微分方程第5章习题解

合集下载

5(5)二阶微分方程

5(5)二阶微分方程

线 无 的 1(x)与y2 (x)称 方 L[ y] = 0 性 关 y 为 程
的基础解系.
15
二阶微分方程
线性方程的通解, 为了求 齐次 线性方程的通解 只要求它的两个线性无关的特解. 只要求它的两个线性无关的特解 如 y ′′ + y = 0, y1 = cos x , y 2 = sin x , y2 , 且 = tan x ≠ 常数 通解 y = C1 cos x + C2 sin x. y1
2
3
二阶微分方程
例2. 设有一个电阻 R , 自感L ,电容 C 和电源 E 串
联组成的电路, 其中R , L , C 为常数 , 求电容器两两极板间电压 uc 所满足的微分方程 . 解: 设电路中电流为 i(t), 极板上 R 的电量为 q(t) 自感电动势为 EL , , 由电学知
‖ +q q Q 根据回路电压定律: 在闭合回路中, 所有支路上的电压降为 0 di q E L Ri = 0 dt C
如果电容器充电后撤去电源 ( E = 0 ) , 则得 2 di q d uC duC 2 E + 2β +ω0 uC = 0 L d t C Ri = 0 5 dt d t2
二阶微分方程
例1 例2 方程的共性 — 可归结为同一形式:
d y dy 形如 (x + Q( x) y = f ( x) 2 + P( x) dx dx
= C 1 cos x + C 2 sin x + x 2 2
非齐次方程的通解 方程的通解. 是非齐次方程的通解
22
二阶微分方程
定理5 定理5
(线性叠加原理2) (线性叠加原理2) 线性叠加原理

《常微分方程》第五章练习题

《常微分方程》第五章练习题

x
y
C1
e3t 2e3t
C2
et 2et
3、满足初值条件的解为
~
(t )
et e t
4、方程组的通解为
x y
C1e2t
4 5
C2e7t
1 1

4
5、所求基解矩阵为 (2 e
3t
3)e
3t
e 3t (2 3)r
3t .
6、 (t )
e3t [E
t(A
3E)]
A1 (t)
A2 (t)
,t
(a,b) .
部分参考答案 一、填空题
1、 (t) (t)C
2、(t) exp[(t t0 )A]
t t0
exp[(t s)A] f (s)ds
3、必要
t t0
1 (s) f
(s)ds
三、计算题
1、
A
4 3
3
4
2、原方程组的通解为
x ' Ax ce mt 有一解形如(t) pemt ,其中 c , p 是常数向量.
3
4、证明:如果 φ(t) 是方程组 x Ax 满足初始条件 φ(t0 ) η 的解,那么
φ(t) [exp A(t t0 )]η 。
5、证明:如果 Φ(t),Ψ (t) 在区间 a t b 上是 n 阶线性方程组
1、向量
X1
(t)
2et 0

X
2
(t)
t 2et et
的伏朗斯基行列式
W (t) =(
).
A 、0 ; B 、 tet ; C 、2 e t ; D 、2 e2t .
2、有关矩阵指数 exp A 的性质,以下说法正确的是( )

第5章微分方程与差分方程

第5章微分方程与差分方程

两边积分,得 故
dy = − p( x) d x , ( y ≠ 0) , y y = 0 对应于 ln | y | = − ∫ p ( x) d x + C1 , C= 。 0
y = ±e ⋅ e ∫
C1 − p( x)d x

记 C = ± eC1,得一阶齐线性方程 的通解为 y = Ce ∫
− p( x)d x
2d y = d x, 2 y −1
对上式两边积分, 对上式两边积分,得原方程的通解 y −1 ln = x + C1 。 y +1 经初等运算可得到原方程的通解为 隐函数形式
1 + Ce x y= 。 (C = ± eC1 ) 1 − Ce x 你认为做完了没有? 你认为做完了没有?
代入原方程可知: 令 y 2 − 1 = 0 ,得出 y = ±1,代入原方程可知:
5、初值条件: 给定微分方程的解所满足的条件. 初值条件: 给定微分方程的解所满足的条件. 初值问题: 求微分方程满足初始条件的解的问题. 初值问题: 求微分方程满足初始条件的解的问题.
y′ = f ( x , y ) 一阶: 一阶 y x = x0 = y 0
过定点的积分曲线; 过定点的积分曲线
dx = t2 dt
d2 y dy +b + cy = sin x 2 dx dx d x − x2 = t3 dt
2
一阶 线性 二阶 线性 一阶 非线性
微分方程的一般表示形式
n 阶微分方程的一般形式 为
F ( x, y′, y′′, L , y ( n ) ) = 0 。
dN = rN (1 例1、 ) dt N ( 0) = N 0

物理学教程(第二版)[上册]第五章课后习题答案解析详解

物理学教程(第二版)[上册]第五章课后习题答案解析详解

物理学教程第二版第五章课后习题答案第五章 机械振动5-1 一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )题5-1图分析与解(B )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向Ox 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(B ).5-2 一简谐运动曲线如图(a )所示,则运动周期是( )(A) 2.62 s (B) 2.40 s (C) 2.20 s(D )2.00 s题5-2图分析与解 由振动曲线可知,初始时刻质点的位移为A /2,且向x 轴正方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为-3/π2.振动曲线上给出质点从A /2 处运动到x =0处所需时间为1 s ,由对应旋转矢量图可知相应的相位差65232πππϕ=+=∆,则角频率1s rad 65Δ/Δ-⋅==πϕωt ,周期s 40.22==ωπT .故选(B ). 5-3 两个同周期简谐运动曲线如图(a )所示, x 1的相位比x 2的相位( )(A )落后2π(B )超前2π(C )落后π(D )超前π分析与解 由振动曲线图作出相应的旋转矢量图(b )即可得到答案为(B ).题5 -3图5-4 两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为( )(A )60 (B )90 (C )120 (D )180分析与解 由旋转矢量图可知两个简谐运动1和2的相位差为120 时,合成后的简谐运动3的振幅仍为A .正确答案为(C ).题5-4图5-5 若简谐运动方程为⎪⎭⎫ ⎝⎛+=4ππ20cos 10.0t x ,式中x 的单位为m ,t 的单位为s.求:(1)振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1)将()()m π25.0π20cos 10.0+=t x 与()ϕω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1s rad π20-⋅=ω,初相ϕ=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v .(2)s 2=t 时的位移、速度、加速度分别为()m 1007.7π25.0π40cos 10.02-⨯=+=t x()-1s m 44.4π25.0π40sin π2d /d ⋅-=+-==t x v()-22222s m 1079.2π25.0π40cos π40d /d ⋅⨯-=+-==t x a5-6 一远洋货轮,质量为m ,浮在水面时其水平截面积为S .设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力F 与位移x 间的关系,如果满足kx F -=,则货轮作简谐运动.通过kx F -=即可求得振动周期k m ωT /π2/π2==. 证 货轮处于平衡状态时[图(a )],浮力大小为F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点O ,竖直向下为x 轴正向,如图(b )所示.则当货轮向下偏移x 位移时,受合外力为∑'+=F P F其中F '为此时货轮所受浮力,其方向向上,大小为gSx mg gSx F F ρρ+=+='题5-6图则货轮所受合外力为kx gSx F P F -=-='-=∑ρ式中gS k ρ=是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由∑=t x m F 22d d /可得货轮运动的微分方程为0d d 22=+m gSx t x //ρ令m gS /ρω=2,可得其振动周期为gS ρm πωT /2/π2==5-7 如图(a )所示,两个轻弹簧的劲度系数分别为1k 、2k .当物体在光滑斜面上振动时.(1)证明其运动仍是简谐运动;(2)求系统的振动频率.题5-7图分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b )所示的坐标.设系统平衡时物体所在位置为坐标原点O ,Ox 轴正向沿斜面向下,由受力分析可知,沿Ox 轴,物体受弹性力及重力分力的作用,其中弹性力是变力.利用串联时各弹簧受力相等,分析物体在任一位置时受力与位移的关系,即可证得物体作简谐运动,并可求出频率υ.证 设物体平衡时两弹簧伸长分别为1x 、2x ,则由物体受力平衡,有2211sin x k x k mg ==θ(1)按图(b )所取坐标,物体沿x 轴移动位移x 时,两弹簧又分别被拉伸1x '和2x ',即21x x x '+'=.则物体受力为 ()()111222sin sin x x k mg x x k mg F '+-='+-=θθ(2) 将式(1)代入式(2)得1122x k x k F '-='-=(3) 由式(3)得11k F x /-='、22k F x /-=',而21x x x '+'=,则得到()[]kx x k k k k F -=+-=2121/式中()2121k k k k k +=/为常数,则物体作简谐运动,振动频率 ()m k k k k πm k ωv 2121/21/π21π2/+=== 讨论 (1)由本题的求证可知,斜面倾角θ对弹簧是否作简谐运动以及振动的频率均不产生影响.事实上,无论弹簧水平放置、斜置还是竖直悬挂,物体均作简谐运动.而且可以证明它们的频率相同,均由弹簧振子的固有性质决定,这就是称为固有频率的原因.(2)如果振动系统如图(c )(弹簧并联)或如图(d )所示,也可通过物体在某一位置的受力分析得出其作简谐运动,且振动频率均为()m k k v /π2121+=,读者可以一试.通过这些例子可以知道,证明物体是否作简谐运动的思路是相同的.5-8 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s.当t =0 时,(1)物体在正方向端点;(2)物体在平衡位置、向负方向运动;(3)物体在x =-1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅A 和周期T 已知的条件下,确定初相φ是求解简谐运动方程的关键.初相的确定通常有两种方法.(1)解析法:由振动方程出发,根据初始条件,即t =0 时,x =x 0和v =v 0来确定φ值.(2)旋转矢量法:如图(a )所示,将质点P 在Ox 轴上振动的初始位置x 0和速度v 0的方向与旋转矢量图相对应来确定φ.旋转矢量法比较直观、方便,在分析中常采用.题5-8图解 由题给条件知A =2.0 ×10-2 m ,1s π4/2-==T ω,而初相φ可采用分析中的两种不同方法来求.解析法:根据简谐运动方程()ϕω+=t A x cos ,当0t =时有()ϕω+=t A x cos 0,sin 0ϕωA -=v .当(1)A x =0时,1cos 1=ϕ,则01=ϕ;(2)00=x 时,0cos 2=ϕ,2π2±=ϕ,因00<v ,取2π2=ϕ;(3)m 100120-⨯=.x 时,50cos 3.=ϕ,3π3±=ϕ,由00<v ,取3π3=ϕ;(4)m 100120-⨯-=.x 时,50cos 4.-=ϕ,3ππ4±=ϕ,由00>v ,取3π44=ϕ. 旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初相分别为01=ϕ,2π2=ϕ,3π3=ϕ,3π44=ϕ. 振幅A 、角频率ω、初相φ均确定后,则各相应状态下的运动方程为(1)()m t πcos4100.22-⨯=x(2)()()m /2πt π4cos 100.22+⨯=-x(3)()()m /3πt π4cos 100.22+⨯=-x(4)()()m0.22+10=-xcos⨯/3π44tπ5-9有一弹簧,当其下端挂一质量为m的物体时,伸长量为9.8 ×10-2 m.若使物体上、下振动,且规定向下为正方向.(1)当t=0 时,物体在平衡位置上方8.0 ×10-2m处,由静止开始向下运动,求运动方程.(2)当t=0时,物体在平衡位置并以0.6m·s-1的速度向上运动,求运动方程.分析求运动方程,也就是要确定振动的三个特征物理量A、ω和φ.其中振动的角频率是由弹簧振子系统的固有性质(振子质量m及弹簧劲度系数k)决定的,即k mω=/,k可根据物体受力平衡时弹簧的伸长来计算;振幅A和初相φ需要根据初始条件确定.题5-9图解物体受力平衡时,弹性力F与重力P的大小相等,即F=mg.而此时弹簧的伸长量Δl=9.8 ×10-2m.则弹簧的劲度系数k=F/Δl =mg/Δl.系统作简谐运动的角频率为1ωmk//g=s=l10-∆=(1)设系统平衡时,物体所在处为坐标原点,向下为x轴正向.由初始条件t =0 时,x10=8.0 ×10-2m、v10=0 可得振幅()m 10082210210-⨯=+=./ωv x A ;应用旋转矢量法可确定初相π1=ϕ[图(a )].则运动方程为()()m π10t cos 100.821+⨯=-x(2)t =0时,x 20=0、v 20=0.6 m·s -1,同理可得()m 100622202202-⨯=+=./ωv x A ;2/π2=ϕ[图(b )].则运动方程为 ()()m π5.010t cos 100.622+⨯=-x5-10 某振动质点的x -t 曲线如图(a )所示,试求:(1)运动方程;(2)点P 对应的相位;(3)到达点P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过x -t 图线确定振动的三个特征量A 、ω和0ϕ,从而写出运动方程.曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便.解 (1)质点振动振幅A =0.10 m.而由振动曲线可画出t 0=0 和t 1=4 s时旋转矢量,如图(b )所示.由图可见初相3/π0-=ϕ(或3/π50=ϕ),而由()3201//ππω+=-t t 得1s 24/π5-=ω,则运动方程为()m 3/π24π5cos 10.0⎪⎭⎫ ⎝⎛-=t x题5-10图(2)图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c )所示.当初相取3/π0-=ϕ时,点P 的相位为()000=-+=p p t ωϕϕ(如果初相取成3/π50=ϕ,则点P 相应的相位应表示为()π200=-+=p p t ωϕϕ.(3)由旋转矢量图可得()3/π0=-p t ω,则s 61.=p t .5-11 质量为10 g 的物体沿x 的轴作简谐运动,振幅A =10 cm ,周期T =4.0 s ,t =0 时物体的位移为,cm 0.50-=x 且物体朝x 轴负方向运动,求(1)t =1.0 s 时物体的位移;(2)t =1.0 s 时物体受的力;(3)t =0之后何时物体第一次到达x =5.0 cm 处;(4)第二次和第一次经过x =5.0 cm 处的时间间隔.分析根据题给条件可以先写出物体简谐运动方程)cos(ϕω+=t A x .其中振幅A ,角频率Tπ2=ω均已知,而初相ϕ可由题给初始条件利用旋转矢量法方便求出. 有了运动方程,t 时刻位移x 和t 时刻物体受力x m ma F 2ω-==也就可以求出. 对于(3)、(4)两问均可通过作旋转矢量图并根据公式t ∆=∆ωϕ很方便求解.解由题给条件画出t =0时该简谐运动的旋转矢量图如图(a )所示,可知初相3π2=ϕ.而A =0.10 m ,1s 2ππ2-==T ω.则简谐运动方程为m )3π22πcos(10.0+=t x (1)t =1.0 s 时物体的位移m 1066.8m )3π22π0.1cos(10.02-⨯-=+⨯=x(2)t =1.0 s 时物体受力N1014.2N)1066.8()2π(101032232---⨯=⨯-⨯⨯⨯-=-=x m F ω (3)设t =0时刻后,物体第一次到达x =5.0 cm 处的时刻为t 1,画出t =0和t =t 1时刻的旋转矢量图,如图(b )所示,由图可知,A 1与A 的相位差为π,由t ∆=∆ωϕ得s 2s 2/ππ1==∆=ωϕt (4)设t =0时刻后,物体第二次到达x =5.0 cm 处的时刻为t 2,画出t =t 1和t = t 2时刻的旋转矢量图,如图(c )所示,由图可知,A 2与A 1的相位差为3π2,故有 s 34s 2/π3/π212==∆=-=∆ωϕt t t题 5-11 图5-12 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为2cm ,求(1)振动周期;(2)加速度的最大值;(3)运动方程. 分析 根据v -t 图可知速度的最大值v max ,由v max =Aω可求出角频率ω,进而可求出周期T 和加速度的最大值a max =Aω2.在要求的简谐运动方程x =A cos (ωt +φ)中,因为A 和ω已得出,故只要求初相位φ即可.由v -t 曲线图可以知道,当t =0 时,质点运动速度v 0=v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿x 轴正向向着平衡点运动.利用v 0=-Aωsinφ就可求出φ. 解 (1)由ωA v =max 得1s 51-=.ω,则s 2.4/π2==ωT(2)222max s m 1054--⋅⨯==.ωA a(3)从分析中已知2/sin 0ωA ωA =-=v ,即21sin /-=ϕ6/π5,6/π--=ϕ因为质点沿x 轴正向向平衡位置运动,则取6/π5-=,其旋转矢量图如图(b )所示.则运动方程为()cm 6π55.1cos 2⎪⎭⎫⎝⎛-=t x题5-12图5-13 有一单摆,长为1.0m ,最大摆角为5°,如图所示.(1)求摆的角频率和周期;(2)设开始时摆角最大,试写出此单摆的运动方程;(3)摆角为3°时的角速度和摆球的线速度各为多少?题5-13图分析 单摆在摆角较小时(θ<5°)的摆动,其角量θ与时间的关系可表示为简谐运动方程()ϕωθθ+=t cos max ,其中角频率ω仍由该系统的性质(重力加速度g 和绳长l )决定,即l g /=ω.初相φ与摆角θ,质点的角速度与旋转矢量的角速度(角频率)均是不同的物理概念,必须注意区分. 解 (1)单摆角频率及周期分别为s 01.2/π2;s 13.3/1====-ωT l g ω(2)由0=t 时o max 5==θθ可得振动初相0=ϕ,则以角量表示的简谐运动方程为t θ13.3cos 36π=(3)摆角为3°时,有()60cos max ./==+θθϕωt ,则这时质点的角速度为()()1max 2max max s2180800cos 1sin /d d --=-=+--=+-=..ωθϕωωθϕωωθθt t t线速度的大小为1s m 218.0/d d -⋅-==t l v θ讨论 质点的线速度和角速度也可通过机械能守恒定律求解,但结果会有极微小的差别.这是因为在导出简谐运动方程时曾取θθ≈sin ,所以,单摆的简谐运动方程仅在θ较小时成立.*5-14 一飞轮质量为12kg ,内缘半径r =0.6m,如图所示.为了测定其对质心轴的转动惯量,现让其绕内缘刃口摆动,在摆角较小时,测得周期为2.0s ,试求其绕质心轴的转动惯量.题5-14图分析 飞轮的运动相当于一个以刃口为转轴的复摆运动,复摆振动周期为c /π2mgl J T =,因此,只要知道复摆振动的周期和转轴到质心的距离c l ,其以刃口为转轴的转动惯量即可求得.再根据平行轴定理,可求出其绕质心轴的转动惯量.解 由复摆振动周期c /π2mgl J T =,可得22π4/m g r TJ =(这里r l C ≈).则由平行轴定理得222220m kg 83.2π4⋅=-=-=mr mgrT mr J J 5-15 如图(a )所示,质量为 1.0 ×10-2kg 的子弹,以500m·s -1的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为4.99 kg ,弹簧的劲度系数为8.0 ×103 N·m -1,若以弹簧原长时物体所在处为坐标原点,向左为x 轴正向,求简谐运动方程.题5-15图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度v 0,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量m 1+m 2和弹簧的劲度系数k 确定,振幅和初相可根据初始条件(初速度v 0和初位移x 0)求得.初相位仍可用旋转矢量法求. 解 振动系统的角频率为()121s 40-=+=m m k /ω由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度v 0为12110s m 0.1-⋅=+=m m v m v又因初始位移x 0=0,则振动系统的振幅为()m 105.2//202020-⨯==+=ωωx A v v图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位2/π0=ϕ,则简谐运动方程为()()m π0.540cos 105.22+⨯=-t x5-16 如图(a )所示,一劲度系数为k 的轻弹簧,其下挂有一质量为m 1的空盘.现有一质量为m 2的物体从盘上方高为h 处自由落入盘中,并和盘粘在一起振动.问:(1)此时的振动周期与空盘作振动的周期有何不同?(2)此时的振幅为多大?题5-16图分析 原有空盘振动系统由于下落物体的加入,振子质量由m 1变为m 1 + m 2,因此新系统的角频率(或周期)要改变.由于()2020/ωx A v +=,因此,确定初始速度v 0和初始位移x 0是求解振幅A 的关键.物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度v 0,这也是该振动系统的初始速度.在确定初始时刻的位移x 0时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置.因此,本题中初始位移x 0,也就是空盘时的平衡位置相对新系统的平衡位置的位移.解 (1)空盘时和物体落入盘中后的振动周期分别为k m ωT /π2/π21== ()k m m ωT /π2/π221+='='可见T ′>T ,即振动周期变大了.(2)如图(b )所示,取新系统的平衡位置为坐标原点O .则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即g kmg k m m k g m l l x 2211210-=+-=-= 式中k g m l 11=为空盘静止时弹簧的伸长量,l 2=g km m 21+为物体粘在盘上后,静止时弹簧的伸长量.由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度gh m m m m m m 22122120+=+=v v 式中gh 2=v 是物体由h 高下落至盘时的速度.故系统振动的振幅为()gm m khk g m x A )(21/2122020++='+=ωv 本题也可用机械能守恒定律求振幅A .5-17 质量为0.10kg 的物体,以振幅1.0×10-2 m 作简谐运动,其最大加速度为4.0 m·s -1求:(1)振动的周期;(2)物体通过平衡位置时的总能量与动能;(3)物体在何处其动能和势能相等?(4)当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度2max ωA a =,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题. 解 (1)由分析可得振动周期s 314.0/π2/π2max ===a A ωT(2)当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即J 100221213max22k -⨯====.mAa mA E E ω (3)设振子在位移x 0处动能与势能相等,则有42220//kA kx =得m 100772230-⨯±=±=./A x(4)物体位移的大小为振幅的一半(即2x A =/)时的势能为4221212P /E A k kx E =⎪⎭⎫⎝⎛==则动能为43P K /E E E E =-=5-18 一劲度系数k =312 1m N -⋅的轻弹簧,一端固定,另一端连接一质量kg 3.00=m 的物体,放在光滑的水平面上,上面放一质量为kg 2.0=m 的物体,两物体间的最大静摩擦系数5.0=μ.求两物体间无相对滑动时,系统振动的最大能量.分析简谐运动系统的振动能量为2p k 21kA E E E =+=.因此只要求出两物体间无相对滑动条件下,该系统的最大振幅max A 即可求出系统振动的最大能量.因为两物体间无相对滑动,故可将它们视为一个整体,则根据简谐运动频率公式可得其振动角频率为mm k+=0ω.然后以物体m 为研究对象,它和m 0一起作简谐运动所需的回复力是由两物体间静摩擦力来提供的.而其运动中所需最大静摩擦力应对应其运动中具有最大加速度时,即max 2max A m ma mg ωμ==,由此可求出max A . 解根据分析,振动的角频率mm k+=0ω 由max 2max A m ma mg ωμ==得kgm m g A μωμ)(02max +=则最大能量J1062.92)(])([212132220202max max -⨯=+=+==kg m m kg m m k kA E μμ5-19 已知两同方向、同频率的简谐运动的运动方程分别为()()m π75.010cos 05.01+=t x ;()()m π25.010cos 06.02+=t x .求:(1)合振动的振幅及初相;(2)若有另一同方向、同频率的简谐运动()()m 10cos 07033ϕ+=t x .,则3ϕ为多少时,x 1+x 3的振幅最大?又3ϕ为多少时,x 2+x 3的振幅最小?题5-19图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动的合成仍为一简谐运动,其角频率不变;合振动的振幅()12212221cos 2ϕϕ-++=A A A A A ,其大小与两个分振动的初相差12ϕϕ-相关.而合振动的初相位()()[]22112211cos cos sin sin arctan ϕϕϕϕϕA A A A ++=/解 (1)作两个简谐运动合成的旋转矢量图(如图).因为2/πΔ12-=-=ϕϕϕ,故合振动振幅为()m 1087cos 2212212221-⨯=-++=.ϕϕA A A A A合振动初相位()()[]rad1.48arctan11cos cos sin sin arctan 22112211==++=ϕϕϕϕϕA A A A /(2)要使x 1+x 3振幅最大,即两振动同相,则由π2Δk =ϕ得,...2,1,0,π75.0π2π213±±=+=+=k k k ϕϕ要使x 1+x 3的振幅最小,即两振动反相,则由()π12Δ+=k ϕ得(),...2,1,0,π25.1π2π1223±±=+=++=k k k ϕϕ5-20 两个同频率的简谐运动1 和2 的振动曲线如图(a )所示,求(1)两简谐运动的运动方程x 1和x 2;(2)在同一图中画出两简谐运动的旋转矢量,并比较两振动的相位关系;(3)若两简谐运动叠加,求合振动的运动方程.分析 振动图已给出了两个简谐运动的振幅和周期,因此只要利用图中所给初始条件,由旋转矢量法或解析法求出初相位,便可得两个简谐运动的方程.解 (1)由振动曲线可知,A =0.1 m,T =2s,则ω=2π/T =πs-1.曲线1表示质点初始时刻在x =0 处且向x 轴正向运动,因此φ1=-π/2;曲线2 表示质点初始时刻在x =A /2 处且向x 轴负向运动,因此φ2=π/3.它们的旋转矢量图如图(b )所示.则两振动的运动方程分别为()()m 2/ππcos 1.01-=t x 和()()m 3/ππcos 1.02+=t x(2)由图(b )可知振动2超前振动1 的相位为5π/6. (3)()ϕω+'=+=t A x x x cos 21其中()m 0520cos 212212221.=-++='ϕϕA A A A A()12π0.268arctan cos cos sin sin arctan22112211-=-=++=ϕϕϕϕϕA A A A则合振动的运动方程为 ()()m π/12πcos 052.0-=t x题5-20 图5-21 将频率为348 Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz .若在待测频率音叉的一端加上一小块物体,则拍频数将减少,求待测音叉的固有频率.分析 这是利用拍现象来测定振动频率的一种方法.在频率υ1和拍频数Δυ=|υ2-υ1|已知的情况下,待测频率υ2可取两个值,即υ2=υ1 ±Δυ.式中Δυ前正、负号的选取应根据待测音叉系统质量改变时,拍频数变化的情况来决定.解 根据分析可知,待测频率的可能值为υ2=υ1 ±Δυ=(348 ±3) Hz因振动系统的固有频率mkπ21=v ,即质量m 增加时,频率υ减小.从题意知,当待测音叉质量增加时拍频减少,即|υ2-υ1|变小.因此,在满足υ2与Δυ均变小的情况下,式中只能取正号,故待测频率为υ2=υ1+Δυ=351 Hz*5-22 图示为测量液体阻尼系数的装置简图,将一质量为m 的物体挂在轻弹簧上,在空气中测得振动的频率为υ1,置于液体中测得的频率为υ2,求此系统的阻尼系数.题5-22图分析 在阻尼不太大的情况下,阻尼振动的角频率ω与无阻尼时系统的固有角频率ω0及阻尼系数δ有关系式220δωω-=.因此根据题中测得的υ1和υ2(即已知ω0、ω),就可求出δ.解 物体在空气和液体中的角频率为10π2v =ω和2π2v =ω,得阻尼系数为2221220π2v v -=-=ωωδ。

理论力学(周衍柏)习题答案,第五章

理论力学(周衍柏)习题答案,第五章

第五章习题解答5.1解如题5.1.1图杆受理想约束,在满足题意的约束条件下杆的位置可由杆与水平方向夹角所唯一确定。

杆的自由度为1,由平衡条件:即mg y =0①变换方程y=2rcos sin-= rsin2②故③代回①式即因在约束下是任意的,要使上式成立必须有:rcos2-=0④又由于cos=故cos2=代回④式得5.2解如题5.2.1图三球受理想约束,球的位置可以由确定,自由度数为1,故。

得由虚功原理故①因在约束条件下是任意的,要使上式成立,必须故②又由得:③由②③可得5.3解如题5.3.1图,在相距2a的两钉处约束反力垂直于虚位移,为理想约束。

去掉绳代之以力T,且视为主动力后采用虚功原理,一确定便可确定ABCD的位置。

因此自由度数为1。

选为广义坐。

由虚功原理:w①又取变分得代入①式得:化简得②设因在约束条件下任意,欲使上式成立,须有:由此得5.4解自由度,质点位置为。

由①由已知得故②约束方程③联立②③可求得或又由于故或5.5解如题5.5.1图按题意仅重力作用,为保守系。

因为已知,故可认为自由度为1.选广义坐标,在球面坐标系中,质点的动能:由于所以又由于故取Ox为零势,体系势能为:故力学体系的拉氏函数为:5.6解如题5.6.1图.平面运动,一个自由度.选广义坐标为,广义速度因未定体系受力类型,由一般形式的拉格朗日方程①在广义力代入①得:②在极坐标系下:③故将以上各式代入②式得5.7解如题5.7.1图又由于所以①取坐标原点为零势面②拉氏函数③代入保守系拉格朗日方程得代入保守系拉格朗日方程得5.8解:如图5.8.1图.(1)由于细管以匀角速转动,因此=可以认为质点的自由度为1.(2)取广义坐标.(3)根据极坐标系中的动能取初始水平面为零势能面,势能:拉氏函数①(4),代入拉氏方程得:(5)先求齐次方程的解.②特解为故①式的通解为③在时:④⑤联立④⑤得将代回式③可得方程的解为:5.9解如题5.9.1图.(1)按题意为保守力系,质点被约束在圆锥面内运动,故自有度数为2. (2)选广义坐标,.(3)在柱坐标系中:以面为零势能面,则:拉氏函数-①(4)因为不显含,所以为循环坐标,即常数②对另一广义坐标代入保守系拉氏方程③有得④所以此质点的运动微分方程为(为常数)所以5.10解如题5.10.1图.(1)体系自由度数为2.(2)选广义坐标(3)质点的速度劈的速度故体系动能以面为零势面,体系势能:其中为劈势能.拉氏函数①(4)代入拉格郎日方程得:②代入拉格郎日方程得③联立②,③得5.11 解如题5.11.1图(1)本系统内虽有摩擦力,但不做功,故仍是保守系中有约束的平面平行运动,自由度(2)选取广义坐标(3)根据刚体力学其中绕质心转动惯量选为零势面,体系势能:其中C为常数.拉氏函数(4)代入保守系拉氏方程得:对于物体,有5.12解如题5.12.1图.(1)棒作平面运动,一个约束,故自由度. (2)选广义坐标(3)力学体系的动能根据运动合成又故设为绕质心的回转半径,代入①得动能②(4)由③(其中)则④因为、在约束条件下任意且独立,要使上式成立,必须:⑤(5)代入一般形式的拉氏方程得:⑥又代入一般形式的拉氏方程得:⑦⑥、⑦两式为运动微分方程(6)若摆动角很小,则,代入式得:,代入⑥⑦式得:⑧又故代入⑧式得:(因为角很小,故可略去项)5.13解如题5.13.1图(1)由于曲柄长度固定,自由度.(2)选广义坐标,受一力矩,重力忽略,故可利用基本形式拉格朗日方程:①(3)系统动能②(4)由定义式③(5)代入①得:得5.14.解如题5.14.1图.(1)因体系作平面平行运动,一个约束方程:(2)体系自由度,选广义坐标.虽有摩擦,但不做功,为保守体系(3)体系动能:轮平动动能轮质心转动动能轮质心动能轮绕质心转动动能.①以地面为零势面,体系势能则保守系的拉氏函数②(1)因为不显含,得知为循环坐标.故=常数③开始时:则代入得又时,所以5.15解如题5.15.1图(1)本系统作平面平行运动,干限制在球壳内运动,自由度;选广义坐标,体系摩擦力不做功,为保守力系,故可用保守系拉氏方程证明①(2)体系动能=球壳质心动能+球壳转动动能+杆质心动能+杆绕中心转动动能②其中代入②得以地面为零势面,则势能:(其中为常数)(3)因为是循环坐标,故常熟③而代入①式得④联立③、④可得(先由③式两边求导,再与④式联立)⑤⑤试乘并积分得:又由于当5.16解如题图5.16.1.(1)由已知条件可得系统自由度.(2)取广义坐标.(3)根据刚体力学,体系动能:①又将以上各式代入①式得:设原点为零势能点,所以体系势能体系的拉氏函数②(1)因为体系只有重力势能做工,因而为保守系,故可采用③代入③式得即(5)解方程得5.17解如题5.17.1图(1)由题设知系统动能①取轴为势能零点,系统势能拉氏函数②(2)体系只有重力做功,为保守系,故可采用保守系拉氏方程.代入拉氏方程得:又代入上式得即③同理又代入上式得④令代入③④式得:欲使有非零解,则须有解得周期5.18解如题5.18.1图(1)系统自由度(2)取广义坐标广义速度(3)因为是微震动,体系动能:以为势能零点,体系势能拉氏函数(4)即①同理②同理③设代入①②③式得欲使有非零解,必须解之又故可得周期5.19解如题5.19.1图(1)体系自由度(2)取广义坐标广义速度(3)体系动能体系势能体系的拉氏函数(4)体系中只有弹力做功,体系为保守系,可用①将以上各式代入①式得:②先求齐次方程③设代入③式得要使有非零,必须即又故通解为:其中又存在特解有②③式可得式中及为积分常数。

范钦珊版材料力学习题全解 第5章 梁的弯曲问题(1)-剪力图与弯矩图

范钦珊版材料力学习题全解 第5章 梁的弯曲问题(1)-剪力图与弯矩图

M A = ql 2
| FQ | max = 5 ql 4
| M | max = ql 2
题(c)
∑ F y = 0 , FRA = ql (↑)
9
∑ M A = 0 , M A = ql 2
∑ M D = 0 , ql 2 + ql ⋅ l − ql ⋅ − M D = 0
3 2 ql 2 | FQ | max = ql MD =
C
4000 4000
B
FB
习题 5-8 载荷图之二
5-9 试作图示刚架的剪力图和弯矩图,并确定 FQ
max
、 M
max
12
习题 5-9 图
解:题(a) :
∑M A = 0
FRB ⋅ 2l − FP ⋅ l − FP ⋅ l = 0
FRB = FP (↑)
∑ F y = 0 , F Ay = FP (↓)
∑ Fx = 0 , FAx = FP (←)
C
2
1
B
C

B
1
D
M(FPl)
1 +
D
FQ(FP)
A
A
习题 5-9a 的弯矩图
剪力图和弯矩图如图所示,其中 | M | max = 2 FP l , 位于刚节点 C 截面;
| FQ |max = FP
题(b) : ∑ F y = 0 , F Ay = ql (↑)
8
习题 5-6c、e 解图
习题 5-6d、f 解图
题(b)
∑ M A = 0 − ql 2 − ql ⋅ l + ql ⋅ l + FRB ⋅ 2l = 0
2
FRB

第五单元 微分方程

第五单元  微分方程

第五单元 微分方程§1 微分方程一、知识点总结 (一)一阶微分方程1、可分离变量方程()()y f x g y '= 或d ()()d yf xg y x= 可分离变量方程的解法为: 原方程化为 d ()d ()y f x x g y =,两边积分d ()yg y ⎰()d f x x =⎰+c ,求得:()()G y F x c =+,称为隐式通解。

例1、求微分方程d 2d yxy x =的通解。

例2、求微分方程2d 2d yxy x=的通解。

例3、求微分方程(1)d ()d 0x y x xy y y ---=的通解。

2、齐次方程()y y x ϕ'= 或 d ()d y yx xϕ=齐次方程的解法为:令u =x y 则ux y =,于是 d d d d y u u x x x =+,代入得 d ()d u u x u xϕ+=,再分离变量, 得d ()u u u ϕ-=x1d x两端分别积分后得 1d ln ()ux c u uϕ=+-⎰得到通解为),(c x u ϕ=, 再用x y代替u ,便得到原方程的通解。

例4、求微分方程22d d d d y yy x xy x x+=。

例5、求微分方程d d y x yx y x=+满足初始条件12x y ==的特解。

例6、求微分方程xy y '-= 3、一阶线性微分方程d ()()d yp x y Q x x+= 称为一阶线性微分方程.(1)若)(x Q 0≡时,方程d ()0d yp x y x +=称为一阶线性齐次微分方程。

(2)若)(x Q 0≡时,方程d ()()d yp x y Q x x+=称为一阶线性非齐次微分方程。

一阶线性齐次微分方程 d ()0d yp x y x+=的通解为: ()d e P x x y c -⎰=。

一阶线性非齐次微分方程d ()()d y p x y Q x x +=的通解为: ()d ()de ()e p x x p x x y Q x c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰。

微分方程习题和答案

微分方程习题和答案

微分方程习题和答案(总42页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--微分方程习题§1 基本概念1. 验证下列各题所给出的隐函数是微分方程的解.(1)y x y y x C y xy x -='-=+-2)2(,22(2)⎰'=''=+y 0 222t -)(,1e y y y x dt2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数)(一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.)(1)1)(22=++y C x ;(2)x C x C y 2cos 2sin 21+=.3.写出下列条件确定的曲线所满足的微分方程。

(1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。

(2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。

(3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。

§2可分离变量与齐次方程1.求下列微分方程的通解(1)2211y y x -='-;(2)0tan sec tan sec 22=⋅+⋅xdy y ydx x ;(3)23xy xy dxdy =-; (4)0)22()22(=++-++dy dx y y x x y x .2.求下列微分方程的特解(1)0 ,02=='=-x y x y e y ;(2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解(1))1(ln +='xy y y x ; (2)03)(233=-+dy xy dx y x .4. 求下列微分方程的特解(1)1 ,022=-==x y y x xy dx dy ;(2)1 ,02)3(022==+-=x y xydx dy x y .5. 用适当的变换替换化简方程,并求解下列方程(1)2)(y x y +=';(2))ln (ln y x y y y x +=+'(3)11+-='yx y (4)0)1()1(22=++++dy y x xy x dx xy y6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a .7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系.8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了染色,30分钟后剩下,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐§3 一阶线性方程与贝努利方程1.求下列微分方程的通解(1)2x xy y =-'; (2)0cos 2)1(2=-+'-x xy y x ;(3)0)ln (ln =-+dy y x ydx y ;(4))(ln 2x y y y -='; (5)1sin 4-=-x e dxdy y 2.求下列微分方程的特解 (1)0 ,sec tan 0==-'=x yx x y y ; (2)1|,sin 0==+'=x y xx x y y 3.一 曲线过原点,在) ,(y x 处切线斜率为y x +2,求该曲线方程.4.设可导函数)(x ϕ满足方程⎰+=+ x0 1sin )(2cos )(x tdt t x x ϕϕ,求)(x ϕ. 5.设有一个由电阻Ω=10R ,电感H L 2=,电流电压tV E 5sin 20=串联组成之电路,合上开关,求电路中电流i 和时间t 之关系.6.求下列贝努利方程的通解(1) 62y x xy y =+' (2)x y x y y tan cos 4+='(3)0ln 2=-+y x x dydx y (4)2121xy x xy y +-='§4 可降阶的高阶方程1.求下列方程通解。

计算物理学(刘金远)第5章:微分方程(课后习题及答案)

计算物理学(刘金远)第5章:微分方程(课后习题及答案)

5.1 计算物理学第5章:微分方程课后习题答案初值问题【5.1.1】采用euler 方法求初值问题'2/, 01(0)1y y x y x y =-££ìí=î【解】取0.1h =,1(,)(2/)n n n n n n n n y y hf x y y h y x y +=+=+-x0.00.10.20.3y 1.000 1.1000 1.1918 1.2774【5.1.2】用euler 预测-校正公式求初值问题22', (0)1y x y y ì=-í=î【解】取0.1h =,1(,)n n n n y y hf x y +=+111(,)n n n n y y hf x y +++=+1000(,)0.9y y hf x y =+=221011(,)10.1(0.10.9)0.92y y hf x y =+=+´-=【5.1.3】用euler 公式和梯形公式建立的预测-校正公式求初值问题'23, 0(0)1y x y x y =+£ìí=î取0.1h =,(1)求(0.1)y ;(2)编程计算0:0.01:2x =【解】1111(,)1[(,)(,)]2n n n n n n n n n n y y hf x y y y h f x y f x y ++++=+=++10001000110.1(23) 1.30.05[(23)(23)]1.355y y x y y y x y x y =++==++++=【5.1.4】用显式Euler 方法,梯形方法和预估-校正Euler 方法给出求初值问题1,01(0)1d y y x x dx y ì=-++<<ïíï=î的迭代公式(取步长0.1h =)【解】取0.1h =,,0,1,k x kh k ==L ,(1)显式Euler 方法12(,)(1)(1)k k k k k k k y y hf x y y h y kh y h kh h+=+=+-++=-++1911010010k k k y y +=++(2)梯形方法为1121()2(2)(21)2219112110510k k k k k k k h y y f f h y k h h y hy k +++=++-+++=+=++(3)预估-校正Euler 方法为1111(,)[(,)(,)],20,1,,1x k k k k k k k k k k k y y h f x y h y y f x y f x y k n ++++=+ìïï=++íï=-ïîL 221(1/2)(/2)0.9050.00950.1k k k y y h h kh h h hy k +=-++-+=++【5.1.5】考虑下面初值问题2'''(0)1;'(0)2y y y t y y ì=-++í==î使用中点RK2,取步长0.1h =,求出()y h 的近似值【解】00,0.1t h =='y u y æö=ç÷èø,012u æö=ç÷èø,2''(,)'y u f t u y y t æö==ç÷-++èø,1002(,)1k f t u æö==ç÷èø,2001212 1.111(,)(0.05,0.05)(0.05,)21 2.0522 2.05 2.050.891.1 2.050.05k f t h u hk f f æöæöæö=++=+=ç÷ç÷ç÷èøèøèøæöæö==ç÷ç÷-++èøèø102 1.2052.089u u hk æö=+=ç÷èø,1(0.1) 1.205y y ==【5.1.6】考虑下面初值问题2'''2''(0)1;'(0)0,''(0)2y y y t y y y ì=++í===-î使用中点RK2,取步长0.2h =,求出()y h 的近似值【解】00,0.2t h ==取表示符号'''y u y y æöç÷=ç÷ç÷èø,2''(,)''2''y u f t u y y y t æöç÷==ç÷ç÷++èø,0102u æöç÷=ç÷ç÷-èø,010002000'()0(,)''()262()''()y t k f t u y t y t y t t æöæöç÷ç÷===-ç÷ç÷ç÷ç÷++èøèø200121011(,)(0.1,00.12)2226 10.20.2(0.1,0.2) 1.4 1.41.4 3.9721( 1.4)0.1k f t h u hk f f æöæöç÷ç÷=++=+-ç÷ç÷ç÷ç÷-èøèøæö--æöæöç÷ç÷ç÷=-=-=-ç÷ç÷ç÷ç÷ç÷ç÷-´+-èøèøèø1020.960.281.206u u hk æöç÷=+=-ç÷ç÷-èø,(0.2)0.96y =【5.1.7】采用Rk4编程求下列微分方程的初值问题:(1)23'1, (0)0y y x y =++=(2)2'2(1), (1)2y y x y =+--=(3)'', ()0,'()3y y y y p p =-==【5.1.8】求下面微分方程组的数值解2323'2'4(0)1,(0)0x x y t t t y x y t tx y ì=-+--ï=+-+íï==î补充题【5.1.1】对微分方程'(,)y f x y =用Sinpson 求积公式推出数值微分公式【解】{}111111111'(,)4(,)(,)3n n x n n n n n n n n x y dx y y h f x y f x y f x y +-+---++=-=++ò【5.1.2】用标准的4阶龙格库塔方法求初值问题',(0)1y x y y =+ìí=î,取0.1h =,计算出(0.2)y 【解】()1123422/6i i y y h k k k k +=++++1213243(,)(/2,/2)(/2,/2)(,)i i i i i i i i k f x y k f x h y hk k f x h y hk k f x h y hk ==++=++=++'(,)y f x y x y ==+,00(,)(0,1)x y =100200130024003(,)1(/2,/2) 1.1(/2,/2) 1.105(,) 1.2105k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()10123422/6 1.1103y y h k k k k =++++=,11(,)(0.1,1.1103)x y =111211*********(,) 1.2103(/2,/2) 1.3208(/2,/2) 1.3263(,) 1.4429k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()2112342(0.2)22/6 1.2428y y y h k k k k y ==++++==然后由22(,)(0.2,1.2428)x y =计算3(0.3)y y =,。

常微分方程第5章答案

常微分方程第5章答案

常微分方程第5章答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March习题1.给定方程组x = x x= (*)a)试验证u(t)= ,v(t)= 分别是方程组(*)的满足初始条件u(0)= , v(0)= 的解.b)试验证w(t)=c u(t)+c v(t)是方程组(*)的满足初始条件w(0)= 的解,其中是任意常数.解:a) u(0)= =u (t)= = u(t)又 v(0)= =v (t)= = = v(t)因此 u(t),v(t)分别是给定初值问题的解.b) w(0)= u(0)+ u(0)= + =w (t)= u (t)+ v (t)= +=== w(t)因此 w(t)是给定方程初值问题的解.2. 将下面的初值问题化为与之等价的一阶方程组的初值问题:a) x +2x +7tx=e ,x(1)=7, x (1)=-2b) x +x=te ,x(0)=1, x (0)=-1,x (0)=2,x (0)=0c)x(0)=1, x (0)=0,y(0)=0,y (0)=1解:a)令 x =x, x = x , 得即又 x =x(1)=7 x (1)= x (1)=-2于是把原初值问题化成了与之等价的一阶方程的初值问题:x = x(1)=其中 x= .b) 令=x ===则得:且 (0)=x(0)=1, = (0)=-1, (0)= (0)=2,(0)= (0)=0于是把原初值问题化成了与之等价的一阶方程的初值问题:= x(0)= , 其中 x= .c) 令w =x, w =,w =y,w =y ,则原初值问题可化为:且即 ww(0)= 其中 w=3. 试用逐步逼近法求方程组= x x=满足初始条件x(0)=的第三次近似解.解:0241201 杨素玲习题02412—02 02412—031.试验证 =是方程组x = x,x= ,在任何不包含原点的区间a 上的基解矩阵。

《数学建模》习题及参考答案 第五章 微分方程模型

《数学建模》习题及参考答案 第五章 微分方程模型

第五章部分习题1. 对于5.1节传染病的SIR 模型,证明:(1)若σ/10>s ,则()t i 先增加,在σ/1=s 处最大,然后减少并趋于零;()t s 单调减少至∞s 。

(2)若σ/10>s ,则()t i 单调减少并趋于零,()t s 单调减少至∞s 。

9. 在5.6节人口的预测和控制模型中,总和生育率()t β和生育模式()t r h ,是两种控制人口增长的手段,试说明我国目前的人口政策,如提倡一对夫妇只生一个孩子、晚婚晚育,及生育第2胎的一些规定,可以怎样通过这两种手段加以实施。

*16. 建立铅球掷远模型,不考虑阻力,设铅球初速度为v ,出手高度为h 出手角度为∂(与地面夹角),建立投掷距离与∂,,h v 的关系式,并在h v ,一定的条件下求最佳出手角度。

参考答案1. SIR 模型(14)式可写作().,1si dt di s i dt di λσμ-=-=由后一方程知()t s dtds ,0<单调减少。

1) 若σ10>s ,当01s s <<σ时,()t i dt di ,0>增加;当σ1=s 时,()t i dt di ,0=达到最大值m i ;当σ1<s 时,()t i dt di ,0<减少且()()式180=∞i 2) 若σ10<s ,()t i dt di ,0<单调减少至零 9. 一对夫妻只生一个孩子,即总和生育率()1=t β;晚婚晚育相当于生育模式()r h 中(5。

6节(13)式)使1r 和c r 增大;生育第2胎一些规定可相当于()t β略高于1,且()r h 曲线(5。

6节图19)扁平一些(规定生2胎要间隔多少年)*16. 在图中坐标下铅球运动方程为()()()().sin 0,cos 0,0,00,,0ααv y v x h y x g yx ====-== 解出()t x ,()t y 后,可以求得铅球掷远为,cos 2sin cos sin 2/12222ααααv g h g v g v R ⎪⎪⎭⎫ ⎝⎛++=这个关系还可表为()ααtan cos 2222R h v g R +=由此计算0*=ααd dR,得最佳出手角度()gh v v +=-21*2sin α,和最佳成绩gh v g v R 22*+=设m h 5.1=,s m v /10=,则0*4.41≈α,m R 4.11*=。

【工程力学 课后习题及答案全解】第5章静力学基本原理与方法应用于弹性体习题解

【工程力学 课后习题及答案全解】第5章静力学基本原理与方法应用于弹性体习题解

∑MA
=0
, FRB
=
1 2
ql
(→)
C C
D A FAx
FAy (a)
B
C
FRB
A
FAx FAy (b)
B FRB
∑ Fx
=
0

FAx
=
1 2
ql
(←)
弯距图如图(b-1),其中 | M |max = ql 2 。 图(c):
∑ Fx = 0 , FAx = ql (←)
∑MA =0
ql 2

ql
习题 5-3 图
5-4 应用平衡微分方程,试画出图示各梁的剪力图和弯矩图,并确定
M。 max
解:(a) ∑ M A
= 0 , FRB
=
M 2l
(↑)
A
EB A
CD
C
— 27 —
FRA
FRB
FRA
| FQ |max 、
B FRB
∑ Fy
=
0

FRA
=
−M 2l
(↓)
| FQ
|max =
M 2l

| M |max = 2M
4
由 MA = MB = 0,可知 A、B 简支,由 此得梁上载荷及梁的支承如图(a)或(b) 所示。
(d) 习题 5-6 图
q = 0.2kN/m
A C
B
A
1kN
(a)
— 29 —
0.2kN/m
C
B
0.3kN
(b)
5-7 试作图示刚架的弯矩图,并确定 | M |max 。 解:图(a): ∑ M A = 0
B1

第四节 一阶线性微分方程第五节

第四节 一阶线性微分方程第五节

2
2
2
dx
习题 7-4 // P315: 1(1,2,8), 2(4).
1.设函数 f ( x )在[0, π]上连续 , 且 ∫ f ( x )dx = 0,
π
∫0
π
7F f ( x ) cos xdx = 0, 试证 : 在(0, π )内至少存在
0
两个不同的点 ξ1 , ξ 2 , 使f (ξ1 ) = f (ξ 2 ).
7F
第五节 可降阶的高阶微分方程
一、y ( n ) = f ( x )型
解法:逐次积分法.
( 3) 求方程 y = sin x 的通解. 例1

方程两端分别逐次积分, 得 :
y ( 2) = ∫ sin xdx = − cos x + C1
y′ = ∫ ( − cos x + C1 )dx = − sin x + C1 x + C 2 y = ∫ ( − sin x + C1 x + C 2 )dx
∴ u′( x ) = Q( x )e ∫ P ( x )dx
积分得 u( x ) = ∫ Q( x )e ∫
P ( x )dx
dx + C ,
− P ( x )dx dx + C )e ∫ ,
∴ 非齐次方程的解为y = ( ∫ Q( x )e ∫
P ( x )dx
y = ( ∫ Q( x )e ∴ 非齐次方程的解为
dx + C )e
− ∫ P ( x )dx
.
P ( x )dx dy − ∫ P ( x )dx ∫ = + ( ( ) ) . y Q x e dx C e + P ( x ) y = Q( x ), ∫ dx 1 sin x 的通解. 例1 求方程 y′ + y = x x 1 sin x 解法1. P ( x ) = , Q ( x ) = , x x 1 1 sin x ∫ x dx − ∫ x dx ⋅e y = ∫ dx + C e x sin x ln x dx + C e − ln x = ∫ ⋅e x

常微分方程教程_丁同仁(第二版)_习题解答_5

常微分方程教程_丁同仁(第二版)_习题解答_5

习 题 6—31.证明函数组 ,⎩⎨⎧<≥=000)(21x x x x 当当ϕ220 0()0x x x x ϕ≥⎧=⎨<⎩当 当,在区间上线性无关,但它们的朗斯基行列式恒等于零。

这与本节的定理 6.2*是否矛盾?如果并不矛盾,那么它说明了什么?),(+∞−∞证 设有 1122()0c x c ϕϕ+≡ +∞<<∞−x ,则当时,有,从而推得 。

而当 时,有0≥x 21200c x c +≡01=c 0<x 120c c x 0⋅+≡,从而推得 。

因此在02=c +∞<<∞−x 上,只有时,才有 021==c c 1122()()0c x c x ϕϕ+≡,故12(), ()x x ϕϕ在上线性无关。

又当时, ),(+∞−∞0≥x 0002)(2≡=x x x w ,当0<x 时,0200)(2≡=x x x w 故当+∞<<∞−x 时,有。

这与本节定理6.2不矛盾,因为定理6.2*成立对函数有要求,即0)(≡x w )(1x ϕ,)(2x ϕ是某个二阶齐次线性方程的解组。

这说明不存在一个二阶齐次线性方程,它以)(1x ϕ,)(2x ϕ为解组。

3.考虑微分方程''()0y q x y +=(1)设)(x y ϕ=与)(x y ψ=是它的任意两个解,试证)(x y ϕ=与)(x y ψ=的朗斯基行列式恒等于一个常数。

(2)设已知方程有一个特解为,试求这方程的通解,并确定 x e y =()?q x =证: (1)在解)(x y ϕ=,)(x y ψ=的公共存在区间内任取一点x 。

由刘维尔公式,有 (常数)[])()()(),(000x w ex w x x w odxx x=∫=−ψϕ(2)由于是方程的一个非零特解,故可借助刘维尔公式,求与之线性无关的特解 x e y =x odx xx e dx e ee y −∫−−=⋅=∫21122,故方程的通解为 xx e c e c y −+=21又由于是方程的解,故有x e y =()0x x e q x e +≡, 所以 ()1q x =−。

江苏省专转本高等数学第五章常微分方程核心知识点例题讲解(含答案)

江苏省专转本高等数学第五章常微分方程核心知识点例题讲解(含答案)

第五章 常微分方程(简记ODE )本章主要知识点● 可分离变量的ODE● 一阶线性非齐次常微分方程及推广● 二阶常系数线性齐次与非齐次常微分方程● 一些特殊类方程一、可分离变量的ODE1.基本型的解法 基本型:()()dy G x H y dx= 基本解法: ()()dy G x dx H y = ()()dy G x dx H y =⎰⎰例5.1.1)0(,==-y e dx dy y x 解:dx e dy e x y =⎰⎰=dx e dy e x y通解为:c e e x y += 将1,0==y x 得:1-=e c 得 1-+=e e e x y例5.2.(1)ln y y y xdx '+= 解:(1)ln y dy xdx y+= 1(1)ln dy xdx y +=⎰⎰,得:ln ||ln y y x x x C +=-+例5.3.dx y x dy y x )1()1(122+=+-解:dx x x y dy y 2211)1(-=++,2(1)1y dy y +=+⎰ 得:()21arctan ln 12y y C ++= 例5.4.已知()f x 满足0()(1)()1x f t dt x f x +-=⎰,求()f x 。

解:由0()(1)()1xf t dt x f x +-=⎰知(0)1f =-。

方程两边对x 求导得()()(1)()0f x f x x f x '++-=,分离变量求得2()(1)c f x x =-, 将(0)1f =-代入得1c =-,21()(1)f x x =--。

2.可转化的可分离变量的齐次方程 ()x y f y'= 方法:令()y p y p x x y p xp x''=⇒=⇒=+ xdx p p f dp p f dx dp x p =-⇒=+⇒)()(。

例5.5.y x y x dx dy +-= 解:xyx ydx dy +-=11 令p p dx dp x p xp p y px y x y p +-=+⇒+=⇒=⇒=11'', pp p p p p dx dp x +--=-+-=⇒121112 xdx p p dp p =--+⇒221)1( x dx p dp p =+-+⇒⎰2)1(2)1( C x p p +=---⇒ln 21ln 212,将xy p =代入即可。

第05节 全微分方程

第05节 全微分方程

(
)

d ( xy ) + xy ( ydx − xdy ) = 0
1
取 µ = 2 2 ,在方程两端乘上 µ 后,得 x y
d ( xy )
( xy )

2
ydx − xdy + =0 xy
x =0 y
1 d − + d ln xy
1 x 故原方程通解为: − + ln = C 故原方程通解为: xy y
1 2 ∴ϕ ( y ) = y + C1 2
(不妨设 C1 = 0)
所以,原方程的通解为: 所以,原方程的通解为:
1 3 1 2 x − yx + y = C 3 2
解三: 分项组合凑微分法)原方程可化为: 解三:(分项组合凑微分法)原方程可化为:
(
x 2dx + ydy − ( ydx + xdy ) = 0
dy y =ϕ dx x
c. 一阶线性方程 y′ + P ( x ) y = Q ( x )
y′ + P ( x ) y = Q ( x ) y n 贝努利方程
d. 全微分方程 Pdx + Qdy = 0 且满足
∂P ∂Q = ∂y ∂x
③解法:初等积分法。 解法:初等积分法。 解题分析过程:是否一阶方程 是否可分 解题分析过程:是否一阶方程→是否可分 离变量方程→是否齐次方程 是否齐次方程→是否一阶线性方 离变量方程 是否齐次方程 是否一阶线性方 是否全微分方程→若都不是 程→是否全微分方程 若都不是,找适当的变 是否全微分方程 若都不是, 换或积分因子,化为上述四种类型。 换或积分因子,化为上述四种类型。 我们讨论的一阶微分方程的解法, 我们讨论的一阶微分方程的解法,是针对 方程的类型来展开的, 方程的类型来展开的,所以类型与解法之间存 在着一种对应。只要辨别出方程的类型, 在着一种对应。只要辨别出方程的类型,也就 有了相应的解法。 有了相应的解法。

微分方程习题及答案

微分方程习题及答案
(1);
(2);
(3);
(4).
2、求连续函数,使得时有。
3、求以为通解得二阶微分方程、
4。某个三阶常系数微分方程有两个解与,求。
5、设有一个解为,对应齐次方程有一特解,试求:
(1)得表达式;
(2)该微分方程得通解.
6、已知可导函数满足关系式:
求。
7.已知曲线上原点处得切线垂直于直线,且满足微分方程,求此曲线方程.
5、长为6m得链条自桌上无摩察地向下滑动,设运动开始时,链条自桌上垂下部分长为1m,问需多少时间链条全部滑过桌面。
§7二阶常系数非齐次线性微分方程
1。求下列微分方程得通解
(1);
(2);
(3);
(4);
(5).
2。求下列微分方程得特解
(1);
(2)
3.设连续函数满足求。
4、一质量为得质点由静止开始沉入水中,下沉时水得反作用力与速度成正比(比例系数为),求此物体之运动规律、
(1);
(2).
5、 用适当得变换替换化简方程,并求解下列方程
(1);
(2)
(3)
(4)
6.求一曲线,使其任意一点得切线与过切点平行于轴得直线与轴所围城三角形面积等于常数、
7、设质量为得物体自由下落,所受空气阻力与速度成正比,并设开始下落时速度为0,求物体速度与时间得函数关系、
8。有一种医疗手段,就是把示踪染色注射到胰脏里去,以检查其功能。正常胰脏每分钟吸收掉染色,现内科医生给某人注射了0、3g染色,30分钟后剩下0。1g,试求注射染色后分钟时正常胰脏中染色量随时间变化得规律,此人胰脏就是否正常?
5。一链条悬挂在一钉子上,起动时一端离开钉子8m,另一端离开钉子12m,若不计摩擦力,求链条全部滑下所需时间。

大学高数第五章第5节-微分方程在医学中的应用

大学高数第五章第5节-微分方程在医学中的应用

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
2
4
6
8
10
12
14
16
18
20
t(hour)
c/c0
23
2、恒速静脉注射
恒速静脉注射:相当于药物以恒定速率k0进入 中心室,此时中心室的初始药量为零。
中心室内药量减小的速率与体内当时的药量 成正比。
D
dx dt
k0
kx,
V,x
x(0) 0.
则通解为 y c1er1x c2er2x.
2. r1 r2 (特征方程有两个相等的实根r1, r2 ), 则通解为 y (c1 c2x)er1x.
3. r1,2 i (特征方程有一对共轭复根), 则通解为 y ex (c1 cos x c2 sin x).
12
三、二阶常系数线性非齐次微分方程 一般形式为
其中l maxm, n l次多项式
k由特征根的情况决定
15
~y xkex[Ql (x)cosx Rl (x)sin x]
k由特征根的情况决定
i不是特征根 k 0
i是单根
k 1
16
第5节 微分方程在医学上的应用
目的与要求
❖了解用微分方程解决一些简单的医学问题
17
一、药物动力学模型
f
(x0 x) f (x0)
f
(
x0
)
x
37
导数的定义
1
lim
x0
f
(x0)
f
(x0 x) f (x0)
f
(
x0
)

常微分方程-习题作业-第五章第四节作业及详细解答

常微分方程-习题作业-第五章第四节作业及详细解答
1 习 题 5.4
2. 设函数 f (t, x) 在 (t, x) 平面上某区域 G 内连续, 关于 x 满足 Lipschitz 条件, L 是 Lipschitz
常数,
ϕ1(t),
ϕ2(t)
分别是方程
dx dt
=
f (t, x)

1和
2 逼近解, 都在区间 [t1, t2] 上有定义,
t0 ∈ [t1, t2] 且
|ϕ1(t0) − ϕ2(t0)| ≤ δ.
用 Gronwall 不等式证明:当 t ∈ [t1, t2] 时
|ϕ1(t) − ϕ2(t)| ≤ δeL|t−t0| + L eL|t−t0| − 1 , 其中 = 1 + 2. 证明: 不妨设 t ≥ t0, t ≤ t0 的情况可类似地证明. 由假设, 我们有:令 ϕ(t) = ϕ1(t来自 − ϕ2(t), 则t
ϕ1(t) − ϕ2(t) = ϕ1(t0) − ϕ2(t0) + ϕ(τ )dτ.
t0
因此,
|ϕ(t)| ≤ ≤
+ L ϕ1(t0) − ϕ2(t0) +
t
+ Lδ + L|ϕ(τ )|dτ.
t0
t
ϕ(τ )dτ
t0
由 Gronwall 不等式得: |ϕ(t)| ≤ ( + Lδ)eL(t−t0). 由此得:
故所给结论成立.
t
|ϕ1(t) − ϕ2(t)| = ϕ1(t0) − ϕ2(t0) + ϕ(τ )dτ
t0 t
≤ δ + ( + Lδ)eL(τ−t0)dτ
t0
= δeL|t−t0| + L eL|t−t0| − 1 .

5.1常微分方程的数值解法

5.1常微分方程的数值解法

5.1常微分⽅程的数值解法第五章常微分⽅程的差分⽅法⼀、教学⽬标及基本要求通过对本节课的学习,使学⽣掌握常微分⽅程、常微分⽅程⽅程组的数值解法。

⼆、教学内容及学时分配本节课主要介绍常微分⽅程的数值解法。

具体内容如下:讲授内容:欧拉公式、改进的欧拉公式。

三、教学重点难点1.教学重点:改进的欧拉公式、龙格库塔⽅法、收敛性与稳定性。

2. 教学难点:收敛性与稳定性。

四、教学中应注意的问题多媒体课堂教学为主。

适当提问,加深学⽣对概念的理解。

五、正⽂基于数值积分的求解公式:欧拉公式、改进的欧拉公式引⾔1.主要考虑如下的⼀阶常微分⽅程初值问题的求解:00()(,)()y x f x y y x y '=??=?微分⽅程的解就是求⼀个函数y=y(x),该函数满⾜微分⽅程并且符合初值条件。

2. 例如微分⽅程:xy'-2y=4x ;初始条件: y(1)=-3。

于是可得⼀阶常微分⽅程的初始问题24(1)3y y x y ?'=+=-?。

显然函数y(x)=x 2-4x 满⾜以上条件,因⽽是该初始问题的微分⽅程的解。

3. 但是,只有⼀些特殊类型的微分⽅程问题能够得到⽤解析表达式表⽰的函数解,⽽⼤量的微分⽅程问题很难得到其解析解,有的甚⾄⽆法⽤解析表达式来表⽰。

因此,只能依赖于数值⽅法去获得微分⽅程的数值解。

4.微分⽅程的数值解:设微分⽅程问题的解y(x)的存在区间是[a,b],初始点x 0=a ,将[a,b]进⾏划分得⼀系列节点x 0 , x 1 ,...,x n ,其中a= x 0< x 1<…< x n =b 。

y(x)的解析表达式不容易得到或根本⽆法得到,我们⽤数值⽅法求得y(x)在每个节点x k 的近似值y(x k ),即 y≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分⽅程的数值解。

如果计算y n 时,只利⽤y n-1,称这种⽅法为单步法;如果在计算y n 时不仅利⽤y n-1,⽽且还要利⽤y n-2, y n-3,…, y n-r ,则称这种⽅法为r 步⽅法,也称多步法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T
)
Ψ T (t )Φ (t ) = C ,
两边关于 t 求导数,有
d Ψ T (t )Φ (t ) ′ = Ψ T (t ) Φ (t ) + Ψ T (t )Φ ′(t ) dt
[
] (
(
)
′ = Ψ T (t ) Φ(t ) + Ψ T (t ) A(t )Φ (t ) = 0
)

(Ψ (Ψ
T

dΦ (t − t 0 ) = AΦ (t − t 0 ) , dt
所以 Φ (t − t 0 ) 也是基本解矩阵。 由于线性齐次方程组任意两个基本解矩阵可以互相线性表示,故
Φ (t − t 0 ) = Φ (t )C ,
由条件 Φ ( 0 ) = E 得, Φ (t 0 )C = Φ ( 0) = E ,即得 C = Φ (t 0 ) ,所以有
可得原方程的特解为
~ (t ) = t (sin t cos s − cos t sin s ) 1 ds = t sin t + cos t ⋅ ln cos t , ϕ ∫0 cos s
原方程的通解为 x = t sin t + cos t ⋅ ln cos t + C1 cos t + C 2 sin t 。 2) λ 3 − 8 = 0 , λ1 = 2, λ 2 , 3 = −1 ± 3i , 齐次方程基本解组为 x1 (t ) = e 2t , x 2 (t ) = e − t cos 3t, x3 (t ) = e − t sin 3t 。 利用常数变易公式,原方程满足初始条件的特解为:
x′′ + 8x′ + 7 x = f (t )
其中 f (t ) 在 0 ≤ t < ∞ 上连续,试利用常数变易公式,证明: 1)如果 f (t ) 在 0 ≤ t < ∞ 上有界,则上面方程的每一个解在 0 ≤ t < ∞ 上有界; 2) 如果当 t → ∞ 时 f (t ) → 0 , 则上面方程的每一解 φ(t ) , 满足 φ(t ) → 0(当t → ∞) 。
(0,0, ⋯,1)T 后得到的行列式。
经计算可得
W ( t ) = 12 3 , W 1 (t ) =
3e − 2 t , 3t − 3 cos 3t ), 3 t ),
W 2 ( t ) = e t ( 3 sin
W 3 (t ) = − e t ( 3 sin
3 t + 3 cos
~(t ) = 可得原方程的特解为 ϕ
′ (t ) = 所以 x ik
a ij ( t ) x jk ( t ), ( i , k = 1, 2 , ⋯ , n ) ,把这些等式代入(3)的右端, 化 ∑ j
=1
n
简计算每个行列式,如( 3)式右端第一项等于
n
n
1j
∑a
j =1
(t ) x j1 (t ) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
2 2t
π π <t< , 2 2
cos t
sin t
− sin t cos t
= 1 ,取 t 0 = 0 ,利用常数变易公式
~ (t ) = t x 2 (t ) x1 ( s ) − x1 (t ) x 2 ( s )] f ( s ) ds φ ∫t0 W [ x1 (s), x2 (s)]
即证明了 Ψ (t ) 为方程 y ′ = − A T (t ) y 的基本解矩阵。 评注:由证明过程可以看出,方程 y ′ = − A (t ) y 和 x ′ = A(t ) x 的解曲线之间满足
T
ψ T (t方程组
dx = Ax dt
~ (t ) = φ
3 =1
x k (t ) ∫ ∑ k
W k [ x1 ( s ), x 2 ( s ), x 3 ( s )] f ( s ) ds , 0 W [ x ( s ), x ( s ), x ( s )] 1 2 3
t
其 中 W k [ x1 ( s ), x 2 ( s ), x 3 ( s )] 是 在 朗 斯 基 行 列 式 W [ x1 ( s ), x 2 ( s ), x3 ( s )] 中 的 第 k 列 代 以
类似地可以算出( 3)式右端其它各项分别为 a 22 (t )W (t ),⋯ , a nn (t )W (t ) ,代入( 3) 得
W ′ = [a11 (t ) + a 22 (t ) + ⋯ + a nn (t )]W
(2)
2)方程( 2)是关于 W (t ) 的一阶线性微分方程,分离变量可求得通解为
∫t0 tr A ( s ) ds
t
记为 trA(t ) ,所以刘维尔公式又可表示为 W (t ) = W (t0 )e
。从公式中可以看出,线性
齐次方程组(1)的 n 个解构成的朗斯基行列式 W (t ) 或者恒为零,或者恒不为零。 5-2 设 A(t ) 为区间 a ≤ t ≤ b 上连续的 n × n 实矩阵, Φ (t ) 为方程 x ′ = A(t ) x 的基本解 矩阵,而 x = φ (t ) 为其一解。试证: 1) 对于方程 y ′ = − A (t ) y 的任一解 y = ψ (t ) 必有 ψ T (t ) φ(t ) = 常数; 2) Ψ (t ) 为方程 y ′ = − A (t ) y 的基本解矩阵的充要条件是存在非奇异的常数矩阵 C , 使 Ψ T (t )Φ (t ) = C 。 证 1) 由于 y = ψ (t ) 为方程 y ′ = − A (t ) y 的解,则
( A 是 n × n 的常数矩阵)
的标准基本解矩阵, (即 Φ (0 ) = E )证明
Φ (t )Φ −1 (t 0 ) = Φ (t − t 0 )
其中 t 0 为某一值。 证 因 Φ ( t ) 为基本解矩阵,则有
dΦ (t ) = AΦ(t ) , det Φ ( t ) ≠ 0 dt dΦ (t − t 0 ) = AΦ (t − t 0 ) , d (t − t 0 )
W [ x1 (t ), x 2 (t ),⋯, x n (t )] ≡ W (t ) 满足下面的一阶线性微分方程 W ′ = [a11 (t ) + a 22 (t ) + ⋯ + a nn (t )]W (2) ;
2)解上面的一阶线性微分方程,证明下面的公式:
W (t ) = W (t 0 ) e t 0
T T
(
)′ = −Ψ
T
(t ) A(t ) 。
d Ψ T (t )Φ (t ) ′ 因为 = Ψ T (t ) Φ(t ) + Ψ T (t )Φ ′(t ) dt
[
] (
(
)
= − Ψ T (t ) A(t ) Φ (t ) + Ψ T (t ) ( A(t )Φ(t ) )
。 = 0 (零矩阵) 所以 Ψ (t )Φ (t ) = C (常数矩阵) ,而 Ψ (t ) 和 Φ (t ) 都是基本解矩阵,因而 C 还为非 奇异矩阵。 充分性。由于存在非奇异的常数矩阵 C ,使
T T T
ψ ′(t ) = − AT (t )ψ (t ) ,
两边转置,得 (ψ ′(t ) ) = −ψ T (t ) A(t ) ,即 ψ T (t ) 因为
T
(
)′ = −ψ
T
(t ) A(t ) 。
′ d ψ T (t )φ (t ) = (ψ T (t ) ) φ(t ) + ψ T (t )φ ′(t ) dt
⎛ a11 (t ) ⎜ ⎜ a 21 (t ) x′ k (t ) = ⎜ ⋯ ⎜ ⎜ a (t ) ⎝ n1
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⎛ n ⎞ ⎜ ∑ a1 j (t ) x jk (t ) ⎟ ⎜ j =1 ⎟ a1n (t ) ⎞⎛ x1 k (t ) ⎞ ⎜ n ⎟ ⎟ ⎟⎜ a 2 n (t ) ⎟⎜ x 2 k (t ) ⎟ ⎜ ∑ a 2 j (t ) x jk (t ) ⎟ ⎟, ⎟ = ⎜ j =1 ⋯ ⎟⎜ ⋮ ⎜ ⎟ ⎟⎜ ⎟ ⋯ ⎟ ⎜ ⎟ ⎜ ⎟ a nn (t ) ⎠⎝ x nk (t ) ⎠ ⎜ n ⎟ a ( t ) x ( t ) ⎜ ⎟ ∑ nj jk ⎜ ⎟ ⎝ j =1 ⎠
∑a
j =1
1j
(t ) x jn (t )
x 21 (t ) ⋯ x n1 (t )
x 2 n (t ) ⋯ x nn (t )
x11 (t ) x 21 (t ) = a11 (t ) ⋯ x n1 (t )
⋯ ⋯
x1n (t ) ⋯ ⋯ x 2 n (t ) = a11 (t )W (t ) ⋯ ⋯ ⋯ ⋯ ⋯ x nn (t )
⋯ ⋯ x1n (t ) ⋯ ⋯ x′ 2 n (t )
x11 (t ) x (t ) + ⋯ + 21 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ x nn (t ) x′ n1 (t )
⋯ ⋯ x1n (t ) ⋯ ⋯ x 2 n (t ) ⋯ ⋯ ⋯ ⋯ ⋯ x′ nn ( t )
(3)
由于 x1 (t ), x 2 (t ),⋯ , x n (t ) 是(1)的解,所以
第五章
5-1 考虑方程组
线性微分方程组
dx = A(t ) x dt
(1)
其中 A(t ) 是区间 a ≤ t ≤ b 上的连续 n × n 矩阵,它的元素为 a ij (t ), i, j = 1,2,⋯ , n , 1)如果 x1 (t ), x 2 (t ),⋯ , x n (t ) 是(1)的任意 n 个解,那么它们的朗斯基行列式
t ∫ [ a11 ( s ) +⋯+ ann ( s )] ds
相关文档
最新文档