控制系统数字仿真第二章习题答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

控制系统数字仿真与CAD第二章习题答案

2-1 思考题:

(1)数学模型的微分方程,状态方程,传递函数,零极点增益和部分分式五种形式,各有什么特点?

(2)数学模型各种形式之间为什么要互相转换?

(3)控制系统建模的基本方法有哪些?他们的区别和特点是什么?

(4)控制系统计算机仿真中的“实现问题”是什么含意?

(5)数值积分法的选用应遵循哪几条原则?

答:(1)微分方程是直接描述系统输入和输出量之间的制约关系,是连续控制系统其他数学模型表达式的基础。状态方程能够反映系统内部各状态之间的相互关系,适用于多输入多输出系统。传递函数是零极点形式和部分分式形式的基础。零极点增益形式可用于分析系统的稳定性和快速性。利用部分分式形式可直接分析系统的动态过程。

(2)不同的控制系统的分析和设计方法,只适用于特定的数学模型形式。

(3)控制系统的建模方法大体有三种:机理模型法,统计模型法和混合模型法。机理模型法就是对已知结构,参数的物理系统运用相应的物理定律或定理,经过合理的分析简化建立起来的各物理量间的关系。该方法需要对系统的内部结构和特性完全的了解,精度高。统计模型法是采用归纳的方法,根据系统实测的数据,运用统计规律和系统辨识等理论建立的系统模型。该方法建立的数学模型受数据量不充分,数据精度不一致,数据处理方法的不完善,很难在精度上达到更高的要求。混合法是上述两种方法的结合。

(4)“实现问题”就是根据建立的数学模型和精度,采用某种数值计算方法,将模型方程转换为适合在计算机上运行的公式和方程,通过计算来使之正确的反映系统各变量动态性能,得到可靠的仿真结果。

(5)数值积分法应该遵循的原则是在满足系统精度的前提下,提高数值运算的速

度和并保证计算结果的稳定。

2-2.用matlab语言求下列系统的状态方程、传递函数、零极点增益、和部分分式形式的模型参数,并分别写出其相应的数学模型表达式:

(1) G(s)=

32

432

72424

10355024

s s s

s s s s

+++

++++

(2)

.

X=

2.25 -5 -1.25 -0.54

2.25 -4.25 -1.25 -0.252

0.25 -0.5 -1.25 -12

1.25 -1.75 -0.25 -0.75 0

X

⎡⎤⎡⎤

⎢⎥⎢⎥

⎢⎥⎢⎥

+⎢⎥⎢⎥

⎢⎥⎢⎥

⎣⎦⎣⎦

u y=[0 2 0 2] X

(1)解:(1)状态方程模型参数:编写matlab程序如下>> num=[1 7 24 24];

>> den=[1 10 35 50 24];

>> [A B C D]=tf2ss(num,den)

得到结果:A=

-10 -35 -50 -24

1 0 0 0

0 1 0 0

0 0 1 0

⎡⎤

⎢⎥

⎢⎥

⎢⎥

⎢⎥

⎣⎦

,B=

1

⎡⎤

⎢⎥

⎢⎥

⎢⎥

⎢⎥

⎣⎦

,C=[]

1 7 24 24,D=[0]

所以模型为:

.

X=

-10 -35 -50 -24

1 0 0 0

0 1 0 0

0 0 1 0

⎡⎤

⎢⎥

⎢⎥

⎢⎥

⎢⎥

⎣⎦

X+

1

⎡⎤

⎢⎥

⎢⎥

⎢⎥

⎢⎥

⎣⎦

u,y=[]

1 7 24 24X

(2)零极点增益:编写程序>> num=[1 7 24 24];

>> den=[1 10 35 50 24];

>> [Z P K]=tf2zp(num,den)

得到结果Z= -2.7306 + 2.8531 , -2.7306 - 2.8531i ,-1.5388

P= -4, -3 ,-2 ,-1

K=1

(3) 部分分式形式:编写程序>> num=[1 7 24 24];

>> den=[1 10 35 50 24];

>> [R P H]=residue(num,den)

得到结果R= 4.0000 ,-6.0000, 2.0000, 1.0000

P= -4.0000, -3.0000 , -2.0000 ,-1.0000 H=[]

G(s)=46214321

s s s s -+++++++

(2)解:(1)传递函数模型参数:编写程序>> A=[2.25 -5 -1.25 -0.5

2.25 -4.25 -1.25 -0.25

0.25 -0.5 -1.25 -1 1.25 -1.75 -0.25 -0.75];

>> B=[4 2 2 0]'; >> C=[0 2 0 2];

>> D=[0];

>> [num den]=ss2tf(A,B,C,D)

得到结果

num = 0 4.0000 14.0000 22.0000 15.0000 den =1.0000 4.0000 6.2500 5.2500 2.2500

324324 s + 14 s + 22 s + 15

()s + 4 s + 6.25 s + 5.25 s + 2.25

G s =

(2) 零极点增益模型参数:编写程序>> A=[2.25 -5 -1.25 -0.5

2.25 -4.25 -1.25 -0.25 0.25 -0.5 -1.25 -1 1.25 -1.75 -0.25 -0.75];

>> B=[4 2 2 0]'; >> C=[0 2 0 2];

>> D=[0];

>> [Z,P,K]=ss2zp(A,B,C,D)

得到结果Z =-1.0000 + 1.2247i -1.0000 - 1.2247i -1.5000

P= -0.5000 + 0.8660i -0.5000 - 0.8660i -1.5000 -1.5000 K = 4.0000

表达式 ()()

()()()

4s+1-1.2247i s+1+1.2247i ()s+0.5-0.866i s+0.5+0.866i s+1.5G s =

(3)部分分式形式的模型参数:编写程序>> A=[2.25 -5 -1.25 -0.5

2.25 -4.25 -1.25 -0.25 0.25 -0.5 -1.25 -1

相关文档
最新文档