高一数学期末考试试卷
北京市密云区2023-2024学年高一上学期期末考试数学试卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 A 1, 2,3,5,11 , B 3,5,11,12,则 A B 中元素的个数为( )
A.1
B.2
(2)若不等式 f x 1对任意的 x R 恒成立,求实数 a 的取值范围;
(3)解关于 x 的不等式 f x 0 .
19.已知函数
f
x
2 cos
x
sin
x
π 3
3 .( 0 ) 2
(1)求 f 0 ;
(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数 f x 唯一确定,
求
f
x
在区间
π 6
,
π 6
上的最大值和最小值.
条件①:当
f
x1
f
x2
2 时,
x1 x2
的最小值为 π ; 2
条件②:函数 f x 的图象对称中心与相邻的对称轴之间的距离为 π ;
4
试卷第 3 页,共 4 页
条件③:函数
f
x
在区间
π 12
,
5π 12
上单调递增.
注:如果选择的条件不符合要求.第(2)问得 0 分;如果选择多个符合要求的条件分别
二、填空题
11.
1
83
lg
4
lg
25
.
12.函数 f x 1 ln x 2 的定义域是.
x
13.已知幂函数 y f x 的图象经过点 9,3 ,则 f x 的解析式是.
辽宁省大连市2022-2023学年高一上册12月期末考试数学试卷(含解析)
辽宁省大连市2022-2023学年高一上册12月期末考试数学试卷(含解析)第Ⅰ卷(选择题)一、单项选择题(本大题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}1,2,3,4A =,集合()(){}130B x x x =+-<,则A B = ()A.{}1,0,1,2,3- B.{}1,2,3 C.{}1,2 D.{}2【答案】C2.已知向量()1,2a =r ,(),4b x =- ,且//a b r r,则实数x =()A.2B.1C.1- D.2-【答案】D3.若1x ,2x ,…,10x 的方差为2,则131x +,231x +,…,1031x +的方差是()A.18B.7C.6D.2【答案】A4.中国共产党第二十次全国代表大会于2022年10月16日在北京开幕.党的二十大报告鼓舞人心,内涵丰富.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是()A.120 B.35C.310D.910【答案】B5.下列函数中,其图像如图所示的函数为()A.13y x-= B.23y x=C.13y x = D.23y x -=【答案】A6.“北溪”管道泄漏事件的爆发,使得欧洲能源供应危机成为举世瞩目的国际公共事件.随着管道泄漏,大量天然气泄漏使得超过8万吨类似甲烷的气体扩散到海洋和大气中,将对全球气候产生灾难性影响.假设海水中某种环境污染物含量P (单位:mg L )与时间t (单位:天)间的关系为:0ektP P -=⋅,其中0P 表示初始含量,k 为正常数.令2121P P t t μ-=-为[]12,t t 之间海水稀释效率,其中1P ,2P 分别表示当时间为1t 和2t 时的污染物含量.某研究团队连续20天不间断监测海水中该种环境污染物含量,按照5天一期进行记录,共分为四期,即(]0,5,(]5,10,(]10,15,(]15,20分别记为Ⅰ期,Ⅱ期,Ⅲ期,Ⅳ期,则下列哪个时期的稀释效率最高().A.Ⅰ期B.Ⅲ期C.Ⅲ期D.Ⅳ期【答案】A7.已知0x >,0y >,且满足20x y xy +-=,则92x y+的最大值为()A.9 B.6 C.4D.1【答案】D8.已知定义域为D 的函数()f x ,若1x D ∀∈,都2x D ∃∈,满足()122x f x a +=,则称函数()f x 具有性质()P a .若函数()f x 具有性质()1P ,则“()f x 存在零点”是“2D ∈”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B二、多项选择题(本大题共4小题,每题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.)9.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,不等号的引入对不等式的发展影响深远.若a ,b ,R c ∈,则下列命题正确的是()A.若0ab ≠且a b <,则11a b> B.若a b >,01c <<,则a bc c <C.若1a b >>,1c >,则log log a b c c<D.若1a b <<-,0c >,则c ca b b a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【答案】BCD10.同时掷红、蓝两枚质地均匀的骰子,事件A 表示“两枚骰子的点数之和为5”,事件B 表示“红色骰子的点数是偶数”,事件C 表示“两枚骰子的点数相同”,事件D 表示“至少一枚骰子的点数是奇数”,则()A.A 与C 互斥B.B 与D 对立C.A 与D 相互独立D.B 与C 相互独立【答案】AD11.已知点P 为ABC 所在平面内一点,且230PA PB PC ++=,若E 为AC 的中点,F 为BC 的中点,则下列结论正确的是()A.向量PA 与PC可能平行B.点P 在线段EF 上C.:2:1PE PF =D.::1:2:3PAB PAC PBC S S S =△△△【答案】BC12.已知函数()()21350f x x x x =+->,()22e2xf x x =+-,()3ln 24f x x x =+-的零点分别为1x ,2x ,3x ,则下列结论正确的是()A.123x x x <<B.232x x +=C.()310f x <D.()()3223f x f x =【答案】BC第Ⅱ卷(非选择题)三、填空题(本大题功4小题,每小题5分,共20分.)13.2log 522log 4+=______.【答案】714.已知向量a ,b满足()1,2a =- ,(),1b x =r ,3a b += ,则实数x =______.【答案】115.在考察某中学的学生身高时,采用分层抽样的方法抽取男生24人,女生16人,得到了男生的平均身高是170cm ,女生的平均身高是165cm ,则估计该校全体学生的平均身高是______cm .【答案】16816.函数()()()224f x xxax b =-++满足:x ∀∈R ,都有()()20222024f x f x -=-,则函数()f x 的最大值为______.【答案】16四、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.如图所示,在ABC 中,D 为BC 边上一点,且2BD DC =.过D 点的直线EF 与直线AB 相交于E 点,与直线AC 相交于F 点(E ,F 两点不重合).(1)用AB,AC 表示AD;(2)若AE AB λ=,AF AC μ=,求12λμ+的值.【答案】(1)1233AD AB AC=+(2)3.【解析】【小问1详解】在ABD △中,由AD AB BD =+,又2BD DC =,所以23BD BC =,所以23AD AB BD AB BC=+=+ ()23AC ABAB =+- 2233AB ACAB =-+ 1233AB AC =+【小问2详解】因为1233AD AB AC =+ ,又AE AB λ= ,AF ACμ=所以1AB AE λ= ,1AC AF μ=,所以3231A E D A A F μλ=+,又,,D E F 三点共线,且A 在线外,所以有:12133λμ+=,即123λμ+=.18.已知集合{}13A x x =-≤≤,集合{}22,R B x m x m m =-≤≤+∈.(1)若{}03A B x x ⋂=≤≤,求实数m 的值;(2)若:p x A ∈,R :q x B ∈ð,且p 是q 的充分条件,求实数m 的取值范围.【答案】(1)2m =(2){5m m >或}3m <-.【解析】【小问1详解】因为{}03A B x x ⋂=≤≤,所以2023m m -=⎧⎨+≥⎩,所以21m m =⎧⎨≥⎩,所以2m =;【小问2详解】{R 2B x x m =<-ð或}2x m >+,:p x A ∈,R :q x B ∈ð,且p 是q 的充分条件由已知可得R A B ⊆ð,所以23m ->或21m +<-,所以5m >或3m <-,故实数m 的取值范围为{5m m >或}3m <-.19.近年来,“直播带货”受到越来越多人的喜爱,目前已经成为推动消费的一种流行的营销形式.某直播平台800个直播商家,对其进行调查统计,发现所售商品多为小吃、衣帽、生鲜、玩具、饰品类等,各类直播商家所占比例如图1所示.(1)该直播平台为了更好地服务买卖双方,打算随机抽取40个直播商家进行问询交流.如果按照分层抽样的方式抽取,则应抽取小吃类、玩具类商家各多少家?(2)在问询了解直播商家的利润状况时,工作人员对抽取的40个商家的平均日利润进行了统计(单位:元),所得频率分布直方图如图2所示.请根据频率分布直方图计算下面的问题;(ⅰ)估计该直播平台商家平均日利润的中位数与平均数(结果保留一位小数,求平均数时同一组中的数据用该组区间的中点値作代表);(ⅱ)若将平均日利润超过420元的商家成为“优秀商家”,估计该直播平台“优秀商家”的个数.【答案】(1)小吃类16家,玩具类4家;(2)(i )中位数为342.9,平均数为352.5;(2)128.【解析】【小问1详解】()40125%15%10%5%5%16⨯-----=,4010%4⨯=,所以应抽取小吃类16家,玩具类4家.【小问2详解】(i )根据题意可得()0.00130.0030.0050.007501a ⨯++++⨯=,解得0.002a =,设中位数为x ,因为()0.0010.003500.2+⨯=,()0.0010.0030.007500.55++⨯=,所以()3000.0070.20.5x -⨯+=,解得342.9x ≈,平均数为()2250.0012750.0033250.0073750.0054250.0024750.0015250.00150352.5⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯=,所以该直播平台商家平均日利润的中位数为342.9,平均数为352.5.(ii )4504200.0020.0010.0015080012850-⎛⎫⨯++⨯⨯=⎪⎝⎭,所以估计该直播平台“优秀商家”的个数为128.20.第56届世界乒乓球团体锦标赛于2022年在中国成都举办,国球运动又一次掀起热潮.现有甲乙两人进行乒乓球比赛,比赛采用7局4胜制,每局11分制,每赢一球得1分,选手只要得到至少11分,并且领先对方至少2分(包括2分),即赢得该局比赛.在一局比赛中,每人只发2个球就要交换发球权,如果双方比分为10:10后,每人发一个球就要交换发球权.(1)已知在本场比赛中,前三局甲赢两局,乙赢一局,在后续比赛中,每局比赛甲获胜的概率为35,乙获胜的概率为25,且每局比赛的结果相互独立,求甲乙两人只需要再进行两局比赛就能结束本场比赛的概率;(2)已知某局比赛中双方比分为8:8,且接下来两球由甲发球,若甲发球时甲得分的概率为23,乙发球时乙得分的概率为12,各球的结果相互独立,求该局比赛甲得11分获胜的概率.【答案】(1)925;(2)49.【解析】【小问1详解】设“甲乙两人只需要再进行两局比赛就能结束本场比赛”为事件A ,若两局比赛就能结束,则只能甲连胜两局,所以()3395525P A =⨯=;【小问2详解】设“该局比赛甲得11分获胜”为事件B ,甲得11分获胜有两类情况:甲连得3分,则甲11:8获胜;甲得3分,乙得1分,则甲11:9获胜,此时有三种情况,每球得分方分别为乙甲甲甲,甲乙甲甲,甲甲乙甲,所以()22112112111221143323322332233229P B =⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=.21.已知函数()14xb f x a =++的定义域为R ,其图像关于点11,22⎛⎫⎪⎝⎭对称.(1)求实数a ,b 的值;(2)求122022202320232023f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值;(3)若函数()412log 22xg x f x x+⎛⎫=++ ⎪-⎝⎭,判断函数()g x 的单调性(不必写出证明过程),并解关于t 的不等式()()2121g t g t -++>.【答案】(1)2,2a b ==-(2)1011(3)103t -<<【解析】【小问1详解】有条件可知函数()f x 经过点11,22⎛⎫ ⎪⎝⎭,()()112210122f f f ⎧⎛⎫= ⎪⎪⎪⎝⎭∴⎨⎪+=⨯⎪⎩,即12112411114b a b b aa ⎧+=⎪⎪+⎨⎪+++=⎪++⎩,解得:2,2a b ==-,()2414242xx xf x -=+=++;【小问2详解】由于120222************1,1,,1202320232023202320232023+=+=+= ,1202222021101110121,1,,1202320232023202320232023f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴+=+=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,1220221011202320232023f f f ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;【小问3详解】由于42log 2x y x +=-是奇函数,根据函数平移规则,()()12h x g x =-也是奇函数,并且由于()f x 是增函数,42log 2xy x+=-也是增函数,()h x ∴也是增函数,定义域为()2,2-不等式()()2121g t g t -++>等价于()()11212022g t g t --++->,即()()2120h t h t -++>,()()()2122h t h t h t ->-+=--,由于()h x 是增函数,2122212222t t t t ->--⎧⎪∴-<-<⎨⎪-<+<⎩,解得103t -<<;综上,(1)2,2a b ==-;(2)1220221011202320232023f f f ⎛⎫⎛⎫⎛⎫+++=⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)103t -<<.22.已知函数()f x 的图像与函数()31xg x =-的图像关于直线y x =对称,函数()()9log 1h x x a =-+.(1)若4a =,求()()()F x f x h x =⋅在[]0,4x ∈上的最大值;(2)设()()(){}max ,2H x f x h x =,[]0,4x ∈,求()H x 的最小值,其中{},max ,,a a ba b b a b ≥⎧=⎨<⎩.【答案】(1)()F x 在[]0,4x ∈上的最大值为12(2)()H x 的最小值()()()3min 33log 1,0log 1,082log 3,8a a a H x a a a ⎧-≤⎪⎪⎛⎫=+<<⎨ ⎪⎝⎭⎪⎪-≥⎩【解析】【小问1详解】解:因为函数()f x 的图像与函数()31xg x =-的图像关于直线y x =对称,即()f x 与()g x 互为反函数,所以()()3log 1f x x =+当4a =,有()()9log 41h x x =-+,则()()()()()3939log 1log 41log 1log 5F x x x x x =+⋅-+=+⋅-()()331log 1log 52x x =+⋅-,又[]0,4x ∈时,[][]11,5,51,5x x +∈-∈,所以()()33log 10,log 50x x +≥-≥,所以()()()()()()()()2233223333log 1log 511111log 1log 5log 15log 29222882x x F x x x x x x ⎛⎫++-⎡⎤=+⋅-≤=+-=--+≤ ⎪⎣⎦⎝⎭,当且仅当()()33log 1log 52x x x ⎧+=-⎨=⎩,即2x =时等号同时成立,所以()F x 在[]0,4x ∈上的最大值为12;【小问2详解】解:()()()9322log 1log 1h x x a x a =-+=-+,()()2f x h x <等价于11x x a +<-+,即x x a <-,因为[]0,4x ∈,当0a ≤时,x a x a x -=-≥恒成立,所以()()2f x h x ≤,则()()3log 1H x x a =-+,所以()H x 在[]0,4x ∈上单调递增,所以()()()min 30log 1H x H a ==-;当04a <<时,[)[],0,,,4a x x a x a x a x a ⎧-∈⎪-=⎨-∈⎪⎩,此时当0,2a x ⎡⎤∈⎢⎥⎣⎦时,()()2f x h x <,当,42a x ⎛⎤∈ ⎥⎝⎦时,()()2f x h x >,所以()()()33log 1,0,2log 1,42a a x x H x a x x ⎧⎡⎤-+∈⎪⎢⎥⎪⎣⎦=⎨⎛⎤⎪+∈ ⎥⎪⎝⎦⎩,()H x 在0,2a x ⎡⎤∈⎢⎥⎣⎦上单调递减,在,42a x ⎛⎤∈ ⎥⎝⎦上单调递增,所以()min 3log 122a a H x H ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭;当4a ≥时,x a a x -=-,当48a ≤<时,()H x 与上一种情况相同,所以()min 3log 122a a H x H ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭;当8a ≥时,x a a x x -=-≥恒成立,所以()()2f x h x <,则()()3log 1H x a x =-+,所以()H x 在[]0,4x ∈上单调递减,所以()()()min 34log 3H x H a ==-;综上,()H x 的最小值()()()3min 33log 1,0log 1,082log 3,8a a a H x a a a ⎧-≤⎪⎪⎛⎫=+<<⎨ ⎪⎝⎭⎪⎪-≥⎩.。
2023-2024学年北京市朝阳区高一下学期期末考试数学试卷+答案解析
2023-2024学年北京市朝阳区高一下学期期末考试数学试卷一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若复数z满足,则()A. B. C. D.2.已知向量,,则()A. B. C.3 D.53.如图,八面体的每个面都是正三角形,并且4个顶点A,B,C,D在同一平面内,若四边形ABCD是边长为2的正方形,则这个八面体的表面积为()A.8B.16C.D.4.已知m,n是平面外的两条不同的直线,若,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.在中,,,,则()A. B. C. D.6.李华统计了他爸爸2024年5月的手机通话明细清单,发现他爸爸该月共通话60次,他按每次通话时间长短进行分组每组为左闭右开的区间,画出了如图所示的频率分布直方图.则每次通话时长不低于5分钟且小于15分钟的次数为()A.18B.21C.24D.277.已知向量,不共线,,,若与同向,则实数t的值为()A. B. C.3 D.或38.近年来,我国国民经济运行总体稳定,延续回升向好态势.下图是我国2023年4月到2023年12月规模以上工业增加值同比增长速度以下简称增速统计图.注:规模以上工业指年主营业务收入2000万元及以上的工业企业.下列说法正确的是()A.4月,5月,6月这三个月增速的方差比4月,5月,6月,7月这四个月增速的方差大B.4月,5月,6月这三个月增速的平均数比4月,5月,6月,7月这四个月增速的平均数小C.连续三个月增速的方差最大的是9月,10月,11月这三个月D.连续三个月增速的平均数最大的是9月,10月,11月这三个月9.在梯形ABCD中,,,,,,则与夹角的余弦值为()A. B. C. D.10.已知,,若动点P,Q与点A,M共面,且满足,,则的最大值为()A.0B.C.1D.2二、填空题:本题共6小题,每小题5分,共30分。
高一数学期末考试试题及答案doc
高一数学期末考试试题及答案doc一、选择题(每题5分,共50分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 圆D. 椭圆答案:B2. 函数f(x)=2x^2-4x+3的零点是:A. x=1B. x=2C. x=3D. x=-1答案:A3. 集合{1,2,3}与集合{2,3,4}的交集是:A. {1,2,3}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B4. 如果一个角是直角三角形的一个锐角的两倍,那么这个角是:A. 30°B. 45°C. 60°D. 90°答案:C5. 函数y=x^3-3x^2+4x-2在x=1处的导数值是:A. 0B. 1C. 2D. -1答案:B6. 以下哪个是等差数列的通项公式?A. a_n = a_1 + (n-1)dB. a_n = a_1 + n(n-1)/2C. a_n = a_1 + n^2D. a_n = a_1 + n答案:A7. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr^2答案:B8. 以下哪个选项是复数的模?A. |z| = √(a^2 + b^2)B. |z| = a + biC. |z| = a - biD. |z| = a * bi答案:A9. 以下哪个选项是向量的点积?A. a·b = |a||b|cosθB. a·b = |a||b|sinθC. a·b = |a||b|tanθD. a·b = |a||b|secθ答案:A10. 以下哪个选项是三角恒等式?A. sin^2x + cos^2x = 1B. sin^2x - cos^2x = 1C. sin^2x - cos^2x = 0D. sin^2x + cos^2x = 0答案:A二、填空题(每题5分,共30分)1. 如果一个等差数列的前三项分别是2,5,8,那么它的公差是______。
高一数学期末考试试题及答案
俯视图高一期末考试试卷一、选择题(本大题共10小题,每小题5分,共50分,在每个小题中的四个选项中,只有一项是符合题目要求)1、函数23()lg(31)1x f x x x的定义域是:A.1,3 B.1,3C.11,33D. 1,132. 一个圆柱的侧面展开图是正方形,这个圆柱的表面积与侧面积之比是: A .221 B.441 C.21 D.413. 下列函数中既是奇函数,又是其定义域上的增函数的是:A.2y x B.12yx C.13y x D.3y x4. 把正方形ABCD 沿对角线BD 折成两平面垂直后,下列命题正确的是: A.BC AB B.BD ACC. ABC CD 平面D. ACDABC 平面平面5. 已知函数2()4,[1,5)f x xx x ,则此函数的值域为:A. [4,)B.[3,5) C.[4,5] D.[4,5)6.已知直线1:20l ax ya,2:(21)0l a x ay a互相垂直,则a 的值是( )A.0B.1C.0或1D.0或17.下列函数中,在其定义域内既是奇函数又是减函数的是()A.()y x x R B.3()y xx x R C.1()()2xyx R D.1(,0)yxR xx且8.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,主视图左视图俯视图是一个圆,那么这个几何体的侧面积为()A.4B.54C.D.329.设,m n 是不同的直线,,,是不同的平面,有以下四个命题:①//////②//mm ③//m m ④////m n m n其中,真命题是()A.①④B.②③C.①③D.②④10.函数2()ln f x xx的零点所在的大致区间是()A1A B1B C1C DA.1,2 B.2,3 C.11,eD.,e 二、填空题(本大题共4小题,每题5分,共20分)11.设映射3:1f xxx ,则在f 下,象1的原象所成的集合为12.已知2()41f x xmx 在,2上递减,在2,上递增,则(1)f 13.过点(3,2)A 且垂直于直线4580x y 的直线方程为14.已知12,9x y xy,且x y ,则12112212x y xy三、解答题。
山东省潍坊市高一上学期期末考试数学试题(解析版)
一、单选题1.已知集合,,则集合A ,B 的关系是( ) {}N A x y x =∈{}4,3,2,1B =A . B . C .D .B A ⊆A B =B A ∈A B ⊆【答案】A【分析】计算得到,据此得到集合的关系.{}0,1,2,3,4A =【详解】,,故错误; {}{N}0,1,2,3,4A xy x ==∈=∣{}4,3,2,1B =A B =集合中元素都是集合元素,故正确;B A B A ⊆是两个集合,不能用“”表示它们之间的关系,故错误;A B ,∈B A ∈集合中元素存在不属于集合的元素,故错误. A B A B ⊆故选:A2.函数的定义域为( )()()2ln 2f x x x =-A . B . (,0)(2,)-∞+∞ (,0][2,)-∞⋃+∞C . D .()0,2[]0,2【答案】C【分析】根据对数型函数的定义域运算求解. 【详解】令,解得,220x x ->02x <<故函数的定义域为.()()2ln 2f x x x =-()0,2故选:C.3.命题“,”的否定形式是( ) 2x ∀>240x -≠A ., B ., 2x ∃>240x -≠2x ∀≤240x -=C ., D .,2x ∃>240x -=2x ∃≤240x -=【答案】C【分析】根据全称命题的否定形式可直接得到结果.【详解】由全称命题的否定可知:原命题的否定为,. 2x ∃>240x -=故选:C.4.已知,,,则( ) 0.13a =30.3b =0.2log 3c =A . B .C .D .a b c <<c b a <<b a c <<c<a<b 【答案】B【分析】根据指数函数和对数函数单调性,结合临界值即可判断出结果.0,1【详解】,.3000.10.20.2log 3log 100.30.3133<=<<==< c b a ∴<<故选:B.5.某市四区夜市地摊的摊位数和食品摊位比例分别如图、图所示,为提升夜市消费品质,现用12分层抽样的方法抽取的摊位进行调查分析,则抽取的样本容量与区被抽取的食品摊位数分别6%A 为( )A .,B .,C .,D .,21024210272522425227【答案】D【分析】根据分层抽样原则,结合统计图表直接计算即可.【详解】根据分层抽样原则知:抽取的样本容量为;()1000800100014006%252+++⨯=区抽取的食品摊位数为.A 10006%0.4527⨯⨯=故选:D.6.小刚参与一种答题游戏,需要解答A ,B ,C 三道题.已知他答对这三道题的概率分别为a ,a ,,且各题答对与否互不影响,若他恰好能答对两道题的概率为,则他三道题都答错的概率为1214( ) A . B .C .D .12131415【答案】C【分析】记小刚解答A ,B ,C 三道题正确分别为事件D ,E ,F ,并利用D ,E ,F 构造相应的事件,根据概率加法公式与乘法公式求解相应事件的概率.【详解】记小刚解答A ,B ,C 三道题正确分别为事件D ,E ,F ,且D ,E ,F 相互独立, 且. ()()()1,2P D P E a P F ===恰好能答对两道题为事件,且两两互斥, DEF DEF DEF ++DEF DEF DEF ,,所以()()()()P DEF DEF DEF P DEF P DEF P DEF ++=++()()()()()()()()()P D P E P F P D P E P F P D P E P F =++,()()11111112224a a a a a a ⎛⎫=⨯⨯-+⨯-⨯+-⨯⨯= ⎪⎝⎭整理得,他三道题都答错为事件,()2112a -=DEF 故.()()()()()()22111111224P DEF P D P E P F a a ⎛⎫==--=-= ⎪⎝⎭故选:C.7.定义在上的奇函数满足:对任意的,,有,且R ()f x ()12,0,x x ∈+∞12x x <()()21f x f x >,则不等式的解集是( ) ()10f =()0f x >A . B . ()1,1-()()1,01,-⋃+∞C . D .()(),10,1-∞-⋃()(),11,-∞-⋃+∞【答案】B【分析】根据单调性定义和奇函数性质可确定的单调性,结合可得不等式()f x ()()110f f -=-=的解集.【详解】对任意的,,有, ()12,0,x x ∈+∞12x x <()()21f x f x >在上单调递增,又定义域为,, ()f x \()0,∞+()f x R ()10f =在上单调递增,且,;()f x \(),0∞-()()110f f -=-=()00f =则当或时,, 10x -<<1x >()0f x >即不等式的解集为. ()0f x >()()1,01,-⋃+∞故选:B.8.已知函数,若函数有七个不同的零点,()11,02ln ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩()()()()24433g x f x t f x t =-+⎤⎦+⎡⎣则实数t 的取值范围是( ) A .B .C .D .1,12⎡⎤⎢⎥⎣⎦10,2⎛⎫ ⎪⎝⎭1,2⎡⎫+∞⎪⎢⎣⎭{}10,12⎛⎫⋃ ⎪⎝⎭【答案】D【分析】先以为整体分析可得:和共有7个不同的根,再结合的图象()f x ()34f x =()f x t =()f x 分析求解.【详解】令,解得或, ()()()()244330g x f x t f x t =-+⎦+⎤⎣=⎡()34f x =()f x t =作出函数的图象,如图所示,()y f x =与有4个交点,即方程有4个不相等的实根,()y f x =34y =()34f x =由题意可得:方程有3个不相等的实根,即与有3个交点, ()f x t =()y f x =y t =故实数t 的取值范围是.{}10,12⎛⎫⋃ ⎪⎝⎭故选:D.【点睛】方法点睛:应用函数思想确定方程解的个数的两种方法(1)转化为两熟悉的函数图象的交点个数问题、数形结合、构建不等式(方程)求解. (2)分离参数、转化为求函数的值域问题求解.二、多选题9.下列说法正确的是( ) A .的最小值为 B .无最小值 ()4f x x x=+4()4f x x x=+C .的最大值为D .无最大值()()3f x x x =-94()()3f x x x =-【答案】BC【分析】结合基本不等式和二次函数性质依次判断各个选项即可.【详解】对于AB ,当时,(当且仅当时取等号); 0x >44x x +≥=2x =当时,(当且仅当时取等号), 0x <()444x x x x ⎡⎤⎛⎫+=--+-≤-=- ⎪⎢⎥⎝⎭⎣⎦2x =-的值域为,无最小值,A 错误,B 正确; ()4f x x x∴=+(][),44,-∞-⋃+∞对于CD ,,()()22393324f x x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭当时,取得最大值,最大值为,C 正确,D 错误. ∴32x =()f x 94故选:BC.10.下列函数中,既是偶函数,又在上单调递减的是( ) (0,)+∞A . B .C .D .y x =||e x y =-12log y x =13y x -=【答案】BC【分析】A 选项不满足单调性;D 不满足奇偶性,B 、C 选项均为偶函数且在上单调递减正(0,)+∞确.【详解】在上单调递增,A 选项错误;y x =()0,∞+,故为偶函数,当时为单调递减函数,B()e ,)()e (xxf x f x f x =--==-||e x y =-()0,x ∈+∞e x y =-选项正确;,故为偶函数,当时为单调递1122()()log ,log ()g g g x x x x x =-==12log y x =()0,x ∈+∞12log y x =减函数,C 选项正确;是奇函数,D 选项错误. 13y x -=故选:BC11.如图,已知正方体顶点处有一质点Q ,点Q 每次会随机地沿一条棱向相邻的1111ABCD A B C D -某个顶点移动,且向每个顶点移动的概率相同,从一个顶点沿一条棱移动到相邻顶点称为移动一次,若质点Q 的初始位置位于点A 处,记点Q 移动n 次后仍在底面ABCD 上的概率为,则下列n P 说法正确的是( )A .B . 123P =259P =C .D .点Q 移动4次后恰好位于点的概率为012133n n P P +=+1C 【答案】ABD【分析】根据题意找出在下或上底面时,随机移动一次仍在原底面及另一底面的概率即可逐步分Q 析计算确定各选项的正误.【详解】依题意,每一个顶点由3个相邻的点,其中两个在同一底面.所以当点在下底面时,随机移动一次仍在下底面的概率为:, Q 23在上底面时,随机移动一次回到下底面的概率为:,13所以,故A 选项正确; 123P =对于B :,故B 选项正确;22211533339P =⨯+⨯=对于C :,故C 选项错误; ()1211113333n n n n P P P P +=+-=+对于D :点由点移动到点处至少需要3次, Q A 1C 任意折返都需要2次移动,所以移动4次后不可能 到达点,所以点Q 移动4次后恰好位于点的概率为0. 1C 1C 故D 选项正确; 故选:ABD.12.已知实数a ,b 满足,,则( ) 22a a +=22log 1b b +=A . B . C . D .22a b +=102a <<122a b->5384b <<【答案】ACD【分析】构建,根据单调性结合零点存在性定理可得,再利用指对数互()22xf x x =+-13,24a ⎛⎫∈ ⎪⎝⎭化结合不等式性质、函数单调性分析判断. 【详解】对B :∵,则,22a a +=220a a +-=构建,则在上单调递增,且,()22xf x x =+-()f x R 3413350,202244f f ⎛⎫⎛⎫=<=-> ⎪ ⎪⎝⎭⎝⎭故在上有且仅有一个零点,B 错误;()f x R 13,24a ⎛⎫∈ ⎪⎝⎭对A :∵,则, 22log 1b b +=222log 20b b +-=令,则,即,22log t b =22t b =220t t +-=∴,即,故,A 正确; 2lo 2g a t b ==22a b =22a b +=对D :∵,则,D 正确; 22a b +=253,284a b -⎛⎫=∈ ⎪⎝⎭对C :∵,且在上单调递增, 23211224a a ab a ---=-=>->-2x y =R ∴,C 正确. 11222a b-->=故选:ACD.【点睛】方法点睛:判断函数零点个数的方法:(1)直接求零点:令f (x )=0,则方程解的个数即为零点的个数.(2)零点存在性定理:利用该定理不仅要求函数在[a ,b ]上是连续的曲线,且f (a )·f (b )<0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合:对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.三、填空题13.已知一元二次方程的两根分别为和,则______. 22340x x +-=1x 2x 1211x x +=【答案】## 340.75【分析】利用韦达定理可直接求得结果.【详解】由韦达定理知:,,. 1232x x +=-122x x =-1212121134x x x x x x +∴+==故答案为:. 3414.已知函数(且)的图象恒过定点M ,则点M 的坐标为______.1log (2)3a y x =-+0a >1a ≠【答案】13,3⎛⎫⎪⎝⎭【分析】函数存在参数,当时所求出的横纵坐标即是定点坐标. log (2)0a x -=【详解】令,解得,此时,故定点坐标为. log (2)0a x -=3x =13y =13,3M ⎛⎫ ⎪⎝⎭故答案为:13,3⎛⎫⎪⎝⎭15.将一组正数,,,…,的平均数和方差分别记为与,若,1x 2x 3x 10x x 2s 10214500i i x ==∑250s =,则______. x =【答案】20【分析】列出方差公式,代入数据,即可求解.【详解】由题意得,()10221110i i s x x ==-∑, 102211105010i i x x =⎛⎫=-= ⎪⎝⎭∑代入数据得,, ()214500105010x -=解得.20x =故答案为:2016.已知两条直线:和:,直线,分别与函数的图象相交1l 1y m =+2l ()221y m m =+>-1l 2l 2x y =于点A ,B ,点A ,B 在x 轴上的投影分别为C ,D ,当m 变化时,的最小值为______. CD【答案】()2log 2-【分析】分别求出直线,与函数的图象交点的横坐标,再根据对数运算与基本不等式求1l 2l 2x y =最值.【详解】由与函数相交得,解得,所以,1y m =+2x y =21x m =+()2log 1x m =+()()2log 1,0C m +同理可得,()()22log 2,0D m +所以,()()222222log 2log 1log 1m CD m m m +=+-+=+令,()2231211m g m m m m +==++-++因为, 所以,当且仅当时取最小值. 1m >-()31221g m m m =++-≥-+1m =所以 ()()22min log 2log 2CD ==所以的最小值为. CD ()2log 2-故答案为:()2log 2【点睛】利用基本不等式求最值时要注意成立的条件,一正二定三相等,遇到非正可通过提取负号转化为正的;没有定值时可对式子变形得到积定或和定再用基本不等式;取不到等号时可借助于函数的单调性求最值.四、解答题17.设全集,已知集合,. U =R {}11A x a x a =-+≤≤+401x B xx -⎧⎫=>⎨⎬-⎩⎭(1)若,求;3a =A B ⋃(2)若,求实数a 的取值范围. A B ⋂=∅【答案】(1)或;{1x x <}2x ≥(2). 23a ≤≤【分析】(1)由已知解出集合A ,B ,根据并集的运算即可得出答案; (2)若,根据集合间关系列出不等式,即可求出实数a 的取值范围. A B ⋂=∅【详解】(1)当,, 3a ={}24A x x =≤≤由得,所以或, 401x x ->-(4)(1)0x x -->{1B x x =<}4x >或;{1A B x x ∴⋃=<}2x ≥(2)已知, {}11A x a x a =-+≤≤+由(1)知或, {1B x x =<}4x >因为,且, A B ⋂=∅B ≠∅∴且, 11a -+≥14a +≤解得,23a ≤≤所以实数a 的取值范围为.23a ≤≤18.已知函数.()22f x x ax a =-+(1)若的解集为,求实数的取值范围; ()0f x ≥R a (2)当时,解关于的不等式. 3a ≠-x ()()43f x a a x >-+【答案】(1) []0,1(2)答案见解析【分析】(1)由一元二次不等式在上恒成立可得,由此可解得结果;R 0∆≤(2)将所求不等式化为,分别在和的情况下解不等式即可. ()()30x x a +->3a >-3a <-【详解】(1)由题意知:在上恒成立,,解得:, 220x ax a -+≥R 2440a a ∴∆=-≤01a ≤≤即实数的取值范围为.a []0,1(2)由得:;()()43f x a a x >-+()()()23330x a x a x x a +--=+->当时,的解为或; 3a >-()()30x x a +->3x <-x a >当时,的解为或;3a <-()()30x x a +->x a <3x >-综上所述:当时,不等式的解集为;当时,不等式的解集为3a >-()(),3,a -∞-+∞ 3a <-.()(),3,a -∞-+∞ 19.受疫情影响年下半年多地又陆续开启“线上教学模式”.某机构经过调查发现学生的上课2022注意力指数与听课时间(单位:)之间满足如下关系:()f t t min ,其中,且.已知在区间上的最大()()224,016log 889,1645a mt mt n t f t t t ⎧-++≤<⎪=⎨-+≤≤⎪⎩0m >0a >1a ≠()y f t =[)0,16值为,最小值为,且的图象过点. 8870()y f t =()16,86(1)试求的函数关系式;()y f t =(2)若注意力指数大于等于时听课效果最佳,则教师在什么时间段内安排核心内容,能使学生听85课效果最佳?请说明理由.【答案】(1) ()()2121370,0168log 889,1645t t t f t t t ⎧-++≤<⎪=⎨-+≤≤⎪⎩(2)教师在内安排核心内容,能使学生听课效果最佳1224t ⎡⎤∈-⎣⎦【分析】(1)根据二次函数最值和函数所过点可构造不等式求得的值,由此可得; ,,m n a ()f x (2)分别在和的情况下,由可解不等式求得结果.016t ≤<1645t ≤≤()85f t ≥【详解】(1)当时,,[)0,16t ∈()()()222412144f t m t t n m t m n =--+=--++,解得:; ()()()()max min 1214488070f t f m n f t f n ⎧==+=⎪∴⎨===⎪⎩1870m n ⎧=⎪⎨⎪=⎩又,,解得:, ()16log 88986a f =+=log 83a ∴=-12a =.()()2121370,0168log 889,1645t t t f t t t ⎧-++≤<⎪∴=⎨-+≤≤⎪⎩(2)当时,令,解得:;16t ≤<21370858t t -++≥1216t -≤<当时,令,解得:;1645t ≤≤()12log 88985t -+≥1624t ≤≤教师在内安排核心内容,能使学生听课效果最佳.∴1224t ⎡⎤∈-⎣⎦20.已知函数,函数. ()()33log log 39x f x x =⋅()1425x x g x +=-+(1)求函数的最小值;()f x (2)若存在实数,使不等式成立,求实数x 的取值范围.[]1,2m Î-()()0f x g m -≥【答案】(1) 94-(2)或 109x <≤27x ≥【分析】(1)将化为关于的二次函数后求最小值;()f x 3log x (2)由题意知,求得后再解关于的二次不等式即可.min ()()f x g m ≥min ()g m 3log x 【详解】(1) ()()3333()log log (3)log 2log 19x f x x x x =⋅=-+ ()233log log 2x x =--, 2319log 24x ⎛⎫=-- ⎪⎝⎭∴显然当即, , 31log 2x =x =min 9()4f x =-∴的最小值为. ()f x 94-(2)因为存在实数,使不等式成立,[]1,2m Î-()()0f x g m -≥所以, 又,min ()()f x g m ≥()()21421524x x x g x +=-+-=+所以,()()2124m g m -=+又,显然当时,,[]1,2m Î-0m =()()02min 2414g m -=+=所以有,即,可得, ()4f x ≥()233log log 24x x --≥()()33log 2log 30x x +-≥所以或,解得 或. 3log 2x ≤-3log 3x ≥109x <≤27x ≥故实数x 的取值范围为或. 109x <≤27x ≥21.某中学为了解高一年级数学文化知识竞赛的得分情况,从参赛的1000名学生中随机抽取了50名学生的成绩进行分析.经统计,这50名学生的成绩全部介于55分和95分之间,将数据按照如下方式分成八组:第一组,第二组,…,第八组,下图是按上述分组方法得[)55,60[)60,65[]90,95到的频率分布直方图的一部分.已知第一组和第八组人数相同,第七组的人数为3人.(1)求第六组的频率;若比赛成绩由高到低的前15%为优秀等级,试估计该校参赛的高一年级1000名学生的成绩中优秀等级的最低分数(精确到0.1);(2)若从样本中成绩属于第六组和第八组的所有学生中随机抽取两名学生,记他们的成绩分别为x ,y ,从下面两个条件中选一个,求事件E 的概率.()P E ①事件E :;[]0,5x y -∈②事件E :.(]5,15x y -∈注:如果①②都做,只按第①个计分.【答案】(1)0.08;81.8(2)选①:;选②: 715815【分析】(1)根据频率之和为1计算第六组的频率;先判断优秀等级的最低分数所在区间,再根据不低于此分数所占的频率为0.12求得此分数.(2)分别求出第六组和第八组的人数,列举出随机抽取两名学生的所有情况,再求出事件E 所包含事件的个数的概率,根据古典概型求解.【详解】(1)第七组的频率为, 30.0650=所以第六组的频率为,()10.0650.00820.0160.0420.060.08--⨯++⨯+=第八组的频率为0.04,第七、八两组的频率之和为0.10,第六、七、八组的频率之和为0.18,设优秀等级的最低分数为,则,m 8085m <<由,解得, 850.040.060.080.155m -++⨯=81.8m ≈故估计该校参赛的高一年级1000名学生的成绩中优秀等级的最低分数.81.8(2)第六组的人数为4人,设为,,第八组的人数为2人,设为, [80,85),a b ,c d [90,95],A B 随机抽取两名学生,则有共15种情况,,,,,,,,,,,,,,,ab ac ad bc bd cd aA bA cA dA aB bB cB dB AB选①:因事件发生当且仅当随机抽取的两名学生在同一组,[]:0,5E x y -∈所以事件包含的基本事件为共7种情况,E ,,,,,,ab ac ad bc bd cd AB 故. 7()15P E =选②:因事件发生当且仅当随机抽取的两名学生不在同一组,(]:5,15E x y -∈所以事件包含的基本事件为共8种情况,E ,,,,,,,aA bA cA dA aB bB cB dB 故. 8()15P E =22.已知函数的定义域为D ,对于给定的正整数k ,若存在,使得函数满足:()f x [],a b D ⊆()f x 函数在上是单调函数且的最小值为ka ,最大值为kb ,则称函数是“倍缩函()f x [],a b ()f x ()f x 数”,区间是函数的“k 倍值区间”.[],a b ()f x (1)判断函数是否是“倍缩函数”?(只需直接写出结果)()3f x x =(2)证明:函数存在“2倍值区间”;()ln 3g x x =+(3)设函数,,若函数存在“k 倍值区间”,求k 的值. ()2841x h x x =+10,2x ⎡⎤∈⎢⎣⎦()h x 【答案】(1)是,理由见详解(2)证明见详解(3){}4,5,6,7k ∈【分析】(1)取,结合题意分析说明;1,1,1k a b ==-=(2)根据题意分析可得至少有两个不相等的实根,构建函数结合零点存在性定理分析ln 32x x +=证明;(3)先根据单调性的定义证明在上单调递增,根据题意分析可得在内()h x 10,2⎡⎤⎢⎥⎣⎦2841x kx x =+10,2⎡⎤⎢⎥⎣⎦至少有两个不相等的实根,根据函数零点分析运算即可得结果.【详解】(1)取,1,1,1k a b ==-=∵在上单调递增,()3f x x =[]1,1-∴在上的最小值为,最大值为,且, ()3f x x =[]1,1-()1f -()1f ()()()1111,1111f f -=-=⨯-==⨯故函数是“倍缩函数”.()3f x x =(2)取,2k =∵函数在上单调递增,()ln 3g x x =+[],a b 若函数存在“2倍值区间”,等价于存在,使得成立, ()ln 3g x x =+0a b <<ln 32ln 32a a b b+=⎧⎨+=⎩等价于至少有两个不相等的实根,ln 32x x +=等价于至少有两个零点,()ln 23G x x x =-+∵,且在定义内连续不断, ()()()332e 0,110,2ln 210e G G G -=-<=>=-<()G x ∴在区间内均存在零点,()G x ()()3e ,1,1,2-故函数存在“2倍值区间”.()ln 3g x x =+(3)对,且,则, 121,0,2x x ⎡⎤∀∈⎢⎥⎣⎦12x x <()()()()()()12121212222212128148841414141x x x x x x h x h x x x x x ---=-=++++∵,则, 12102x x ≤<≤221212120,140,410,410x x x x x x -<->+>+>∴,即,()()120h x h x -<()()12h x h x <故函数在上单调递增, ()h x 10,2⎡⎤⎢⎥⎣⎦若函数存在“k 倍值区间”,即存在,使得成立, ()h x *10,2a b k ≤<≤∈N 22841841a ka ab kb b ⎧=⎪⎪+⎨⎪=⎪+⎩即在内至少有两个不相等的实根, 2841x kx x =+10,2⎡⎤⎢⎥⎣⎦∵是方程的根,则在内有实根, 0x =2841x kx x =+2841k x =+10,2⎛⎤ ⎥⎝⎦若,则,即,且, 10,2x ⎛⎤∈ ⎥⎝⎦[)284,841x ∈+[)4,8k ∈*k ∈N ∴,即.4,5,6,7k ={}4,5,6,7k ∈【点睛】方法点睛:利用函数零点求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.。
贵州省贵阳市2023-2024学年高一上学期期末考试 数学 含答案
贵阳市普通中学2023—2024学年度第一学期期末监测考试试卷高一数学注意事项:1.本试卷共6页,满分100分,考试时间120分钟.2.答案一律写在答题卡上,写在试卷上的不给分.3.考试过程中不得使用计算器.一、选择题(本大题共8小题,每小题4分,共32分.每小题有四个选项,其中只有一个选项正确,请将你认为正确的选项填写在答题卷的相应位置上.)1.全织U ={0,1,2,3,4,5,6, 7} il s4M = {O, 1,2,3}, N = {3,4,5},U,M, N,找合' 的关系如图所示,则图中阴影部分表示的集合为()u`C.{3}A.{l,2,3,4,5}B.{4,5}D.02命题“3xE R, x2 + x+1 � 0”的否定是()2A.3x e R, x2 + x +l之0B.3x E R, x2 + x+l< 0D.Vx茫R,x·+x+l< 0C.VxER,x2 +x+ l < 0 23对任意角a和fJ."sina = sin/J“是“a=fJ”的()A充分不必要条件B必要不充分条件C.充要条件D既不充分也不必要条件24已知函数f(x)= �+log。
,(2-x),则f(x)的定义域为()4x-3A (扣) B.(扣]C.(-oo,2) D (三)u(扣)5设函数f(x)=2·'+x的零点为X o'则X o所在的区间是()A.(-1,0) C.(1,2)B.(-2,-1) D.(0,1)6设a=(½/,b= 2(c = log2¾,则a,b,c的大小关系为(A. c<a<bB. c < b < aC. a<b<cD.a<c<bII冗7下列选项中,与sin(-飞-)的值不相等的是()A.2sin l5°sin 75°B.cosl8° cos42° -sinl8° sin42°C.2cos2l5°-lD.tan22.5° l-tan2 22.5°8.某池塘野生水葫芦的援盖面积与时间的函数关系图象如图所示.假设其函数关系为指数函数,其中说法错误的是(y/m2l 6t---------------- ,,,81----------t'一气, ,, ,, ,A此指数函数的底数为2B在第5个月时,野生水葫芦的稷盖面积会超过30m2C野生水葫芦从4m2荽延到12m2只需1.5个月D设野生水葫芦蔓延至2m2,3m2,6m2所需的时间分别为x1,x2,x3,则有X1+x2 = X3二、多项选择题(本题共2小题,每小题4分,共8分.在每小题给出的选项中,有多项符合题目要求,全部选对得4分,部分选对得2分,有选错得0分.)9已知a,b,c eR,则下列命题正确的是()I IA若->一,则a<ba bB若ac2> bc2,则(1>bC.若a<b,c <d,则a-c<b-dD若a>b > O,c > 0,则a a+c一>b b+cIO下列说法中,正确的是()IA函数y=-在定义域上是减函数e x -1B.函数y=——一是奇函数e x +lC函数y= f(x+a)-b为奇函数,则函数y=f(x)的图象关于点P(a,b)成中心对称图形D函数f(x)为定义在(-x,,O)U(O冲心)上的奇函数,且f(3) = I.对千任意x,,x2E (0,长't:)),x1:;cx2,汀(x,)-x2f(x2) 3都有1>0成立,则.f(x)三一的解集为(-OCJ,-3] u(0,3]X1 -x2''X三、填空题(本大题共5小题,每小题4分,共20分.请将你认为正确的答案填在答题卷的相应位置上.)11若幕函数f(x)=(11i2-2m-2)义”在(0,+~)上单调递增,则实数m=12函数y= sinx+ cosx的最大值是s13 已知圆和四边形(四个角均为直角)的周长相等,而积分别为S I'鸟,则_]_的最小值为s214已知函数f(x) = 2sin(cv x+(p)(co> O,I例<:)的部分图像如图所示,则f行)=X-2.一一一一-壹15已知函数f(X) = 2kx2 -kx -i (0 ::; X ::;; 2, k E R),若k=I,则该函数的零占为若对沁XE[0,2],不等式f(x) < -2k恒成立,则实数K的取值范围为四、解答题(本大题共4小题,每小题8分,共32分.解答应写出文字说明,证明过程或演算步骤.)16已知角0的终边过点(-3,4),求角0的三个三角函数值.17.(I)已知芦+a令=3,求a+矿的值:(2)已知log2[ l og3 (log4X)] =0'求X的值18 已知函数f(x)=x-�IX(I)判断函数f(x)的奇偶性:1(2)根据定义证明函数f(x)=x--在区间(0,+幻)上单调递增X冗19将函数f(x) =c o s(x+ �)的图象上所有点的横坐标缩短到原来的上,纵坐标不变,得到函数g(x的() 图象(I)求函数g(x)的单调递增区间和对称中心:(2)若关于X的方程2sin2x-m c o s x-4= 0在XE(吟)上有实数解,求实数m的取值范围五、阅读与探究(本大题1个小题,共8分解答应写出文字说明,条理清晰.)20. 《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的瓜要途径,是思想阀门发现新问题、新结论的篮要方法.阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(I)整体观察:(2)整体设元;(3)整体代入:(4)整体求和等l l例如,ab=I,求证:一+-=l.I+a I+b证明:原式ab I b I+—=—+—=I. ab+a I+b b+I l+b阅读材料二:解决多元变掀问题时,其中一种思路是运用消元思想将多元问题转化为一元问题,再结合一元问题处理方法进行研究a+b例如,正实数a,b满足ab=L求(l+a)b解:由ab=I,得b=一,的最小值1 a+b a+--;; _ a 2+1_ (a+l }2-2(a+l)+2= = = ..(I+a)b I a+la+I (l+a )� a 2 2 =(a+l)+二-2�2✓(a+l)二-2=2✓2-2,当且仅当a+I =✓2,即a=✓2-1,b = ✓2 +1时,等号成立a+b.. (l+a)b的最小值为2J5-2波利亚在《怎样解题》中指出:“当你找到第一个腮菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多的式子满足以上特征结合阅读材料解答下列问题:(I)已知ab=I,求+——了的值;l+a 2. l +bI I(2)若正实数a,b 满足ab=I,求M =--=--+ 的最小值I+a I+3b贵阳市普通中学2023—2024学年度第一学期期末监测考试试卷高一数学注意事项:1.本试卷共6页,满分100分,考试时间120分钟.2.答案一律写在答题卡上,写在试卷上的不给分.3.考试过程中不得使用计算器.一、选择题(本大题共8小题,每小题4分,共32分.每小题有四个选项,其中只有一个选项正确,请将你认为正确的选项填写在答题卷的相应位置上.)1.全织U = {0,1,2,3,4,5,6, 7} il s4M = {O, 1,2,3}, N={3,4,5},U,M, N,找合' 的关系如图所示,则图中阴影部分表示的集合为(u`A.{l,2,3,4,5}【答案】B【解析】B.{4,5}【分析】求出M n N,得到阴影部分表示的渠合C.{3}[详解】图中阴影部分表示的渠合为N中元素去掉M n N的元素后的梊合,MnN = {0,1,2,3们{3,4,5}={习,故图中阴影部分表示的集合为{4,5}故选:B2.命题“3xER,x2+x+l2:0”的否定是()A.3x ie R, x2 + x+l ;;:: 0B.3x E R, x2 + x+I <0C.VxER,x2+x+l<0 2D.Vx茫R,X4+x+l< 0【答案】C【解析】【分析】根据命题的否定即可求解D.0【详解】命题“:3x E R, x 2+ x + 1 2:: 0”的否定是“"ix E R,x 2+x+ 1< 0",故选:C3对任意角a 和/3,"sin a = s in/3“是“a=/3”的()A 充分不必要条件B必要不充分条件C.充要条件D 既不充分也不必要条件【答案)B 【解析】【分析】根据三角函数的性质,结合必要不充分的定义即可求解【详解】由sina=s in/3可得a=/J+2朊或者a+/3=冗+2幻,kEZ,故sina=s in/3不能得到a=/3,但a=/3,则sina= s in/3,故“sina=sin/3“是“a=/3”的必要不充分条件,故选:B2 4已知函数f(x) =�+log 。
湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案
武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。
完整版)高一第一学期数学期末考试试卷(含答案)
完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。
(−∞,3)∪(5,+∞)B。
(−∞,3)∪[5,+∞)C。
(−∞,3]∪[5,+∞)D。
(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。
a^3B。
a^3/2C。
a^3/4D。
都不对3.下列指数式与对数式互化不正确的一组是A。
e=1与ln1=0B。
8^(1/3)=2与log2^8=3C。
log3^9=2与9=3D。
log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。
x^2B。
x^3C。
e^xD。
1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。
log2B。
−1/lg2C。
lg2D。
−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。
y=−3x^−2B。
y=3^xC。
y=log_3xD。
y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。
潍坊市高一数学下学期期末考试试题含解析
当 时, ,此时 ,点 , ,故D正确,
故选:AD.
【点睛】本题考查的是有关函数的应用问题,涉及到的知识点有数学建模,将实际问题转化为函数问题来解决,结合三角函数的相应的性质求得结果,属于中档题。
三、填空题:本题共4小题,每小题5分,共20分。
【答案】(1) ;(2) 。
【解析】
【分析】
(1)用三角函数的定义;
(2)先求正切值,再把弦化切.
【详解】(1)由题意知, ,
因为 ,
所以 。
解得 ,
所以 .
(2)当 时, ,
所以 。
【点睛】本题为基础题,考查三角函数的定义及同角三角函数的关系。
18。 某广场设置了一些多面体形或球形的石凳供市民休息.如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是 .
【详解】由题意,某扇形的半径为 ,圆心角为 ,
根据扇形的面积公式,可得
所以此扇形的面积为 。
故选:B。
【点睛】本题主要考查了扇形的面积公式及其应用,其中解答中熟记扇形的面积公式是解答的关键,着重考查推理与运算能力。
4。 在 中,点 满足 ,则( )
A。 B.
C. D。
【答案】A
【解析】
【分析】
由已知条件可得 ,然后由向量的加减法法则进行运算可得答案.
对于C,因为平面与平面的位置关系有:相交或平面,因为 , 是空间两个不同的平面,而 ,所以平面 与 相交,即 , 必相交于一条直线,故C正确;
对于D,当直线 与平面 相交,且 垂直于平面 内的无数条直线,若这些直线中没有相交直线,则 不一定垂直平面 ,故D 不正确,
济南市高一数学第一学期期末考试试卷(必修1与必修2)及参考答案
绝密★启用并使用完毕前济南市高一数学第一学期期末考试试卷(必修1与必修2)(2018.1.10)说明:本试卷为发展卷,采用长卷出题、自主选择、分层计分的方式,试卷满分150分,考生每一大题的题目都要有所选择,至少选作120分的题目,多选不限。
试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
考试时间120分钟。
温馨提示:生命的意义在于不断迎接挑战,做完120分基础题再挑战一下发展题吧,你一定能够成功!第I卷(选择题,共60分)一、选择题(本题包括15个小题,每题4分,其中基础题48分,发展题12分。
每题只有一个选项符合题意)1.若全集{}1,2,3,4U=,集合{}{}Μ=1,2,Ν=2,3,则()UC M N =()A.{}1,2,3B.{}2C.{}1,3,4D.{}42.有以下六个关系式:①{}a⊆φ②{}aa⊆③{}{}aa⊆④{}{}b aa,∈⑤{}c b aa,,∈⑥{}b a,∈φ,其中正确的是()A.①②③④B.③⑤⑥C.①④⑤D.①③⑤3.下列函数中,定义域为R的是()A.y B.2logy x=C.3y x= D.1yx=4.,下列各组函数中表示同一个函数的是()A.1,y y x== B.2,xy x yx==C.,ln xy x y e==D.2,y x y==5.下列函数中,既是奇函数又是增函数的是()A.3y x= B.1yx=C.3logy x=D.1()2xy=6.函数()23f x x =-的零点为 ( )A.3(,0)2B.3(0,)2 C.32 D.23 7.在同一坐标系中,函数1()f x ax a =+与2()g x ax =的图象可能是 ( )A. B. C. D.8.2132)),a a a +-<11若((则实数的取值范围是22( )A.12a <B. 12a >C. 1a <D.1a >9.若f x x (ln )=+34,则f x ()的表达式为( )A .3ln xB .3ln 4x +C .3x eD .34x e + 10.设20.320.3,2,log 0.3a b c ===,则,,a b c 的大小关系为( )A .c a b << B..c b a << C .a b c << D .a c b << 11.已知平面α和直线,,a b c ,具备下列哪一个条件时//a b ( ) A.//,//a b αα B.,a c b c ⊥⊥ C. ,,//a c c b αα⊥⊥ D .,a b αα⊥⊥12.某长方体的主视图、左视图如图所示,则该长方体的俯视图的面积是( ) A.6 B.8C. 12D .1613.若过原点的直线l 的倾斜角为3π,则直线l 的方程是( )0y +=B. 0x =0y -= D.0x =14.若一个棱长为a 的正方体的各顶点都在半径为R 的球面上,则a 与R 的关系是( )A.R a =B.2R a=C. 2R a = D.R =15.某几何体中的线段AB,在其三视图中对应线段的长分别为2、4、4,则在原几何体中线段AB 的长度为( )A.B.主视图 左视图第Ⅱ卷(非选择题,共90分)注意事项:1.第Ⅱ卷所有题目的答案考生须用黑色签字笔、钢笔或圆珠笔在试题卷上答题,考试结束后将答题卡和第Ⅱ卷一并上交。
2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷(含答案)
2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知复数z=3−i,则z的虚部为( )A. −1B. 1C. −iD. 32.某学校高一、高二、高三年级学生人数之比为3:2:2,利用分层抽样的方法抽取容量为35的样本,则从高一年级抽取学生人数为( )A. 7B. 10C. 15D. 203.已知圆锥的高为2,其底面圆的半径为1,则圆锥的侧面积为( )A. πB. 2πC. 5πD. (5+1)π4.若一组数据的平均数为5,方差为2,将每一个数都乘以2,再减去1,得到一组新数据,则新数据的平均数和方差分别为( )A. 9,3B. 9,8C. 9,7D. 10,85.已知A,B是两个随机事件且概率均大于0,则下列说法正确的为( )A. 若A与B互斥,则A与B对立B. 若A与B相互独立,则A与B互斥C. 若A与B互斥,则A与B相互独立D. 若A与B相互独立,则A与B相互独立6.设m,n是两条不同的直线,α,β是两个不同的平面,则( )A. 若m⊥n,n//α,则m⊥αB. 若m⊥α,n//α,则m⊥nC. 若m⊥α,α⊥β,则m//βD. 若m⊥n,n⊥β,则m//β7.在正四面体ABCD中,E是棱BD的中点,则异面直线CE与AB所成角的余弦值为( )A. −56B. 56C. −36D. 368.已知锐角△ABC的面积为43,B=π3,则边AB的取值范围是( )A. (2,22)B. [22,4]C. (22,42)D. [22,42]二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.已知复数z=1−2i,则( )A. |z|=5B. z+z=2C. z⋅z=5D. 1z表示的点在第一象限10.已知平行四边形ABCD的两条对角线交于点O,AE=14AC,则( )A. DE =34DA +14DCB. DE =14DA +34DCC. BE =32BO +12BCD. BE =32BO−12BC 11.在直三棱柱ABC−A 1B 1C 1中,高为ℎ,BA =BC = 3,∠ABC =90∘,下列说法正确的是( )A. V C 1−A 1ABB 1=2V A 1−ABCB. 若存在一个球与棱柱的每个面都内切,则ℎ=2 6− 3C. 若ℎ=3,则三棱锥A 1−ABC 外接球的体积为9π2D. 若ℎ=3,以A 为球心作半径为2的球,则球面与三棱柱表面的交线长度之和为23π12三、填空题:本题共3小题,每小题5分,共15分。
高一数学上册期末考试试卷及答案解析(经典,通用)
高一数学上册期末考试试卷及答案解析一、单选题 1.设全集2,1,0,1,2U,集合{}{}0,1,21,2A =-,B=,则()U A B =( )A .{}01, B .{}0,1,2 C .{}1,1,2- D .{}0,1,1,2-2.“5x >”是“3x >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3.下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对 4.下列命题中,既是全称量词命题又是真命题的是( ) A .矩形的两条对角线垂直 B .对任意a ,b ∈R ,都有a 2 + b 2≥ 2(a ﹣b ﹣1) C .∃x ∈R , |x | + x = 0 D .至少有一个x ∈Z ,使得x 2 ≤2成立5.已知02x <<,则y = )A .2B .4C .5D .66.若110a b <<,则下列结论不正确的是( ) A .22a b <B .1ba <C .2b aa b +>D .2ab b <7.命题p :“2R,240x ax ax ∃∈+-≥”为假命题的一个充分不必要条件是( ) A .40aB .40a -≤<C .30a -≤≤D .40a -≤≤8.集合{1,2,4}A =,{}2B x x A =∈,将集合A ,B 分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为4的是( ) A .B .C .D .二、多选题9.已知集合222{2,1,4},{0,2}A a a a B a a =+-=--,5A ∈,则a 为( ) A .2B .2-C .5D .1-10.若正实数,a b 满足1a b +=,则下列说法正确的是( ) A .ab 有最小值14 B C .1122a b a b +++有最小值43D .22a b +有最小值1211.下列命题为真命题的是( ). A .若a b >,则11b a >B .若0a b >>,0c d <<,则abd c < C .若0a b >>,且0c <,则22cc a b > D .若a b >,且11a b>,则0ab < 12.若“x M x x ∀∈>,”为真命题,“3x M x ∃∈>,”为假命题,则集合M 可以是( )A .()5-∞-,B .(]31--,C .()3+∞,D .[]03,三、填空题13.若命题2:0,30p x x ax ∀≥-+>,则其否定为p ⌝:__________________.14.已知:282p x -≤-≤,:1q x >,:2r a x a <<.若r 是p 的必要不充分条件,且r 是q 的充分不必要条件,则实数a 的取值范围为______. 15.设集合{}{}21,2,R (1)0A B x x a x a ==∈-++=,若集合C = A B ,且C 的子集有4个,则实数a 的取值集合为______________. 16.若a ∈R ,0b >,3a b +=,则当=a ______时,1||3||a a b +取得最小值.四、解答题17.求解下列问题:(1)已知0b a <<,比较1a 与1b 的大小; (2)比较()()37x x ++和()()46x x ++的大小.18.已知集合{|15}A x x =<≤,{}|04B x x =<<,{}|121C x m x m =+<<-. (1)求A B ,R ()A B ⋃: (2)若BC C =,求实数m 的取值范围.19.已知不等式20x ax b -+<的解集为{}17x x <<. (1)求实数,a b 的值.(2)求不等式101ax bx +>-的解集.20.已知0,0x y >>,且280x y xy +-=,求(1)xy 的最小值; (2)x y +的最小值. 21.22.“绿水青山就是金山银山”,为了保护环境,某工厂在政府部门的鼓励下进行技术改进,把二氧化碳化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为2401600y x x =-+,3050x ≤≤,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)当处理量为多少吨时,每吨的平均处理成本最少?(2)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?参考答案:1.A 【分析】先求出UB ,再根据交集的定义可求()U A B ∩.【详解】{}2,0,1UB =-,故(){}0,1UAB =,故选:A.2.A 【分析】根据集合与充分必要条件的关系,判断选项. 【详解】{}5x x > {}3x x >,所以“5x >”是“3x >”的充分不必要条件. 故选:A3.C 【分析】由集合的表示方法判断①,④;由集合中元素的特点判断②,③.【详解】①{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确; ③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示. 故选:C .4.B 【分析】根据全称量词和特称量词命题的定义判断,全称量词命题要为真命题必须对所以的成立,对选项逐一判断即可.【详解】A 选项为全称量词命题,却是假命题,矩形的两条对角线相等,并不垂直,故A 错误.C,D 选项是特称量词命题,故错误. B 选项是全称量词命题,用反证法证明, 因为()()2222222110a b a b a b +-++=-++≥所以对,a b ∀∈R ,()2221a b a b +--≥,故B 正确.故选:B. 5.【答案】A 【分析】设直角三角形的两个直角边为x ,y ,由此可得2225x y +=,又面积1=2S xy ,利用基本不等式可求面积的最大值. 【详解】设直角三角形的两个直角边为x ,y ,则2225x y +=, 又1=2S xy由基本不等式可得221125=2224x y S xy ⎛⎫+≤= ⎪⎝⎭(当且仅当x =y 立) 故选:A.6.B 【分析】由110a b <<得出0b a <<,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误. 【详解】110a b<<,0b a ∴<<,0b a ∴->->,22a b ∴<,A 选项正确;1b b a a-=>-,B 选项错误;由基本不等式可得2baa b +≥=,当且仅当1b a =时等号成立,1b a >,则等号不成立,所以2baa b +>,C 选项正确;0b a <<,2b ab ∴>,D选项正确.故选:B.【点睛】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.7.C 【分析】由题意,p ⌝为真命题,进而可得p ⌝为真命题时的充要条件,再根据充分与必要条件的性质判断选项即可. 【详解】命题2:R,240p x ax ax ∃∈+-≥为假命题,即命题2:R,240p x ax ax ⌝∀∈+-<为真命题.首先,0a =时,40-<恒成立,符合题意; 其次0a ≠时,则0a <且2(2)160a a ∆=+<,即40a ,综上可知,40a .结合选项可得,{}{}3040a a a a -≤≤⊆-<≤,即:30a -≤≤是40a 的一个充分不必要条件. 故选:C8.C 【分析】记U A B =⋃,然后分析每个选项对应的集合的运算并求解出结果进行判断即可.【详解】因为{}1,2,4A =,{}2B x x A=∈,所以{}2,B =--,记{}2,U AB ==--,对于A 选项,其表示(){}4U A B =,不满足;对于B 选项,其表示(){}2,U A B =--,不满足;对于C 选项,其表示(){2,U A B =--,满足;对于D 选项,其表示{}1,2A B =,不满足;故选:C.9.BC 【分析】结合元素与集合的关系,集合元素的互异性来求得a 的值.【详解】依题意5A ∈,当215a+=时,2a =或2a =-,若2a =-,则{}{}2,5,12,0,4A B ==,符合题意;若2a =,则220a a --=,对于集合B ,不满足集合元素的互异性,所以2a =不符合.当245a a -=时,1a =-或5a =,若1a =-,则212a +=,对于集合A ,不满足集合元素的互异性,所以1a =-不符合.若5a =,则{}{}2,26,5,0,18A B ==,符合题意. 综上所述,a 的值为2-或5. 故选:BC10.BCD 【分析】由已知结合基本不等式及其变形形式分别检验各选项即可判断.【详解】由正实数,a b 满足1a b +=,则2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以ab 的最大值为14,故A 选项错误;由()222a b a b =+++=12a b ==时,,故B 选项正确;由11111(33)22322a b a b a b a b a b ⎛⎫+=++ ⎪++++⎝⎭111[(2)(2)]3221222322a b a b a b a b a b a b a b a b ⎛⎫=++++ ⎪++⎝⎭++⎛⎫=++ ⎪++⎝⎭14233⎛≥+= ⎝,当且仅当12a b ==时,等号成立,所以1122a b a b +++有最小值43,故C 选项正确;由222222()1()2()2222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以22a b +有最小值12,故D 选项正确. 故选:BCD.11.BCD 【解析】举反例说明选项A 错误;利用不等式的性质证明出选项B ,C 正确;利用作差法证明出选项D 正确.【详解】选项A :当取1a =,1b =-时,11b a <,∴本命题是假命题. 选项B :已知0a b >>,0cd <<,所以110dc->->,∴abd c ->-,故abd c <,∴本命题是真命题. 选项C :222211000a b a b a b >>⇒>>⇒<<,∵0c <,∴22cca b >,∴本命题是真命题. 选项D :111100b aa b a b ab->⇒->⇒>, ∵a b >,∴0b a -<,∴0ab <,∴本命题是真命题. 故选:BCD【点睛】本题考查不等式的性质,考查命题的真假,属于基础题. 12.AB 【解析】根据假命题的否定为真命题可知3x M x ∀∈≤,,又x M x x ∀∈>,,求出命题成立的条件,求交集即可知M 满足的条件.【详解】3x M x ∃∈>,为假命题,3x M x ∴∀∈≤,为真命题,可得(,3]M ⊆-∞,又x M x x ∀∈>,为真命题, 可得(,0)M ⊆-∞, 所以(,0)M ⊆-∞,故选:AB【点睛】本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.13.20,30x x ax ∃≥-+≤【分析】直接利用存在量词写出其否定即可. 【详解】因为命题2:0,30p x x ax ∀≥-+>, 所以其否定p ⌝:20,30x x ax ∃≥-+≤.故答案为:20,30x x ax ∃≥-+≤.14.()5,6【分析】根据充分与必要条件,可得p ,q ,r 中集合的包含关系,再根据区间端点列式求解即可.【详解】易得:610p x ≤≤.记p ,q ,r 中x 的取值构成的集合分别为A ,B ,C ,由于r 是p 的必要不充分条件,r 是q 的充分不必要条件,则AC ,CB ,则016210a a a >⎧⎪≤<⎨⎪>⎩,解得56a <<,即实数a 的取值范围是()5,6.故答案为:()5,615.{}1,2【分析】先求出集合B 中的元素,再由C 的子集有4个,可知集合C 中只有2个元素,然后分1,2a a ==和1a ≠且2a ≠三种情况求解即可.【详解】由2(1)0x a x a -++=,得1x =或x a =, 因为集合C = A B ,且C 的子集有4个, 所以集合C 中只有2个元素, ①当1a =时,{}1B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以1a =满足题意,②当2a =时,{}1,2B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以2a =满足题意, ③当1a ≠且2a ≠时,{}1,B a =, 因为{}1,2A =,所以{}1,2,A B a =,即{}1,2,C a =,不合题意,综上,1a =或2a =,所以实数a 的取值集合为{}1,2, 故答案为:{}1,216.32-【分析】由题知3a <,进而分0<<3a 和0a <两种情况,结合基本不等式求解即可.【详解】解:因为3a b +=,0b >,所以30b a =->,即3a <.当0<<3a 时,11173||99999a ab a b a a b a b a b ++=+=++≥+, 当且仅当34a =时取等号,所以当34a =时,13a a b+取得最小值79;当0a <时,11139999a a b a b a a ba b a b ++=--=---≥-+59=, 当且仅当32a =-时取等号,所以当32a =-时,13a a b+取得最小值59.综上所述,当32a =-时,13a a b+取得最小值.故答案为:32-17.(1)11a b <(2)()()()()3746x x x x ++<++【分析】(1)利用差比较法比较大小. (2)利用差比较法比较大小.(1)11110,0,0,0,b a b a ab b a a b ab a b-<<>-<-=<<.(2)()()()()()()()()4630,737634x x x x x x x x ++=-<-+<+++++.18.(1){|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或;(2)52m ≤. 【分析】(1)由并集的定义及补集的定义进行计算即可; (2)BC C =等价于C B ⊆,按B =∅和B ≠∅讨论,分别列出不等式,解出实数m 的取值范围. (1)∵集合{|15}A x x =<≤,{}|04B x x =<<, ∴{|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或.(2) 因为BC C =,所以C B ⊆,当B =∅时,则121m m +≥-,即2m ≤;当B ≠∅时,则12110214m m m m +<-⎧⎪+≥⎨⎪-≤⎩,解得522m <≤;综上,实数m 的取值范围为52m ≤.19.(1)8,7a b ==;(2)11(,)(,)87-∞-⋃+∞【分析】(1)由解集得到方程20x ax b -+=的根,利用韦达定理可求,a b .(2)利用(1)中的结果并把分式不等式转化为一元二次不等式可求解集.【详解】(1)因为不等式20x ax b -+<的解集是{}17x x <<. 所以20x ax b -+=的解是1和7.故1771ab +=⎧⎨⨯=⎩,解得 87a b =⎧⎨=⎩. (2)由101ax bx +>-得81071x x +>-,即()()81710x x +->, 解得18x <-或17x >,故原不等式的解集为11(,)(,)87-∞-⋃+∞. 20.(1)64;(2)18.【解析】(1)由280x y xy +-=,得到821x y +=,利用基本不等式,即可求解. (2)由280x y xy +-=,得821x y +=,根据8282()()10y xx y x y x y x y +=++=++,结合不等式,即可求解.【详解】(1)由280x y xy +-=,可得821x y +=,又由0,0x y >>,可得821x y =+≥,当且仅当82x y =,即4x y =时,等号成立,即64xy ≥, 所以xy 的最小值为64. (2)由280x y xy +-=,得821x y +=,因为0,0x y >>,可得8282()()101018y x x y x y x y x y +=++=++≥+, 当且仅当82y xx y =,即12,6x y ==时等号成立,所以x y +的最小值为18.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”:(1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 21.(1)[0,254] (2){}|2a a <【分析】(1)首先求解集合A ,再求二次函数的值域;(2)首先将不等式,参变分离得2452x x a x -+-<-,转化为求函数的最值,即可求解. (1)2230x x --≤等价于()()2310x x -⋅+≤,.解得312x -≤≤所以3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭. ∴二次函数223253424y x x x ⎛⎫=-++=--+ ⎪⎝⎭, 函数在区间31,2⎡⎤-⎢⎥⎣⎦单调递增,所以当32x =时,y 取最大值为254, 当1x =-时,y 取最小值为0,所以二次函数234y x x =-++.x A ∈的值域是[0,254]. (2)由(1)知3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭ ∵()24520x a x a +-+->恒成立. 即24520x ax x a +-+->恒成立.∴()2245x a x x -⋅>-+-恒成立. .∵312x -≤≤.∴20x -<.()()222214545122222x x x x x a x x x x x-+-+--+∴<===-+----∵20x ->,∴()1222x x-+≥-.. 当且仅当122x x -=-且312x -≤≤时,即1x =时,等号成立,. ∴2a <,故a 的取值范围为{}|2a a < 22.(1)31a b ==, (2)32a -≤<-或45a <≤ (3)53a ≥-【分析】(1)根据二次函数与对应不等式和方程的关系,利用根与系数的关系,即可求出a 、b 的值;(2)由()1f x b <-得()23220x a x a -+++<,令()()2322h x x a x a =-+++,求出()0h x <解集中恰有3个整数时a 的取值范围即可.(3)由()f x b ≥在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立,化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,,()2111t t g t t t t+-==-+,求出()g t 的最大值,进一步求出实数a 的取值范围;(1)解:因为函数()()2321f x x a x a b =-++++,a ,b R ∈,又()0f x >的解集为{2|x x <或4}x >,所以2,4方程()23210x a x a b -++++=的两根,由()2432421a a b ⎧+=+⎨⨯=++⎩, 解得31;a b ==, (2)由()1f x b <-得()23220x a x a -+++<, 令()()2322h x x a x a =-+++,则()()()()12h x x a x =-+-,知()20h =,故()0h x <解集中的3个整数只能是3,4,5或1-,0,1;①若解集中的3个整数是3,4,5,则516a <+≤,得45a <≤;②解集中的3个整数是1-,0,1;则211a -≤+<-,得32a -≤<-;综上,由①②知,实数a 的取值范围为32a -≤<-或45a <≤. (3)因为函数()()2321f x x a x a b =-++++,a ,b R ∈,由()f x b 在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立, 化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,, 设()2111t t g t t t t +-==-+,因为在()g t 在[]53--,上单调递增, 即()153133g t --+=--,所以53a ≥-. 23.(1)40吨(2)不会获利,700万元【分析】(1)根据已知条件,结合基本不等式的公式,即可求解.(2)当3050x ≤≤时,该工厂获利S ,则()2220401600(30)700S x x x x =--+=---,再结合二次函数的性质,即可求解. (1)由题意可得,二氧化碳的平均处理成本1600()40yP x x x x==+-,3050x ≤≤,当3050x ≤≤时,1600()404040P x x x =+-≥=, 当且仅当1600x x=,即40x =等号成立, 故()P x 取得最小值为(40)40P =,故当处理量为40吨时,每吨的平均处理成本最少. (2)当3050x ≤≤时,该工厂获利S , 则()2220401600(30)700S x xx x =--+=---,当3050x ≤≤时,max 7000S =-<,故该工厂不会获利,国家至少需要补贴700万元,该工厂不会亏损.。
北京市石景山区2023-2024学年高一上学期期末考试数学试卷含答案
石景山区2023—2024学年第一学期高一期末试卷数学(答案在最后)本试卷共5页,满分为100分,考试时间为120分钟.请务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}0A x x =>,{}12B x x =-<<,则A B = ()A.{}2x x < B.{}02x x << C.{}12x x << D.{}12x x -<<【答案】B 【解析】【分析】根据交集的定义,即可判断选项.【详解】集合{}0A x x =>,{}12B x x =-<<,由交集的定义可知,{}02A B x x ⋂=<<.故选:B2.已知命题p :“2,10x R x x ∃∈-+<”,则p ⌝为()A.2,10x R x x ∃∈-+≥ B.2,10∃∉-+≥x R x x C.2,10x R x x ∀∈-+≥ D.2,10x R x x ∀∈-+<【答案】C 【解析】【分析】根据命题的否定的定义判断.【详解】特称命题的否定是全称命题.命题p :“2,10x R x x ∃∈-+<”,的否定为:2,10x R x x ∀∈-+≥.故选:C .3.下列函数中,在区间()0,∞+上单调递增的是()A.1()2xy = B.()21y x =- C.1y x =-+ D.3y x =【答案】D【分析】根据各选项中的函数直接判断单调性即可.【详解】函数1()2xy =在R 上单调递减,A 不是;函数()21y x =-在(,1)-∞上单调递减,在()1,+∞上单调递增,则在(0,)+∞上不单调,B 不是;函数1y x =-+的R 上单调递减,C 不是;函数3y x =在R 上单调递增,在(0,)+∞上单调递增,D 是.故选:D4.已知关于x 的不等式20x ax b ++<的解集是()2,1-则a b +=()A.0B.1- C.1D.2-【答案】B 【解析】【分析】根据不等式的解集与相应方程的根的关系,利用韦达定理求解.【详解】由题意2-和1是方程20x ax b ++=的两根,所以21a -+=-,1a =,212b -⨯==-,∴1a b +=-.故选:B .5.“21x <”是“1x <”的()A .充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】首先求解21x <的解集,再根据集合的包含关系,结合充分,必要条件的定义,即可判断选项.【详解】由21x <,得0x <,因为{}0x x <{}1x x <,所以“21x <”是“1x <”的充分不必要条件.故选:A6.某中学高三年级共有学生800人,为了解他们的视力状况,用分层抽样的方法从中抽取一个容量为40的样本,若样本中共有女生11人,则该校高三年级共有男生()人A.220B.225C.580D.585【答案】C【分析】利用分层抽样比例一致得到相关方程,从而得解.【详解】依题意,设高三男生人数为n 人,则高三女生人数为()800n -人,由分层抽样可得8001180040n -=,解得580n =.故选:C.7.若0a b <<则()A.22a b <B.2ab b < C.22a b> D.2a bb a+>【答案】D 【解析】【分析】根据不等式的性质,以及指数函数的性质,基本不等式,即可判断选项.【详解】A.因为0a b <<,则a b >,则22a b >,故A 错误;B.因为0a b <<,所以2ab b >,故B 错误;C.2x y =在R 上单调递增,当0a b <<时,22a b <,故C 错误;D.因为0a b <<,所以b a 和a b都大于0,则2a b b a +≥=,当b aa b =时,即0a b =<时等号成立,所以“=”不能取到,所以2a b b a+>,故D 正确.故选:D8.已知函数()22log ,14,1x x x f x x -≥⎧=⎨<⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()A.1-B.0C.1D.2【答案】C 【解析】【分析】根据分段函数的定义区间,结合函数解析式,求函数值.【详解】函数()22log ,14,1x x x f x x -≥⎧=⎨<⎩,则()1221422log 212f f f f ⎛⎫⎛⎫⎛⎫===-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:C9.已知函数()2log 1f x x x =-+,则不等式()0f x <的解集是()A.()0,1 B.()(),12,-∞+∞ C.()1,2 D.()()0,12,⋃+∞【答案】D【分析】由()0f x <可得2log 1x x <-,即1y x =-的图象在2log y x =图象的上方,画出2log ,1y x y x ==-图象,即可得出答案.【详解】因为()2log 1f x x x =-+的定义域为()0,∞+,因为()21log 1110f =-+=,()22log 2210f =-+=,由()0f x <可得2log 1x x <-,即1y x =-的图象在2log y x =图象的上方,画出2log ,1y x y x ==-的图象,如下图,由图可知:不等式()0f x <的解集是()()0,12,∞⋃+.故选:D .10.已知非空集合A ,B 满足以下两个条件:(1){}1,2,3,4,5,6A B = ,A B ⋂=∅;(2)A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素.则有序集合对(),A B 的个数为()A.12B.10C.6D.5【答案】B 【解析】【分析】首先讨论集合,A B 中的元素个数,确定两个集合中的部分元素,再结合组合数公式,即可求解.【详解】若集合A 中只有1个元素,则集合B 只有5个元素,1A ∉,5B ∉,即5A ∈,1B ∈,此时有04C 1=个;若集合A 中只有2个元素,则集合B 只有4个元素,2A ∉,4B ∉,即4A ∈,2B ∈,此时有14C 4=个;若集合A 中只有3个元素,则集合B 只有3个元素,3A ∉,3B ∉,不满足题意;若集合A 中只有4个元素,则集合B 只有2个元素,4A ∉,2∉B ,即2A ∈,4B ∈,此时有34C 4=个;若集合A 中只有5个元素,则集合B 只有1个元素,5A ∉,1B ∉,即1A ∈,5∈B ,此时有44C 1=个;故有序集合对(),A B 的个数是144110+++=.故选:B第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分.11.函数()1lg 2y x x=-+的定义域为______.【答案】(2,)+∞【解析】【分析】利用函数有意义列式求解即得.【详解】函数()1lg 2y x x=-+有意义,则20x ->且0x ≠,解得2x >,所以函数()1lg 2y x x=-+的定义域为(2,)+∞.故答案为:(2,)+∞12.已知()2240x x y x x++=>,则当x =______时,y 取得最小值为______.【答案】①.2②.6【解析】【分析】由基本不等式求解即可.【详解】因为0x >,40x >,所以224422x x y x x x ++==++≥+426=+=,当且仅当4x x=,即2x =时取等,所以当2x =时,y 取得最小值为6.故答案为:2;6.13.不等式212xx ≤-的解集为__________.【答案】[)2,2-【解析】【分析】将分式不等式转化成整式不等式求解即可得出答案.【详解】根据不等式212x x ≤-整理可得2102xx -≤-,即202x x +≤-,等价于()()22020x x x ⎧+-≤⎨-≠⎩,解得22x -≤<;所以不等式212xx ≤-的解集为[)2,2-故答案为:[)2,2-14.写出一个值域为[)1,+∞的偶函数()f x =______.【答案】2x (答案不唯一)【解析】【分析】根据偶函数的性质,以及指数函数的性质,即可求解()f x 的解析式.【详解】设()2xf x =,函数的定义域为R ,且()()f x f x -=,即函数为偶函数,0x ≥,所以()21x f x =≥,即函数的值域为[)1,+∞,所以满足条件的一个函数()2xf x =.故答案为:2x15.已知函数()21,1,1x ax x f x ax x ⎧-++≤=⎨>⎩,(1)若0a =,则()f x 的最大值是______;(2)若()f x 存在最大值,则a 的取值范围为______.【答案】①.1②.(],0-∞【解析】【分析】(1)若0a =,则()21,10,1x x f x x ⎧-+≤=⎨>⎩,由二次函数的性质可得出答案;(2)当0a =时,由(1)知,()f x 存在最大值,当0a ≠时,若()f x 存在最大值,()f x ax =在()1,∞+应单调递减,所以a<0,即可得出答案.【详解】(1)若0a =,则()21,10,1x x f x x ⎧-+≤=⎨>⎩,当1x ≤时,()f x =21x -+,所以()(],1f x ∞∈-,则()f x 的最大值是1.(2)当0a =时,由(1)知,()f x 存在最大值,当0a ≠时,若()f x 存在最大值,()f x ax =在()1,∞+应单调递减,所以a<0,且当1x >时,()0f x ax a =<<,无最大值,当1x ≤时,()f x =2221124a a x ax x ⎛⎫-++=--++ ⎪⎝⎭,则()f x 在,2a ∞⎛⎫- ⎪⎝⎭上单调递增,在,12a ⎛⎤ ⎥⎝⎦上单调递减,所以()f x 存在最大值为2124a af a ⎛⎫=+> ⎪⎝⎭.故a 的取值范围为:(],0-∞.故答案为:1;(],0-∞.三、解答题共5小题,共40分.解答应写出文字说明,演算步骤或证明过程.16.已知集合{}2340A x x x =-->,集合{}0B x a x =-≤(1)当2a =时,求A B ⋃;(2)若R B A ⋂≠∅ð,求实数a 的取值范围.【答案】(1){1A B x x ⋃=<-或2}x ≥;(2)4a ≤【解析】【分析】(1)分别求集合,A B ,再求A B ⋃;(2)根据(1)的结果,首先求R A ð,再根据集合的运算结果,求实数a 的取值范围.【小问1详解】当2a =时,{}2B x x =≥,2340x x -->,得>4x 或1x <-,即{1A x x =<-或4}x >,所以{1A B x x ⋃=<-或2}x ≥;【小问2详解】由(1)可知,{}R 14A x x =-≤≤ð,{}B x x a =≥,若R B A ⋂≠∅ð,则4a ≤.17.已知甲投篮命中的概率为0.6,乙投篮不中的概率为0.3,乙、丙两人都投篮命中的概率为0.35,假设甲、乙、丙三人投篮命中与否是相互独立的.(1)求丙投篮命中的概率;(2)甲、乙、丙各投篮一次,求甲和乙命中,丙不中的概率;(3)甲、乙、丙各投篮一次,求恰有一人命中的概率.【答案】(1)0.5(2)0.21(3)0.29【解析】【分析】(1)首先设甲,乙,丙投篮命中分别为事件,,A B C ,根据独立事件概率公式,即可求解;(2)根据(1)的结果,根据公式()()()()P ABC P A P B P C =,即可求解;(3)首先表示3人中恰有1人命中的事件,再根据概率的运算公式,即可求解.【小问1详解】设甲投篮命中为事件A ,乙投篮命中为事件B ,丙投篮命中为事件C ,由题意可知,()0.6P A =,()0.3P B =,()()()0.35P BC P B P C ==,则()()10.7P B P B =-=,()0.350.50.7P C ==,所以丙投篮命中的概率为0.5;【小问2详解】甲和乙命中,丙不中为事件D ,则()P D =()()()()0.60.70.50.21P ABC P A P B P C ==⨯⨯=,所以甲和乙命中,丙不中的概率为0.21;【小问3详解】甲、乙、丙各投篮一次,求恰有一人命中为事件E ,则()()P E P ABC ABC ABC =++,()()()()()()()()()P A P B P C P A P B P C P A P B P C =++0.60.30.50.40.70.50.40.30.5=⨯⨯+⨯⨯+⨯⨯0.29=18.已知函数()322x mf x x -=+的图像过点()1,1.(1)求实数m 的值;(2)判断()f x 在区间(),1-∞-上的单调性,并用定义证明;【答案】(1)1m =-(2)()f x 在区间(),1-∞-上单调递增,证明见解析【解析】【分析】(1)将()1,1代入解析式,得到m 的值;(2)利用定义法证明函数单调性步骤:取值,作差,判号,下结论.【小问1详解】将点()1,1代入函数()322x m f x x -=+中,可得3122m-=+,解得1m =-.【小问2详解】单调递增,证明如下.由(1)可得()()()3123131222121x x f x x x x +-+===-+++,任取()12,1x x <∈-∞-,则()()121231312121f x f x x x ⎛⎫⎛⎫-=---⎪ ⎪++⎝⎭⎝⎭()()122112111111x x x x x x -=-=++++,因为()12,1x x <∈-∞-,则120x x -<,110x +<,210x +<,即()()12110x x ++>,所以()()1212011x x x x -<++,即()()12f x f x <,所以()f x 在区间(),1-∞-上单调递增.19.甲、乙两个篮球队在4次不同比赛中的得分情况如下:甲队88919396乙队89949792(1)在4次比赛中,求甲队的平均得分;(2)分别从甲、乙两队的4次比赛得分中各随机选取1次,求这2个比赛得分之差的绝对值为1的概率;(3)甲,乙两队得分数据的方差分别记为21S ,22S ,试判断21S 与22S 的大小(结论不要求证明)【答案】(1)92(2)516(3)2212S S =【解析】【分析】(1)根据平均数公式,即可求解;(2)利用列举样本空间的方法,结合古典概型概率公式,即可求解;(3)结合方差的定义和公式,即可判断.【小问1详解】设甲队的平均分为1x ,则188919396924x +++==所以甲队的平均分为92;【小问2详解】分别从甲、乙两队的4次比赛得分中各随机选取1次,有()()()()88,89,88,94,88,97,88,92,()()()()91,89,91,94,91,97,91,92,()()()()93,89,93,94,93,97,93,92,()()()()96,89,96,94,96,97,96,92,共包含16个基本事件,这2个比赛得分之差的绝对值为1包含()()()()()88,89,91,92,93,94,93,92,96,97,共5个基本事件,所以这2个比赛得分之差的绝对值为1的概率516P =;【小问3详解】乙队的平均分为289949792934x +++==,则()()()()22222188929192939296928.54S -+-+-+-==,()()()()22222289939493979392938.54S -+-+-+-==2212S S =20.已知函数()e e x xf x a -=+,其中e 为自然对数的底数,R a ∈.(1)若0是函数()f x 的一个零点,求a 的值并判断函数()f x 的奇偶性;(2)若函数()f x 同时满足以下两个条件,求a 的取值范围.条件①:x ∀∈R ,都有()0f x >;条件②:[]01,1x ∃∈-,使得()04f x ≤.【答案】20.1a =-;奇函数.21.[]0,4【解析】【分析】(1)由()00f =可求出1a =-;再由奇偶函数的定义即可判断;(2)条件①,x ∀∈R ,都有()0f x >,即2e x a -<在R 上恒成立,由2e 0x >,即可求出a 的取值范围,条件②,[]01,1x ∃∈-,使得()04f x ≤,即()0024e e x x a ≤-,令0e x t =,由二次函数的性质即可得出答案,综合两个条件①②可得出a 的取值范围.【小问1详解】因为0是函数()f x 的一个零点,所以()000e e 10f a a =+=+=,解得:1a =-,所以()e e x x f x -=-,因为()f x 的定义域为R ,()()ee x xf x f x --=-=-,所以()f x 为奇函数.【小问2详解】条件①:x ∀∈R ,都有()0f x >,即e e 0x x a -+>,所以()2e 0e x x a+>,即()2e 0x a +>,则2e x a -<在R 上恒成立,因为2e 0x >,所以0a -≤,则0a ≥.故a 的取值范围为[)0,∞+.条件②:[]01,1x ∃∈-,使得()04f x ≤,即00e e 4x x a -+≤,即()002e 4e 0x x a -+≤,即()0024e e x x a ≤-,令0e x t =,[]01,1x ∈-,则1,e e t ⎡⎤∈⎢⎥⎣⎦,令()()22424g t t t t =-=--+,1,e et ⎡⎤∈⎢⎥⎣⎦,当2t =时,()()max 24g t g ==,所以4a ≤.若函数()f x 同时满足两个条件①②可得:故a 的取值范围为[]0,4.。
高中数学必修一期末试卷(附答案)
一、选择题1.设()31xf x =-,若关于x 的函数2()()(1)()g x f x t f x t =-++有三个不同的零点,则实数t 的取值范围为( ) A .102⎛⎫ ⎪⎝⎭, B .()0,2 C .()0,1 D .(]0,12.设函数3,()log ,x x a f x x x a⎧≤=⎨>⎩()0a >, 若函数()2y f x =-有且仅有两个零点,则a的取值范围是( ) A .. ()0,2B .()0,9C .()9,+∞D .()()0,29,⋃+∞3.已知函数()22,0log ,0x x f x x x ⎧≤⎪=⎨>⎪⎩若a b c <<,且满足()()()f a f b f c ==,则abc 的取值范围为( ) A .(],0-∞B .(],1-∞-C .[]2,0-D .[]4,0-4.下列等式成立的是( ) A .222log (35)log 3log 5+=+ B .2221log 3log 32-= C .222log 3log 5log (35)⋅=+D .231log 3log 2= 5.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier ,1550-1617年).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现. 比如,计算64×256的值,就可以先查第一行的对应数字:64对应6,256对应8,然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384,按照这样的方法计算:16384×32768=( ) A .134217728B .268435356C .536870912D .5137658026.若函数112xy m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是( )A .1m ≤-B .10m -≤<C .m 1≥D .01m <≤7.已知函数223,()11,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩,对于任意两个不相等的实数1x ,2x R ∈,都有不等式()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数a 取值范围是( ) A .[)3,+∞B .[]0,3C .[]3,4D .[]2,48.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .39.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2 C .()1,2 D .(],1-∞10.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉11.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,312.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-二、填空题13.已知函数()22,0,0x x x f x x x ⎧--≤=⎨>⎩,若函数()()g x f x m =-与x 轴有3个交点,则实数m 的取值范围是_________.14.若y a x =的图象与直线y x a =+(0a >)有两个不同交点,则a 的取值范围是__________.15.方程()()122log 44log 23xx x ++=+-的解为____;16.已知函数2,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥恒成立,则a 的取值范围是________.17.关于函数()11f x x =+-的性质描述,正确的是_________.①()f x 的定义域为[-1,0)∪(0,1]; ②()f x 的值域为R ; ③在定义域上是减函数; ④()f x 的图象关于原点对称.18.已知函数()2f x x =,()1g x a x =-,a 为常数,若对于任意1x ,[]20,2x ∈,且12x x <,都有()()()()1212f x f x g x g x -<-则实数a 的取值范围为________.19.已知集合2|230A x x x ,{}|0B x x a =-=,若B A ≠⊂,则实数a 的值为______.20.设a ,b ,c 为实数,()()()2f x x a x bx c =+++,()()()211g x ax cx bx =+++,记集合(){}|0,S x f x x R ==∈,(){}|0,T x g x x R ==∈,若S ,T 分别为集合S ,T 的元素个数,则下列结论可能成立的是________.①1S =,0T =;②1S =,1T =;③2S =,2T =;④2S =,3T =.三、解答题21.新冠肺炎疫情发生后,某公司生产A 型抗疫商品,第一个月是为国内生产,当地政府决定对该型商品免税,该型商品出厂价为每件20元,月销售量为12万件;后来国内疫情得到有效控制,从第二个月开始,该公司为国外生产该型抗疫商品,当地政府开始对该型抗疫商品征收税率为%p (0100p <<,即销售1元要征收100p元)的税,于是该型抗疫商品出厂价就上升到每件100202p-元,预计月销售量将减少2p 万件.(1)将第二个月政府对该商品征收的税y (万元)表示成p 的函数,并指出这个函数的定义域;(2)要使第二个月该公司缴纳的税额不少于1万元的前提下,又要让该公司当月获得最大销售金额,p 应为多少?22.已知函数22,01,()ln ,1x x f x x x e-≤<⎧=⎨≤≤⎩,其中e 为自然对数的底数.(1)求(f f 的值;(2)作出函数()()1F x f x =-的图象,并指出单调递减区间(无需证明) ;(3)若实数0x 满足00(())f f x x =,则称0x 为()f x 的二阶不动点,求函数()f x 的二阶不动点的个数.23.已知函数35()log 5xf x x-=+. (1)求函数()f x 的定义域;(2)判断函数()f x 奇偶性,并证明你的结论.24.已知函数()f x ()()4log 41xkx k R =++∈的图象关于y 轴对称.(1)求实数k 的值(2)设函数()g x 12421f x xx m +=+⋅-(),[]20log 3x ∈,,是否存在实数m , 使得()g x 的最小值为0?若存在, 求出m 的值,若不存在说明理由.25.对于函数()f x ,若在定义域内存在实数0x ,满足()()00f x f x -=-,则称()f x 为“M 类函数”(1)已知函数()23f x cos x π⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”,并说明理由;(2)设()1423xx f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围26.已知集合{|A x y ==,{}22|60B x x ax a =--<,其中0a ≥.(1)当1a =时,求集合A B ⋃,()R C A B ⋂; (2)若()R C A B B ⋂=,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由()0g x =得()1f x =或()f x t =,作出函数()f x 的图象,可得()f x t =需有两解,有此可得t 的范围. 【详解】据题意()0g x =有三个解.由()0g x =得()1f x =或()f x t =,易知()1f x =只有一个解, ∴()f x t =必须有两解, 由图象知01t <<. 故选:C .【点睛】关键点点睛:本题考查函数零点个数问题,解题时根据零点的定义化为方程()0g x =的解的个数,进而转化为()f x t =的解的个数,再利用数形结合思想,考虑函数()y f x =的图象与直线y t =的交点个数问题.掌握转化思想是解题关键.2.D解析:D 【分析】函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,数形结合即可求出a 的取值范围. 【详解】令2x =可得12x =-,22x =;令3log 2x =得39x =函数()2y f x =-有且仅有两个零点等价于()y f x =与2y =两个函数图象有且仅有两个交点,作3,()log ,x x a f x x x a ⎧≤=⎨>⎩()0a >图象如图:当02a <<时,()y f x =与2y =两个函数图象有且仅有两个交点,交点横坐标为12x =-,39x =,符合题意;当29a ≤≤时,()y f x =与2y =两个函数图象有且仅有3个交点,交点横坐标为12x =-,22x =,39x =,不符合题意;当9a >时,()y f x =与2y =两个函数图象有且仅有2个交点,交点横坐标为12x =-,22x =,不符合题意;所以a 的取值范围是:()()0,29,⋃+∞, 故选:D 【点睛】本题主要考查了已知函数的零点个数求参数的范围,函数的零点转化为对应方程的根,转化为函数图象的交点,属于中档题.3.A解析:A 【分析】画出()f x 的图象结合图象,求得1bc =、求得a 的取值范围,由此求得abc 的取值范围. 【详解】由函数()f x 的图象(如图),可知1022a b c ≤<≤<≤,由22log log b c =得22log log b c -=,所以1bc =,所以(],0abc a =∈-∞.故选:A【点睛】本小题主要考查分段函数的图象与性质,属于中档题.4.D解析:D 【分析】根据对数的运算法则和换底公式判断. 【详解】22222log 3log 5log (35)log 15log (35)+=⨯=≠+,A 错误;22221log 32log 3log 32-=-≠,B 错误;222log 3log 5log (35)⋅≠+,C 错误; 3233log 31log 3log 2log 2==,D 正确. 故选:D . 【点睛】关键点点睛:本题考查对数的运算法则.log log log ()a a a M N MN +=,log log n a a b n b =,一般log ()log log a a a M N M N +≠+.log ()log log a a a MN M N ≠⋅, 1log log n a a b b n≠. 5.C解析:C 【分析】先找到16384与32768在第一行中的对应数字,进行相加运算,再找和对应第二行中的数字即可. 【详解】由已知可知,要计算16384×32768,先查第一行的对应数字: 16384对应14,32768对应15,然后再把第一行中的对应数字加起来:14+15=29,对应第二行中的536870912, 所以有:16384×32768=536870912, 故选C. 【点睛】本题考查了指数运算的另外一种算法,关键是认真审题,理解题意,属于简单题.6.B解析:B 【分析】11()+2x y m -=与x 有公共点,转化为11()2xy -=与y m =-有公共点,结合函数图象,可得结果. 【详解】11()+2x y m -=与x 有公共点,即11()2x y -=与y m =-有公共点,11()2xy -=图象如图可知0110m m <-≤⇒-≤< 故选:B 【点睛】本题考查了函数的交点问题,考查了运算求解能力和数形结合思想,属于基础题目.7.C解析:C 【分析】根据题意,可得()f x 在R 上为单调递增函数,若x a ≥时为增函数,则3a ≥,若x a <时为增函数,则0a >,比较x=a 处两函数值的大小,即可求得答案, 【详解】因为()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在R 上为单调递增函数, 当x a ≥时,2()23f x x x =--的图象如图所示:因为()f x 在R 上为单调递增函数,所以3a ≥, 当x a <时,()11f x ax =-为增函数,所以0a >, 且在x=a 处222311a a a --≥-,解得4a ≤, 综上34a ≤≤, 故选:C. 【点睛】解题的关键是熟悉分段函数单调性的求法,根据单调性,先分析分段点两侧单调性,再比较分段点处函数值的大小即可,考查推理分析,化简计算的能力,属中档题.8.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.9.B解析:B 【分析】计算出()24f -=,并由()()()0x y f x f y ⎡⎤--<⎣⎦可得出函数()y f x =在R 上为减函数,再由()()234f x f x-⋅≥,可得出()()232f xx f -≥-,再由函数()y f x =在R 上的单调性可得出232x x -≤-,解出该不等式即可. 【详解】由于对任意的实数x 、y ,()()()f x y f x f y +=⋅且()0f x >. 令0x y ==,可得()()()000f f f =⋅,且()00f >,解得()01f =. 令y x =-,则()()()01f x f x f ⋅-==,()()1f x f x -=,()()1121f f -==. ()()()211224f f f ∴-=-⋅-=⨯=.设x y <,则0x y -<,由()()()0x y f x f y ⎡⎤--<⎣⎦,得()()f x f y >. 所以,函数()y f x =在R 上为减函数,由()()234f x f x-⋅≥,可得()()232f x x f -≥-.所以232x x -≤-,即2320x x -+≤,解得12x ≤≤. 因此,不等式()()234f x f x -⋅≥的解集为[]1,2.故选B. 【点睛】本题考查抽象函数的单调性解不等式,解题的关键就是将不等式左右两边转化为函数的两个函数值,并利用函数的单调性进行求解,考查分析问题和解决问题的能力,属于中等题.10.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xyz x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.11.A解析:A 【分析】根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=. 故选:A. 【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.12.D解析:D 【分析】由题意得知关于x 的方程2210ax x --=只有一个实数解,分0a =和00a ≠⎧⎨∆=⎩两种情况讨论,可得出实数a 的值. 【详解】由题意得知关于x 的方程2210ax x --=只有一个实数解.当0a =,{}12102A x x ⎧⎫=--==-⎨⎬⎩⎭,合乎题意;当0a ≠时,则440a ∆=+=,解得1a =-. 综上所述:0a =或1-,故选D. 【点睛】本题考查集合的元素个数,本质上考查变系数的二次方程的根的个数,解题要注意对首项系数为零和非零两种情况讨论,考查分类讨论思想,属于中等题.二、填空题13.【分析】先将函数与轴有个交点转化成与的交点问题再作出分段函数的图像利用数形结合求得范围即可【详解】依题意函数与轴有个交点即与有3个交点作分段函数的图像如下由图可知的取值范围为故答案为:【点睛】方法点 解析:()0,1【分析】先将函数()()g x f x m =-与x 轴有3个交点,转化成()y f x =与y m =的交点问题,再作出分段函数()y f x =的图像,利用数形结合求得m 范围即可. 【详解】依题意,函数()()g x f x m =-与x 轴有3个交点, 即()y f x =与y m =有3个交点,作分段函数()22,0,0x x x f x x x ⎧--≤=⎨>⎩的图像如下,由图可知,m 的取值范围为()0,1. 故答案为:()0,1. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解.14.【分析】首先根据已知题意画出图形然后根据数形结合分析的取值范围需要注意为的斜率【详解】根据题意的图象如图:结合图象知要想有两个不同交点的斜率要大于的斜率的取值范围是故答案为:【点睛】本题考查函数图象 解析:()1,+∞【分析】首先根据已知题意画出图形,然后根据数形结合分析a 的取值范围,需要注意a 为y ax =的斜率. 【详解】根据题意y a x =的图象如图:()0a >,结合图象知,要想有两个不同交点y ax ∴=的斜率要大于y x a =+的斜率a ∴的取值范围是1a >.故答案为:()1,+∞ 【点睛】本题考查函数图象的交点问题,考查数形结合能力,属于中等题型.15.【分析】直接利用对数的运算法则化简求解即可【详解】解:可得即:解得(舍去)可得经检验是方程的解故答案为:【点睛】本题考查方程的解的求法对数的运算法则的应用考查计算能力 解析:2【分析】直接利用对数的运算法则化简求解即可. 【详解】 解:()()122log 44log 23x x x ++=+-()()1222log 44log log 232x x x +∴+=+-可得()()122log 44log 232x x x++=-⎡⎤⎣⎦, 即:()144232x x x++=-,()223240xx -⋅-=,解得21x =-(舍去)24x =,可得2x =.经检验2x =是方程的解. 故答案为:2. 【点睛】本题考查方程的解的求法,对数的运算法则的应用,考查计算能力.16.【分析】分两种情况讨论当时结合图象可知;当时再分两种情况讨论分离参数后化为函数的最值可解得结果【详解】当时则恒成立等价于恒成立函数的图象如图:由图可知;当时所以恒成立等价于恒成立若则若则恒成立所以综 解析:10a -≤≤【分析】分0x >,0x ≤两种情况讨论,当0x >时,结合图象可知0a ≤;当0x ≤时,再分0x =,0x <两种情况讨论,分离参数后化为函数的最值可解得结果. 【详解】当0x >时,()ln(1)0f x x =+>,则|()|f x ax ≥恒成立等价于ln(1)x ax +≥恒成立,函数ln(1)y x =+的图象如图:由图可知0a ≤;当0x ≤时,2()0f x x x =-+≤,所以|()|f x ax ≥恒成立等价于2x x ax -≥恒成立,若0x =,则a R ∈,若0x <,则1a x ≥-恒成立,所以1a ≥-, 综上所述:10a -≤≤. 故答案为:10a -≤≤ 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;17.①②④【分析】求出函数的定义域值域判断①②根据单调性的定义判断③根据奇偶性的定义与性质判断④【详解】函数满足解得或故函数的定义域为故①正确当时当时所以函数值域为故②正确③虽然时函数单调递减当时函数单解析:①②④ 【分析】求出函数的定义域,值域判断①②,根据单调性的定义判断③,根据奇偶性的定义与性质判断④. 【详解】函数()f x =21011x x ⎧-⎪⎨+≠⎪⎩,解得10x -<或01x <,故函数的定义域为[1-,0)(0⋃,1].故①正确.当[1x ∈-,0)时(][)(]2211,(),00,1x f x x ∈+∞⇒===-∞∈⇒,当(0x ∈,1]时,(][)220,,111x x ∈∈⇒+∞⇒()[0f x ===,)+∞,所以函数值域为R ,故②正确.③虽然[1x ∈-,0)时,函数单调递减,当(0x ∈,1]时,函数单调递减,但在定义域上不是减函数,故③错误.④由于定义域为[1-,0)(0⋃,1],()11f x x x==+-,则()()f x f x -=-,()f x 是奇函数,其图象关于原点对称,故④正确.故答案为:①②④. 【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、值域、函数的定义域与对称性,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.18.02【分析】构造函数F (x )=f (x )﹣g (x )利用F (x )的单调性求出a 【详解】解:对于任意x1x2∈02且x1<x2都有f (x1)﹣f (x2)<g (x1)﹣g (x2)即f (x1)﹣g (x1)<f解析:[0,2] 【分析】构造函数F (x )=f (x )﹣g (x ),利用F (x )的单调性求出a 【详解】解:对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),即f (x 1)﹣g (x 1)<f (x 2)﹣g (x 2),令F (x )=f (x )﹣g (x )=x 2﹣a |x ﹣1|,即F (x 1)<F (x 2),只需F (x )在[0,2]单调递增即可,当x =1时,F (x )=0,图象恒过(1,0)点, 当x >1时,F (x )=x 2﹣ax +a , 当x <1时,F (x )=x 2+ax ﹣a , 要使F (x )在[0,2]递增,则当1<x ≤2时,F (x )=x 2﹣ax +a 的对称轴x =12a≤,即a ≤2, 当0≤x <1时,F (x )=x 2+ax ﹣a 的对称轴x =02a-≤,即a ≥0, 故a ∈[0,2], 故答案为:[0,2] 【点睛】考查恒成立问题,函数的单调性问题,利用了构造函数法,属于中档题.19.-1或3【分析】解方程用列举法表示集合AB 由即得解【详解】集合若故a=-1或3故答案为:-1或3【点睛】本题考查了集合的包含关系考查了学生概念理解数学运算能力属于基础题解析:-1或3 【分析】解方程,用列举法表示集合A ,B ,由B A ≠⊂,即得解. 【详解】 集合2|230{1,3}Ax x x ,{}|0{}B x x a a =-==若B A ≠⊂,故a =-1或3 故答案为:-1或3 【点睛】本题考查了集合的包含关系,考查了学生概念理解,数学运算能力,属于基础题.20.①②③【分析】①根据得到方程无实根推出或;再由此判断根的个数即可判断①;②取分别判断根的个数即可判断②;③取分别判断根的个数即可判断③;④当时方程有三个根所以由此求根的个数即可判断④【详解】①当时方解析:①②③ 【分析】①根据0T =,得到方程()()()2110=+++=g x ax cx bx 无实根,推出0a =,240b c -<或0a b c ===;再由此判断()0f x =根的个数,即可判断①;②取240a b c ≠⎧⎨-<⎩,分别判断()0f x =,()0g x =根的个数,即可判断②;③取20040a c b c ≠⎧⎪≠⎨⎪-=⎩分别判断()0f x =,()0g x =根的个数,即可判断③;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,由此求()0f x =根的个数,即可判断④.【详解】①当0T =时,方程()()()2110=+++=g x ax cx bx 无实根,所以0a =,240b c -<或0a b c ===;当0a b c ===时,()3f x x =,由()0f x =得0x =,此时1S =;当0a =,240b c -<时,()()2=++f x x x bx c ,由()0f x =得0x =,此时1S =;故①成立; ②当2040a b c ≠⎧⎨-<⎩时,由()()()20=+++=f x x a x bx c 得x a =-,即1S =;由()()()2110=+++=g x ax cx bx 得1x a=-;即1T =;存在②成立;③当20040a cbc ≠⎧⎪≠⎨⎪-=⎩时,由()()()20=+++=f x x a x bx c 得x a =-或2b x =-;由()()()2110=+++=g x ax cx bx 得 1x a =-或2=-x b;只需2b a ≠,即可满足2S =,2T =;故存在③成立;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,设0x 为()0g x =的一个根,则00x ≠,且200001111f a b c x x x x ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()03010g x x ==,故01x 为方程()0f x =的根.此时()0f x =有三个根,即3T =时,必有3S =,故不可能是2S =,3T =;④错;故答案为:①②③ 【点睛】本题主要考查方程根的个数与集合的综合,会判断方程根的个数即可,属于常考题型.三、解答题21.(1)2610p p y p-=-,定义域为()0,6;(2)2p =时,公司销售金额最大.【分析】(1)由题可得第二个月该商品销量为()122p -万件,月销售收入为100(122)202p p-⋅-万元,则可得出对该商品征收的税; (2)由1y ≥可得25p ≤≤,销售收入()100(6)()2510p g p p p-=≤≤-单调递减,即可求出最值. 【详解】解:(1)依题意,第二个月该商品销量为()122p -万件, 月销售收入为100(122)202p p-⋅-万元,当地政府对该商品征收的税为100(122)(6)20210010p py p p p p=-⋅⋅=-⋅--(万元).所以所求函数为2610p p y p-=-. 由60p ->及0p >得,所求函数的定义域为()0,6.(2)由1y ≥得26110p p p-≥-化简得27100p p -+≤, 即(2)(5)0p p --≤,解得25p ≤≤, 所以当25p ≤≤,税收不少于1万元;第二个月,当税收不少于1万元时,公司的销售收入为()100(6)()2510p g p p p-=≤≤-,因为100(6)400()1001010p g p p p -==+--在区间[]2,5上是减函数,所以max ()(2)50g p g ==(万元). 所以当2p =时,公司销售金额最大.【点睛】本题考查函数的实际应用,解题的关键是正确理解题目,建立正确的函数关系式,根据函数的单调性求最值.22.(1)(())1f f e =;(2)图象见解析,递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)3【分析】(1)分段函数求值,根据x 的范围代入即可;(2)画出函数图象,结合图象求出函数单调性;(3)写出(())f f x 分段函数,根据(())f f x x =,求出解的个数 【详解】解:(1)因为1e >,所以1()2f e ln e ==,所以1(())()12f f e f ==. (2)()|()1|F x f x =-,所以函数图象如下所示:递减区间为10,2⎡⎤⎢⎥⎣⎦,[]1,e .(3)根据题意,012x,(())(22)f f x ln x =-,当112x <<,(())42f f x x =-,当1x e ,(())22f f x lnx =-,当012x时,由(())(22)f f x ln x x =-=,记()(22)g x ln x x =--,则()g x 在1[0,]2上单调递减,且(0)20g ln =>,11()022g =-<, 故()g x 在1[0,]2上有唯一零点1x ,即函数()f x 在1[0,]2上有唯一的二阶不动点1x . 当112x <<时,由(())42f f x x x =-=,得到方程的根为223x =,即函数()f x 在1(,1)2上有唯一的二阶不动点223x =. 当1x e 时,由(())22f f x lnx x =-=,记()22h x lnx x =--,则()h x 在[1,]e 上单调递减,且()110h =>, ()0h e e =-<,故()h x 在[1,]e 上有唯一零点3x ,即函数()f x 在[1,]e 上有唯一的二阶不动点3x . 综上所述,函数()f x 的二阶不动点有3个. 【点睛】(1)这是分段函数求值,基础题;(2)含绝对值的函数单调性的判断,比较容易;(3)这道题难点是要写出(())f f x 分段函数,根据(())f f x x =,求出解的个数,一定注意x 的范围.23.(1)(5,5)- (2)奇函数,见解析 【分析】(1)若()f x 有意义,则需满足505xx->+,进而求解即可; (2)由(1),先判断定义域是否关于原点对称,再判断()f x -与()f x 的关系即可. 【详解】 (1)由题,则505xx->+,解得55x -<<,故定义域为()5,5- (2)奇函数,证明:由(1),()f x 的定义域关于原点对称, 因为()()33355log log log 1055x xf x f x x x+--+=+==-+,即()()f x f x -=-, 所以()f x 是奇函数 【点睛】本题考查具体函数的定义域,考查函数的奇偶性的证明. 24.(1)12-;(2)1-. 【分析】(1)根据()()()4log 41xf x kx k R =++∈的图象关于y 轴对称.得到()()f x f x -=,再利用待定系数法法求解.(2)由(1)知()42=+⋅xx g x m ,[]20log 3x ∈,,令2x t =,[]13t ∈,得到2=+⋅y t m t ,然后利用二次函数的图象和性质求解.【详解】 (1)()()()4log 41x f x kx k R =++∈的图象关于y 轴对称.∴函数()f x 是偶函数.()()f x f x ∴-=,即()()44log 41log 41xx kx kx -+-=++,即()()()44log 411log 41xxk x kx +-+=++,即210k +=,12k ∴=-;(2)()1242142()+=+⋅-=+⋅f x xx x x g x m m ,[]20log 3x ∈,,设2x t =,则[]13t ∈,, 2∴=+⋅y t m t 在[]13t ∈,上最小值为0,又22()24m m y t =+-,[]13t ∈,,当12m-≤ 即2m ≥-时,1t =时10min y m =+=, 1m ∴=-,符合,当132m -<-< 即62m -<<-时,2m t =-时,204min m y =-=,0m ∴= 不符合,当32m-≥ 即6m ≤-时,3t =时,930min y m =+=, 3m ∴=-,不符合, 综上所述m 的值为1-. 【点睛】本题主要考查偶函数的应用,对数运算以及二次函数的图象和性质的应用,还考查了分类讨论的思想和运算求解的能力,属于中档题. 25.(1)是;答案见解析;(2)1m -. 【分析】(1)特殊值验证使得()()f x f x -=-即可;(2)因为函数满足新定义,则问题由存在问题转化为求函数值域问题,进而可以求解.【详解】解:(1)因为()2cos()2cos()2(22323f πππππ-=--=+=⨯=()2cos()2223f πππ=-==()()22f f ππ-=-, 所以存在02=x π使得函数()f x 为“M 类函数”;(2)由已知函数1()423x x f x m +=--满足:()()f x f x -=-,则化简可得:442(22)60x x x x m --+-+-=⋯①令222x x t -=+,则2442x x t -+=-,所以①可化为:2280t mt --=在区间[2,)+∞上有解可使得函数()f x 为“M 类函数”, 即18()2m t t=-在[2,)+∞有解, 而函数18()2t t -在[2,)+∞上单调递增,所以当2t =时,有最小值为18(2)122-=-, 所以1m -,故实数m 的取值范围为:[1-,)+∞.【点睛】本题考查了新定义的函数问题以及函数的有解问题,涉及到求函数的值域问题. 求函数最值和值域的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值;(5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. 26.()[)()13,3,()1,3R A B C A B ⋃=-⋂= ()20a =【分析】(1)先求集合B,再根据交集、并集以及补集得定义求结果,(2)先根据条件化为集合关系,再结合数轴求实数a 的取值范围.【详解】(1){()(){}[]||3103,1A x y x x x ===+-≥=-当1a =时,{}{}()222|60|602,3B x x ax a x x x =--<=--<=-, 所以[)3,3,A B ⋃=-因为()()(),31,R C A =-∞-⋃+∞,所以()()1,3R C A B ⋂=(2)因为()R C A B B ⋂=,所以R B C A ⊆,当B =∅时,0a =,满足条件,{}()220|602,3a B x x ax a a a >=--<=-当时,不满足条件,因此0a =.【点睛】防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.。
高一数学第一学期期末考试试卷(共5套,含参考答案)
高一第一学期期末考试数学试卷 满分:150分 时间: 120分钟一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}|27,|1,A x x B x x x N =-<<=>∈,则AB 的元素的个数为( )A.3B.4C.5D.62.两条直线a ,b 满足a ∥b ,b α⊂,则a 与平面α的关系是( ) A.a ∥α B.a 与α相交 C.a 与α不相交 D.a α⊂3.方程的1xe x =的根所在的区间是( ). A.)21,0( B.)1,21( C.)23,1( D.)2,23(4.函数y=x (x 2-1)的大致图象是( )5.如图所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为( ) A.90°B.60°C.45°D.30°6.长方体1111ABCD A B C D -中,2AB =,1AA =3AD =,则 长方体1111ABCD A B C D - 的外接球的直径为 ( ) A.2 B.3 C.4 D.57.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120° B.150° C.180° D.240°8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ) A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1角为60°9.若方程1ln 02xx a ⎛⎫-+= ⎪⎝⎭有两个不等的实数根,则a 的取值范围是( )A.1,2⎛⎫+∞ ⎪⎝⎭B.()1,+∞C.1,2⎛⎫-∞ ⎪⎝⎭D.(),1-∞10.某几何体的三视图如图所示(单位: cm ),则该几何体的表面积是( )A.65B.6C.2D.511.已知函数()22log f x x x =+,则不等式()()120f x f +-<的解集为( )A. ()(),13,-∞-⋃+∞B. ()(),31,-∞-⋃+∞C. ()()3,11,1--⋃-D. ()()1,11,3-⋃12.已知()()()2,log 0,1x a f x ag x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是( )二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知不等式062<-+px x 的解集为{|32}x x -<<,则p = .14.2lg 2= _________15.函数()lg 21y x =+的定义域是______________________. 16.函数x21f x =-log x+23⎛⎫⎪⎝⎭()()在区间[-1,1]上的最大值为________. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)全集R U =,函数()lg(3)f x x =+-的定义域为集合A ,集合{}02<-=a x x B .(1)求U A ð; (2)若A B A = ,求实数a 的取值范围.18.(本题满分12分)已知函数⎪⎩⎪⎨⎧>-+≤-=)0(,1)1(log )0(,2)21()(2x x x x f x(1)求)(x f 的零点; (2)求不等式()0f x >的解集.19.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,AD =AB ,∠A =90°,BD ⊥DC ,将△ABD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面BDC. (1) 求证:平面EBD ⊥平面EDC ; (2) 求ED 与BC 所成的角.20.(12分)一块边长为10 cm 的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.(1)试把容器的容积V 表示为x 的函数; (2)若x =6,求图2的正视图的面积.21.(本小题满分12分)在三棱柱111C B A ABC -中,侧面11A ABB 为矩形,1AB =,1AA ,D 为1AA 的中点,BD 与1AB 交于点O ,⊥CO 侧面11A ABB .(Ⅰ)证明:1AB BC ⊥; (Ⅱ)若OA OC =,求点1B 到平面ABC 的距离.1A A1B B1C COD22.(本小题满分12分)已知函数4()log (41)x f x kx =++(k ∈R ),且满足(1)(1)f f -=. (1)求k 的值;(2)若函数()y f x =的图象与直线12y x a =+没有交点,求a 的取值范围; (3)若函数1()2()421f x xx h x m +=+⋅-,[]20,log 3x ∈,是否存在实数m 使得()h x 最小值为0,若存在,求出m 的值;若不存在,请说明理由.高一第一学期期末考试 数学试卷参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 1 14. 2 15. 16. 316.解析:∵y =⎝ ⎛⎭⎪⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f(x)=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上是减函数,∴函数f(x)在区间[-1,1]上的最大值为f(-1)=3.答案:3三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(1)∵⎩⎨⎧>->+0302x x ∴23x -<<…………………………………3分∴A=(-2,3) ∴(][)23u C A =-∞-+∞,,……………………………5分 (2)当0≤a 时,φ=B 满足A B A = ……………………………6分当0>a 时,)(a a B ,-= ∵AB A = ∴A B ⊆[]∴⎪⎩⎪⎨⎧≤-≥-32a a , ∴40≤<a ……………………………9分 综上所述:实数a 的范围是4≤a ……………………………………10分18.解:(1)由0)(=x f 得,⎪⎩⎪⎨⎧=-≤02)21(0x x 或⎩⎨⎧=-+>01)1(log 02x x ,解得1-=x 或1=x .所以,函数)(x f 的零点是—1,1..................................6分(2)由()0f x >得,01()202xx ≤⎧⎪⎨->⎪⎩或20log (1)10x x >⎧⎨+->⎩,解得1x <-或1x >.所以,不等式1)(>x f 的解集是{x |1x <-或1x >}.................................12分19.(1) 证明:∵平面EBD ⊥平面BDC ,且平面EBD ∩平面BDC =BD ,CD ⊥BD , ∴CD ⊥平面EBD , ∵CD 平面EDC ,∴平面EBD ⊥平面EDC.……………………………6分 (2) 解:如答图,连接EA ,取BD 的中点M ,连接AM ,EM , ∵AD ∥BC ,∴∠EDA 即为ED 与BC 所成的角. 又∵AD =AB ,∴ED =EB. ∴EM ⊥BD ,∴EM ⊥平面ABCD.设AB =a ,则ED =AD =a ,EM =MA , ∴AE =a ,∴∠EDA =60°.即ED 与BC 所成的角为60°……………………………12分20.(12分)解 (1)设所截等腰三角形的底边边长为x cm. 在Rt △EOF 中,EF =5 cm ,OF =12x cm ,所以EO =25-14x 2.于是V =13x225-14x 2(cm 3).依题意函数的定义域为{x|0<x<10}.……………………………6分(2)正视图为等腰三角形,腰长为斜高,底边长=AB =6, 底边上的高为四棱锥的高=EO =25-14x 2=4,S =4×62=12(cm 2).……………………………12分21.解:(1),由 得又即又又BD 与CO 交于O 点,又……………………………6分(2),,又AB=1,可得,由得……………………………12分22.解析:(1)(1)(1)f f -=,即144log (41)log (41)k k -+-=++444512log log 5log 144k ∴=-==- ∴12k =- ………………………………………………………………………… ………5分(2)由题意知方程411log (41)22x x x a +-=+即方程4=log (41)x a x +-无解, 令4()log (41)x g x x =+-,则函数()y g x =的图象与直线y a =无交点444411()log 41)log log (1)44x x x xg x x +=+-==+( 任取1x 、2x ∈R ,且12x x <,则12044x x <<,121144x x ∴>. 12124411()()log 1log 1044x x g x g x ⎛⎫⎛⎫∴-=+-+> ⎪ ⎪⎝⎭⎝⎭,()g x ∴在(),-∞+∞上是单调减函数.1114x +>, 41()log 104xg x ⎛⎫∴=+> ⎪⎝⎭. ∴a 的取值范围是(],0.-∞ ……………………………………………………………… 9分注意:如果从复合函数角度分析出单调性,给全分。
高一数学期末考试试题及答案
高一数学期末考试试题及答案高一期末考试试题一、选择题1.已知集合M={x∈N/x=8-m,m∈N},则集合M中的元素的个数为()A.7 B.8 C.9 D.10答案:B。
解析:当m=1时,x=7;当m=2时,x=6;当m=3时,x=5;当m=4时,x=4;当m=5时,x=3;当m=6时,x=2;当m=7时,x=1;当m=8时,x=0.因此,集合M中的元素的个数为8.2.已知点A(x,1,2)和点B(2,3,4),且AB=26,则实数x的值是()A.−3或4 B.6或2 C.3或−4 D.6或−2答案:C。
解析:根据勾股定理,AB=√[(x-2)²+(1-3)²+(2-4)²]=√[(x-2)²+4]。
因为AB=26,所以√[(x-2)²+4]=26,解得x=3或-7.但是题目中说了点A的横坐标为实数,所以x=3.3.已知两个球的表面积之比为1:9,则这两个球的半径之比为()A.1:3 B.1:3 C.1:9 D.1:81答案:B。
解析:设两个球的半径分别为r1和r2,则它们的表面积之比为4πr1²:4πr2²=1:9,化简得.4.圆x+y=1上的动点P到直线3x−4y−10=0的距离的最小值为()A.2 B.1 C.3 D.4答案:A。
解析:首先求出直线3x−4y−10=0与圆x+y=1的交点Q,解得Q(2,-1),然后求出点P到直线的距离d,设P(x,y),则d=|(3x-4y-10)/5|,根据点到直线的距离公式。
将P点的坐标代入d中,得到d的表达式为d=|(3x-4y-16)/5|。
将d表示成x和y的函数,即d=f(x,y)=(3x-4y-16)/5,然后求出f(x,y)的最小值。
由于f(x,y)的系数3和-4的比值为3:4,所以f(x,y)的最小值为f(2,-1)=-2/5,即P点到直线的最小距离为2/5,取整后为2.5.直线x−y+4=0被圆x²+y²+4x−4y+6=0截得的弦长等于()A.12B.22C.32D.42答案:B。
山东省威海市2023-2024学年高一上学期期末考试 数学含答案
高一数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{12345}U =,,,,,{13}A =,,{35}B =,,则()U A B = C A.{24}, B.{5}C.{1245},,, D.{3}2.命题“x Q ∀∈,x A.x Q ∃∈,x + B.x Q ∃∈,x +C.x Q ∃∉,x +D.x Q ∃∉,x +3.函数()f x =的定义域为A.[0)+∞,B.(0)+∞,C.(]0-∞,D.()0-∞,4.已知幂函数2()(214)k f x k k x =--在(0)+∞,上单调递增,则k =A.3- B.3C.5- D.55.甲、乙两校各有2名教师报名支教,若从报名的4名教师中任选2名,则选出的2名教师来自不同学校的概率为A.14B.13C.23D.346.已知343(4a -=,5log 3b =,6log 3c =,则A.a b c <<B.c b a <<C.b c a <<D.b a c<<7.掷红蓝两个均匀的骰子,观察朝上的面的点数,记事件1A :红骰子的点数为2,2A :红骰子的点数为3,3A :两个骰子的点数之和为7,4A :两个骰子的点数之和为9,则A.1A 与2A 对立 B.3A 与4A 不互斥C.1A 与3A 相互独立D.2A 与4A 相互独立8.已知函数()lg 1f x x =-,若()()f a f b =,且a b <,则2[()](10)f a f b -的最小值为A.3- B.54-C.94-D.134-二、选择题:本题共4小题,每小题5分,共20分。
广西桂林市2023-2024学年高一下学期期末考试 数学含答案
桂林市2023~2024学年度下学期期末质量检测高一年级数学(答案在最后)(考试用时120分钟,满分150分)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的校名、姓名、班级、学号和准考证号填写在答题卡上.将条形码横贴在答题卡的“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i -+在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.把2π3弧度化成角度是()A.30︒B.60︒C.90︒D.120︒3.已知向量(),1a m = ,()4,2b =- ,且2b a =-r r ,则m =()A .2B.2- C.12D.12-4.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是()A.平行或异面B.平行C.异面D.相交5.已知3cos 5α=-,且α为第二象限角,则tan α=()A.34-B.34 C.43- D.436.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为()A.100πB.68πC.52πD.50π7.“桂林山水甲天下”,如图,为测量桂林市某公园内一山的高MN ,选择公园内某点A 和另一座山的山顶C 为测量观测点.从A 点测得M 的仰角45MAN ∠=︒,C 点的仰角30CAB ∠=︒以及75MAC ∠=︒,从C点测得60MCA ∠=︒,已知山高50m BC =,则山高MN =()m .A. B. C.D.8.已知圆心角为30︒的扇形AOB 的半径为1,点C 是 AB 上的一点,点D 是线段OA 上的一点,点E 、F 是线段OB 上的两点,且四边形CDEF 为矩形,则该矩形的最大面积为()A.2B.2+C.12-D.12+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =+,21i z =-,则下列说法正确的有()A .12z z = B.12=z z C.12i z z =- D.在复平面内1z ,2z 对应的点关于虚轴对称10.函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)在一个周期内的图象如图所示,则()A.2A =B.2ω=C.π6ϕ=-D.将函数()f x 图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到的函数图象关于y 轴对称11.如图,向透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,水是定量的(定体积为V ).固定容器底面一边BC 于地面上,1BC =,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.水面EFGH 所在四边形的面积为定值B.没有水的部分始终呈棱柱形C.棱11A D 一定与平面EFGH 平行D .当容器倾斜如图所示时,2BE BF V ⋅=(定值)三、填空题:本题共3小题,每小题5分,共15分.12.计算()()1i 2i +-=_________(其中i 为虚数单位).13.在正方体1111ABCD A B C D -中,M 为AB 的中点,则直线1AM 与CD 所成角的余弦值为_________.14.已知O 为ABC 内一点,且4850OA OB OC ++=,点M 在OBC △内(不含边界),若AM AB AC λμ=+,则λμ+的取值范围是_________.四、解答题:本题共5小题,共77分.解答应给出文字说明、证明过程及演算步骤.15.已知向量()1,3a =,()2,1b =- .(1)求向量a 与b夹角的余弦值;(2)若向量a b + 与a kb -互相垂直,求k 的值.16.已知函数()π3cos 23f x x ⎛⎫=+ ⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合.(3)求()f x 的单调递减区间.17.已知正方体1111ABCD A B C D -的棱长为2.(1)证明:1AC BD ⊥.(2)求三棱锥1A C BD -的体积.18.在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin cos sin cos 3cos a A B b A A a C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅=,求ABC 的面积.19.如图,已知直线12l l ∥,A 是1l ,2l 之间的一点,且1AE l ⊥于点E ,2AF l ⊥于点F ,AE m =,AF n=(m ,n 为常数),点B 、C 分别为直线1l 、2l 上的动点,且AB AC ⊥,设ACF α∠=.(1)若π3α=,求ABC 的面积;(2)当A 恰好EF 中点时,求ABC 的周长的最小值.桂林市2023~2024学年度下学期期末质量检测高一年级数学(考试用时120分钟,满分150分)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的校名、姓名、班级、学号和准考证号填写在答题卡上.将条形码横贴在答题卡的“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i -+在复平面内对应的点所在的象限为()A.第一象限 B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】由坐标判断象限即可.【详解】复数12i -+在复平面内对应的点的坐标为()1,2-,在第二象限.故选:B2.把2π3弧度化成角度是()A.30︒B.60︒C.90︒D.120︒【答案】D 【解析】【分析】利用弧度制与角度制的转化可得解.【详解】因为π180=︒,所以22π18012033=⨯︒=︒.故选:D.3.已知向量(),1a m = ,()4,2b =- ,且2b a =-r r ,则m =()A.2B.2- C.12D.12-【答案】B 【解析】【分析】将向量坐标代入等式,列出方程,求解即得.【详解】由2b a =-r r 可得(4,2)2(,1)m -=-,解得,2m =-.故选:B .4.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是()A.平行或异面B.平行C.异面D.相交【答案】A 【解析】【分析】结合两平面平行的位置关系,判断两直线没有公共点即得.【详解】因αβ∥,a α⊂,b β⊂,则a 与b 没有公共点,即a 与b 平行或异面.故选:A .5.已知3cos 5α=-,且α为第二象限角,则tan α=()A.34-B.34 C.43- D.43【答案】C 【解析】【分析】应用同角三角函数关系计算求解即可.【详解】因为α为第二象限角,又因为3cos ,5α=-4sin 5α==,所以4sin 45tan 3cos 35ααα===--.故选:C.6.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为()A.100πB.68πC.52πD.50π【答案】A 【解析】【分析】根据题意,由条件可得球的半径=5r ,再由球的表面积公式,即可得到结果.【详解】设球的半径为r ,则()22284r r =-+,解得=5r ,所以球的表面积为24π100πr =,故选:A.7.“桂林山水甲天下”,如图,为测量桂林市某公园内一山的高MN ,选择公园内某点A 和另一座山的山顶C 为测量观测点.从A 点测得M 的仰角45MAN ∠=︒,C 点的仰角30CAB ∠=︒以及75MAC ∠=︒,从C 点测得60MCA ∠=︒,已知山高50m BC =,则山高MN =()m .A. B. C.D.【答案】B 【解析】【分析】先由条件求得AC 长,再利用正弦定理求得MA 长,最后在Rt MAN 中求得MN .【详解】在Rt ABC △中,由sin CAB BCAC∠=可得;在MAC △中,由正弦定理,sin sin MA ACMCA AMC =∠∠,即得100sin 60sin(1807560)MA ⨯==--在Rt MAN 中,sin MNMAN AM=∠,则45MN == 故选:B .8.已知圆心角为30︒的扇形AOB 的半径为1,点C 是 AB 上的一点,点D 是线段OA 上的一点,点E 、F 是线段OB 上的两点,且四边形CDEF 为矩形,则该矩形的最大面积为()A.2B.2+C.312-D.12+【答案】C 【解析】【分析】结合图形,设COB θ∠=,将CF ,CD 用θ的三角函数式表示,利用三角恒等变换将矩形面积化成sin(260)2θ+-,利用θ的范围,结合正弦函数的图象特点即可求得其最大值.【详解】如图,设COB θ∠=,则30COA θ∠=- ,(0,30)θ∈ ,sin ,CF θ=由正弦定理,1sin(30)sin150CD θ=- ,解得2sin(30)CD θ=-,故矩形CDEF 的面积为:132sin(30)sin 2(cos sin )sin 22S θθθθθ=-=-213sin cos 3sin 2cos 2)22θθθθθ=-=--3sin(260)2θ=+-,因030θ<< ,则得60260120θ<+< ,故当26090θ+= 时,即15θ= 时,max 312S =-.故选:C.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =+,21i z =-,则下列说法正确的有()A.12z z =B.12=z z C.12i z z =- D.在复平面内1z ,2z 对应的点关于虚轴对称【答案】AB 【解析】【分析】分别应用共轭复数、复数的模、复数的除法法则和复数的几何意义进行求解.【详解】对于选项A ,121i=z z =-,故选项A 正确;对于选项B ,1112z =+=,221(1)2z =+-=12=z z ,故选项B 正确;对于选项C ,2121i (1i)2i i 1i (1i)(1i)2z z ++====--+,故选项C 错误;对于选项D ,在复平面内1z 对应的点为1(1,1)Z ,2z 对应的点为2(1,1)Z -,点12,Z Z 关于实轴对称,故选项D 错误.故选:AB.10.函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)在一个周期内的图象如图所示,则()A.2A =B.2ω=C.π6ϕ=-D.将函数()f x 图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到的函数图象关于y 轴对称【答案】AC 【解析】【分析】对于A ,由图易得;对于B ,利用周期公式即可求得;对于C ,代入特殊点计算即得;对于D ,利用平移变换求得函数式,再利用函数奇偶性即可判定.【详解】对于A ,因()()sin f x A x ωϕ=+,由图知max min22y y A -==,故A 正确;对于B ,设函数的最小正周期为T ,由图知35πππ49182T =-=,解得2π3T =,则2π2π3ω=,解得3ω=,故B 错误;对于C ,由图知函数图象经过点π(,0)18,则得π2sin(3)018ϕ⨯+=,解得π2π,Z 6k k ϕ=-+∈,因π2ϕ<,故得π6ϕ=-,故C 正确;对于D ,将函数()π2sin(36f x x =-图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到函数为:ππ7ππ2sin[3(]2sin(3)2sin(33666y x x x =--=-=--,不是偶函数,故D 错误.故选:AC.11.如图,向透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,水是定量的(定体积为V ).固定容器底面一边BC 于地面上,1BC =,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.水面EFGH 所在四边形的面积为定值B.没有水的部分始终呈棱柱形C.棱11A D 一定与平面EFGH 平行D.当容器倾斜如图所示时,2BE BF V ⋅=(定值)【答案】BCD 【解析】【分析】画出随着倾斜度得到的图形,根据线面平行的性质及棱柱的定义判断A ,B ,C ,再根据柱体的体积公式判断D.【详解】依题意将容器倾斜,随着倾斜度的不同可得如下三种情形,对于A :水面EFGH 是矩形,线段FG 的长一定,从图1到图2,再到图3的过程中,线段EF 长逐渐增大,则水面EFGH 所在四边形的面积逐渐增大,故A 错误;对于B :依题意,//BC 水面EFGH ,而平面11BCC B 平面EFGH FG =,BC ⊂平面11BCC B ,则//BC FG ,同理//BC EH ,而//BC AD ,BC FG EH AD ===,又BC ⊥平面11ABB A ,平面11//ABB A 平面11CDD C ,因此有水的部分的几何体是直棱柱,长方体去掉有水部分的棱柱,没有水的部分始终呈棱柱形,故B 正确;对于C :因为11////A D BC FG ,FG ⊂平面EFGH ,11A D ⊄平面EFGH ,因此11//A D 平面EFGH ,即棱11A D 一定与平面EFGH 平行,故C 正确;对于D :当容器倾斜如图3所示时,有水部分的几何体是直三棱柱,其高为1BC =,体积为V ,又12BEF S BE BF =⋅ ,BEF V S BC =⋅ ,所以22V BE BF V BC ⋅==,故D 正确.故选:BCD三、填空题:本题共3小题,每小题5分,共15分.12.计算()()1i 2i +-=_________(其中i 为虚数单位).【答案】3i +##i 3+【解析】【分析】把复数应用乘法化简即可.【详解】()()21i 2i 2i 2i i 3i +-=-+-=+.故答案为:3i+13.在正方体1111ABCD A B C D -中,M 为AB 的中点,则直线1AM 与CD 所成角的余弦值为_________.【答案】5【解析】【分析】利用平移得到异面直线所成角,借助于直角三角形求解即得.【详解】在正方体1111ABCD A B C D -中,因//CD AB ,故直线1A M 与AB 所成角即直线1A M 与CD 所成角,即1AMA ∠.设正方体棱长为2,因M 为AB 的中点,则1A M =,于是1cos5AMA ∠==,即直线1A M 与CD 所成角的余弦值为5.故答案为:5.14.已知O 为ABC 内一点,且4850OA OB OC ++= ,点M 在OBC △内(不含边界),若AM AB AC λμ=+ ,则λμ+的取值范围是_________.【答案】13,117⎛⎫⎪⎝⎭【解析】【分析】设AO mAB nAC =+ ,根据题意结合平面向量基本定理可得851717AO AB AC =+uuu r uu u r uuu r ,设OM xOB yOC =+uuu r uu u r uuu r ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,整理可得8985512171717171717AM x y AB x y AC ⎛⎫⎛⎫=+-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uu u r uuu r ,进而可得结果.【详解】设,,AO mAB nAC m n =+∈R uuu r uu u r uuu r ,即OA AO mAB nAC =-=--uu r uuu r uu u r uuu r ,可得()()1,1OB OA AB m AB nAC OC OA AC mAB n AC =+=--=+=-+-uu u r uu r uu u r uu u r uuu r uuu r uu r uuu r uu u r uuu r,因为4850OA OB OC ++=,即()()()481510mAB nAC m AB nAC mAB n AC ⎡⎤⎡⎤--+--+-+-=⎣⎦⎣⎦ ,整理可得()()8175170m AB n AC -+-= ,且,AB AC 不共线,则8175170m n -=-=,解得85,1717m n ==,即851717AO AB AC =+uuu r uu u r uuu r ,95812,17171717OB AB AC OC AB AC =-=-+uu u r uu u r uuu r uuu r uu u r uuu r ,又因为点M 在OBC △内(不含边界),设,,OM xOB yOC x y =+∈R ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,可得9851217171717OM x y AB x y AC ⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uu u r uuu r ,则8985512171717171717AM AO OM x y AB x y AC ⎛⎫⎛⎫=+=+-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uuu r uuu r uu u r uuu r ,可得8981717175512171717x y x y λμ⎧=+-⎪⎪⎨⎪=-+⎪⎩,可得()1341717x y λμ+=++,且01x y <+<,可得()13413,1171717x y λμ⎛⎫+=++∈ ⎪⎝⎭,所以λμ+的取值范围是13,117⎛⎫ ⎪⎝⎭.故答案为:13,117⎛⎫ ⎪⎝⎭.【点睛】关键点点睛:1.设AO mAB nAC =+ ,根据题意结合平面向量基本定理可得85,1717m n ==;2.根据三角形可设OM xOB yOC =+uuu r uu u r uuu r ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,用,x y 表示,λμ,即可得结果.四、解答题:本题共5小题,共77分.解答应给出文字说明、证明过程及演算步骤.15.已知向量()1,3a = ,()2,1b =- .(1)求向量a 与b 夹角的余弦值;(2)若向量a b + 与a kb - 互相垂直,求k 的值.【答案】(1)10.(2)116k =.【解析】【分析】(1)利用平面向量的数量积即可求得结果.(2)利用两向量垂直的条件即可求得结果.【小问1详解】由()1,3a = ,()2,1b =- ,所以1(2)31231a b ⋅=⨯-+⨯=-+=,||a ==b == ,设向量a 与b 的夹角为θ,则cos 10||||a b a b θ⋅=== .【小问2详解】若向量a b + 与a kb - 互相垂直,则22()()(1)10510a b a kb a kb k a b k k +⋅-=-+-⋅=-+-=,所以116k =.16.已知函数()π3cos 23f x x ⎛⎫=+⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合.(3)求()f x 的单调递减区间.【答案】(1)π;(2)最大值为3,π{|π,Z}6x x k k =-+∈;(3)πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .【解析】【分析】(1)利用周期公式计算即得;(2)将π23x +看成整体角,结合余弦函数的图象,即可求得;(3)将π23x +看成整体角,结合余弦函数的递减区间,计算即得.【小问1详解】2ππ2T ==,故()f x 的最小正周期为π;【小问2详解】当π22π3x k +=,k ∈Z 时,即ππ6x k =-+,k ∈Z 时,πcos 213x ⎛⎫+= ⎪⎝⎭,得()max 3f x =,即()f x 最大值为3.则()f x 的最大值为3,取得最大值时x 的集合为π{|π,Z}6x x k k =-+∈;【小问3详解】由ππ2π22π3k x k ≤+≤+,k ∈Z 得ππππ63k x k -+≤≤+,k ∈Z 所以函数()f x 的单调递减区间是πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .17.已知正方体1111ABCD A B C D -的棱长为2.(1)证明:1AC BD ⊥.(2)求三棱锥1A C BD -的体积.【答案】(1)证明见解析(2)43【解析】【分析】(1)先证BD ⊥平面1ACC ,则可得1AC BD ⊥;(2)利用等体积转化即可求得.【小问1详解】在正方体1111ABCD A B C D -中,BD AC ⊥,1C C ⊥Q 平面ABD ,BD ⊂平面ABD ,1C C BD ∴⊥.又1C C AC C = ,1C C 、AC ⊂平面1ACC ,BD ∴⊥平面1ACC .又1AC ⊂平面1ACC ,1AC BD ∴⊥.【小问2详解】在正方体1111ABCD A B C D -中,1C C ⊥平面ABD ,1111111332A C BD C ABD ABD V V S CC AD AB CC --∴==⨯=⨯⨯⨯⨯ 114222323=⨯⨯⨯⨯=.18.在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin cos sin cos 3cos a A B b A A a C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅= ,求ABC 的面积.【答案】(1)π3(2)2【解析】【分析】(1)根据题意,由正弦定理边化角,代入计算,即可得到结果;(2)根据题意,由余弦定理结合三角形的面积公式代入计算,即可得到结果.【小问1详解】因为sin cos sin cos cos a A B b A A C +=,所以根据正弦定理得sin sin cos sin sin cos cos A A B A B A A C +=,因为sin 0A ≠,所以sin cos sin cos A B B A C +=,即()sin A B C +=,即sin C C =.因为cos 0C ≠,所以tan C =.因为0πC <<,所以π3C =.【小问2详解】cos 1AB AC bc A ⋅== .因为2222cos a b c bc A =+-,所以2292cos 11b c bc A +=+=①.因为2222cos c a b ab C =+-,所以2222π2cos 23cos 3393b c ab C a b b -=-=⨯⨯⨯-=-②.联立①②可得22320b b --=,解得2b =(负根舍去),故ABC 的面积为11333sin 322222ab C =⨯⨯⨯=.19.如图,已知直线12l l ∥,A 是1l ,2l 之间的一点,且1AE l ⊥于点E ,2AF l ⊥于点F ,AE m =,AF n=(m ,n 为常数),点B 、C 分别为直线1l 、2l 上的动点,且AB AC ⊥,设ACF α∠=.(1)若π3α=,求ABC 的面积;(2)当A 恰好EF 中点时,求ABC 的周长的最小值.【答案】(1)33mn (2))221m+.【解析】【分析】(1)由3πBAE α∠==,结合锐角三角函数求出,AB AC ,进而得出三角形面积;(2)由直角三角形的边角关系结合勾股定理得出BC ,进而表示周长,再利用sin cos αα+与sin cos αα的关系,换元并由反比例函数性质得出周长最小值.【小问1详解】由题意,易得3πBAE α∠==,1AE l ⊥ ,2AF l ⊥,且AE m =,AF n =,2co πs 3mAB m ∴==,33sin 3πnAC ==,又AB AC ⊥ ,11232322233ABC S AB AC m n mn ∴=⋅=⨯⨯=△.【小问2详解】由题意有0m n =>,sin m AB α=,cos m AC α=,22222211sin cos sin cos sin cos m m m BC αααααα=+=+,所以ABC 的周长()111sin cos 1sin cos sin cos sin cos f m m ααααααααα++⎛⎫⎛⎫=++= ⎪⎝⎭⎝⎭,其中π0,2α⎛⎫∈ ⎪⎝⎭.设sin cos t αα=+,则πsin cos 4t ααα⎛⎫=+=+ ⎪⎝⎭,ππ3,444πα⎛⎫+∈ ⎪⎝⎭,所以πsin ,142α⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,即(π4t α⎛⎫=+∈ ⎪⎝⎭,所以21sin cos 2t αα-=.所以212112t m y m t t +=⋅=--,(t ∈,于是当t =时,())min 21f m α==+,因此,周长的最小值为)21m +.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005——2006学年度第一学期期末考试试卷
高 一 数 学
一、选择题( 5*12=60分)
1. 若U={1,2,3,4},M={1,2}, N={2,3}, 则C U (M ∪N)=
( )
(A){1,2,3}
(B) {4}
(C) {1,3,4}
(D) {2}
2、下列根式中,分数指数幂的互化,正确的是 ( ) A
.12
()(0)x x =-> B
13
(0)y y =<
C
.34
0)x
x -=> D
.130)x x -=≠
3.函数(
)2log 1y x =+ ( )
(A )()0,2
(B )[]0,2
(C )()1,2-
(D )(]1,2-
4、正方体ABCD-A 1B 1C 1D 1各面上的对角线与正方体的对角线AC1垂直的条数是 ( )
A、4条 B、6条 C、10条 D、12条
5.一个水平放置的三角形的斜二侧直观图是等腰直角
三角形''
'
A B O ,若''
1O B =,那么原∆ABO 的面积是(
A .1
2
B .2
C
D .
6、若A(-2,3),B(3,-2),C(
2
1
,m)三点共线,则m的值为( ) A、
21 B、2
1
- C、-2 D、2 7、以A(1,3)和B(-5,1)为端点线段AB的中垂线方程是 ( )
A、3x-y+8=0 B、3x+y+4=0 C、2x-y-6=0 D、3x+y+8=0
8、方程02
2
=++-+m y x y x 表示一个圆,则m 的取值范围是 ( )
A 、2≤m
B 、m < 2
C 、 m <
21 D 、2
1
≤m 9、圆1622=+y x 上的点到直线03=--y x 的距离的最大值是--------------( )
A .
2
2
3 B .2234- C .2234+ D .0
10、直线过点P (0,2),且截圆2
2
4x y +=所得的弦长为2,则直线的斜率为( )
A 、3
2
±
B 、
C 、±、11.下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是( )
A .
B .
C .
D . 12、 直线l :b x y +=与曲线c :21x y -=有两个公共点,则b 的取值范围是( ) A. 22<
<-b B. 21≤≤b C. 21<≤b D. 21<<b
二、填空题(4*4=16分)
13、函数2
()23f x x mx =-+,当[)2,x ∈-+∞时是增函数,则m 的取值范围是
14.一个正四棱柱的侧面展开图是一个边长为4的正方形,则它的体积为___________.
15、已知A(-2,3,4),在y轴上求一点B,使AB =,则点B的坐标为 。
16、向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是
高 一 数 学 答 卷 纸
得分
二、填空题(4×4′=16′) 13. ; 14. ;
15. 16. ; 三、计算与证明(共74分) 17、(本题12分)
已知集合A =}2432{2++a a ,,
,B=}24270{2
-+-a a a ,,,,A ∩B={3,7}, 求B A a ⋃的值及集合。
18.(本题12分)已知函数1
212)(+-=x
x x f
(1)判断)(x f 的奇偶性;
(2)判断并用定义证明)(x f 在),(+∞-∞上的单调性。
19、(本题12分)求过直线01871=--y x l :
和091722=++y x l :的交点,且垂直于直线072=+-y x 的直线方程。
20、(本题12分)如图: P A ⊥矩形ABCD 所在平面,M ,N 分别是AB ,PC 的中点。
(1)求证:M N ∥平面PAD 。
(2) 求证:M N ⊥CD 。
(3) 若∠PD A =45°,求证; M N ⊥平面PCD. 21、(本题12分)已知圆的方程为2
2
(1)(1)1,(2,3),x y P -+-=点坐标为求圆的过P 点的切线方程以及切线长。
22、(本题14分)如图:在二面角βα--l 中,A、Bα∈,C、Dl ∈,ABCD为矩形,,
,αβ⊥∈PA p 且PA=AD,M、N依次是AB、PC的中点, (1)求二面角βα--l 的大小(6分)
(2)求证:AB MN ⊥(6分)
(1) 求异面直线PA和MN所成角的大小(7分)
高一数学参考答案
一、选择题
BCDBC ABCCC BC 二、填空题
(,2]-∞- 4
(0,8,0) 或 (0,-2 ,0) B
17、a=1 0,1,2,3,7 18、解:(1))(x f 的定义域为),(+∞-∞,且)(1
2122
1211
2
12)(x f x f x
x x
x x
x -=+--
=+-=
+-=---
所以,)(x f 为R 上的奇函数。
(2)设对于任意的21x x <,由于 )
12
)(12
()22(21
2
21
2
21
2
121
2
12)()(2
1
211
2
2
21
121++-=
+-
+=
+--
+-=-x x x x x x x x x x x f x f
又 21
22
x x <,所以)()(21x f x f <。
故 )(x f 在),(+∞-∞上单调递增的。
得 ⎩⎨⎧-=-=271127
13
x y 所以交点坐标为),(2713
2711-- 19:解方程组 又因为直线斜 率为K=2
1
-
, 所以求得直线方程为27x+54y+37=0 20(1)若切线的斜率存在,可设切线的方程为
3(2)y k x -=- 即230kx y k --+=
则圆心到切线的距离
解得3
4k =
故切线的方程为3460x y -+=
(2)若切线的斜率不存在,切线方程为x=2 ,此时直线也与圆相切。
综上所述,过P 点的切线的方程为3460x y -+=和x=2. 21、取PD 中点E, 连接AE, ME 以下略 22:解:(1)连结PD ∵ABCD 为矩形∴AD ⊥DC, 即 又PA ⊥α,∴PD ⊥l ,
∴∠PAD 为二面角βα--l 的平面角,又∵PA ⊥AD ,PA=AD ∴∆PAD 是等腰直角三角形,∴∠PDA=450
,即二面角βα--l 的平
面角为450。
(2)证明:过M 作ME ∥AD ,交CD 于E ,连结NE ,则ME ⊥CD , NE ⊥CD ,∴CD ⊥平面MNE , MN ⊥CD ,又∵AB ∥CD ,MN ⊥AB 。
(3)解:过N 作NF ∥CD ,交PD 于F ,∵ N 是PC 的中点
∴F 是PD 的中 点,连结AF ,可以证明四边形AMNF 是平行四边形
∴AF ∥MN ,∠PAF 是异面直线PA和MN所成的角,∵ PA=PD , ∴F 是PD 的中点,∴AF
是∠PAD 的平分线,∵ ∠PAD=900 ∴∠PAF=450,∴异面直线PA和MN所成的角为450。
{
091720
187=++=--y x y x。