=_____;22012+22011+…+22+2+1=_____.7.(a+1)(a-1)(1-a2)=_____.8.(x-_____-3)(x+2y-_____)=[(_____)-2y][(_____)+2y]9.(x+2y-3)(x-2y-3)=_____-_____.10.若x2-y2=48,x+y=6,则3x-3y=_____.三、解答题11.计算: ( a-2b ) ( -2b-a ) .12.已知:x+y=6,xy=4.(1)求x2+y2的值;(2)求(x-y)2的值;(3)求x4+y4的值13.若x2+y2=86,xy=-16,求(x-y)2.14.已知:x2+xy+y=14,y2+xy+x=28,求x+y的值.15.知(m+n)2=10,(m-n)2=2,求m4+n4的值.参考答案一、选择题1.答案:B解析:【解答】(a+2)(a-2)=a2-22=a2-4.故选B【分析】根据平方差公式展开,即可求出答案.2.答案:D解析:【解答】(a+1)2(a-1)2=[(a+1)(a-1)]2=(a2-1)2=a4-2a2+1.故选D.【分析】此题首先利用积的乘方公式把所求代数式变为[(a+1)(a-1)]2,然后利用平方差公式化简,再利用完全平方公式即可求出结果.3.答案:A解析:【解答】a2-(a+1)(a-1)=a2-(a2-1)=a2-a2+1=1.故选A.【分析】先利用平方差公式计算,再根据整式的加减运算法则,计算后直接选取答案.4.答案:C解析:【解答】(a4+b4)(a2+b2)(b-a)(a+b)=(a4+b4)(a2+b2)(b2-a2)=(a4+b4)(b4-a4)=b8-a8.故选C.【分析】多次运用平方差公式计算即可.二、填空题5.答案:(a-1)解析:【解答】a4-1=(a2+1)(a2-1)=(a2+1)(a+1)(a-1).【分析】根据平方差公式的运算即可得出答案.6.答案:a5-1 22013-1解析:【解答】(a-1)(a4+a3+a2+a+1)=a5-1;22012+22011+…+22+2+1=1×(22012+22011+…+22+2+1)=(2-1)(22012+22011+…+22+2+1)=22013-1.【分析】根据题目信息,可得:(a-1)(a n+a n-1+a n-2+…+a2+a+1)=a n+1-1,由此计算即可.7.答案:-a4+2a2-1解析:【解答】(a+1)(a-1)(1-a2)=(a2-1)(1-a2)=-a4+2a2-1;【分析】根据平方差公式分别进行计算,再合并同类项即可求出答案.8.答案:2y 3 x-3 x-3解析:【解答】(x-2y-3)(x+2y-3)=[(x-3)-2y][(x-3)+2y].【分析】本题是平方差公式的应用,通过左右对照,相同项是x-3;相反项是-2y,2y.填空即可.9.答案:(x-3)2 (2y)2.解析:【解答】(x+2y-3)(x-2y-3)=(x-3)2-(2y)2.【分析】根据平方差公式计算.10.答案:24.解析:【解答】x2-y2=(x+y)(x-y)=48,∵x+y=6,∴x-y=8,则3x-3y=3(x-y)=3×8=24.【分析】先按照平方差公式把x2-y2=48写成(x+y)(x-y)=48的形式,再由x+y=6得出x-y 的值,然后把3x-3y写成3(x-y)的形式,最好把x-y的值代入即可.三、解答题11.答案:1,12.解析:【解答】原式=(-2b)2-a2=4b2-a2.【分析】此题是-2b与a这两个数的和与这两个数的差相乘的积, 符合平方差公式, 所以就等于这两数的平方差.12.答案:(1)28;(2)20;(3)368.解析:【解答】∵x+y=6,xy=4,∴(1)x2+y2=(x+y)2-2xy=62-2×4=28;(2)(x-y)2=x2+y2-2xy=28-2×4=20;(3)x4+y4=(x2+y2)2-2x2y2=(x2+y2)2-2(xy)2=202-2×42=368.【分析】(1)利用x2+y2=(x+y)2-2xy计算即可;(2)利用(x-y)2=x2+y2-2xy计算即可;(3)利用x4+y4=(x2+y2)2-2x2y2=(x2+y2)2-2(xy)2计算即可.13.答案:118.解析:【解答】∵(x-y)2=x2+y2-2xy,且x2+y2=86,xy=-16,∴(x-y)2=86-2×(-16)=118.【分析】根据完全平方公式得到(x-y)2=x2+y2-2xy,然后把x2+y2=86,xy=-16代入计算即可.14.答案:x+y=-7或x+y=6.解析:【解答】x2+xy+y=14①,y2+xy+x=28②,∴①+②,得:x2+2xy+y2+x+y=42,∴(x+y)2+(x+y)-42=0,∴(x+y+7)(x+y-6)=0,∴x+y+7=0或x+y-6=0,解得:x+y=-7或x+y=6.【分析】由x2+xy+y=14,y2+xy+x=28,即可求得x2+2xy+y2+x+y=42,则变形得(x+y)2+(x+y)-42=0,将x+y看作整体,利用因式分解法即可求得x+y的值.15.答案:28.解析:【解答】(m+n)2=10,(m-n)2=2,∴m2+2mn+n2=10,m2-2mn+n2=2,相减得:4mn=8,∴2mn=4,∴m4+n4=(m2+n2)2-2(mn)2=[(m+n)2-2mn]2-8=[10-4]2-8=36-8=28.【分析】根据已知求出2mn的值,把m4+n4化成含有(m+n)2和2mn的形式,代入即可.。
七下平方差公式练习题含答案
一、课堂练习:填空题:(每题4分,共24分)1.(x+6)(6-x)=________,11()()22x x -+--=_____________. 2.222(25)()425a b a b --=-.3.(x-1)(2x +1)( )=4x -1.4.(a+b+c)(a-b-c)=[a+( )][a-( )].5.(a-b-c-d)(a+b-c+d)=[( )+( )][( )-( )]6. 18201999⨯=_________,403×397=_________. 选择题:(每题6分,共18分)7.下列式中能用平方差公式计算的有( ) ①(x-12y)(x+12y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1) A.1个 B.2个 C.3个 D.4个8.下列式中,运算正确的是( ) ①222(2)4a a =, ②2111(1)(1)1339x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482aba b ++⨯⨯=.A.①②B.②③C.②④D.③④9.乘法等式中的字母a 、b 表示( )A.只能是数B.只能是单项式C.只能是多项式D.单项式、•多项式都可以10.下列各式能用平方差公式计算的是:( )A .B .C .D .11.下列式子中,不成立的是:( )A .B .C .D .12. ,括号内应填入下式中的( ).A .B .C .D .13.对于任意整数n ,能整除代数式 的整数是( ).A .4B .3C .5D .214.在的计算中,第一步正确的是( ).A .B .C .D .15.计算 的结果是( ).A .B .C .D .16.的结果是( ).A .B .C .D .17.(4x 2-5y)需乘以下列哪个式子,才能使用平方差公式进行计算( ) A.-4x 2-5y B.-4x 2+5y C.(4x 2-5y)2D.(4x+5y)218.a 4+(1-a)(1+a)(1+a 2)的计算结果是( )A.-1B.1C.2a 4-1D.1-2a 4 19.下列各式运算结果是x 2-25y 2的是( ) A.(x+5y)(-x+5y) B.(-x -5y)(-x+5y) C.(x -y)(x+25y) D.(x -5y)(5y -x)解答题:(共58分)20.计算(a+1)(a-1)(2a +1)(4a +1)(8a +1).(7分) 21.计算:22222110099989721-+-++- .(7分)22.(1)化简求值:(x+5)2-(x-5)2-5(2x+1)(2x-1)+x ·(2x)2,其中x=-1.(6分)(2)解方程5x+6(3x+2)(-2+3x)-54(x-13)(x+13)=2.(8分) 23.计算:2222211111(1)(1)(1)(1)(1)23499100-----. (7分) 24.计算:2481511111(1)(1)(1)(1)22222+++++. (7分)25.已知9621-可以被在60至70之间的两个整数整除,则这两个整数是多少?(8分) 26.已知3n m +能被13整除,求证33n m ++也能被13整除.(8分)27.计算19982-1997×1999. 28.计算(2+1)(22+1)(24+1)…(232+1) 29求.20022004200320032⨯-30.求二.解答题(共30小题)1.(2013春•苏州期末)若2x+5y﹣3=0,求4x•32y的值.2.(2014春•泗洪县校级月考)若2•8n•16n=222,求n的值.3.(2014春•句容市校级期中)一个长方形的长是4.2×104cm,宽是2×104cm,求此长方形的面积及周长.4.(2014春•宝应县月考)已知2m=5,2n=7,求24m+2n的值.5.(2014春•寿县期中)已知a m=2,a n=3,求a3m+2n的值.6.(2014春•灌云县校级月考)小明是一位刻苦学习,勤于思考的同学,一天,他在解方程时突然产生了这样的想法,x2=﹣1,这个方程在实数范围内无解,如果存在一个数i2=﹣1,那么方程x2=﹣1可以变成x2=i2,则x=±i,从而x=±i是方程x2=﹣1的两个解,小明还发现i具有以下性质:i1=i,i2=﹣1,i3=i2•i=﹣i;i4=(i2)2=(﹣1)2=1,i5=i4•i=i,i6=(i2)3=(﹣1)3=﹣1,i7=i6•i=﹣i,i8=(i4)2=1,…请你观察上述等式,根据你发现的规律填空:i4n+1=,i4n+2=,i4n+3=,i4n+4=(n为自然数).7.(2008春•昆山市期末)已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.8.(2012春•化州市校级期末)已知3×9m×27m=316,求m的值.9.(2013秋•万州区校级月考)已知:162×43×26=22x﹣1,[(10)2]y=1012,求2x+y的值.10.(2014春•桓台县校级月考)已知x3=m,x5=n用含有m、n的代数式表示x14.11.(2014春•石景山区期末)2x6y2•x3y+(﹣25x8y2)(﹣xy).12.(2011秋•长春期中)计算:(﹣2x3y)•(3xy2﹣4xy+1).13.(2a2)•(3ab2﹣5ab3)14.已知ab2=﹣1,求(﹣ab)(a2b5﹣ab3﹣b)的值.15.化简:2a3×(﹣a﹚2.16.(2015春•宝应县月考)我们规定一种运算:=ad﹣bc,例如=3×6﹣4×5=﹣2,=4x+6.按照这种运算规定,当x等于多少时,=0.17.(2013秋•东莞期末)计算:(a﹣1)(a2+a+1)18.(2014春•招远市期末)计算:(3a+1)(2a﹣3)﹣(6a﹣5)(a﹣4).19.(2014春•金牛区期末)若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.20.(2014春•江山市校级期中)若(x﹣3)(x+m)=x2+nx﹣15,求的值.21.(2014秋•太和县期末)计算:(8a3b﹣5a2b2)÷4ab.22.(2014秋•宜宾校级期中)已知5x=36,5y=2,求5x﹣2y的值.23.(2010秋•南安市期末)计算:(3a3b﹣9a2b2﹣21a2b3)÷3a2b.24.(2014春•上街区校级期中)(2a+b)4÷(2a+b)2.25.(2014春•南海区校级月考)已知:x m=3,x n=2,求:(1)x m+n的值;(2)x2m﹣3n的值.26.(2010•西宁)计算:()﹣1﹣(3.14﹣π)0+0.254×44.27.(2010•漳州)计算:(﹣2)0+(﹣1)2010﹣28.(2010•晋江市)计算:|﹣4|﹣(﹣3)2÷﹣2010029.(2009•长沙)计算:(﹣2)2+2×(﹣3)+()﹣130.(2008•湘潭)计算:|﹣1|+(3﹣π)0﹣()﹣1.三.解答题(共12小题)1.计算:①;②[(﹣y5)2]3÷[(﹣y)3]5•y2③④(a﹣b)6•[﹣4(b﹣a)3]•(b﹣a)2÷(a﹣b)2.计算:①(2x﹣3y)2﹣8y2;②(m+3n)(m﹣3n)﹣(m﹣3n)2;③(a﹣b+c)(a﹣b﹣c);④(x+2y﹣3)(x﹣2y+3);⑤(a﹣2b+c)2;⑥[(x﹣2y)2+(x﹣2y)(2y﹣x)﹣2x(2x﹣y)]÷2x.⑦(m+2n)2(m﹣2n)2 ⑧.3.计算:(1)6a5b6c4÷(﹣3a2b3c)÷(2a3b3c3).(2)(x﹣4y)(2x+3y)﹣(x+2y)(x﹣y).(3)[(﹣2x2y)2]3•3xy4.(4)(m﹣n)(m+n)+(m+n)2﹣2m2.4.计算:(1)(x2)8•x4÷x10﹣2x5•(x3)2÷x.(2)3a3b2÷a2+b•(a2b﹣3ab﹣5a2b).(3)(x﹣3)(x+3)﹣(x+1)(x+3).(4)(2x+y)(2x﹣y)+(x+y)2﹣2(2x2﹣xy).5.因式分解:①6ab3﹣24a3b;②﹣2a2+4a﹣2;③4n2(m﹣2)﹣6(2﹣m);④2x2y﹣8xy+8y;⑤a2(x﹣y)+4b2(y﹣x);⑥4m2n2﹣(m2+n2)2;⑦;⑧(a2+1)2﹣4a2;⑨3x n+1﹣6x n+3x n﹣1⑩x2﹣y2+2y﹣1;4a2﹣b2﹣4a+1;4(x﹣y)2﹣4x+4y+1;3ax2﹣6ax﹣9a;x4﹣6x2﹣27;(a2﹣2a)2﹣2(a2﹣2a)﹣3.6.因式分解:(1)4x3﹣4x2y+xy2.(2)a2(a﹣1)﹣4(1﹣a)2.7.给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.8.先化简,再求值:(2a+b)(2a﹣b)+b(2a+b)﹣4a2b÷b,其中a=﹣,b=2.9.当x=﹣1,y=﹣2时,求代数式[2x2﹣(x+y)(x﹣y)][(﹣x﹣y)(﹣x+y)+2y2]的值.10.解下列方程或不等式组:①(x+2)(x﹣3)﹣(x﹣6)(x﹣1)=0;②2(x﹣3)(x+5)﹣(2x﹣1)(x+7)≤4.11.先化简,再求值:(1)(x+2y)(2x+y)﹣(x+2y)(2y﹣x),其中,.(2)若x﹣y=1,xy=2,求x3y﹣2x2y2+xy3.12.解方程或不等式:(1)(x+3)2+2(x﹣1)2=3x2+13.(2)(2x﹣5)2+(3x+1)2>13(x2﹣10).一、答案:1.36-x2,x2-142.-2a2+5b3.x+14.b+c,b+c5.a-c,b+d,a-c,b+d6.3239981,159991 7.D 8.C 9.D 10.B 11.B12.A13.C 14.C 15.D 16.B 17.A 18.B 19.B20.16a-121.5050 22.(1)-36 (2)x=4 23.原式==11011012100200⨯=⨯. 24.原式=248151111112(1)(1)(1)(1)(1)222222-+++++=1615112(1)222-+=.25.96148248482(2)1(21)(21)-=-=+-=482424(21)(21)(21)++-=48241266(21)(21)(21)(21)(21)++++- =482412(21)(21)(21)6563+++⨯⨯ ∴这两个整数为65和63. 26.33n m ++333273(261)32633n n n n n m m m m =⨯+=⨯+=+⨯+=⨯++∵263n⨯能被13整除,3nm +能被13整除 ∴33n m ++能被13整除.27. 灵活应用平方差公式化简,其中,1997×1999=(1998-1)(1998+1).19982-1997×1999=19982-(1998-1)(1998+1)=19982-(19982-1)=19982-19982+1 =1.28.分析与答案:要计算本题,一般先计算每一个括号内的,然后再求它们的积,这样做是复杂的,也是不必要的,我们不妨考虑用平方差公式来解决,即在原式上乘以(2-1),再同时除以(2-1)即可.解:原式=12)12()12)(12)(12)(12(3242-++++-=(22-1)(22+1)(24+1)…(232+1) =(24-1)(24+1)…(232+1) =(232)2-1 =264-1.29.原式=)12003)(12003(200320032-+-=)12003(2003200322-- =120032003200322+- =12003=2003.30.思路:老师不太可能会出这么长纯计算的题。
平方差公式练习题精选(含答案)教案
1利用完全平方公式计算:
(1)(21
x+32y)2(2)(-2m+5n)2
那么用较大的正方形的面积减去较小的正方形的面积
平方差公式练习题精选(含答案)教案
平方差公式
1、利用平方差公式计算:
(1)(m+2) (m-2)
(2)(1+3a) (1-3a)
(3) (x+5y)(x-5y)
(4)(y+3z) (y-3z)
2、利用平方差公式计算
(1)(5+6x)(5-6x)
(2)(x-2y)(x+2y)
(3)(-m+n)(-m-n)
3利用平方差公式计算
(1)(1)(-41
x-y)(-41
x+y)
(2)(ab+8)(ab-8)
(3)(m+n)(m-n)+3n 2
4、利用平方差公式计算
(1)(a+2)(a-2)
(2)(3a+2b)(3a-(-4k+3)(-4k-3)
③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.
A .1个
B .2个
C .3个
D .4个
9.若x 2-y 2=30,且x -y=-5,则x+y 的值是(
)A .5 B .6 C .-6 D .-5
10.(-2x+y )(-2x -y )=______.
5、利用平方差公式计算
(1)803×797
(2)398×402
7.下列多项式的乘法中,可以用平方差公式计算的是(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b) C.(13a+b)(b-13a) D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2A.1个 B.2个 C.3个 D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是___________。
三、计算题9.利用平方差公式计算:2023×1913.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007 200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6 B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3 D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=______________________.②(a-b)(a2+ab+b2)=__________________.③(a-b)(a3+a2b+ab2+b3)=_____________________.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.参考答案A卷一、1.D2.C 点拨:一个算式能否用平方差公式计算,•关键要看这个算式是不是两个数的和与这两个数的差相乘的形式,选项A,B,D都不符合平方差公式的结构特征,•只有选项C可以用平方差公式计算,故选C.3.D 点拨:①(3a+4)(3a-4)=(3a)2-42=9a2-16,②(2a2-b)(2a2+b)=(2a2)2-b2=4a4-b2,③(3-x)(x+3)=32-x2=9-x2,④(-x+y)(x+y)=-(x-y)(x+y)=-(x2-y2)=-x2+y2,故选D.4.C 点拨:因为(x+y)(x-y)=x2-y2,又x2-y2=30,x-y=-5,所以-5(x+y)=30,x+y=-6,•故选C.二、5.4x2-y2点拨:(-2x+y)(-2x-y)=(-2x)2-y2=4x2-y2.6.-3x2-2y2点拨:因为(-3x2+2y2)(-3x2-2y2)=(-3x2)2-(2y2)2=9x4-4y4,所以本题应填写-3x2-2y2.7.a;b-1点拨:把a+b-1转化为a+(b-1),把a-b+1转化为a-(b-1),可得(a+b-1)(a-b+1)=[a+(b-1)][a-(b-1)]=a2-(b-1)2.8.10 点拨:设较大的正方形的边长为a,较小的正方形的边长为b,则a+b=5,•a-b=2,所求的面积差为a2-b2,而(a+b)(a-b)=a2-b2,故a2-b2=10.三、9.解:2023×1913=(20+23)×(20-23)=202-(23)2=400-49=39959.点拨:先把两个因数分别转化成两数的和与这两个数的差,再利用平方差公式计算.10.解:(a+2)(a2+4)(a4+16)(a-2)=(a-2)(a+2)(a2+4)·(a4+16)=(a2-4)(a2+4)(a4+16)=(a4-16)(a4+16)=a8-162=a8-256.点拨:根据题中因式的结构特征,•依次运用平方差公式进行计算.B卷一、1.解:(1)(2+1)(22+1)(24+1)…(22n+1)+1 =(2-1)(2+1)(22+1)(24+1)…(22n+1)+1=(22-1)(22+1)(24+1)…(22n+1)+1=(24-1)(24+1)…(22n+1)+1=…=[(22n)2-1]+1=24n-1+1=24n;(2)(3+1)(32+1)(34+1)…(32008+1)-4016 32=12(3-1)(3+1)(32+1)(34+1)…(32008+1)-401632=12(32-1)(32+1)·(34+1)…(32008+1)-401632=…=12(34-1)(34+1)…(32008+1)-401632=…=12(34016-1)-401632=401632-12-401632=-12.2.解:2009×2007-20082=(2008+1)×(2008-1)-20082=20082-1-20082=-1.(1)22007200720082006-⨯=220072007(20071)(20071)-+⨯-=2220072007(20071)--=2007(2)22007200820061⨯+=22007(20071)(20071)1+⨯-+=222007200711-+=2220072007=1.点拨:把式子中乘积部分的运算通过变形转化为平方差公式的结构形式,然后运用平方差公式化繁为简.二、3.解:x(x+2)+(2x+1)(2x-1)=5(x2+3),x2+2x+4x2-1=5x2+15,x2+4x2-5x2+2x=15+1,2x=16,x=8.三、4.解:(2a+3)(2a-3)=(2a)2-32=4a2-9(平方米).答:改造后的长方形草坪的面积是(4a2-9)平方米.四、5.D 点拨:A选项a3+a3=2a3;B选项(-a)3·(-a)5=a8;C选项(-2a2b)·4a=-8a3b;D选项正确,故选D.6.a2-1C卷1.(1)1-x n+1(2)①-63;②2n+1-2;③x100-1(3)①a2-b2②a3-b3③a4-b4点拨:(1),(3)题根据观察到的规律正确填写即可;(2)题①中利用观察到的规律可知,原式=1-26=1-64=-63;②中原式=2(1+2+22+…+2n-1)=-2(1-2)(1+2+22+…+2n-1)=-2(1-2n)=-2+2·2n=2n+1-2;③中原式=-(1-x)(1+x+x2+…+x97+x98+x99)=-(1-x100)=x100-1.2.解:(m+2n)(m-2n)=m2-4n2.点拨:本题答案不唯一,只要符合要求即可.3.解:题图1中的阴影部分(四个等腰梯形)的面积为a2-b2,题图2•中的阴影部分(平行四边形)的底为(a+b),这个底上的高为(a-b),故它的面积为(a+b)(a-b),•由此可验证:(a+b)(a-b)=a2-b2.图1 图2。