11.6 生化实验报告 血清γ-球蛋白的分离纯化与鉴定及电泳分析

合集下载

实验三血清γ-球蛋白的分离、纯化及鉴定七年制

实验三血清γ-球蛋白的分离、纯化及鉴定七年制
氨基酸序列分析 通过质谱分析,对血清γ-球蛋白的部分氨基酸序列进行了测定,为后续
的结构分析提供了基础。
序列和结构分析结果解读
根据氨基酸序列,对血清γ-球蛋白的一级结构进 行了深入分析,确定了其基本组成。
利用计算机模拟技术,对血清γ-球蛋白的高级结构进 行了预测,揭示了其可能的折叠方式和空间构象。
一级结构分析 高级结构预测
实验态度培养
实验过程中需严谨细致,实事求是记录数据,培养了我们 的科学态度和实验精神。
团队合作意识
实验操作需要小组成员密切配合,增强了我们的团队协作 意识和沟通能力。
实验不足与改进
在实验过程中,我们也发现了一些不足之处,如样品处理 过程中可能存在的误差、层析柱的平衡问题等,需要在今 后的实验中加以改进和完善。
结果讨论与展望
实验意义
输标02入题
本实验成功分离、纯化了血清γ-球蛋白,为进一步研 究其功能和作用机制提供了材料。
01
未来可以深入研究血清γ-球蛋白与其他蛋白质的相互 作用,以及其在生理和病理过程中的作用,以期为相
关疾病的诊断和治疗提供新思路。
04
03
未来研究方向
05
结论
实验总结
实验原理
本实验基于蛋白质分离纯化的基本原理,通过离子交换层 析和凝胶过滤层析技术,实现了血清γ-球蛋白的分离和纯 化。
03
通过比较肽段的序列信息与数据库中的蛋白质序列, 可以鉴定出蛋白质的身份。
序列分析和结构预测的方法
01
序列分析通过测定蛋白质中每个氨基酸的排列顺序,确定蛋白 质的一级结构。
02
结构预测则基于已知的氨基酸序列,利用计算机模拟技术预测
蛋白质的三维结构。
这些方法对于理解蛋白质的功能和作用机制具有重要意义。

血清γ-球蛋白分离、纯度鉴定与浓度检测

血清γ-球蛋白分离、纯度鉴定与浓度检测

生物化学实验报告班级:学号:姓名:实验室:评分━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━日期:实验一:血清γ-球蛋白分离、纯度鉴定与浓度检测实验目的:1、熟悉盐析法分离蛋白质的原理和基本方法2、掌握凝胶层析法脱盐分离蛋白质的原理和基本方法3、掌握醋酸纤维素薄膜电泳法进行纯度鉴定的原理和基本方法4、掌握分光光度计检测蛋白质含量的原理和基本方法实验原理:1.盐析法:盐析法是在蛋白质溶液中,加入无机盐至一定浓度或达饱和状态,可使蛋白质在水中溶解度降低,从而分离出来。

蛋白质溶液中加入中性盐后,由于中性盐与水分子的亲和力大于蛋白质,致使蛋白质分子周围的水化膜减弱乃至消失。

此外,中性盐加入蛋白质溶液后由于离子强度发生改变,蛋白质表面的电荷大量被中和,更加导致蛋白质溶解度降低,蛋白质分子之间聚集而沉淀。

2.凝胶层析法脱盐:在葡聚糖凝胶柱中,蛋白质与盐的分子量不同,当样品通过层析柱时,分子量较大的蛋白质因为不能通过网孔而进入凝胶颗粒,沿着凝胶颗粒间的间隙流动,所以流程较短,向前移动速度较快,最先流出层析柱;反之,盐的分子量较小,可通过网孔而进入凝胶颗粒,所以流程长,向前移动速度较慢,流出层析柱的时间较后。

分段收集蛋白质洗脱液,即可得到脱盐的蛋白质。

3.醋酸纤维素薄膜电泳:血清中各种蛋白质的等电点不同,一般都低于pH7.4。

它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。

由于血浆中各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速度也不同。

因此可以将它们分离为清蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。

4.分光光度计是应用分光光度法(即比色法)测定物质含量的装置。

通常需要加入某种显色剂,以产生有色化合物,其颜色深浅与待测化学成分的含量成正比,据此对待测物浓度进行测定。

分光光度计的工作原理及分光光度法的计算根据Lambert-Beer定律导衍而得Abs(吸光度)=KCL K:摩尔吸收系数 C:吸光物质浓度 L-溶液厚度实验操作:1.硫酸铵分段盐析:血清2.0 ml,加入PBS2.0ml,一边摇一边缓慢加入饱和硫酸铵2.0 ml,混匀后室温下静置10分钟,3000rpm离心10分钟。

血清清蛋白与血浆γ-球蛋白的分离定量纯化和鉴定

血清清蛋白与血浆γ-球蛋白的分离定量纯化和鉴定

血清清蛋白与血浆γ-球蛋白的分离定量纯化和鉴定实验设计班级:11级口腔本科2班姓名:段康博学号:201150166陈晓红201150167章瑞雪201150163郭昌再201150145高原201150143【实验目的】1.了解并基本掌握蛋白质分离提纯的过程2.从血清中分离并纯化血清清蛋白和γ-球蛋白。

3.进行血清清蛋白和γ-球蛋白的定量和鉴定4. 4.掌握电泳的原理方法及应用【实验原理】血浆蛋白是血浆中最主要的固体成分,血浆蛋白质种类繁多,功能各异。

用不同的分离方法可将血浆蛋白质分为不同的种类。

在生物化学研究中,由于它们所带电荷不同、相对分子质量不同,在高浓度盐溶液中的溶解度不同,因此可利用它们在中性盐溶液中溶解度的差异而进行沉淀分离,用盐析法将血浆蛋白分为白蛋白(即清蛋白)、球蛋白与纤维蛋白原三大类。

用盐析法分离而得的蛋白质含有大量的硫酸铵,会妨碍蛋白质的进一步纯化,因此必须去除,常用的有透析法、凝胶过滤法等。

本实验采用凝胶过滤法。

脱盐后的蛋白质溶液再经DEAE纤维素层析柱进一步纯化。

DEAE纤维素为阴离子交换剂,在pH 6.5的条件下带有正电荷,能吸附带负电荷的α-球蛋白和β-球蛋白(pl分别为4.9、5.06和5.12),而γ-球蛋白(pl7.3)在此条件下带正电荷,不被吸附故直接从层析柱流出,此时收集的流出液即为纯化的γ-球蛋白。

提高醋酸铵溶液的浓度到0.06 mol/L,DEAE纤维素层析柱上的ß-球蛋白及部分a-球蛋白可被洗脱下来。

将醋酸铵溶液的浓度提高至0.3mol/L,则清蛋白被洗脱下来,此时收集的流出液即为较纯的清蛋白。

经DEAE纤维素阴离子交换柱纯化的清蛋白、γ-球蛋白液往往体积较大,样品质量分数较低。

为便于鉴定,常需浓缩。

浓缩的方法很多,本实验选用聚乙二醇透析浓缩的方法。

血清清蛋白、γ-球蛋白分离纯化后,选用醋酸纤维薄膜电泳法鉴定其纯度。

然后,用醋酸纤维素薄膜电泳可分为五个区带,γ-球蛋白的等电点为7.3,在pH8.6的巴比妥缓冲液中,带的负电荷最少,因此在电场中比其它蛋白质移动速度慢。

11.6生化实验报告血清γ-球蛋白的分离纯化与鉴定及电泳分析

11.6生化实验报告血清γ-球蛋白的分离纯化与鉴定及电泳分析

11.6⽣化实验报告⾎清γ-球蛋⽩的分离纯化与鉴定及电泳分析⾎清γ-球蛋⽩的分离纯化与鉴定及电泳分析【实验⽬的】1、了解蛋⽩质分离提纯的总体思路。

2、掌握盐析法、凝胶层析法和离⼦交换层析的实验原理及操作技术3、掌握电泳法分离纯化蛋⽩质的⽅法。

【实验原理】1、蛋⽩质的粗提——盐析法胶体的盐析是加盐,盐中的带电粒⼦使蛋⽩质周围的⽔化膜减弱,胶粒溶解度降低,形成沉淀析出的过程,是胶体的聚沉现象的⼀种。

向蛋⽩质溶液中加⼊某些浓的⽆机盐[如(NH4)2SO4或Na2SO4]溶液后,可以使蛋⽩质凝聚⽽从溶液中析出,这种作⽤就叫做盐析。

盐析不能使蛋⽩质变性,可以复原。

利⽤这个性质,可以采⽤多次盐析的⽅法来分离、提纯蛋⽩质。

蛋⽩质在⽔溶液中的溶解度取决于蛋⽩质分⼦表⾯离⼦周围的⽔分⼦数⽬,亦即主要是由蛋⽩质分⼦外周亲⽔基团与⽔形成⽔化膜的程度以及蛋⽩质分⼦带有电荷的情况决定的。

蛋⽩质溶液中加⼊中性盐后,由于中性盐与⽔分⼦的亲和⼒⼤于蛋⽩质,致使蛋⽩质分⼦周围的⽔化层减弱乃⾄消失。

同时,离⼦强度发⽣改变,蛋⽩质表⾯的电荷⼤量被中和,蛋⽩质溶解度更加降低,之蛋⽩质分⼦之间聚集⽽沉淀。

由于各种蛋⽩质在不同盐浓度中的溶解度不同,不同饱和度的盐溶液沉淀的蛋⽩质不同,从⽽使之从其他蛋⽩中分离出来。

简单的说就是将硫酸铵、硫化钠或氯化钠等加⼊蛋⽩质溶液,使蛋⽩质表⾯电荷被中和以及⽔化膜被破坏,导致蛋⽩质在⽔溶液中的稳定性因素去除⽽沉淀。

由于清蛋⽩的亲⽔性⽐球蛋⽩⼤,且清蛋⽩的分⼦⽐球蛋⽩⼩,所以清蛋⽩需要⾼浓度的盐溶液才能够发⽣盐析,低浓度的时候球蛋⽩发⽣盐析。

盐析法分离蛋⽩质:各种蛋⽩质的颗粒⼤⼩、亲⽔程度、pI不同,盐析所需的盐浓度也不⼀样。

调节盐浓度可使不同的蛋⽩质沉淀,从⽽达到分离的⽬的。

常⽤中性盐:硫酸铵、硫酸钠等。

硫酸铵:温度系数⼩,溶解度⼤,蛋⽩谱⼴,盐析效果好,不易引起变性。

可⽤硫酸/氨⽔按需要调节pH值。

本实验中清蛋⽩分⼦⼩,亲⽔性强,在饱和硫酸铵溶液中可沉淀析出,⽽球蛋⽩分⼦⼤,亲⽔性弱,在半饱和硫酸铵溶液中即可沉淀析出。

血清γ-球蛋白的分离、纯化与鉴定综合性实验的创新与实践

血清γ-球蛋白的分离、纯化与鉴定综合性实验的创新与实践

血清γ-球蛋白的分离、纯化与鉴定综合性实验的创新与实践摘要】为改革生物化学实验,提高实验教学水平,对“血清γ-球蛋白的分离与提纯”实验进行改进和重新整合,建立了综合性实验“血清γ-球蛋白的分离、纯化与鉴定”,实现实验内容和生化技术的综合与创新。

经过4年的医学本科生教学实践,实验方法稳定,结果重复可靠,适合实验教学,有利于提高大学生的综合实验技能。

【关键词】γ-球蛋白综合性实验创新血清γ-球蛋白又称免疫球蛋白(Ig),具有重要的医药应用价值。

许多医学院校把提取血清γ-球蛋白作为生化实验教学内容。

本室于2007年初,对原有生化实验“血清γ-球蛋白的分离与提纯”进行了改进和大胆的创新,选用猪血清,保留原有的硫酸铵盐析、葡聚糖凝胶除盐的操作步骤,增加了分光光度法测定蛋白含量、醋酸纤维素膜及SDS-PAGE法鉴定提取的血清γ-球蛋白纯度,建立并开设了16学时的综合性实验“血清γ-球蛋白的分离、纯化与鉴定”。

通过血清γ-球蛋白的分离、纯化、鉴定、蛋白测定及进一步鉴定的五个子实验,涵盖了生化的离心、层析、分光光度和电泳法四大传统技术。

突破了旧的单纯验证理论或简单孤立的学习一种实验方法或一个知识点的教学模式,使学生受到一次综合性生化技能训练,提高了实验教学效率和效果。

1 材料与方法1.1 仪器材料1.1.1 仪器 KDC-40低速离心机、1.5cm×20cm玻璃层析柱、722-可见分光光度计、DYY-2C电泳仪及DYCZ-24D型垂直板电泳槽。

1.1.2 试剂材料新鲜猪血清、pH7.0饱和硫酸铵溶液、0.01mol/L pH7.0 PBS(磷酸盐缓冲生理盐水)、葡聚糖凝胶G—25(SephadexG-25)、奈氏(Nessler)试剂、20%(W/V)磺基水杨酸溶液、pH8.6离子强度0.06巴比妥缓冲液、氨基黑10B、丙烯酰胺、甲叉双丙烯酰胺、BSA(牛血清白蛋白)等,除SephadexG-25外均为国产。

血清蛋白的分离、提纯与鉴定

血清蛋白的分离、提纯与鉴定

血清清蛋白、γ-球蛋白的分离、提纯于鉴定一、实验目的:1、掌握盐析法分离蛋白质的原理和基本方法2、掌握凝胶层析法分离蛋白质的原理和基本方法3、掌握离子交换层析法分离蛋白质的原理和基本方法4、掌握醋酸纤维素薄膜电泳法的原理和基本方法5、了解柱层析技术二、实验原理:蛋白质的分离和纯化是研究蛋白质化学及其生物学功能的重要手段。

对于不同的蛋白质,其分子量、溶解度及等电点等都有所不同。

利用不同蛋白质在这些性质上的差别,利用相应的物理方法可分离纯化不同蛋白质。

A.盐析法:在蛋白质溶液中加入大量中性无机盐后,由于中性盐与水分子的亲和力大于蛋白质,致使蛋白质分子周围的水化膜减弱乃至消失。

同时,加盐后由于离子强度发生改变,蛋白质表面的电荷大量被中和,从而破坏了蛋白质的胶体性质,导致蛋白质溶解度降低,蛋白质分子之间易于聚集沉淀,进而使蛋白质从水溶液中沉淀析出。

B.凝胶层析:利用蛋白质与无机盐类之间分子量的差异。

当溶液通过SephadeG-25凝胶柱时,溶液中分子直径大的蛋白质不能进入凝胶颗粒网孔,而分子量小的无机盐能进入凝胶颗粒的网孔中,因此在洗脱过程中,小分子的盐会被阻滞而后洗脱出来,从而达到去盐的目的。

C.离子交换层析:离子交换层析是指流动相中的离子和固定相上的离子进行可逆的交换,利用化合物的电荷性质及电荷量不同进行分离。

D.纯度鉴定(醋酸纤维素薄膜电泳):血清中各种蛋白质的等电点不同,一般都低于pH7.4。

它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。

由于血清中各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电泳的速度也不同。

因此电泳时可将它们分离为清蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。

三、材料与方法A材料样品:人混合血清试剂:葡聚糖凝胶(G-25)层析柱、DEAE纤维离子交换层析柱、饱和硫酸铵溶液、醋酸铵缓冲溶液、20%磺基水杨酸、1%BaCl溶液、氨基黑染色液、漂洗液、pH8.6巴比妥缓2冲溶液、电泳仪、电泳槽B实验步骤盐析(粗分离)→葡聚糖凝胶层析(脱盐)→DEAE纤维素离子交换层析(纯化)→醋酸纤维素薄膜电泳(纯度鉴定)具体操作流程示意:(一)盐析+凝胶柱层析除盐:(二)离子交换层析(纯化):(三)醋酸纤维素薄膜电泳:1、点样(如下图):-点样线尽量点得细窄而均匀,宁少勿多2、电泳:①薄膜粗面向下②点样端置阴极端③两端紧贴在滤纸盐桥上,膜应轻轻拉平电压:110V时间:50min3、染色和漂洗:电泳完毕后,关闭电源,将膜取出,直接浸于染色液中5min。

07 生物化学实验--血清γ-球蛋白的分离、纯化与鉴定

07 生物化学实验--血清γ-球蛋白的分离、纯化与鉴定

血清γ- 球蛋白的分离、纯化与鉴定【目的】1 .掌握盐析 - 层析法提纯血清γ- 球蛋白的原理和技术。

2 .熟悉电泳比较法定性γ- 球蛋白的方法。

3 .了解扫描定量γ- 球蛋白的方法。

【原理】蛋白质的分离、纯化是研究蛋白质化学性质及生物学功能的重要手段。

根据不同蛋白质的分子量、溶解度以及在一定条件下带电荷性状的差异来分离、纯化各种蛋白质。

1 .γ- 球蛋白的分离、纯化( 1 )盐析:清蛋白与球蛋白的稳定性不同,故可用盐析法对血清蛋白质初步分离。

在半饱和硫酸铵溶液中,清蛋白不沉淀,球蛋白沉淀,离心所得的沉淀即是球蛋白混合物。

( 2 )脱盐:球蛋白混合物中的硫酸铵会妨碍进一步分离纯化,应除去。

脱盐的方法有多种,本试验采用凝胶过滤。

在凝胶过滤中,柱中的填充料是高度水化的惰性多聚物,最常用的有葡聚糖凝胶( Sephadex Gel )和琼脂糖凝胶 (Agarose Gel) 等颗粒。

葡聚糖凝胶是具有不同交联度的网状结构物,它的“ 网眼” 大小可以通过交联剂与葡聚糖的配比来达到。

不同型号的葡聚糖凝胶可用来分离和纯化不同分子大小的物质。

把葡聚糖凝胶装在层析柱中,不同分子大小的蛋白质混合液借助重力通过层析柱时,比“ 网眼” 大的蛋白质分子不能进入网格中,而被排阻在凝胶颗粒之外,随着洗脱剂在凝胶颗粒的外围而流出。

比‘ 网眼 ' 小的分子则进入凝胶颗粒内部。

这样,由于不同大小的分子所经路程距离不同而得到分离。

大分子物质先被洗脱出来,小分子物质后被洗脱出来。

所以含硫酸铵的蛋白值溶液通过层析柱时,先被洗脱出层析柱的是球蛋白,小分子硫酸铵由此法分离除去(参见第 2 篇第 2 章图 2-3 )。

( 3 )纯化:γ- 球蛋白与α 、β- 球蛋白(以及微量的清蛋白),等电点不同,所以采用离子交换层析,从球蛋白混合物中分离、提纯出γ- 球蛋白。

用于蛋白质分离的层析材料多是离子交换纤维素,它们的优点是对蛋白质的交换容量较一般的离子交换树脂大,而且品种较多,可以适用于各种分离目的。

血清γ-球蛋白的分离纯化与鉴定

血清γ-球蛋白的分离纯化与鉴定

实训二血清γ-球蛋白的分离纯化与鉴定目的要求1.了解蛋白质分离提纯的总体思路。

2.掌握盐析法、分子筛层析法、离子交换层析等实验原理及操作技术。

实验原理血清中蛋白质按电泳法一般可分为五类:清蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白和γ-球蛋白,其中γ-球蛋白含量约占16%,100ml血清中约含1.2g左右。

首先利用清蛋白和球蛋白在高浓度中性盐溶液中(常用硫酸铵)溶解度的差异而进行沉淀分离,此为盐析法。

半饱和硫酸铵溶液可使球蛋白沉淀析出,清蛋白则仍溶解在溶液中,经离心分离,沉淀部分即为含有γ-球蛋白的粗制品。

用盐析法分离而得的蛋白质中含有大量的中性盐,会妨碍蛋白质进一步纯化,因此首先必须去除。

常用的方法有透析法、凝胶层析法等。

本实验采用凝胶层析法,其目的是利用蛋白质与无机盐类之间分子量的差异。

当溶液通过SephadexG--25凝胶柱时,溶液中分子直径大的蛋白质不能进入凝胶颗粒的网孔,而分子直径小的无机盐能进入凝胶颗粒的网孔之中.因此在洗脱过程中,小分子的盐会被阻滞而后洗脱出来,从而可达到去盐的目的。

脱盐后的蛋白质溶液尚含有各种球蛋白,利用它们等电点的不同可进行分离。

α-球蛋白、β-球蛋白的PI<6.0;γ-球蛋白的PI为7.2左右。

因此在PH6.3的缓冲溶液中,各类球蛋白所带电荷不同。

经DEAE(二乙基氨基乙基)纤维素阴离子交换层析柱进行层析时,带负电荷的α-球蛋白和β-球蛋白能与DEAE纤维素进行阴离子交换而被结合;带正电荷的γ-球蛋白则不能与DEAE纤维素进行交换结合而直接从层析柱流出。

因此随洗脱液流出的只有γ-球蛋白,从而使γ-球蛋白粗制品被纯化。

其反应式如下:用上述方法分离得到γ-球蛋白是否纯净,单一?可将纯化前后的γ-球蛋白进行电泳比较而鉴定之。

试剂和器材1.试剂(1)饱和硫酸铵溶液:称固体硫酸铵(分析纯)850g,置于1000ml蒸馏水中,在70一80℃水温中搅拌溶解。

将酸度调节至pH7.2,室温中放置过夜,瓶底析出白色结晶,上清液即为饱和硫酸铵溶液。

血清γ-球蛋白的分离纯化实验报告

血清γ-球蛋白的分离纯化实验报告

血清γ-球蛋白的分离纯化实验报告血清γ-球蛋白的分离纯化一、目的与要求1、掌握分离纯化蛋白质的基本原理和基本过程。

2、熟悉盐析、离心、层析、电泳等生化基本技术在蛋白质分离纯化中的综合应用。

3、学会设计和制定分离纯化蛋白质的实验方案,技术路线,质量监控和保证措施。

二、实验原理血清蛋白有300多种,可粗略的分为清、球蛋白两大类,γ球蛋白只是球蛋白中的一个亚类。

欲用常规方法获得,可先用半饱和硫酸铵从血清中盐析出球蛋白,接着用葡萄糖凝胶G-25脱去球蛋白中的盐分最后用DEAE纤维素阴离子交换柱便可直接从脱盐的球蛋白溶液中分离纯化出γ球蛋白,其反应机理如下:C2H5H纤维素-O-(CH2)2-N(C2H5)2纤维素-O-(CH2)2-N+……H2PO4H++H2PO4DEAE纤维素离子交换柱COOHC2H5α、β、γ球蛋白NH2COOH经过盐析和脱盐的球蛋白液纤维素-O-(CH2)2-N+…α和βGPH6.3NH2交换到柱上的α和β-球蛋白H2PO4COOHγ-球蛋白NH3+被DEAE柱分离纯化的γ-球蛋白被柱层析交换结合的α球蛋白和β球蛋白,可通过增加洗脱液的离子强度或降低洗脱的pH值(也可两者同时改变),使其分部洗脱下来而被纯化。

纯化前后的γ球蛋白可用电泳方法进行比较鉴定。

三、仪器和材料仪器:离心机,1.5×40cm层析柱,层析架或滴定台,核酸-蛋白检测仪,部分收集器,紫外分光光度计,色谱柱,电泳槽,电泳仪。

材料:马血清,SephadexG-25×200g,DEAE-32×200g。

四、实验步骤(一)分离纯化步骤1、取3mL,4℃预冷血清,加入3mL4℃预冷的饱和硫酸铵。

边滴边摇。

2、静置大于10min后,3500rpm离心15min,弃去上清液,将沉淀溶于少量的生理盐水。

从中取0.5mL用于测定蛋白质含量。

3、将剩余的样品上SephadexG-25柱,用0.02mol/LpH6.5的NH4AC缓冲液洗脱,每管收集3mL,用于绘制洗脱曲线,选择颜色最深(即浓度最高管)的取0.5mL留待电泳用。

【生物化学实验】血清γ球蛋白分离纯化与鉴定

【生物化学实验】血清γ球蛋白分离纯化与鉴定

物理、化学性质的不同而建立的方法,其中有盐析、
离子交换、凝胶过滤、亲和层析、制备电泳、离心等。
在分离纯化时,根据情况选用几种方法,相互配合才
能达到分离纯化一种蛋白质的目的。
血清γ 球蛋白的分离纯化与鉴定
【实验原理】
本实验采用硫酸铵盐析、葡聚糖凝 胶过滤、离子交换层析方法,分离纯化 血清γ-球蛋白。最后用醋酸纤维素薄膜 电泳法鉴定γ-球蛋白的纯度。
使表面平整。
▲ 加样与洗脱
1、加样:用滴管将盐析后样品加入柱床面,打开出口使样品 溶液渗入凝胶。 2、洗脱:加入洗脱液,打开出口,保持流速10滴/min,收 集洗脱液,用钠氏试剂检测胺。 3、保存:检测洗脱液的蛋白质量,保存含量高的进一步纯化
▲ 凝胶的再生
不断加洗脱液,使铵全部流出,为下次实验做准备。
多个正电荷游离碱基的聚合物,所以主要靠静电吸引与
带负电的蛋白质形成离子键,对蛋白质提纯有很大好处
量大的物质则被排阻在交联网状物之外,沿着凝胶颗粒间的孔
隙随溶剂流动,其流程短,移动速度快,先流出层析床。经过 分部收集流出液,分子量不x)
应用最多的凝胶!
交联度 网状结构 网孔径 吸水量 机械强度 耐压力 大

致密
疏松








操作步骤:
▲ Sephadex G-50的准备 ▲ 装柱(15~20cm)
一、盐析法粗分离血清γ -球蛋白
原理
盐析法是根据不同蛋白质在一定浓度的盐溶 液中溶解度度不同,从而分别析出,达到彼此分 离的分离方法。
本实验在半饱和硫酸铵溶液中,清蛋白溶解, 球蛋白将沉淀析出,经离心所得的沉淀即为球蛋 白的粗提液。

血清γ—球蛋白的分离、纯化与鉴定资料

血清γ—球蛋白的分离、纯化与鉴定资料

“盐析”破坏了蛋白质作为亲水胶体的两个稳定因素
表面电荷 水化膜


但当盐浓度增加到一定浓度时,一方面大量的水同盐分子结合,使得蛋白质没有 足够的水维持溶解状态,破坏了维持蛋白质亲水胶的水化膜 另一方面加入的盐离子中和了蛋白质分子相互排斥的电荷相互聚集沉淀出来
2.常用中性盐:

盐析可用硫酸钠、氯化钠、磷酸钠和硫酸铵等 中性盐,其中运用最广的是硫酸铵。 硫酸铵的优点
结果
1 2 3 4 5 6 7 8 9 10
protein NH4+
-
-
-
-
-
-
+
-
++
18
+
19
±
+
20
11
12
13
14
15
16
17
protein NH4+
+
+
+
-
-
-
-
-
-
-
(四)电泳 (electrophoresis) ---鉴定

带电粒子在电场中移动的现象称为电泳 血清蛋白包括多种蛋白质,它们的等电点大都在 pH7.0以下,清蛋白的等电点为4.6,球蛋白为5-7 在PH高于它们等电点的缓冲液均带负电荷,在电 场中向正极移动 由于各种蛋白质所带电荷的数量和分子的大小有 差别,在电场中泳动的速度也不同
样品
血清
2cm 5cm
三、电泳

将点样面朝下,点样端在负极,悬于滤纸桥上,盖好电泳
槽盖,将电压调至130-160V,电流约为0.4-0.6毫安/厘米, 通电40~50分钟,待电泳区带展开约3.5cm时断电。

血清γ球蛋白的提纯实验报告

血清γ球蛋白的提纯实验报告

血清γ球蛋白的提纯实验报告实验目的:1.学习血清γ球蛋白的提纯方法。

2.掌握蛋白质提纯的基本原理和技术。

3.了解蛋白质提纯实验的步骤和注意事项。

实验原理:血清γ球蛋白是一种重要的免疫球蛋白,具有重要的免疫调节和抗体介导细胞毒性等功能。

通过蛋白质提纯可以从复杂的混合物中分离纯化目标蛋白,得到高纯度的蛋白样品,以便进行后续的研究。

本实验采用离子交换层析和凝胶过滤两步骤进行血清γ球蛋白的提纯。

离子交换层析是利用蛋白质在不同离子强度下的吸附和洗脱特性进行分离的方法。

凝胶过滤则是利用分子量差异对蛋白进行分离的方法。

实验步骤:1.制备离子交换层析柱。

将离子交换树脂均匀填充到柱子中,并用合适的缓冲液进行均衡。

2.样品制备。

将血清样品稀释至适当浓度,并进行预处理,去除杂质。

3.样品加载。

将样品加载到经均衡的离子交换层析柱中,利用吸附和洗脱特性进行分离。

4.收集目标蛋白。

根据吸附和洗脱的条件,收集目标蛋白的洗脱峰。

5.凝胶过滤。

将洗脱的目标蛋白溶液进行凝胶过滤,利用分子量差异进一步分离。

6.收集纯化的目标蛋白。

根据凝胶过滤的结果,收集纯化的目标蛋白样品。

实验结果:通过离子交换和凝胶过滤两步骤的操作,我们成功地得到了血清γ球蛋白的纯化样品。

通过电泳和Western blot等方法对纯化样品进行验证,确认目标蛋白的纯度较高。

实验分析:本实验采用离子交换层析和凝胶过滤两步骤进行血清γ球蛋白的提纯,这两种方法在分离蛋白质中具有广泛的应用。

离子交换层析适用于不同电荷性质的蛋白质的分离,而凝胶过滤则适用于不同分子量的蛋白质的分离。

在实验过程中,需要注意选择合适的缓冲液、控制流速和洗脱条件,以确保蛋白质的稳定和纯化效果。

此外,对于目标蛋白的纯度要求较高的实验,可以结合其他纯化方法如亲和层析等进行进一步提纯。

实验总结:通过本次实验,我们学习并掌握了血清γ球蛋白的提纯方法,了解了蛋白质提纯的基本原理和技术。

实验结果表明,通过离子交换层析和凝胶过滤两步骤的操作,可以获得较高纯度的目标蛋白样品。

血清清蛋白、γ-球蛋白分离、纯化与纯度鉴定

血清清蛋白、γ-球蛋白分离、纯化与纯度鉴定

血清清蛋白、γ-球蛋白分离、纯化与纯度鉴定一、实验目的1.掌握凝胶层析法分离蛋白质的原理和基本方法2.掌握醋酸纤维素薄膜电泳法的原理和基本方法3.掌握离子交换层析法分离蛋白质的原理和基本方法4.掌握盐析法分离蛋白质的原理和基本方法5.学习柱层析技术二、实验原理蛋白质的分离和纯化是研究蛋白质化学及其生物学功能的重要手段。

不同蛋白质的分子量、溶解度及等电点等都有所不同。

利用这些性质的差别,可分离纯化各种蛋白质。

(一)粗提原理-盐析法1.盐析法:在蛋白质溶液中,加入无机盐至一定浓度,或达饱和状态,可使蛋白质在水中溶解度降低,从而分离出来。

2.水化膜减弱、消失。

蛋白质溶液中加入中性盐后,由于中性盐与水分子的亲和力大于蛋白质,致使蛋白质分子周围的水化膜减弱乃至消失。

3.蛋白质表面的电荷大量被中和。

中性盐加入蛋白质溶液后由于离子强度发生改变,蛋白质表面的电荷大量被中和,更加导致蛋白质溶解度降低,蛋白质分子之间聚集而沉淀。

4.由于血清中各种蛋白质分子的颗粒大小、所带电荷的多少和亲水程度不同,故盐析所需的盐浓度也不一样,调节盐的浓度可使不同的蛋白质沉淀从而达到分离的目的。

(二)脱盐原理-凝胶层析1.盐析分离的蛋白质溶液中含有大量无机盐,必须先脱盐后才能进一步纯化。

2.凝胶层析法主要是根据混合物中各种物质分子大小的不同而将其分离的技术。

(三)纯化原理-离子交换层析离子交换层析是指流动相中的离子和固定相上的离子进行可逆的交换,利用化合物的电荷性质及电荷量不同进行分离。

(四)纯度鉴定-醋酸纤维素薄膜电泳血清中各种蛋白质的等电点不同,一般都低于pH7.4。

它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。

由于血清中各种蛋白质分子大小、形状及所带的电荷量不同,在醋酸纤维素薄膜上电泳的速度也不同。

因此可以将它们分离为清蛋白(Albumin)、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。

三、材料与方法:(一)实验材料1.样品:人混合血清2.试剂:葡聚糖凝胶G-25(Sephadex G-25)层析柱、二乙基氨基乙基(DEAE)纤维素离子交换层析柱、各不同浓度的pH6.5醋酸铵缓冲溶液、pH8.6巴比妥缓冲溶液、氨基黑10B染色液、20%磺基水杨酸溶液、饱和硫酸铵溶液、1%BaCl2溶液、漂洗液器材:层析柱、电泳仪、电泳槽、离心机、离心管、黑色反应板等(二)实验方法1.实验步骤2.注意事项✓上样时,滴管应沿柱上端内壁加入样品,动作应轻、慢,勿将柱床冲起。

血清球蛋白的分离纯化与鉴定

血清球蛋白的分离纯化与鉴定

实验血清γ-球蛋白的分离纯化与鉴定【实验目的】1.熟悉蛋白质分离提纯的技术路线2.掌握盐析、凝胶过滤层析、离子交换层析等实验原理及操作技术。

【实验原理】血清中蛋白质按电泳法一般可分为五类:清蛋白、α_1 -球蛋白、α_2 -球蛋白、β-球蛋白和γ-球蛋白,其中γ-球蛋白室一类结构及功能相似的蛋白质,绝大多数免疫球蛋白属于γ-球蛋白,因此γ-球蛋白的分离纯化在医学研究中非常重要。

蛋白质的分离纯化室研究蛋白质结构及其生物功能的重要手段。

分离提纯γ-球蛋白时,首先利用各种清蛋白在中性盐溶液中(常用硫酸铵)溶解度的差异而进行沉淀分离,因为中性盐可使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质在水溶液中的稳定因素去除而沉淀。

半饱和硫酸铵溶液可使球蛋白沉淀析出,清蛋白则仍溶解在溶液中,而33%的饱和硫酸铵溶液只能使γ-球蛋白沉淀,α-球蛋白和β-球蛋白则仍溶解在溶液中,经离心分离,沉淀部分即为含有γ-球蛋白的醋制品。

用盐析法分离而得的γ-球蛋白中含有大量的中性盐,会妨碍蛋白质进一步纯化,因此必须去除。

常用的方法有透析法、凝胶层析(凝胶过滤)法等。

本实验采用凝胶层析法,其目的是利用蛋白质与无机盐类之间分子量的差异将蛋白质与无机盐分离。

当溶液通过SephadexG-25凝胶柱时,溶液中分子直径大的蛋白质不能进入凝胶颗粒的网孔,而分子直径小的无机盐能进入凝胶颗粒的网孔之中.因此在凝胶柱中会被阻滞而后洗脱出来,从而可达到去盐的目的。

脱盐后的蛋白质溶液可能仍含有其他球蛋白,利用它们等电点的不同,通过DEAE(二乙基氨基乙基)纤维素阴离子交换层析柱进行层析可进一步分离、纯化出γ-球蛋白。

因为α-球蛋白、β-球蛋白的pI﹤6.0;γ-球蛋白的pI为7.2左右。

因此,在pH6.3的缓冲溶液中,各类球蛋白所带电荷不同,经DEAE纤维素进行阴离子交换而被结合;而带正电的γ-球蛋白则不能与DEAE纤维素进行交换结合从而直接从层析柱流出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

血清γ-球蛋白的分离纯化与鉴定及电泳分析
【实验目的】
1、了解蛋白质分离提纯的总体思路。

2、掌握盐析法、凝胶层析法和离子交换层析的实验原理及操作技术
3、掌握电泳法分离纯化蛋白质的方法。

【实验原理】
1、蛋白质的粗提——盐析法
胶体的盐析是加盐,盐中的带电粒子使蛋白质周围的水化膜减弱,胶粒溶解度降低,形成沉淀析出的过程,是胶体的聚沉现象的一种。

向蛋白质溶液中加入某些浓的无机盐[如(NH4)2SO4或Na2SO4]溶液后,可以使蛋白质凝聚而从溶液中析出,这种作用就叫做盐析。

盐析不能使蛋白质变性,可以复原。

利用这个性质,可以采用多次盐析的方法来分离、提纯蛋白质。

蛋白质在水溶液中的溶解度取决于蛋白质分子表面离子周围的水分子数目,亦即主要是由蛋白质分子外周亲水基团与水形成水化膜的程度以及蛋白质分子带有电荷的情况决定的。

蛋白质溶液中加入中性盐后,由于中性盐与水分子的亲和力大于蛋白质,致使蛋白质分子周围的水化层减弱乃至消失。

同时,离子强度发生改变,蛋白质表面的电荷大量被中和,蛋白质溶解度更加降低,之蛋白质分子之间聚集而沉淀。

由于各种蛋白质在不同盐浓度中的溶解度不同,不同饱和度的盐溶液沉淀的蛋白质不同,从而使之从其他蛋白中分离出来。

简单的说就是将硫酸铵、硫化钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质在水溶液中的稳定性因素去除而沉淀。

由于清蛋白的亲水性比球蛋白大,且清蛋白的分子比球蛋白小,所以清蛋白需要高浓度的盐溶液才能够发生盐析,低浓度的时候球蛋白发生盐析。

盐析法分离蛋白质:各种蛋白质的颗粒大小、亲水程度、pI不同,盐析所需的盐浓度也不一样。

调节盐浓度可使不同的蛋白质沉淀,从而达到分离的目的。

常用中性盐:硫酸铵、硫酸钠等。

硫酸铵:温度系数小,溶解度大,蛋白谱广,盐析效果好,不易引起变性。

可用硫酸/氨水按需要调节pH值。

本实验中清蛋白分子小,亲水性强,在饱和硫酸铵溶液中可沉淀析出,而球蛋白分子大,亲水性弱,在半饱和硫酸铵溶液中即可沉淀析出。

因此调节盐浓度可使球蛋白与清蛋白分离。

2、脱盐——凝胶层析法
凝胶层析又称分子筛过滤、排阻层析等。

它的突出优点是层析所用的凝胶属于惰性载体,不带电荷,吸附力弱,操作条件比较温和,可在相当广的温度范围下进行,不需要有机溶剂,并且对分离成分理化性质的保持有独到之处。

对于高分子物质有很好的分离效果。

凝胶层析是按照蛋白质分子量大小进行分离的技术,又称之凝胶过滤,分子筛层析或排阻层析。

单个凝胶珠本身象个"筛子"。

不同类型凝胶的筛孔的大小不同。

如果将这样的凝胶装入一个足够长的柱子中,作成一个凝胶柱。

当含有大小不同的蛋白质样品加到凝胶柱上时,比凝胶珠平均孔径小的蛋白质就要连续不断地穿入珠子的内部,这样的小分子不但其运动路程长,而且受到来自凝胶珠内部的阻力也很
大,所以越小的蛋白质,把它们从柱子上洗脱下来所花费的时间越长。

凝胶中只有很少的孔径可接受大的蛋白。

因此,大的蛋白质直接通过凝胶珠之间的缝隙首先被洗脱下来。

凝胶过滤所用的凝胶孔径大小的选择主要取决于要纯化的蛋白质分子量。

盐析后的蛋白质溶液进行凝胶层析则分子量大的球蛋白先流出,由此可获得脱盐的球蛋白溶液。

3、纯化——离子交换法
离子交换层析是利用离子交换剂对各种离子的亲和力不同,借以分离混合物中各种离子的一种层析技术。

离子交换层析的固定相是载有大量电荷的离子交换剂,流动相是具有一定pH和一定离子强度的电解质溶液,当混合物溶液中带有与离子交换剂相反电荷的溶质流经离子交换剂时,后者即对不同溶质进行选择性吸附。

离子交换剂根据其所带电荷的性质分为阴离子交换剂和阳离子交换剂两类。

阴离子交换剂本身带有正电荷,可以吸引并结合混合物中带负电荷的物质;阳离子交换剂本身带负电荷,可以吸引并结合混合物中带正电荷的物质。

本次试验采用DEAE-纤维素阴离子交换剂,α1-球蛋白、α2-球蛋白、β-球蛋白和γ-球蛋白pI都不同,α1-球蛋白、α2-球蛋白、β-球蛋白pI都小于6,γ-球蛋白为7.3,所以在pH=6.5的洗脱液环境下,γ-球蛋白带正电,其他球蛋白带负电,因而使γ-球蛋白与其他种类球蛋白分离。

凝胶层析脱盐
固定相:Sephadex G-25
流动相:pH6.5 0.02M醋酸盐缓冲液。

离子交换层析纯化γ-球蛋白
固定相:DEAE纤维素(阴离子交换剂)
流动相:pH6.5 0.02M醋酸盐缓冲液。

浓缩:
高分子性质:Sephadex G-25吸水
4、电泳分析蛋白质
血清中各种蛋白质都有其特有的等电点,利用pI与pH的关系,pH>pI,待分离物质带负电,电泳时向正极移动;pH,待分离物质带正电,电泳时向负极移动;pH=pI,待分离物质不带电,电泳时不向正极或者负极移动。

在同一条件下,不同蛋白质带电荷有差异,分子量大小也不同,所以泳动速度不同。

血清中蛋白质等电点均低于7,在pH=8.6的缓冲溶液中,都形成负离子向正极移动,血清蛋白质可分成五条区带。

【实验结果】
经过电泳分析,与对照组做对比可以明显观察到血清蛋白(清蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白和γ-球蛋白)的五条带
左侧为全血清对照,右侧为我们组提取的蛋白质电泳结果。

【实验分析】
优点
1提取的γ蛋白较为成功,纯度较高,基本没有肉眼可见到的其他带的蛋白(与左侧的对照组相比较可知)。

2.在进行层析操作时,严格进行转圈滴加,使得液面保持一个水平状态,保证液体留下时经过相同的距离。

3.硫酸铵在进行滴加时,严格按照边摇边逐滴加入。

4.层析柱的上液层未干涸,保证时刻有液体。

5. 离子交换柱使用完后先用醋酸盐缓冲液洗两个柱长,再用DEAE再生液洗两个柱长,最后再用醋酸盐缓冲液平衡两个柱长。

方便后边的同学使用。

6. 凝胶柱使用完毕后用洗脱液流洗3~4个柱长,保持上层有2cm以上的液体,关闭下方控制夹。

方便后边的同学使用。

7. G-25干胶用纸条少量多次加入,液层高约0.5ml,离心后,管内凝胶倒入烧杯回收。

8. 洗脱液收集无需分步,用载玻片检测蛋白,约每5滴检测一次,从开始出现白色悬浊液时开始收集,直至刚好不在出现白色悬浊液沉淀为止,所收集到的即为试验所需的蛋白质,本次试验不用纳氏试剂。

9.滴加试剂等操作准确规范。

不足
1.实验过程中险些出现层析柱的上液层干涸现象,应时刻观察。

2.收集蛋白因为视线受阻,时很难做到1ml一换管。

另外层析速度过快,导致了收集过慢的现象,造成了收集的蛋白质较少。

后来我们又对废液进行二次层析,造成蛋白纯度偏度。

但从结果来看影响不是很大。

以后层析时应密切注意控制层析速度,
3.做完凝胶层析后,其下方螺旋夹损坏。

虽修复,但可能影响层析柱。

4.我们组在进行离子交换层析时,发现滤过速度过慢,即使夹子开到最大,
液体流出的速度仍旧很慢。

本可以采用外加压力的方法进行层析——即在层析上边用洗耳球外加气体压力使层析速度加快。

此时注意的问题是不要在拿出洗耳球前松开洗耳球,否则由于洗耳球的吸力可能会将整个层析柱内的物质吸起来,严重影响层析的结果。

5.加入G-25过多,导致试管内液体凝固不流动,第一次离心完全失败。

在老师的建议下使用洗脱剂使其溶解再离心,成功提纯但浓度偏低。

6.在进行离子交换层析纯化γ-球蛋白时,长时间没有含蛋白质的溶液滴出。

可能是前面已经进行过多次实验,层析柱中有堵塞等情况,影响其流出。

7.镊子不干净,在夹取试纸时已造成小部分污染。

相关文档
最新文档