人教版八年级数学试卷及答案

合集下载

人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列四个图案中,是轴对称图形的是()A .B .C .D .2.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是()A .1∶2∶4B .2∶3∶4C .3∶4∶7D .1∶3∶43.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 4.下列运算中,正确的是()A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅5.如图,点P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,垂足为D ,若PD =2,则点P 到边OB 的距离是()A .4B C .2D .16.若分式13x +有意义,则x 的取值范围是()A .x >3B .x <3C .x ≠-3D .x =37.如图,在△ABC 中,∠A =80°,∠C =60°,则外角∠ABD 的度数是()A .100°B .120°C .140°D .160°8.下列各式是完全平方式的是()A .214x x -+B .21x +C .22x xy y -+D .221a a +-9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③二、填空题11.点()2,1M-关于y轴的对称点的坐标为______.12.如果多边形的每个内角都等于150︒,则它的边数为______.13.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是_____cm.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=_____.15.已知13aa+=,则221+=aa_____________________;16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题17.解方程:21133xx x-=---.18.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.21.甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?22.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.23.如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?25.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?参考答案1.C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.【详解】A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:C .【点睛】考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【详解】A 、1+2<4,不能组成三角形;B 、2+3>4,能组成三角形;C 、3+4=7,不能够组成三角形;D 、1+3=4,不能组成三角形.故选B .【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法4.B【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 选项:23a a a ⋅=,故是错误的;B选项:()224a a=,故是正确的;C选项:235a a a⋅=,故是错误的;D选项:()3243=⋅,故是错误的;a b a b故选:B.【点睛】考查了同底数幂乘法和幂的乘方,解题关键是运用了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.5.C【分析】根据角平分线的性质解答.【详解】解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C【解析】【分析】考查分式有意义的条件:分母≠0,即x+3≠0,解得x的取值范围.【详解】∵x+3≠0,∴x≠-3.故选:C.考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,∠ABD=∠A+∠C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.A【解析】【分析】根据完全平方式(a2+2ab+b2和a2-2ab+b2)进行判断.【详解】A、是完全平方式,故本选项正确;B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误;D、不是完全平方式,故本选项错误;故选:A.【点睛】考查了对完全平方式的应用,主要考查学生的判断能力.9.D【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.11.()2,1【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.12.12【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n =360°÷30°=12.故答案为12.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13.7【解析】【分析】根据△ABC ≌△DCB 可证明△AOB ≌△DOC ,从而根据已知线段即可求出OC 的长.【详解】∵△ABC ≌△DCB ,∴AB=DC ,∠A=∠D ,又∵∠AOB=∠DOC (对顶角相等),∴△AOB ≌△DOC ,∴OC=BO=BD-DO=AC-DO=7.故答案是:7.【点睛】考查了全等三角形的性质解题的关键是注意掌握全等三角形的对应边相等,注意对应关系.14.15°.【分析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE =∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE =∠ADE ,∵∠ADE =40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=150652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15.7【分析】把已知条件平方,然后求出所要求式子的值.【详解】∵13a a +=,∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a +=9,∴221+=a a =7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.16.240°【详解】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21133x x x -=---2-x=x-3-1-2x=-3-1-2x=3当x=3时,x-3=0,所以原分式方程无解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.8x -3,-11【解析】【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【详解】原式=9x 2-4-10x 2+10x+x 2+1-2x=8x-3当x=-1时,原式=-8-3=-11.【点睛】考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.19.见解析【分析】先作CD的垂直平分线和∠AOB的平分线,它们的交点为P点,则根据线段垂直平分线的性质和角平分线的性质得到PC=PD,且P到∠AOB两边的距离相等.【详解】解:如图,点P为所作.【点睛】本复考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.21.甲需8天,乙需4天【解析】【分析】根据乙队先单独做1天后,再由两队合作2天就完成了全部工程则等量关系为:乙一天的工作量+甲乙合作2天的工作量=1,再设未知数列方程,解方程即可.【详解】设乙队单独完成所需天数x天,则甲队单独完成需2x天,1112(1++=2x x x解得:x=4,当x=4时,分式方程有意义,所以x=4是分式方程的解,所以甲、乙两队单独完成工程各需8天和4天.答:甲、乙两队单独完成工程各需8天和4天.【点睛】考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.证明见解析【详解】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.试题解析:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D.∴∠ABC=2∠D.又∵∠C=∠ABC,∴∠C=2∠D.23.(1)见解析;(2)6【分析】(1)根据DB ⊥BC ,CF ⊥AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明△DBC ≌△ECA ,即可得证;(2)由(1)可得△DBC ≌△ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案.【详解】证明:(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△DBC ≌△ECA (AAS ).∴AE =CD ;(2)由(1)可得△DBC ≌△ECA∴CE=BD ,∵BC=AC=12cm AE 是BC 的中线,∴162CE BC cm ==,∴BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC ≌△ECA 解题关键.24.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.25.(1)全等;(2)当点Q 的运动速度为54厘米/秒时,能够使△BPD 与△CQP 全等.【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【详解】(1)因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BC BP -,BC =8厘米,所以PC =835-=(厘米),所以PC =BD .因为AB =AC ,所以∠B=∠C,所以△BPD≌△CQP(SAS).(2)因为P v≠Q v,所以BP≠CQ,当△BPD≌△CPQ时,因为∠B=∠C,AB=10厘米,BC=8厘米,所以BP=PC=4厘米,CQ=BD=5厘米,所以点P,点Q运动的时间为4秒,所以54Qv 厘米/秒,即当点Q的运动速度为54厘米/秒时,能够使△BPD与△CQP全等.【点睛】考查了全等三角形的判定,等腰三角形的性质.解题时,主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。

人教版数学八年级上册 全册全套试卷试卷(word版含答案)

人教版数学八年级上册 全册全套试卷试卷(word版含答案)

人教版数学八年级上册 全册全套试卷试卷(word 版含答案)一、八年级数学三角形填空题(难)1.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.【答案】80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA ,即∠E=2∠F=2×40°=80°.故答案为80.2.如图1,△ABC 中,沿∠BAC 的平分线AB 1折叠,剪掉重叠部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C 的平分线A n B n+1折叠,点B n 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC 是△ABC 的好角.(1)如图2,在△ABC 中,∠B>∠C ,若经过两次折叠,∠BAC 是△ABC 的好角,则∠B 与∠C 的等量关系是_______;(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。

【答案】B 2C ∠∠= 140°、120°或80°【解析】【分析】(1)根据折叠性质可得∠A1B1B2=∠C,∠AA1B1=∠B,由三角形外角性质可得∠AA1B1=2∠C,根据等量代换可得∠B=2∠C;(2)先求出经过三次折叠,∠BAC是△ABC 的好角时,∠B与∠C的等量关系为∠B=3∠C,进而可得经过n次折叠,∠BAC是△ABC的好角时∠B与∠C的等量关系为∠B=n∠C,因为最小角是20º,是△ABC的好角,根据好角定义,设另两角分别为20mº,4mn°,由题意得20m+20mn+20=180°,所以m(n+1)=8,再根据m、n都是正整数可得m与n+1是8的整数因子,从而可以求得结果.【详解】(1)根据折叠性质得∠B=∠AA1B1,∠A1B1B2=∠C,∵∠AA1B1=∠A1B1B2+∠C,∴∠B=2∠C故答案为:∠B=2∠C(2)如图:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1B1C=∠A1A2B2,∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1-∠A1B1C=∠BAC+2∠B-2∠C=180°,根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C;∴当∠B=2∠C时,∠BAC是△ABC的好角;当∠B=3∠C时,∠BAC是△ABC的好角;故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;∵最小角为20°,∴设另两个角为20m°和20mn°,∴20°+20m°+20mn°=180°,即m(1+n)=8,∵m、n为整数,∴m=1,1+n=8;或m=2,1+n=4;或m=4,1+n=2.解得:m=1,n=7;m=2,n=3,m=4,n=1,∴另两个角为20°、140°或40°、120°或80°、80°,∴此三角形最大角为140°、120°或80°时,三个角均是此三角形的好角.故答案为:140°、120°或80°【点睛】本题考查了翻折变换(折叠问题).充分利用三角形内角和定理、三角形外角定理以及折叠的性质是解题关键.3.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=_____.【答案】115°.【解析】【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12×(∠ABC+∠ACB)=12×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.4.等腰三角形一边长是10cm,一边长是6cm,则它的周长是_____cm或_____cm.【答案】22cm,26cm【解析】【分析】题目给出等腰三角形有两条边长为10cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)当腰是6cm时,周长=6+6+10=22cm;(2)当腰长为10cm时,周长=10+10+6=26cm,所以其周长是22cm或26cm.故答案为:22,26.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.【答案】360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.6.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.【答案】240.【解析】【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.二、八年级数学三角形选择题(难)7.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④【答案】C【解析】【分析】根据三角形内角和定理以及三角形角平分线的定义可得∠BOC=90°+12∠1,再结合三角形外角性质可得∠ECD=∠OBC+∠2,从而可得∠BOC=90°+∠2,据此即可进行判断.【详解】∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠ABC+∠ACB+∠1=180°,∴∠ABC+∠ACB=180°-∠1,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠1)=90°-12∠1,∴∠BOC=180°-∠OBC-∠OCB=180°-(90°-12∠1)=90°+12∠1,∵∠ACD=∠ABC+∠1,CE平分∠ACD,∴∠ECD=12∠ACD=12(∠ABC+∠1),∵∠ECD=∠OBC+∠2,∴∠2=12∠1,即∠1=2∠2,∴∠BOC=90°+12∠1=90°+∠2,∴①④正确,②③错误,故选C.【点睛】本题考查了三角形内角和定理、三角形外角的性质、三角形的角平分线等知识,熟练掌握相关的性质及定理、运用数形结合思想是解题的关键.8.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A .40°B .50°C .60°D .70°【答案】A【解析】【分析】 由等腰三角形的性质得到∠B=∠C ,由角平分线的定义得到∠BDM=∠EDM ,∠CEN=∠DEN ,根据外角的性质得∠B=∠DMN -∠BDM ,∠C=∠ENM -∠CEN ,整理可得∠DMN+∠DEN=∠EDM+∠ENM ,再根据四边形的内角和可得∠DMN+∠DEN=∠EDM+∠ENM=180°,则∠DEN=70°,故∠DEA=40°.【详解】解:∵AB=AC ,∴∠B=∠C ,又∵DM 平分∠BDE ,EN 平分∠DEC ,∴∠BDM=∠EDM ,∠CEN=∠DEN ,∵∠B=∠DMN -∠BDM=∠DMN -∠EDM ,∠C=∠ENM -∠CEN=∠ENM -∠DEN ,∴∠DMN -∠EDM=∠ENM -∠DEN ,即∠DMN+∠DEN=∠EDM+∠ENM ,∵四边形DMNE 内角和为360°,∴∠DMN+∠DEN=∠EDM+∠ENM=180°,∴∠DEN=70°,则∠DEA=180°-2∠DEN=40°.故选A .9.已知:如图,D 、E 、 F 分别是△ABC 的三边的延长线上一点,且AB =BF ,BC =CD ,AC =AE ,ABC S ∆=5cm 2,则DEF S ∆的值是( )A .15 cm 2B .20 cm 2C .30 cm 2D .35 cm 2【答案】D【解析】【分析】 连接AD ,BE ,CF .根据等底同高的两个三角形面积相等,得到所有小三角形面积都等于△ABC 的面积,故△DEF 的面积等于7倍的△ABC 面积,即可得出结果.【详解】连接AD ,BE ,CF .∵BC =CD ,∴S △ACD =S △ABC =5,S △FCD =S △BCF .同理S △AEB =S △ABC =5,S △AED =S △ACD =5;S △AEB =S △BEF =5,S △BFC =S △ABC =5;∴S △FCD =S △BCF =5,∴S △EFD =7 S △ABC =35(cm 2).故选D .【点睛】本题是面积及等积变换综合题目,考查了三角形的面积及等积变换,本题有一定难度,需要通过作辅助线,运用三角形中线等分三角形的面积才能得出结果.10.如图:在△ABC 中,G 是它的重心,AG ⊥CD ,如果32BG AC ⋅=,则△AGC 的面积的最大值是( )A.23B.8 C.43D.6【答案】B【解析】分析:延长BG交AC于D.由重心的性质得到BG=2GD,D为AC的中点,再由直角三角形斜边上的中线等于斜边的一半,得到AC=2GD,即有BG=AC,从而得到AC、GD的长.当GD⊥AC时,△AGC的面积的最大,最大值为:12AC•GD,即可得出结论.详解:延长BG交AC于D.∵G是△ABC的重心,∴BG=2GD,D为AC的中点.∵AG⊥CG,∴△AGC是直角三角形,∴AC=2GD,∴BG=AC.∵BG•AC=32,∴AC=32=42,GD=22.当GD⊥AC时,.△AGC的面积的最大,最大值为:12AC•GD=142222⨯⨯=8.故选B.点睛:本题考查了重心的性质.解题的关键是熟知三角形的重心到顶点的距离等于它到对边中点距离的2倍.11.如图,三角形ABC中,D为BC上的一点,且S△ABD=S△ADC,则AD为()A.高B.角平分线C.中线D.不能确定【答案】C【解析】试题分析:三角形ABD和三角形ACD共用一条高,再根据S△ABD=S△ADC,列出面积公式,可得出BD=CD.解:设BC边上的高为h,∵S△ABD=S△ADC,∴,故BD=CD,即AD是中线.故选C.考点:三角形的面积;三角形的角平分线、中线和高.12.如下图,线段BE 是ABC ∆的高的是( )A .B .C .D .【答案】D【解析】【分析】根据高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BE 是△ABC 的高.【详解】解:由图可得,线段BE 是△ABC 的高的图是D 选项;故选:D .【点睛】本题主要考查了三角形的高线的画法,掌握三角形的高的画法是解题的关键.三、八年级数学全等三角形填空题(难)13.如图,在等腰三角形ABC 中,90ABC ∠=,D 为AD 边上中点,多D 点作DE DF ⊥,交AB 于E ,交BC 于F ,若3AE =,2CF =,则ABC ∆的面积为______.【答案】252【解析】【分析】 利用等腰直角三角形斜边中点D 证明AD=BD ,∠DBC=∠A=45︒,再利用DE DF ⊥证得∠ADE=∠BDF ,由此证明△ADE ≌△BDF ,得到BC 的长度,即可求出三角形的面积.【详解】∵90ABC ∠=︒,AB=BC,∴∠A=45︒,∵D 为AC 边上中点,∴AD=CD=BD ,∠DBC=∠A=45︒,∠ADB=90︒,∵DE DF ⊥,∴∠EDB+∠BDF=∠EDB+∠ADE=90︒,∴∠ADE=∠BDF,∴△ADE ≌△BDF,∴BF==AE=3,∵CF=2,∴AB=BC=BF+CF=5,∴ABC ∆的面积为212BC ⋅=252, 故答案为:252. 【点睛】此题考查等腰直角三角形的性质,三角形全等的判定及性质.14.如图,ABC ∆中,90ACB ∠=︒,//AC BD ,BC BD =,在AB 上截取BE ,使BE BD =,过点B 作AB 的垂线,交CD 于点F ,连接DE ,交BC 于点H ,交BF 于点G ,7,4BC BG ==,则AB =____________.【答案】658【解析】【分析】 过点D 作DM ⊥BD ,与BF 延长线交于点M ,先证明△BHE ≌△BGD 得到∠EHB=∠DGB ,再由平行和对顶角相等得到∠MDG=∠MGD ,即MD=MG ,在△△BDM 中利用勾股定理算出MG 的长度,得到BM ,再证明△ABC ≌△MBD ,从而得出BM=AB 即可.【详解】解:∵AC ∥BD ,∠ACB=90°,∴∠CBD=90°,即∠1+∠2=90°,又∵BF ⊥AB ,∴∠ABF=90°,即∠8+∠2=90°,∵BE=BD ,∴∠8=∠1,在△BHE 和△BGD 中,8143BE BD ∠=∠∠=∠⎧⎪=⎨⎪⎩,∴△BHE ≌△BGD (ASA ),∴∠EHB=∠DGB∴∠5=∠6,∠6=∠7,∵MD ⊥BD∴∠BDM=90°,∴BC ∥MD ,∴∠5=∠MDG ,∴∠7=∠MDG∴MG=MD ,∵BC=7,BG=4,设MG=x ,在△BDM 中,BD 2+MD 2=BM 2,即()2227=4x x ++,解得x=338, 在△ABC 和△MBD 中=8=1BC B ACB MDB D∠∠∠∠⎧⎪=⎨⎪⎩, ∴△ABC ≌△MBD (ASA )AB=BM=BG+MG=4+338=658. 故答案为:658.【点睛】本题考查了全等三角形的判定和性质,勾股定理,适当添加辅助线构造全等三角形,利用全等三角形的性质求出待求的线段,难度中等.15.如图,△ABE,△BCD均为等边三角形,点A,B,C在同一条直线上,连接AD,EC,AD与EB相交于点M,BD与EC相交于点N,下列说法正确的有:___________①AD=EC;②BM=BN;③MN∥AC;④EM=MB.【答案】①②③【解析】∵△ABE,△BCD均为等边三角形,∴AB=BE,BC=BD,∠ABE=∠CBD=60°,∴∠ABD=∠EBC,在△ABD和△EBC中AB BEABD EBCBD BC=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△EBC(SAS),∴AD=EC,故①正确;∴∠DAB=∠BEC,又由上可知∠ABE=∠CBD=60°,∴∠EBD=60°,在△ABM和△EBN中MAB NEBAB BEABE EBN∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABM≌△EBN(ASA),∴BM=BN,故②正确;∴△BMN为等边三角形,∴∠NMB=∠ABM=60°,∴MN∥AC,故③正确;若EM=MB,则AM平分∠EAB,则∠DAB=30°,而由条件无法得出这一条件,故④不正确;综上可知正确的有①②③,故答案为①②③.点睛:本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、AAS 、ASA 和HL )和性质(即全等三角形的对应边相等,对应角相等).16.如图,AB ∥CD ,O 为∠BAC 、∠ACD 的平分线的交点,OE ⊥AC 于E ,且OE =1,则AB 与CD 之间的距离等于____.【答案】2【解析】过点O 作OF ⊥AB 于F ,作OG ⊥CD 于G ,∵O 为∠BAC 、∠DCA 的平分线的交点,OE ⊥AC ,∴OE =OF ,OE =OG ,∴OE =OF =OG =1,∵AB ∥CD ,∴∠BAC +∠ACD =180°,∴∠EOF +∠EOG =(180°﹣∠BAC )+(180°﹣∠ACD )=180°,∴E 、O 、G 三点共线,∴AB 与CD 之间的距离=OF +OG =1+1=2.故答案为:2.点睛:本题考查了角平分线上的点到角的两边的距离相等的性质,平行线的性质,熟记性质是解题的关键,难点在于作出辅助线并证明E 、O 、G 三点共线.17.如图,在△ABC 中, ∠BAC=90°, AB=AC=22,点D ,E 均在边BC 上,且∠DAE=45°,若BD=1,则DE=__________.【答案】53【解析】 分析:根据等腰直角三角形的性质得45B ACB ∠=∠=,把△ABD 绕点A 逆时针旋转90得到△ACF ,连接,EF 如图,根据旋转的性质得,,AD AF BAD CAF =∠=∠45,ABD ACF ∠=∠=接着证明45,EAF ∠=然后根据“SAS”可判断△ADE ≌△AFE ,得到DE =FE ,由于90ECF ACB ACF ∠=∠+∠=,根据勾股定理得222CE CF EF +=,设,DE EF x == 则3CE x =-, 则()22231,x x -+=由此即可解决问题.详解:90BAC AB AC∠==,,∴45B ACB∠=∠=,把△ABD绕点A 逆时针旋转90得到△ACF,连接,EF如图,则△ABD≌△ACF,,,45,AD AF BAD CAF ABD ACF=∠=∠∠=∠=∵45DAE∠=,∴45BAD CAE∠+∠=,∴45,CAF CAE∠+∠=即45,EAF∠=∴∠EAD=∠EAF,在△ADE和△AFE中AE AEEAD EAFAD AF=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△AFE,∴DE=FE,∵90ECF ACB ACF∠=∠+∠=,∴222CE CF EF+=,Rt△ABC中,∵22AB AC==,∴224BC AB AC+=,∵1BD=,设,DE EF x==则3CE x=-,则有()22231,x x-+=解得:5.3x=∴5.3DE=故答案为5.3点睛:本题属于全等三角形的综合题,涉及三角形旋转,全等三角形的判定与性质,勾股定理等知识点,综合性较强,难度较大.18.如图,AB=BC且AB⊥BC,点P为线段BC上一点,PA⊥PD且PA=PD,若∠A=22°,则∠D的度数为_________.【答案】23°【解析】解:过D作DE⊥PC于E.∵PA⊥PD,∴∠APB+∠DPE=90°.∵AB⊥BC,∴∠A+∠APB=90°,∴∠A=∠DPE=22°.在△ABP和△PED中,∵∠A=∠DPE,∠B=∠E=90°,PA=PD,∴△ABP≌△PED,∴AB=PE,BP=DE.∵AB=BC,∴BC=PE,∴BP=CE.∵BP=DE,∴CE=DE,∴∠DCE=45°,∴∠PDC=∠DCE-∠DPC=45°-22°=2 3°.故答案为:23°.四、八年级数学全等三角形选择题(难)19.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是( )A .②③B .③④C .②③④D .①②③④【答案】C【解析】【分析】分别在以上四种情况下以P 为圆心,PQ 的长度为半径画弧,观察弧与直线AM 的交点即为Q 点,作出PAQ ∆后可得答案.【详解】如下图,当∠PAQ=30°,PQ=6时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,所以PAQ ∆不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,但是此时两个三角形全等,所以形状相同,所以PAQ ∆唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以④正确.综上:②③④正确.故选C.【点睛】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q是关键.20.如图,已知 AD 为△ABC 的高线,AD=BC,以 AB 为底边作等腰 Rt△ABE,连接 ED,EC,延长CE 交AD 于F 点,下列结论:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正确的有()A.①③B.①②④C.①②③④D.②③④【答案】C【解析】【分析】①易证∠CBE=∠DAE,即可求证:△ADE≌△BCE;②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③证明△AEF≌△BED即可;④易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE=S△ACE,所以S△BDE=S△ACE.【详解】∵AD为△ABC的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE,在△DAE和△CBE中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△BCE (SAS );故①正确;②∵△ADE ≌△BCE ,∴∠EDA=∠ECB ,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE ⊥DE ;故②正确;③∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,∴∠BDE=∠AFE ,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF ,在△AEF 和△BED 中,BDE AFE BED AEF AE BE ∠∠⎧⎪∠∠⎨⎪⎩===∴△AEF ≌△BED (AAS ),∴BD=AF ;故③正确;④∵AD=BC ,BD=AF ,∴CD=DF ,∵AD ⊥BC ,∴△FDC 是等腰直角三角形,∵DE ⊥CE ,∴EF=CE ,∴S △AEF =S △ACE ,∵△AEF ≌△BED ,∴S △AEF =S △BED ,∴S △BDE =S △ACE .故④正确;综上①②③④都正确,故选:C .【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE ≌△CDE 是解题的关键.21.如图,△ABC 的两条外角平分线AP 、CP 相交于点P ,PH ⊥AC 于H ;如果∠ABC=60º,则下列结论:①∠ABP=30º;②∠APC=60º;③PB=2PH ;④∠APH=∠BPC ;其中正确的结论个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】 作PM ⊥BC 于M ,PN ⊥BA 于N .根据角平分线的性质定理可证得PN=PM ,再根据角平分线的判定定理可得PB 平分∠ABC ,即可判定①;证明△PAN ≌△PAH ,△PCM ≌△PCH ,根据全等三角形的性质可得∠APN=∠APH ,∠CPM=∠CPH ,由此即可判定②;在Rt △PBN 中,∠PBN=30°,根据30°角直角三角形的性质即可判定③;由∠BPN=∠CPA=60°即可判定④.【详解】如图,作PM ⊥BC 于M ,PN ⊥BA 于N .∵∠PAH=∠PAN ,PN ⊥AD ,PH ⊥AC ,∴PN=PH ,同理PM=PH ,∴PN=PM ,∴PB 平分∠ABC ,∴∠ABP=12∠ABC=30°,故①正确, ∵在Rt △PAH 和Rt △PAN 中, PA PA PN PH =⎧⎨=⎩, ∴△PAN ≌△PAH ,同理可证,△PCM ≌△PCH ,∴∠APN=∠APH ,∠CPM=∠CPH ,∵∠MPN=180°-∠ABC=120°,∴∠APC=1∠MPN=60°,故②正确,2在Rt△PBN中,∵∠PBN=30°,∴PB=2PN=2PH,故③正确,∵∠BPN=∠CPA=60°,∴∠CPB=∠APN=∠APH,故④正确.综上,正确的结论为①②③④.故选D.【点睛】本题考查了角平分线的性质定理及判定定理、全等三角形的判定与性质及30°角直角三角形的性质,熟练运用相关知识是解决问题的关键.22.如图,,,,点D、E为BC边上的两点,且,连接EF、BF则下列结论:≌;≌;;,其中正确的有( )个.A.1B.2C.3D.4【答案】D【解析】【分析】根据∠DAF=90°,∠DAE=45°,得出∠FAE=45°,利用SAS证明△AED≌△AEF,判定①正确;由△AED≌△AEF得AF=AD,由,得∠FAB=∠CAD,又AB=AC, 利用SAS证明≌,判定②正确;先由∠BAC=∠DAF=90°,得出∠CAD=∠BAF,再利用SAS证明△ACD≌△ABF,得出CD=BF,又①知DE=EF,那么在△BEF中根据三角形两边之和大于第三边可得BE+BF>EF,等量代换后判定③正确;先由△ACD≌△ABF,得出∠C=∠ABF=45°,进而得出∠EBF=90°,判定④正确.【详解】‚解:①∵∠DAF=90°,∠DAE=45°,∴∠FAE=∠DAF-∠DAE=45°.在△AED与△AEF中,,∴△AED≌△AEF(SAS),①正确;②∵△AED≌△AEF,∴AF=AD,∵,∴∠FAB=∠CAD,∵AB=AC,∴≌,②正确;③∵∠BAC=∠DAF=90°,∴∠BAC-∠BAD=∠DAF-∠BAD,即∠CAD=∠BAF.在△ACD与△ABF中,,∴△ACD≌△ABF(SAS),∴CD=BF,由①知△AED≌△AEF,∴DE=EF.在△BEF中,∵BE+BF>EF,∴BE+DC>DE,③正确;④由③知△ACD≌△ABF,∴∠C=∠ABF=45°,∵∠ABE=45°,∴∠EBF=∠ABE+∠ABF=90°.④正确.故答案为D.【点睛】本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.23.如图,在△ABC和△DCB中,AB=DC,AC与BD相交于点E,若不再添加任何字母与辅助线,要使△ABC≌△DCB,则还需增加的一个条件是()A.AC=BD B.AC=BC C.BE=CE D.AE=DE【答案】A【解析】由AB=DC,BC是公共边,即可得要证△ABC≌△DCB,可利用SSS,即再增加AC=DB即可.故选A.点睛:此题主要考查了全等三角形的判定,解题时利用全等三角形的判定:SSS ,SAS ,ASA ,AAS ,HL ,确定条件即可,此题为开放题,只要答案符合判定定理即可.24.如图,Rt ACB 中,90ACB ︒∠=,ABC 的角平分线AD 、BE 相交于点P ,过P 作PF AD ⊥交BC 的延长线于点F ,交AC 于点H ,则下列结论:①135APB ︒∠=;②PF PA =;③AH BD AB +=;④S 四边形23ABDE S ABP =,其中正确的个数是( )A .4B .3C .2D .1【答案】B【解析】【分析】 根据三角形全等的判定和性质以及三角形内角和定理逐一分析判断即可.【详解】解:∵在△ABC 中,∠ACB=90°,∴∠CAB+∠ABC=90°∵AD 、BE 分别平分∠BAC 、∠ABC ,∴∠BAD=12CAB ∠,∠ABE=12ABC ∠ ∴∠BAD+∠ABE=111+=()45222CAB ABC CAB ABC ∠∠∠+∠=︒ ∴∠APB=180°-(∠BAD+∠ABE )=135°,故①正确;∴∠BPD=45°,又∵PF ⊥AD ,∴∠FPB=90°+45°=135°∴∠APB=∠FPB又∵∠ABP=∠FBPBP=BP∴△ABP ≌△FBP (ASA )∴∠BAP=∠BFP ,AB=AB ,PA=PF ,故②正确;在△APH 与△FPD 中∵∠APH=∠FPD=90°∠PAH=∠BAP=∠BFPPA=PF∴△APH ≌△FPD (ASA ),∴AH=FD ,又∵AB=FB∴AB=FD+BD=AH+BD ,故③正确;连接HD ,ED ,∵△APH ≌△FPD ,△ABP ≌△FBP∴APH FPD S S =,ABP FBP S S =,PH=PD ,∵∠HPD=90°,∴∠HDP=∠DHP=45°=∠BPD∴HD ∥EP ,∴EPH EPD S S =∵ABP BDP AEP EPD ABDE S S SS S =+++四边形 ()ABP AEP EPHPBD S S S S =+++ ABP APH PBDS S S =++ ABP FPD PBD SS S =++ ABP FBP S S =+2ABP S =故④错误,∴正确的有①②③,故答案为:B .【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的方法有:SSS 、SAS 、AAS 、ASA 、HL ,注意AAA 和SAS 不能判定两个三角形全等.五、八年级数学轴对称三角形填空题(难)25.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.【答案】2.【解析】【分析】【详解】过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是等边三角形,∵△B′DE≌△BDE,∴B′F=1B′E=BE=2,DF=23,2∴GD=B′F=2,∴B′G=DF=23,∵AB=10,∴AG=10﹣6=4,∴AB′=27.考点:1轴对称;2等边三角形.26.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.【答案】40°【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.【详解】如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB 的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=50°,∴∠P1OP2=180°-2×50°=80°,∴∠AOB=40°,故答案为:40°【点睛】本题考查了对称的性质,正确作出图形,证得△P1OP2是等腰三角形是解题的关键.∠内任意一点,OP=5 cm,点M和点N分别是射线OA和射线27.如图,点P是AOB++的最小值是5 cm,则AOBOB上的动点,PN PM MN∠的度数是__________.【答案】30°【解析】试题解析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵PN+PM+MN的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°.28.如图,点A,B,C在同一直线上,△ABD和△BCE都是等边三角形,AE,CD分别与BD,BE交于点F,G,连接FG,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG;④AD⊥CD⑤FG ∥AC 其中,正确的结论有__________________. (填序号)【答案】①②③⑤【解析】【分析】易证△ABE ≌△DBC ,则有∠BAE =∠BDC ,AE =CD ,从而可证到△ABF ≌△DBG ,则有AF =DG ,BF =BG ,由∠FBG =60°可得△BFG 是等边三角形,证得∠BFG =∠DBA =60°,则有FG ∥AC ,由∠CDB ≠30°,可判断AD 与CD 的位置关系.【详解】∵△ABD 和△BCE 都是等边三角形,∴BD =BA =AD ,BE =BC =EC ,∠ABD =∠CBE =60°. ∵点A 、B 、C 在同一直线上,∴∠DBE =180°﹣60°﹣60°=60°,∴∠ABE =∠DBC =120°. 在△ABE 和△DBC 中,∵BD BA ABE DBC BE BC ∠∠=⎧⎪=⎨⎪=⎩,∴△ABE ≌△DBC ,∴∠BAE =∠BDC ,∴AE =CD ,∴①正确; 在△ABF 和△DBG中,60BAF BDG AB DBABF DBG ∠∠∠∠=⎧⎪=⎨⎪==︒⎩,∴△ABF ≌△DBG ,∴AF =DG ,BF =BG . ∵∠FBG =180°﹣60°﹣60°=60°,∴△BFG 是等边三角形,∴∠BFG =60°,∴②正确; ∵AE =CD ,AF =DG ,∴EF =CG ;∴③正确;∵∠ADB =60°,而∠CDB =∠EAB ≠30°,∴AD 与CD 不一定垂直,∴④错误.∵△BFG 是等边三角形,∴∠BFG =60°,∴∠GFB =∠DBA =60°,∴FG ∥AB ,∴⑤正确. 故答案为①②③⑤.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE ≌△DBC 是解题的关键.29.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD,再根据角的和差关系得到∠ECB =∠ACB-2∠ACD,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB-∠ACD=50°,即∠DCB=50°,从而求出∠BDC即可.【详解】∵CD平分∠ACE,∴∠ACE=2∠ACD=2∠ECD,∴∠ECB=∠ACB-∠ACE=∠ACB-2∠ACD,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB-2∠ACD=100°,∵AB=AC,∴∠ABC=∠ACB,∴2∠ACB-2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.30.如图,在四边形ABCD中,∠A+∠C=180°,E、F分别在BC、CD上,且AB=BE,AD =DF,M为EF的中点,DM=3,BM=4,则五边形ABEFD的面积是_____.【答案】12【解析】【分析】延长BM 至G ,使MG =BM ,连接FG 、DG ,证明△BME ≌△GMF (SAS ),得出FG =BE ,∠MBE =∠MGF ,证出AB =FG ,证明△DAB ≌△DFG (SAS ),得出DB =DG ,由等腰三角形的性质即可得DM ⊥BM ,由五边形ABEFD 的面积=△DBG 的面积,可求解.【详解】延长BM 至G ,使MG =BM =4,连接FG 、DG ,如图所示:∵M 为EF 中点,∴ME =MF ,在△BME 和△GMF 中,BM MG BME GMFME MF =⎧⎪∠=∠⎨⎪=⎩, ∴△BME ≌△GMF (SAS ),∴FG =BE ,∠MBE =∠MGF ,S △BEM =S △GFM ,∴FG ∥BE ,∴∠C =∠GFC ,∵∠A +∠C =180°,∠DFG +∠GFC =180°,∴∠A =∠DFG ,∵AB =BE ,∴AB =FG ,在△DAB和△DFG中,AB FGA DFGAD DF=⎧⎪∠=∠⎨⎪=⎩,∴△DAB≌△DFG(SAS),∴DB=DG,S△DAB=S△DFG,∵MG=BM,∴DM⊥BM,∴五边形ABEFD的面积=△DBG的面积=12×BG×DM=12×8×3=12,故答案为:12.【点睛】本题考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定与性质等知识;熟练掌握等腰三角形的判定由性质,证明三角形全等是解题的关键.六、八年级数学轴对称三角形选择题(难)31.如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )A.2 B.3 C.4 D.5【答案】C【解析】以O点为圆心,OA为半径作圆与x轴有两交点,这两点显然符合题意.以A点为圆心,OA为半径作圆与x轴交与两点(O点除外).以OA中点为圆心OA长一半为半径作圆与x 轴有一交点.共4个点符合,32.如图,在ABC∆中,120BAC︒∠=,点,E F分别是ABC∆的边AB、AC的中点,边BC分别与DE、DF相交于点,H G,且,DE AB DF AC⊥⊥,连接AD、AG、AH,现在下列四个结论:①60EDF︒∠=,②AD平分GAH∠,③B ADF∠=∠,④GD GH=.则其中正确的结论有( ).A .1个B .2个C .3个D .4个【答案】A【解析】【分析】利用,DE AB DF AC ⊥⊥及四边形的内角和即可得到①正确;;根据三角形内角和与线段的垂直平分线性质得到∠BAH+∠GAC=60︒,无条件证明∠GAD=∠HAD,故②错误;由等量代换得B ADF ∠≠∠,故③错误;利用三角形的内角和与对顶角相等得到GD GH ≠,故④错误.【详解】∵,DE AB DF AC ⊥⊥,∴∠DEA=∠DFA=90︒,∵120BAC ︒∠=,∴∠EDF=360︒-∠DEA-∠DFA-∠BAC=60︒,故①正确;∵120BAC ︒∠=,∴∠B+∠C=60︒,∵点,E F 分别是ABC ∆的边AB 、AC 的中点,,DE AB DF AC ⊥⊥,∴BH=AH ,AG=CG ,∴∠BAH=∠B ,∠GAC=∠C ,∴∠BAH+∠GAC=60︒,∵无条件证明∠GAD=∠HAD,∴AD 不一定平分GAH ∠,故②错误;∵∠ADF+∠DAF=90︒,∠B=∠BAH,90BAH DAF ∠+∠≠,∴B ADF ∠≠∠,故③错误;∵90B BHE ∠+∠=,30B ∠≠ ,∴ 60BHE ∠≠,∴60DHG ∠≠,∴DHG HDG ∠≠∠,∴GD GH ≠,故④错误,故选:A.【点睛】此题考查线段的垂直平分线的性质,利用三角形的内角和,四边形的内角和求角度,利用对顶角相等,等角对等边推导边的关系.33.如图所示,在等边△ABC 中,E 是AC 边的中点,AD 是BC 边上的中线,P 是AD 上的动点,若AD =3,则EP +CP 的最小值为( )A .2B .3C .4D .5【答案】B【解析】 由等边三角形的性质得,点B ,C 关于AD 对称,连接BE 交AD 于点P ,则EP+CP=BE 最小,又BE=AD ,所以EP+CP 的最小值是3.故选B.点睛:本题主要考查了等边三角形的性质和轴对称的性质,求一条定直线上的一个动点到定直线的同旁的两个定点的距离的最小值,常用的方法是,①确定两个定点中的一个关于定直线的对称点;②连接另一个定点与对称点,与定直线的交点就是两线段和的值最小时,动点的位置.34.已知:如图,ABC ∆、CDE ∆都是等腰三角形,且CA CB =,CD CE =,ACB DCE α∠=∠=,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点.以下4个结论:①AD BE =;②180DOB α∠=-;③CMN ∆是等边三角形;④连OC ,则OC 平分AOE ∠.正确的是( )A .①②③B .①②④C .①③④D .①②③④【答案】B【解析】【分析】 ①根据∠ACB=∠DCE 求出∠ACD=∠BCE,证出ACD BCE ≅△△即可得出结论,故可判断; ②根据全等求出∠CAD=∠CBE,根据三角形外角定理得∠DOB=∠OBA+∠BAO,通过等角代换能够得到∠DOB=∠CBA+∠BAC,根据三角形内角和定理即可求出∠CBA+∠BAC,即可求出∠DOB ,故可判断;③根据已知条件可求出AM=BN,根据SAS 可求出CAM CBN ≅,推出CM=CN ,∠ACM=∠BCN,然后可求出∠MCN=∠ACB=α,故可判断CMN ∆的形状;④在AD 上取一点P 使得DP=EO,连接CP ,根据ACD BCE ≅△△,可求出∠CEO=∠CDP ,根据SAS 可求出 CEO CDP ≅,可得∠COE=∠CPD,CP=CO,进而得到 ∠COP=∠COE ,故可判断.【详解】①正确,理由如下:∵ACB DCE α∠=∠=,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,又∵CA=CB,CD=CE,∴ACD BCE ≅△△(SAS),∴AD=BE,故①正确;②正确,理由如下:由①知,ACD BCE ≅△△,∴∠CAD=∠CBE,∵∠DOB 为ABO 的外角,∴∠DOB=∠OBA+∠BAO=∠EBC+∠CBA+∠BAO=∠DAC+∠BAO+∠CBA=∠CBA+∠BAC, ∵∠CBA+∠BAC+∠ACB=180°,∠ACB=α,∴∠CBA+∠BAC=180°-α,即∠DOB=180°-α,故②正确;③错误,理由如下:∵点M 、N 分别是线段AD 、BE 的中点,∴AM=12AD,BN= 12BE, 又∵由①知,AD=BE,∴AM=BN,又∵∠CAD=∠CBE,CA=CB,∴CAM CBN ≅(SAS), ∴CM=CN ,∠ACM=∠BCN,∴∠MCN=∠MCB+∠CBN=∠MCB+∠ACM=∠ACB=α,∴MCN △为等腰三角形且∠MCN=α,∴MCN △不是等边三角形,故③错误;④正确,理由如下:如图所示,在AD 上取一点P 使得DP=EO,连接CP ,由①知,ACD BCE ≅△△,∴∠CEO=∠CDP ,又∵CE=CD,EO=DP ,∴CEO CDP ≅(SAS),∴∠COE=∠CPD,CP=CO,∴∠CPO=∠COP ,∴∠COP=∠COE,即OC 平分∠AOE,故④正确;故答案为:B.【点睛】本题考查了三角形全等的判定和性质,三角形内角和定理和外角定理,等边三角形的判定,根据已知条件作出正确的辅助线,找出全等三角形是解题的关键.35.如图,一张长方形纸沿AB 对折,以AB 中点O 为顶点将平角五等分,并沿五等分的折线折叠,再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于( )A .108°B .114°C .126°D .129°【答案】C【解析】【分析】 按照如图所示的方法折叠,剪开,把相关字母标上,易得∠ODC 和∠DOC 的度数,利用三角形的内角和定理可得∠OCD 的度数.【详解】。

人教版数学八年级上册 全册全套试卷试卷(word版含答案)

人教版数学八年级上册 全册全套试卷试卷(word版含答案)

人教版数学八年级上册全册全套试卷试卷(word版含答案)一、八年级数学三角形填空题(难)1.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.【答案】10【解析】【分析】以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.【详解】解:如图所示,以其中任意三个点为顶点画三角形,最多可以画10个三角形,故答案为:10.【点睛】本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.2.已知三角形的两边的长分别为2cm和8cm,设第三边中线的长为x cm,则x的取值范围是_______【答案】3<x<5【解析】【分析】延长AD至M使DM=AD,连接CM,先说明△ABD≌△CDM,得到CM=AB=8,再求出2AD的范围,最后求出AD的范围.【详解】解:如图:AB=8,AC=2,延长AD 至M 使DM=AD ,连接CM在△ABD 和△CDM 中,AD MD ADB MDC BD CD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△MCD (SAS ),∴CM=AB=8.在△ACM 中:8-2<2x <8+2,解得:3<x <5.故答案为:3<x <5.【点睛】本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.3.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.【答案】30°【解析】【分析】设较小的锐角是x ,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x ,则另一个锐角是2x ,由题意得,x +2x =90°,解得x =30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.4.若正多边形的一个外角是45°,则该正多边形的边数是_________.【答案】8;【解析】【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.【详解】∵多边形外角和是360度,正多边形的一个外角是45°,∴360°÷45°=8即该正多边形的边数是8.【点睛】本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等).5.已知等腰三角形的两边长分别为3和5,则它的周长是____________【答案】11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.故答案为:11或13.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=_____度.【答案】40.【解析】【分析】利用三角形的内角和和四边形的内角和即可求得.【详解】∵△ABC沿着DE翻折,∴∠1+2∠BED=180°,∠2+2∠BDE=180°,∴∠1+∠2+2(∠BED+∠BDE)=360°,而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,∴80°+2(180°﹣∠B)=360°,∴∠B=40°.故答案为:40°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.二、八年级数学三角形选择题(难)7.如图:∠A+∠B+∠C+∠D+∠E+∠F等于()A.180°B.360°C.270°D.540°【答案】B【解析】【分析】先根据三角形的外角,用∠AGE表示出∠A,∠B;用∠EMC表示出∠E,∠F;用∠CNA 表示出∠C,∠D,然后再根据对顶角相等的性质解出它们的度数即可【详解】解:如图:∵∠AGE是△ABG的外角∴∠AGE=∠A+∠B;同理:∠EMC=∠E+∠F;∠CNA=∠C+∠D∴∠A+∠B+∠C+∠D+∠E+∠F=∠AGE+∠EMC+∠CNA又∵∠AGE+∠EMC+∠CAN 是△MNG 的三个外角∴∠AGE+∠EMC+∠CAN=360°故选:B .【点睛】本题主要考查了三角形外角及其外角和,其中找出三角形的外角是解答本题的关键.8.如图,在△ABC 中,点D 、E 分别是边AC,AB 的中点,BD,CE 相交于点O,连接O 在AO 上取一点F,使得OF=12AF 若S △ABC =12,则四边形OCDF 的面积为( )A .2B .83C .3D .103【答案】B【解析】【分析】 重心定理:三角形的三条边的中线交于一点,该点叫做三角形的重心.重心和三角形任意两个顶点组成的3个三角形面积相等.【详解】解:∵点D 、E 分别是边AC,AB 的中点,∴O 为△ABC 的重心,∴13AOC S=ABC S =4, ∴12DOC DOA S S ==AOC S =2,∵OF=12AF , ∴13DOF S =AOD S =23, ∴S 阴=DOC S +DOF S =83.故选:B.【点睛】本题考查了重心及重心定理,熟练掌握相关定理是解题关键.9.已知一个正多边形的内角是140°,则这个正多边形的边数是( )A .9B .8C .7D .6【答案】A【解析】 分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.10.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--【答案】A【解析】 【分析】【详解】 分析:根据三角形的外角得:∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',代入已知可得结论. 详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.11.一个多边形的内角和是900°,则这个多边形的边数为()A.6 B.7 C.8 D.9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.12.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()∠=,则1244α-A.14B.16C.90α-D.44【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.三、八年级数学全等三角形填空题(难)13.如图,已知点I是△ABC的角平分线的交点.若AB+BI=AC,设∠BAC=α,则∠AIB=______(用含α的式子表示)【答案】1206α︒-【解析】【分析】在AC上截取AD=AB,易证△ABI≌△ADI,所以BI=DI,由AB+BI=AC,可得DI=DC,设∠DCI=β,则∠ADI=∠ABI=2β,然后用三角形内角和可推出β与α的关系,进而求得∠AIB.【详解】解:如图所示,在AC上截取AD=AB,连接DI,点I是△ABC的角平分线的交点所以有∠BAI=∠DAI,∠ABI=∠CBI,∠ACI=∠BCI,在△ABI和△ADI中,AB=ADBAI=DAIAI=AI⎧⎪∠∠⎨⎪⎩∴△ABI≌△ADI(SAS)∴DI=BI又∵AB+BI=AC,AB+DC=AC∴DI=DC∴∠DCI=∠DIC设∠DCI=∠DIC=β则∠ABI=∠ADI=2∠DCI=2β在△ABC 中,∠BAC+2∠ABI+2∠DCI=180°,即42180ββ︒++=a ,∴180=3066β︒︒=--a a 在△ABI 中,180︒∠=-∠-∠AIB BAI ABI121802αβ︒=-- 1=23160028αα︒︒⎛⎫--- ⎪⎝⎭ =1206α︒-【点睛】本题考查全等三角形的判定和性质,以及三角形角度计算,利用截长补短构造全等三角形是解题的关键.14.在ABC 中给定下面几组条件:①BC=4cm ,AC=5cm ,∠ACB=30°;②BC=4cm ,AC=3cm ,∠ABC=30°;③BC=4cm ,AC=5cm ,∠ABC=90°;④BC=4cm ,AC=5cm ,∠ABC=120°.若根据每组条件画图,则ABC 能够唯一确定的是___________(填序号).【答案】①③④【解析】【分析】根据全等三角形的判定方法进行分析,从而得到答案.【详解】解:①符合全等三角形的判定定理SAS ,即能画出唯一三角形,正确;②根据BC=4cm ,AC=3cm ,∠ABC=30°不能画出唯一三角形,如图所示△ABC 和△BCD ,错误;③符合全等三角形的判定定理HL ,即能画出唯一三角形,正确;④∵∠ABC 为钝角,结合②可知,只能画出唯一三角形,正确.故答案为:①③④.【点睛】本题考查的是全等三角形的判定方法;解答此题的关键是要掌握三角形全等判定的几种方法即可,结合已知逐个验证,要找准对应关系.15.如图,平面直角坐标系中,A(0,3),B(4,0),BC∥y轴,且BC<OA,第一象限内有一点P(a,2a-3),若使△ACP是以AC斜边的等腰直角三角形,则点P的坐标为_______________.【答案】(103,113).【解析】【详解】解:∵点P的坐标为(a,2a-3),∴点P在直线y=2x-3上,如图所示,当点P在AC的上方时,过P作y轴的垂线,垂足为D,交BC的延长线于E,则∠E=∠ADP=90°,∵△ACP是以AC为斜边的等腰直角三角形,∴AP=PC,∠APD=∠PCE,∴△APD≌△PCE,∴PE=AD,又∵OD=2a-3,AO=3,∴AD=2a-6=PE,∵DE=OB=4,DP=a,又∵DP+PE=DE , ∴a+(2a-6)=4,解得a=103 ∴2a-3=113, ∴P (103,113); 当点P 在AC 下方时,过P 作y 轴的垂线,垂足为D ,交BC 于E ,a=2,此时,CE=2,BE=2,即BC=2+2=4>AO ,不合题意;综上所述,点P 的坐标为P (103,113) 故答案为P (103,113).16.如图,ABC ∆中,090,,102ACB AC BC AB ∠===,点G 为AC 中点,连接BG ,CE BG ⊥于F ,交AB 于E ,连接GE ,点H 为AB 中点,连接FH ,以下结论:①ACE ABG ∠=∠;②5CF =;③AGE CGB ∠=∠;④FH 平分BFE ∠。

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试题一、单选题1.下列所述图形中,不是轴对称图形的是()A .矩形B .平行四边形C .正五边形D .正三角形2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为()A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.若一个多边形的内角和是540°,则该多边形的边数为 ()A .4B .5C .6D .74.下面因式分解错误的是()A .22()()x y x y x y -=+-B .22816(4)x x x -+=-C .2222()x xy x x y -=-D .222()x y x y +=+5.以下列各组线段为边,能组成三角形的是()A .1cm ,2cm ,4cmB .4cm ,6cm ,8cmC .5cm ,6cm ,12cmD .2cm ,3cm ,5cm6.解分式方程22311x x x++=--时,去分母后变形为A .()()2231x x ++=-B .()2231x x -+=-C .()()2231x x -+=-D .()()2231x x -+=-7.下列计算正确的是()A .2a +3b =5abB .x 8÷x 2=x 6C .(ab 3)2=ab 6D .(x +2)2=x 2+48.将0.0000025用科学记数法表示为()A .2.5×10﹣5B .2.5×10﹣6C .25×10﹣7D .1.2×10﹣89.若分式242x x -+的值为0,则x 的值为()A .-2B .0C .2D .±210.如图,△ABC 中,AB=5,AC=8,BD 、CD 分别平分∠ABC ,∠ACB ,过点D 作直线平行于BC ,分别交AB 、AC 于E 、F ,则△AEF 的周长为()A.12B.13C.14D.18二、填空题11.计算:|﹣2|﹣20210+(12)﹣1=______________.12.分解因式:xy―x=_____________.13.如图,AC与BD相交于点O,且AB=CD,请添加一个条件_____________,使得△ABO≌△CDO.14.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是__________.15.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=2,BC =7,则△BDC的面积是________.16.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于12PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为______________.17.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上动点,则CMD △周长的最小值为______.18.如图,将一个边长为3的正方形纸片进行分割,部分①的面积是边长为3的正方形纸片的一半,部分②的面积是部分①的一半,部分③的面积是部分②的一半,以此类推,n 部分的面积是______.(用含n 的式子表示)三、解答题19.计算:()()()222x y x y x y x +++--20.先化简,再求值:221224xx x x x x -⎛⎫-÷ ⎪---⎝⎭,其中x =.21.解方程:28124x x x -=--.22.如图,AB AD =,25BAC DAC ∠=∠=︒,80D ∠=︒.求BCA ∠的度数.23.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?24.如图,已知ABC 中,10cm AB AC ==,8cm BC =,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BPD △与CQP V 是否全等,请说明理由.②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP V 全等.(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC 三边运动,求经过多长时间点P 与点Q 第一次在ABC 的哪条边上相遇.25.已知:22214816x x x A x x x +-=÷--+,221x m B x -=-(1)化简分式A ;(2)若关于x 的分式方程:1A B +=的解是非负数,求m 的取值范围;(3)当x 取什么整数时,分式A 的值为整数.26.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)试探究线段AD ,DE ,BE 之间有什么样的数量关系,请说明理由.27.如图,AB BC CD DA ===,60A ∠=︒,点E ,F 分别为线段AD ,CD 上的动点,且60EBF ∠=︒.(1)当BE AD ⊥时,求证:12AE AD =;(2)连接EF ,判断BEF 的形状,并作证明;(3)当AB 的长度为定值时,四边形BEDF 的面积是否为定值?请说明理由.参考答案1.B【分析】由轴对称图形的定义对选项判断即可.【详解】矩形为轴对称图形,不符合题意,故错误;平行四边形不是轴对称图形,符合题意,故正确;正五边形为轴对称图形,不符合题意,故错误;正三角形为轴对称图形,不符合题意,故错误;故选:B .【点睛】本题考查了轴对称图形的概念,如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.识别轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.D【分析】利用关于x 轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可.【详解】点(3,2)关于x 轴对称的点的坐标为(3,-2),故选:D.【点睛】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键.3.B【分析】根据多边形的内角和公式可直接求出多边形的边数.【详解】设这个多边形的边数为n,根据多边形内角和定理得(n-2)×180°=540°,解得n=5;故选:B.【点睛】本题考查了多边形的内角和定理,熟记多边形的内角和为(n-2)×180°是解题的关键.4.D【分析】分别利用完全平方公式、平方差公式以及提公因式法分解因式,进而判断得出答案.【详解】解:A、x2﹣y2=(x+y)(x﹣y),正确,不合题意;B、x2﹣8x+16=(x﹣4)2,正确,不合题意;C、2x2﹣2xy=2x(x﹣y),正确,不合题意;D、无法进行因式分解,此选项错误,符合题意.故选:D.【点睛】此题主要考查了公式法以及提取公因式法分解因式,熟练应用乘法公式是解题关键.5.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能组成三角形;C、5+6<12,不能够组成三角形;D、2+3=5,不能组成三角形.故选:B.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.6.D【详解】解:方程223 11xx x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.7.B【分析】由相关运算法则计算判断即可.【详解】2a和3b不是同类项,无法计算,与题意不符,故错误;x8÷x2=x6,与题意相符,故正确;(ab3)2=a2b6,与题意不符,故错误;(x+2)2=x2+2x+4,与题意不符,故错误.故选:B.【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键.8.B【分析】由题意依据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定进行分析即可.【详解】解:0.0000025=2.5×10-6.故选:B.【点睛】本题考查用科学记数法表示较小的数,注意掌握其一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.C【详解】由题意可知:24020 xx=⎧-⎨+≠⎩,解得:x=2,故选C.10.B【分析】根据平行线的性质得到∠EDB=∠DBC,∠FDC=∠DCB,根据角平分线的性质得到∠EBD=∠DBC,∠FCD=∠DCB,等量代换得到∠EDB=∠EBD,∠FDC=∠FCD,于是得到ED=EB,FD=FC,即可得到结果.【详解】解:∵EF BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13.故选B.【点睛】此题考查了等腰三角形的判定与性质.此题难度适中,注意证得△BDE与△CDF 是等腰三角形是解此题的关键.11.3【分析】先化简绝对值、零指数幂和负整数指数幂,再算加减即可【详解】解:|﹣2|﹣20210+(12)﹣1=2-1+2=3.故答案为:3.【点睛】本题考查了有理数的意义,熟练掌握绝对值、零指数幂和负整数指数幂的意义是解答本题的关键,非零数的负整数指数幂等于这个数的正整数次幂的倒数;非零数的零次幂等于1.12.x(y-1)【详解】试题解析:xy―x=x(y-1)13.∠A=∠C(答案不唯一)【分析】根据全等三角形的判定定理得出即可.【详解】∵∠AOB、∠COD是对顶角,∴∠AOB=∠COD,又∵AB=CD,∴要使得△ABO≌△CDO,则只需添加条件:∠A=∠C.故答案为:∠A=∠C(答案不唯一)考点:1.全等三角形的判定;2.开放型.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.14.22cm【分析】分两种情况讨论:当4cm为腰时,而449,+<不合题意,舍去,当9cm为腰时,而4+99,>符合题意,从而可得答案.【详解】解:等腰三角形有两条边长为4cm和9cm,当4cm为腰时,而449,+<不合题意,舍去,当9cm为腰时,而4+99,>符合题意,所以三角形的周长为:49922++=(cm),故答案为:22cm【点睛】本题考查的是三角形三边关系的应用,等腰三角形的定义,掌握“等腰三角形的定义及清晰的分类讨论”是解本题的关键.15.7【分析】过点D作DE⊥BC于E,根据角平分线上的点到角的两边距离相等可得DE=AD,然后利用三角形的面积公式列式计算即可得解.【详解】如图,过点D作DE⊥BC于E,∵∠A=90°,BD是∠ABC的平分线,∴DE=AD=2,∴△BDC的面积=12BC•DE=12×7×2=7.故答案为:7【点睛】本题考查角平分线的性质,熟练掌握角平分线上的点到角的两边距离相等的性质是解题关键.16.3【分析】根据题意依据等腰三角形的性质,即可得到BD=12BC,进而分析计算即可得出结论.【详解】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=12BC=12×6=3.故答案为:3.【点睛】本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.17.10【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴CM=AM,∴CD+CM+DM=CD+AM+DM,∵AM+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=8+12×4=8+2=10.故答案为10.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.18.92n【分析】根据图形和题意,求出①、②、③、④的面积从而可以推出n 部分的面积;【详解】解:19922=⨯=①面积21199222=⨯⨯=②面积3111992222=⨯⨯⨯=③面积411119922222=⨯⨯⨯⨯=④面积以此类推可知n 部分的面积为92n 故答案为:92n【点睛】本题考查图形的变化规律、有理数的混合运算、列代数式,解答本题的关键是明确题意,求出所求式子的值.19.2xy【分析】先根据完全平方公式计算,再合并同类项即可【详解】解:()()()222x y x y x y x +++--=2222222x xy y x y x +++--=2xy .【点睛】本题考查了整式的混合运算,熟练掌握运算顺序及乘法公式是解答本题的关键.完全平方公式是(a±b)2=a 2±2ab+b 2;平方差公式是(a+b)(a-b)=a 2-b 2.20.22x +1+.【分析】括号内先进行分式的加减运算,然后再进行分式的乘除法运算,最后把数值代入化简后的结果进行计算即可.【详解】原式()()()22121x x x x x x +--=⋅--=2x x+,当x =时,原式1=.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.21.无解【分析】根据解分式方程的步骤去解答:去分母将分式方程化为整式方程、解整式方程、检验、回答.【详解】解:原方程可化为:812(2)(2)x x x x -=-+-.方程两边同时乘以(2)(2)x x +-,得(2)(2)(2)8x x x x +-+-=.化简,得248x +=.解得2x =.检验:2x=时(2)(2)0x x +-=,所以2x =不是原分式方程的解,所以原分式方程无解.【点睛】本题考查解分式方程,熟练掌握解分式方程的步骤,尤其是检验是解分式方程的重要步骤.22.75°.【分析】由三角形的内角和定理求出∠DCA=75°,再证明△ABC ≌△ADC ,即可得到答案.【详解】∵25DAC ∠=︒,80D ∠=︒,∴∠DCA=75°,∵AB AD =,25BAC DAC ∠=∠=︒,AC=AC ,∴△ABC ≌△ADC ,∴∠BCA=∠DCA=75°.【点睛】此题考查三角形的内角和定理,全等三角形的判定及性质,这是一道比较基础的三角形题.23.(1)A 型芯片的单价为26元/条,B 型芯片的单价为35元/条;(2)80.【分析】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据数量=总价÷单价结合用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据总价=单价×数量,即可得出关于a 的一元一次方程,解之即可得出结论.【详解】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据题意得:312042009x x=-,解得:x =35,经检验,x =35是原方程的解,∴x ﹣9=26.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据题意得:26a+35(200﹣a )=6280,解得:a =80.答:购买了80条A 型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.(1)①BPD CQP V V ≌,理由见解析;②15cm /s 4Q v =;(2)经过80s 3点P 与点Q 第一次在边AB 上相遇【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度;(2)根据题意结合图形分析发现:由于点Q 的速度快,且在点P 的前边,所以要想第一次相遇,则应该比点P 多走等腰三角形的两个腰长.【详解】解:(1)①∵1s t =,∴313cm BP CQ ==⨯=,∵10cm AB =,点D 为AB 的中点,∴5cm BD =.又∵PC BC BP =-,8cm BC =,∴835cm PC =-=,∴PC BD =.又∵AB AC =,∴B C ∠=∠,在BPD △和CQP V 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BPD CQP ≌△△.②∵P Q v v ≠,∴BP CQ≠若BPD CPQ △≌△,B C ∠=∠,则4cm BP PC ==,5cm CQ BD ==,∴点P ,点Q 运动的时间4s 33BP t ==,∴515cm /s 443Q CQ v t ===.(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯,解得803x =.∴点P 共运动了80380cm 3⨯=.ABC 周长为:1010828cm ++=,若是运动了三圈即为:28384cm ⨯=,∵84804cm AB -=<的长度,∵点P 、点Q 在AB 边上相遇,∴经过80s 3点P 与点Q 第一次在边AB 上相遇.【点睛】此题主要是运用了路程=速度×时间的公式,解题的关即使熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.25.(1)241x x x --(2)12m ≥-且2m ≠(3)当2x =-时,分式的值为4-;当0x =时,分式的值为0;当2x =时,分式的值为4-;当4x =时,分式的值为0【分析】(1)将分式的分子、分母分解因式,将除法化为乘法,约分计算即可;(2)将A 、B 的值代入解方程,根据解是非负数,得到21055m +≥,计算即可;(3)将A 利用完全平方公式及整式加减法添括号法则变形为331x x ---,由值为整数得到x 的值,代入计算.(1)解:()()()21114(4)x x x x A x x ++-=÷--()()()()214411x x x x x x +-=⋅-+-241x x x -=-;(2)解:由题意:2242111x x x m A B x x--+=+=--2242111x x x m x x ---=--,22421x x x m x --+=-,2155x m =+.∵解是非负数,∴21055m +≥∴12m ≥-.∵10x -≠即1x ≠,∴25511m +≠,解得2m ≠,∴12m ≥-且2m ≠;(3)解:241x x A x -=-()21211x x x ---=-2111x x x +=---()21311x x x -+=---331x x =---.当2x =-时,分式的值为4-;当0x =时,分式的值为0;当2x =时,分式的值为4-;当4x =时,分式的值为0.【点睛】此题考查了分式的除法运算法则,解分式方程,正确掌握分式的分解,运算法则,完全平方公式是解题的关键.26.(1)见解析(2)BE DE AD +=,见解析【分析】(1)由“AAS”可证ACD CBE △△≌;(2)由全等三角形的性质可得CD BE =,AD CE =,即可求解.(1)证明:∵AD CE ⊥,BE CE ⊥,∴90E ADC ∠=∠=︒,∴1290∠+∠=︒,∵90ACB ∠=︒,∴3290∠+∠=︒,∴13∠=∠,在ACD △和CBE △中,13ADC E AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD CBE △△≌(AAS ).(2)解:BE DE AD +=,理由如下:∵ACD CBE △△≌,∴CD BE =,AD CE =.∵CD DE CE +=,∴BE DE AD +=.【点睛】本题考查了全等三角形的判定和性质,直角三角形两锐角互余,掌握全等三角形的判定是本题的关键.27.(1)见解析(2)等边三角形,见解析(3)是定值,见解析【分析】(1)连接BD ,可证ABD △是等边三角形,再由等边三角形的三线合一即可得证;(2)由ABD △是等边三角形,可得FBD ABE ∠=∠,由BCD △是等边三角形,可得60BDC ∠=︒.由ASA 可证得ABE △和DBF 全等,从而BE BF =,即可证明BEF 是等边三角形;(3)由ABE DBF △△≌,可得面积相等,故ABD BEDF S S = 四边形,当AB 的长度为定值时,ABD △的面积为定值,四边形BEDF 的面积也为定值.(1)证明:连接BD .∵AB AD =,60A ∠=︒,∴ABD △是等边三角形.∵BE AD ⊥,∴12AE AD =.(2)解:BEF是等边三角形,理由如下:∵ABD △是等边三角形,∴AB BD =,60ABD ∠=︒,∴60ABE EBD ∠+∠=︒.∵60EBF ∠=︒,∴60FBD EBD ∠+∠=︒,∴FBD ABE ∠=∠,∵AB BC CD ==,∴BD BC CD ==,∴BCD △是等边三角形,∴60BDC ∠=︒.在ABE △和DBF 中,60ABE DBFAB DB A BDF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴ABE DBF △△≌(ASA ).∴BE BF =,∴BEF 是等边三角形.(3)解:四边形BEDF 的面积是定值,理由如下:∵ABE DBF △△≌,∵DBF BED ABE BED ABD BEDF S S S S S S =+=+= 四边形∴当AB 的长度为定值时,ABD △的面积为定值,四边形BEDF 的面积也为定值.。

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列计算正确的是()A .a 2•a 3=a 6B .2ab+3ab =5a 2b 2C .a 8÷a 4=a 2D .(a 3)2=a 62.到三角形三条边距离相等的点是此三角形()A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边中垂线的交点3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为()A .140°B .160°C .170°D .150°4.如图,在△ABC 中,已知点D ,E ,F 分别为BC ,AD ,AE 的中点,且S △ABC =12cm 2,则阴影部分面积S =()cm 2.A .1B .2C .3D .45.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是()A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22(2)()2a b a b a ab b +-=+-6.202020214(0.25)-⨯的值为()A .4B .4-C .0.25D .0.25-7.若2x y +=,1xy =-,则()()1212x y --的值是()A .7-B .3-C .1D .98.如图,在△ABC 中,BC=10,CD 是∠ACB 的平分线.若P ,Q 分别是CD 和AC 上的动点,且△ABC 的面积为24,则PA+PQ 的最小值是()A .125B .4C .245D .59.已知,,a b c 满足22227,-21,617a b b c c a +==--=-,则a b c +-的值为()A .1B .-5C .-6D .-710.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S ,若AQ=PQ ,PR=PS ,下面四个结论:①AS=AR ;②QP ∥AR ;③△BRP ≌△QSP ;④AP 垂直平分RS ,其中正确结论的序号是()A .①②B .①②③C .①②④D .①②③④二、填空题11.因式分解:225x y y -=______.12.am =6,an =3,则am﹣2n =__.13.如图,△ABC ≌△DBC ,∠A =45°,∠DCB =43°,则∠ABC =______.14.如图,ABC 的三边AB BC CA 、、的长分别为405060、、,其三条角平分线交于点O ,则::ABOBCO CAOS S S =______.15.一位工人师傅加工1500个零件后,把工作效率提高到原来的2.5倍,因此再加工1500个零件时,较前提早了18个小时完工,问这位工人师傅提高工作效率的前后每小时各加工多少个零件?设提高工作效率前每小时加工x 个零件,则根据题意可列方程为________.16.若x 4y 1+=,则xy 的最大值为_____.17.如图,已知△ABC 的面积为1,分别倍长(延长一倍)边AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长边A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2…按此规律,倍长2021次后得到的△A 2021B 2021C 2021的面积为_________.18.如图,△ABC ≌△ADE ,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC 的度数为______.19.如图,在ABC ∆中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD .若4AC cm =,ADC ∆的周长为11cm ,则BC 的长为__________cm .三、解答题20.解分式方程:21133x x+=--21.化简求值:2(2)(1)(1)a a a +-+-,其中3=2a 22.先化简,再求值:22241---÷+a a a a a请从-2,-1,0,1,2中选择一个合适的数,求此分式的值.23.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD ≌△CFD ;(2)已知BC=7,AD=5,求AF 的长.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y )2+2(x+y )+1.解:将“x+y”看成整体,令x+y=A ,则原式=A 2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x-3y )+(2x-3y )2.(2)因式分解:(a+b )(a+b-4)+4;25.在汕头市“创文”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a 天完成,乙做另一部分用了y 天完成.若乙工程队还有其它工作任务,最多只能做52天.求甲工程队至少应做多少天?26.如图,在ABC 中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.27.已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD ≌△ACE ;②直接判断结论BC=DC+CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.28.如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.易得:AD=BD.(1)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD;(2)如图3,在四边形ABDE中,AB=10,DE=2,BD=6,C为BD边中点.若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.参考答案1.D【分析】利用合并同类项的法则,幂的乘方的法则,同底数幂的乘法的法则,同底数幂的除法的法则对各项进行运算即可.【详解】解:A、a2•a3=a5,故该选项不符合题意;B、2ab+3ab=5ab,故该选项不符合题意;C、a8÷a4=a4,故该选项不符合题意;D、(a3)2=a6,故该选项符合题意;故选:D.【点睛】本题主要考查了合并同类项,幂的乘方,同底数幂的乘法,同底数幂的除法,解答的关键对相应的运算法则的掌握.2.A【分析】根据角平分线的性质进行解答即可.【详解】解: 角平分线上任意一点,到角两边的距离相等,到三角形三条边距离相等的点是三角形三个内角的平分线的交点,故选:A.3.B【详解】解:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.故选B.4.C【分析】根据三角形面积公式由点D为BC的中点得到S△ABD=S△ADC=12S△ABC=6,同理得到S△EBD=S△EDC=12S△ABD=3,则S△BEC=6,然后再由点F为EC的中点得到S△BEF=12S△BEC=3.【详解】解:∵点D为BC的中点,∴S△ABD=S△ADC=12S△ABC=6,∵点E为AD的中点,∴S△EBD =S△EDC=12S△ABD=3,∴S△EBC=S△EBD+S△EDC=6,∵点F为EC的中点,∴S△BEF =12S△BEC=3,即阴影部分的面积为3cm2.故选:C.【点睛】本题考查三角形的中线有关的面积计算问题.三角形的一条中线把原三角形分成两个等底同高的三角形,因此分得的两个三角形面积相等,利用这一特点可以求解有关的面积问题.5.A【分析】左图中阴影部分的面积=a2−b2,右图中矩形面积=(a+b)(a−b),根据二者面积相等,即可解答.【详解】解:由题意可得:a2−b2=(a−b)(a+b).故选:A.【点睛】此题主要考查了乘法的平方差公式,属于基础题型.6.D【分析】直接利用积的乘方把式子变形计算即可.【详解】202020214(0.25)-⨯=202020204(0.25)(0.25)⨯⨯--=20202020[4(0.25)2)](0.5--⨯⨯=2020[4(0.25)(0.25)]⨯⨯--=2020(1)(0.25)⨯--=1(0.25)-⨯=0.25-故选:D 7.A【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7;故选:A .【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.C【分析】过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,当A 、P 、G 三点共线时,AP+PQ 的值最小,求出AG 的长即为所求.【详解】解:过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,∵CD 是∠ACB 的平分线,∴PG=PQ ,∴PA+PQ=AP+PG≥AG ,∴当A 、P 、G 三点共线时,AP+PQ 的值最小,∵BC=10,△ABC 的面积为24,∴AG=245,∴AP+PQ 的最小值为245,故选:C .9.A【详解】解:∵22227,-21,617a b b c c a +==--=-,∴(a 2+2b )+(b 2-2c )+(c 2-6a )=7+(-1)+(-17),∴a 2+2b+b 2-2c+c 2-6a=-11∴(a 2-6a+9)+(b 2+2b+1)+(c 2-2c+1)=0,∴(a-3)2+(b+1)2+(c-1)2=0∴a-3=0,b+1=0,c-1=0,∴a+b-c=3-1-1=1.故选:A .10.C【分析】连接AP ,RS ,证明Rt APR ≌Rt APS ,即可判断①,根据等边对等角可得QAP QPA ∠=∠,根据角平分线的性质可得BAP CAP ∠=∠,等量代换可得QPA BAP ∠=∠,进而即可判定QP ∥AR ,即可判断②,假设③成立,可得到BC AC =,与已知矛盾,进而可判断③,根据垂直平分线的判定定理即可判断④.【详解】连接AP ,RS ,如图,PR ⊥AB ,PS ⊥AC ,PR=PS ,AP ∴是BAC ∠的角平分线,BAP CAP∴∠=∠在Rt APR 与Rt APSPS PR PA PA=⎧⎨=⎩∴Rt APR ≌Rt APSAS AR∴=故①正确;AQ PQ= QAP QPA ∴∠=∠QPA BAP ∴∠=∠AR QP∴∥故②正确;假设△BRP ≌△QSP ;则SQ RB =,PBR PQS∠=∠ AR QP∥PQS BAC∠∠∴=BC AC∴=而题中没有说明BC AC =,故③不正确;,AR AS PR PS== ∴AP 是RS 是垂直平分线,故④正确故正确的有①②④故选C11.()()55y x x -+【详解】先提取公因式y ,再利用平方差公式,可得()()22555x y y y x x -=-+.故答案是()()55y x x -+.12.23【分析】直接利用同底数幂的除法运算法则结合幂的乘方运算法则进而将原式变形得出答案.【详解】∵am =6,an =3,∴am﹣2n=am÷(an)2=6÷32=23.故答案为:2 3.13.92°【分析】根据全等三角形的性质和三角形的内角和定理即可得到结论.【详解】解:∵△ABC≌△DBC,∴∠ACB=∠DCB=43°,∵∠A=45°,∴∠ABC=180°﹣∠A﹣∠ACB=92°,故答案为:92°.14.4:5:6【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC 的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO :S△BCO:S△CAO=(12AB•OD):(12BC•OF):(12AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.15.1500x−18=15002.5x【分析】关键描述语为:“较前提早了18个小时完工”;本题的等量关系为:原来加工1500个零件所用时间-18=现在加工1500个零件所用时间,把相应数值代入即可求解.【详解】解:原来加工1500个零件所用时间为:1500x,现在加工1500个零件所用时间为:15002.5x ,∴根据题意可列方程为1500x −18=15002.5x 故答案为:1500x −18=15002.5x .16.116【分析】利用完全平方公式列出关于xy 的不等式.求不等式的解,根据不等式的解,即可求得xy 的最大值.【详解】解:22(4)(4)160x y x y xy -=+-≥.41x y += ,1160xy ∴-≥,116xy ∴≤.故答案为:116.17.20217【分析】根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A 1B 1C 1的面积是△ABC 的面积的7倍,依此规律可得结论.【详解】解:连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,1117A B C ABC S S = ,同理222111277A B C A B C ABC S S S == ,依此类推,△A 2021B 2021C 2021的面积为=72021S △ABC ,∵△ABC 的面积为1,∴△A 2021B 2021C 2021的面积=72021.故答案为:72021.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.18.60°【分析】根据三角形内角和定理求出∠BAC ,根据全等三角形的性质计算即可.【详解】解:∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠DAE=∠BAC=80°,∴∠EAC=∠DAE-∠DAC=60°,故答案为60°.19.7【分析】由AB 的垂直平分线交AB 于E ,交BC 于D ,根据线段垂直平分线的性质,可得AD=BD ,又由△ADC 的周长为11cm ,即可求得AC +BC=11cm ,然后由AC=4cm ,即可求得BC 的长.【详解】解:∵AB 的垂直平分线交AB 于E ,交BC 于D ,∴AD=BD ,∵△ADC 的周长为11cm ,∴AC +CD +AD=AC +CD +BD=AC +BC=11cm ,∵AC=4cm ,∴BC=7cm .故答案为:7.20.x=4【分析】两边都乘以x-3化为整式方程求解,然后验根即可.【详解】解:两边都乘以x-3,得2-1=x-3,解得x=4,检验:当x=4时,x-3≠0,∴x=4是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.21.45a +,11【分析】先利用完全平方公式和平方差公式进行化简,再代值运算即可.【详解】解:2(2)(1)(1)a a a +-+-22441a a a =++-+45a =+把3=2a 代入得:345112⨯+=【点睛】本题主要考查了整式的化简求值,熟悉掌握完全平方公式和平方差公式是解题的关键.22.12a +,13【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的a 的值代入计算可得.【详解】解:22241---÷+a a a a a2(1)1(2)(2)a a a a a a -+=-⨯+-112a a +=-+12a =+,∵a≠0且a≠±2,a≠-1,∴a=1,则原式=11123=+.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.(1)证明见解析;(2)3.【分析】(1)利用ASA ,可证△ABD ≌△CFD ;(2)由△ABD ≌△CFD ,得BD=DF ,所以BD=BC ﹣CD=2,所以AF=AD ﹣DF=5﹣2.【详解】(1)证明:∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠ECD ,在△ABD 和CFD 中,ADB CDF BAD DCF AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CFD (AAS ),(2)∵△ABD ≌△CFD ,∴BD=DF ,∵BC=7,AD=DC=5,∴BD=BC ﹣CD=2,∴AF=AD ﹣DF=5﹣2=3.24.(1)(1+2x-3y )2;(2)(a+b-2)2.【分析】(1)将(2x-3y )看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b ,代入后因式分解,再代入即可将原式因式分解.【详解】解:(1)原式=(1+2x-3y )2.(2)令A=a+b ,则原式变为A (A-4)+4=A 2-4A+4=(A-2)2,故:(a+b )(a+b-4)+4=(a+b-2)2.故答案为(1)(1+2x-3y )2;(2)(a+b-2)2.25.(1)乙工程队单独做需要80天完成(2)甲工程队至少应做42天.【分析】(1)设乙工程队单独完成这项工作需要x 天,由题意列出分式方程,求出x 的值即可;(2)首先根据题意列出a 和y 的关系式,进而求出a 的取值范围,结合a 和y 都是正整数,即可求出a 的值.【详解】(1)设乙工程队单独完成这项工作需要x 天,由题意得:3011361120120x ⎛⎫++⨯= ⎪⎝⎭解得:x=80,经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.(2)因为甲工程队做其中一部分用了a 天,乙工程队做另一部分用了y 天,依题意得:112080a y +=,∴2803y a =-.∵52y ≤,∴280523a -≤,解得:42a ≥.答:甲工程队至少应做42天.26.∠B =77°,∠C =38.5︒【分析】根据等腰三角形的性质及三角形内角和定理可求出∠B 和∠ADB 的度数,利用三角形外角性质即可求出∠C 的度数.【详解】解:∵AB =AD ,26BAD ∠=︒∴∠B =∠ADB =12×(180°﹣26°)=77°,∵AD =DC ,∴∠C=∠DAC ,∴∠C =12∠ADB =12×77°=38.5︒.27.(1)①见解析;②成立;(2)BC+CD=CE【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ;②由△ABD ≌△ACE 就可以得出BC=DC+CE ;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ,就可以得出BC+CD=CE .【详解】解:(1)①证明:∵△ABC 是等边三角形∴AB=AC ∠BAC=60°∵△ADE 是等边三角形∴AD=AE ∠DAE=60°∴∠BAC -∠DAC=∠DAE -∠DAC ∴∠BAD=∠CAE ∴△ABD ≌△ACE②成立∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC是等边三角形∴AB=AC∠BAC=60°∵△ADE是等边三角形∴AD=AE∠DAE=60°∴∠BAC+∠DAC=∠DAE+∠DAC∴∠BAD=∠CAE∴△ABD≌△ACE∴BD=CE∵BC=BD-CD∴BC=CE-CD.28.(1)见解析;(2)15.【分析】(1)证△ECD≌△ACD(SAS),得EC=AC,DE=AD,∠CED=∠A=60°,再证BE=DE,则BE=AD,即可得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,证△ACB≌△ACF(SAS),得CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证△CGE≌△CDE (SAS),得CG=CD=3,GE=DE=2,∠DCE=∠GCE,再证△CFG是等边三角形,得FG=CG=3,即可求解.【详解】(1)证明:在CB上截取CE=AE,连接DE,如图所示:∵CD平分∠ACB,∴∠BCD=∠ACD,又∵CD=CD,∴△ECD≌△ACD(SAS),∴EC=AC,DE=AD,∠CED=∠A=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,又∵∠CED=∠EDB+∠B,∴∠EDB=60°-30°=30°,∴∠EDB=∠B,∴BE=DE,∴BE=AD,∵BC=EC+BE,∴BC=AC+AD;(2)解:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,如图所示:∵C是BD边的中点,BD=6,∴CB=CD=12BD=3,∵AC平分∠BAE,∴∠BAC=∠FAC,又∵AC=AC,∴△ACB≌△ACF(SAS),∴CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证:△CGE≌△CDE(SAS),∴CG=CD=3,GE=DE=2,∠DCE=∠GCE,∵CB=CD,∴CG=CF,∵∠ACE=120°,∴∠BCA+∠DCE=180°-120°=60°,∴∠FCA+∠GCE=60°,∴∠FCG=180°-60°-60°=60°,∴△FGC是等边三角形,∴FG=FC=3,∴AE=AF+GE+FG=10+2+3=15.。

人教版八年级数学上册 全册全套试卷(Word版 含解析)

人教版八年级数学上册 全册全套试卷(Word版 含解析)

人教版八年级数学上册 全册全套试卷(Word 版 含解析)一、八年级数学三角形填空题(难)1.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠: 1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=________________.【答案】20202α【解析】【分析】 根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知21211112222a A A A A a ∠=∠=∠=∠=,,…,依此类推可知2020A ∠的度数. 【详解】解:∵∠ABC 与∠ACD 的平分线交于点A 1,∴11118022A ACD ACB ABC ∠=︒-∠-∠-∠ 1118018022ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠()() 1122a A =∠=, 同理可得221122a A A ∠=∠=, …∴2020A ∠=20202α. 故答案为:20202α. 【点睛】 本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义.2.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.【答案】720°.【解析】【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】这个正多边形的边数为36060︒︒=6,所以这个正多边形的内角和=(6﹣2)×180°=720°,故答案为720°.【点睛】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180 (n≥3)且n为整数);多边形的外角和等于360度.3.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________度.【答案】360 °【解析】如图所示,根据三角形外角的性质可得,∠1+∠5=∠8,∠4+∠6=∠7,根据四边形的内角和为360°,可得∠2+∠3+∠7+∠8=360°,即可得∠1+∠2+∠3+∠4+∠5+∠6=360°.点睛:本题考查的知识点:(1)三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和;(2)四边形内角和定理:四边形内角和为360°.4.等腰三角形的三边长分别为:x+1,2x+3,9,则x=________.【答案】3【解析】①当x+1=2x+3时,解得x=−2(不合题意,舍去);②当x+1=9时,解得x=8,则等腰三角形的三边为:9、19、9,因为9+9=18<19,不能构成三角形,故舍去;③当2x+3=9时,解得x=3,则等腰三角形的三边为:4、9、9,能构成三角形。

人教版八年级上册数学 全册全套试卷测试卷(含答案解析)

人教版八年级上册数学 全册全套试卷测试卷(含答案解析)

人教版八年级上册数学全册全套试卷测试卷(含答案解析)一、八年级数学三角形填空题(难)1.已知如图,BQ平分∠ABP,CQ平分∠ACP,∠BAC=α,∠BPC=β,则∠BQC=_________.(用α,β表示)【答案】12(α+β).【解析】【分析】连接BC,根据角平分线的性质得到∠3=12∠ABP,∠4=12∠ACP,根据三角形的内角和得到∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,求出∠3+∠4=12(β-α),根据三角形的内角和即可得到结论.【详解】解:连接BC,∵BQ平分∠ABP,CQ平分∠ACP,∴∠3=12∠ABP,∠4=12∠ACP,∵∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,∴∠3+∠4=12(β-α),∵∠BQC=180°-(∠1+∠2)-(∠3+∠4)=180°-(180°-β)-12(β-α),即:∠BQC=12(α+β).故答案为:12(α+β).【点睛】本题考查了三角形的内角和,角平分线的定义,连接BC构造三角形是解题的关键.2.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=42°,则∠E=_____°.【答案】21°【解析】根据三角形的外角性质以及角平分线的定义可得.解:由题意得:∠E=∠ECD−∠EBC=12∠ACD−12∠ABC=12∠A=21°.故答案为21°.3.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.【答案】1980【解析】【详解】解:设多边形的边数为n,多加的角度为α,则(n-2)×180°=2005°-α,当n=13时,α=25°,此时(13-2)×180°=1980°,α=25°故答案为1980.4.∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC外,若∠2=20º,则∠1的度数为 _______.【答案】100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.【详解】如图,∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,∴∠3+20°+∠4+40°+40°=180°,∴∠3+∠4=80°,∴∠1=180°-80°=100°.故答案是:100°.【点睛】考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.【答案】360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.6.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=______.【答案】80°.【解析】【分析】根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.【详解】∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为80°.【点睛】本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.二、八年级数学三角形选择题(难)7.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F,∠F的度数为()A.120°B.135°C.150°D.不能确定【答案】B【解析】【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【详解】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=12×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°.故选B.【点睛】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.8.在多边形内角和公式的探究过程中,主要运用的数学思想是()A.化归思想B.分类讨论C.方程思想D.数形结合思想【答案】A【解析】【分析】根据多边形内角和定理:(n-2)·180(n≥3)且n为整数)的推导过程即可解答.【详解】解:多边形内角和定理:(n-2)·180(n≥3)且n为整数),该公式推导的基本方法是从n 边形的一个顶点出发引出(n-3)条对角线,将n边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n边形的内角和,体现了化归思想.故答案为A.【点睛】本题主要考查了在数学的学习过程应用的数学思想,弄清推导过程是解答此题的关键.9.如图,在△ABC中,点D是BC边上的一点,E,F分别是AD,BE的中点,连结CE,CF,若S△CEF=5,则△ABC的面积为()A.15 B.20 C.25 D.30【答案】B【解析】【分析】根据题意,利用中线分的三角形的两个图形面积相等,便可找到答案【详解】解:根据等底同高的三角形面积相等,可得∵F是BE的中点,S△CFE=S△CFB=5,∴S△CEB=S△CEF+S△CBF=10,∵E是AD的中点,∴S△AEB=S△DBE,S△AEC=S△DEC,∵S△CEB=S△BDE+S△CDE∴S△BDE+S△CDE=10∴S△AEB+S△AEC=10∴S△ABC=S△BDE+S△CDE+S△AEB+S△AEC=20故选:B.【点睛】熟悉三角形中线的拓展性质:分其两个三角形的面积是相等的,这样便可在实际问题当中家以应用.10.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35°B.40°C.45°D.55°【答案】C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【详解】解:如图,根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3-∠1=95°-50°=45°,∵a∥b,∴∠2=∠4=45°.故选C.【点睛】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.11.一个多边形的内角和是外角和的3倍,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【答案】C【解析】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故选C.【点评】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键,要注意“八”不能用阿拉伯数字写.12.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10【答案】C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【详解】设第三边为x,根据三角形的三边关系,得:4-1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选C.【点睛】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.三、八年级数学全等三角形填空题(难)13.如图,在ABC ∆和ADE ∆中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,C ,D ,E 三点在同一条直线上,连接BD ,则下列结论正确的是___________.①ABD ACE ∆≅∆②45ACE DBC ∠+∠=︒③BD CE ⊥④180EAB DBC ∠+∠=︒【答案】①②③④【解析】【分析】根据全等三角形的判定和性质,以及等腰三角形的性质解答即可.【详解】解:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC ,即:∠BAD=∠CAE ,∵AB=AC ,AE=AD ,∴△BAD ≌△CAE (SAS ),故①正确;∵△BAD ≌△CAE ,∴∠ABD=∠ACE ,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,故②正确;∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD ⊥CE ,故③正确;∵90BAC DAE ∠=∠=︒,∴∠BAE+∠DAC=180°,∵∠ADB=∠E=45°,∴DAC DBC ∠=∠,∴180EAB DBC ∠+∠=︒,故④正确;故答案为:①②③④.【点睛】此题主要考查了全等三角形的判定及性质,以及等腰三角形的性质,注意细心分析,熟练应用全等三角形的判定以及等腰三角形的性质是解决问题的关键.14.如图,ABC ∆中,90ACB ∠=︒,8cm AC ,15cm BC =,点M 从A 点出发沿A C B →→路径向终点运动,终点为B 点,点N 从B 点出发沿B C A →→路径向终点运动,终点为A 点,点M 和N 分别以每秒2cm 和3cm 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M 和N 作ME l ⊥于E ,NF l ⊥于F .设运动时间为t 秒,要使以点M ,E ,C 为顶点的三角形与以点N ,F ,C 为顶点的三角形全等,则t 的值为______.【答案】235或7或8 【解析】【分析】易证∠MEC =∠CFN ,∠MCE =∠CNF .只需MC =NC ,就可得到△MEC 与△CFN 全等,然后只需根据点M 和点N 不同位置进行分类讨论即可解决问题.【详解】①当0≤t <4时,点M 在AC 上,点N 在BC 上,如图①,此时有AM =2t ,BN =3t ,AC =8,BC =15.当MC =NC 即8−2t =15−3t 时全等,解得t =7,不合题意舍去;②当4≤t <5时,点M 在BC 上,点N 也在BC 上,如图②,若MC=NC,则点M与点N重合,即2t−8=15−3t,解得t=235;当5≤t<233时,点M在BC上,点N在AC上,如图③,当MC=NC即2t−8=3t−15时全等,解得t=7;④当233≤t<232时,点N停在点A处,点M在BC上,如图④,当MC=NC即2t−8=8,解得t=8;综上所述:当t等于235或7或8秒时,以点M,E,C为顶点的三角形与以点N,F,C为顶点的三角形全等.故答案为:235或7或8.【点睛】本题主要考查了全等三角形的判定以及分类讨论的思想,可能会因考虑不全面而出错,是一道易错题.15.已知在△ABC中,AD是BC边上的中线,若AB=10,AC=4,则AD的取值范围是_____.【答案】3<AD<7【解析】【分析】连接AD并延长到点E,使DE=DA,连接BE,利用SAS证得△BDE≌△CDA,进而得到BE=CA=4,利用三角形两边之和大于第三边,两边之差小于第三边,即可求得AE的取值范围,进而求出AD的取值范围.【详解】如图,连接AD并延长到点E,使DE=DA,连接BE,∵在△ABC中,AD是BC边上的中线∴BD=CD在△BDE和△CDA中BD CDBDE CDADE DA=⎧⎪∠=∠⎨⎪=⎩∴△BDE≌△CDA(SAS)∴BE=CA=4在△ABE中,AB+BE>AE,且AB﹣BE<AE∵AB=10,AC=4,∴6<AE<14∴3<AD<7故答案为3<AD<7【点睛】本题考点涉及三角形全等的判定及性质、三角形的三边关系等知识点,熟练掌握相关性质定理是解题关键.16.如图,四边形ABCD是正方形,直线l1、l2、l3分别过A、B、C三点,l1∥l2∥l3,若l1与l2之间的距离为4,l2与l3之间的距离为5,则正方形的边长为______.【答案】41【解析】解:过B作直线BF⊥l3于F,交直线l1于点E.∵l1∥l3,∴∠AEB=∠BFC=90°,∴BE=4,BF=5.∵ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=90°.∵∠ABE+∠BAE=90°,∴∠BAE=∠CBF.在△ABE和△BCF中,∵∠BAE=∠CBF,∠AEB=∠BFC,AB=BC,∴△ABE≌△BCF,∴AE=BF=5.在Rt△AEB中,AB=22AE BE=2254=41.故答案为41.点睛:本题考查了全等三角形的性质和判定,正方形的性质的应用,解答本题的关键是能正确作出辅助线,并进一步求出△ABE≌△BCF,难度适中.17.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,以下结论:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是__________.(填写序号)【答案】①③④【解析】【分析】根据三角形内角和定理、角平分线的定义、三角形外角的性质、角平分线的性质解答即可.【详解】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣50°﹣60°=70°,①正确;∵BD是∠ABC的平分线,∴∠DBC=12∠ABC=25°,∴∠DOC=25°+60°=85°,②错误;∠BDC =60°﹣25°=35°,③正确;∵∠ABC 的平分线BD 与∠ACE 的平分线CD 相交于点D ,∴AD 是∠BAC 的外角平分线,∴∠DAC =55°,④正确.故答案为①③④.【点睛】本题考查的是角平分线的定义和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.18.已知AD 是△ABC 的边BC 上的中线,若AB = 4,AC = 6,则AD 的取值范围是___________.【答案】15AD <<【解析】延长AD 到点E ,使DE=AD ,连接BE ,则可用SAS 证明△DAC ≌△DEB ,所以BE=AC. △ABE 中,BE-AB <AE <BE+AB ,即6-4<AE <6+4,所以2<AE <10.又AE=2AD ,所以2<2AD <10,则1<AD <5.故答案为1<AD <5.点睛:本题主要考查了三角形的三边关系,即三角形的两边之和大于第三边,两边之差小于第三边,当题目中有三角形的中线时,如果需要添加辅助线,一般考虑把中线延长一倍(通常称“倍中线法”),构造全等三角形,将已知条件或要解决的问题集中到一个三角形中.四、八年级数学全等三角形选择题(难)19.如图,△ABC 中,∠ABC=45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,DH ⊥BC 于H ,交BE 于G .下列结论:①BD=CD ;②AD+CF=BD ;③CE=12BF ;④AE=BG .其中正确的是A.①②B.①③C.①②③D.①②③④【答案】C【解析】【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=12AC,又因为BF=AC所以CE=12AC=12BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中.∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=12 AC.又由(1),知BF=AC,∴CE=12AC=12BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD.又DH⊥BC,∴DH垂直平分BC.∴BG=CG.在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选C.【点睛】本题考查了等腰直角三角形、等腰三角形的判定与性质、全等三角形的判定与性质.此类问题涉及知识点较多,需要对相关知识点有很高的熟悉度.20.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③B.①②④C.①②D.①②③④【答案】A【解析】【分析】根据题意结合图形证明△AFB≌△AEC;利用四点共圆及全等三角形的性质问题即可解决.【详解】如图,∵∠EAF=∠BAC ,∴∠BAF=∠CAE ;在△AFB 与△AEC 中,AF AE BAF CAE AB AC ⎧⎪∠∠⎨⎪⎩===, ∴△AFB ≌△AEC (SAS ),∴BF=CE ;∠ABF=∠ACE ,∴A 、F 、B 、C 四点共圆,∴∠BFC=∠BAC=∠EAF ;故①、②、③正确,④错误.故选A..【点睛】本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.21.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作 EF∥AD,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连结DE 、 EH 、DH 、FH .下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若23AE AB =,则313DHCEDH SS =.其中结论正确的有( )A .1个B .2个C .3个D .4个【答案】D【解析】 分析:①根据题意可知∠ACD=45°,则GF=FC ,则EG=EF-GF=CD-FC=DF ;②由SAS 证明△EHF ≌△DHC 即可;③根据△EHF ≌△DHC ,得到∠HEF=∠HDC ,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=180°;④若AE AB =23,则AE=2BE ,可以证明△EGH ≌△DFH ,则∠EHG=∠DHF 且EH=DH ,则∠DHE=90°,△EHD 为等腰直角三角形,过H 点作HM 垂直于CD 于M 点,设HM=x ,则DM=5x,DH=26x,CD=6x,则S△DHC=12×HM×CD=3x2,S△EDH=12×DH2=13x2.详解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF−GF,DF=CD−FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=12∠GFC=45°=∠HCD,在△EHF和△DHC中,EF=CD;∠EFH=∠DCH;FH=CH,∴△EHF≌△DHC(SAS),故②正确;③∵△EHF≌△DHC(已证),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF−∠HDC=∠AEF+∠ADF=180°,故③正确;④∵AEAB=23,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,EG=DF;∠EGH=∠HFD;GH=FH,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,如图,过H点作HM⊥CD于M,设HM=x,则26x,CD=6x,则S△DHC=12×HM×CD=3x2,S△EDH=12×DH2=13x2,∴3S△EDH=13S△DHC,故④正确;故选D.点睛:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解题关键在于根据题意熟练的运用相关性质.22.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQ B.DE=12AC C.AE=12CQ D.PQ⊥AB【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ中,FPD QPDE CDQPF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD≌△QCD,∴PD=DQ,DF=CD,∴A选项正确,∵AE=EF,∴DE=12AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=12AP=12CQ,∴C选项正确,故选D.23.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()A .1+2B .1+22C .2-2D .2-1【答案】B【解析】 第一次折叠后,等腰三角形的底边长为1,腰长为22; 第一次折叠后,等腰三角形的底边长为22,腰长为12,所以周长为112212222++=+. 故答案为B.24.如图,Rt ABC ∆中,90C =∠,3,4,5,AC BC AB ===AD 平分BAC ∠.则:ACD ABD S S ∆∆=( )A .3:4B .3:5C .4:5D .2:3【答案】B【解析】 如图,过点D 作DE ⊥AB 于点E ,由角平分线的性质可得出DE=CD ,由全等三角形的判定定理HL 得出△ADC ≌△ADE ,故可得出AE=AC=3,由AB=5求出BE=2,设CD=x ,则DE=x ,BD=4﹣x ,再根据勾股定理知DE 2+BE 2=BD 2,即x 2+22=(4﹣x )2,求出x=32,进而根据等高三角形的面积,可得出:S △ACD :S △ABD =CD :BD=12×32×3:12×32×5=3:5.故选:B .点睛:本题考查的是角平分线的性质,熟知角平分线上的点到角两边的距离相等是解答此题的关键.五、八年级数学轴对称三角形填空题(难)25.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB6,∵AC=BC2AB=3∴BE=23﹣6;③若MA=ME 则∠MAE=∠AEM=45°∵∠BAC=90°,∴∠BAE=45°∴AE平分∠BAC∵AB=AC,∴BE=1BC=3.2故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.26.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.【答案】40°【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.【详解】如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB 的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P 1OP 2是等腰三角形.∴∠OP 2N=∠OP 1M=50°,∴∠P 1OP 2=180°-2×50°=80°,∴∠AOB=40°,故答案为:40°【点睛】本题考查了对称的性质,正确作出图形,证得△P 1OP 2是等腰三角形是解题的关键.27.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B , ∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,∴∠CA 2A 1= 108022BA A ︒∠= =40°;同理可得, ∠DA 3A 2=20°,∠EA 4A 3=10°, ∴第n 个等腰三角形的底角∠A n = 11()802n -︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键.28.如图,△ABC 是等边三角形,高AD 、BE 相交于点H ,BC=43,在BE 上截取BG=2,以GE 为边作等边三角形GEF ,则△ABH 与△GEF 重叠(阴影)部分的面积为_____.【答案】53 【解析】试题分析:如图所示,由△ABC 是等边三角形,BC=43,得到AD=BE=32BC=6,∠ABG=∠HBD=30°,由直角三角的性质,得∠BHD=90°﹣∠HBD=60°,由对顶角相等,得∠MHE=∠BHD=60°,由BG=2,得EG=BE ﹣BG=6﹣2=4.由GE 为边作等边三角形GEF ,得FG=EG=4,∠EGF=∠GEF=60°,△MHE 是等边三角形;S △ABC =12AC•BE=12AC×EH×3EH=13BE=13×6=2.由三角形外角的性质,得∠BIF=∠FGE ﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG ﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,IN=3.S 五边形NIGHM =S △EFG ﹣S △EMH ﹣S △FIN =2233142312⨯-⨯-⨯⨯=53,故答案为53.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.29.在锐角三角形ABC中.BC=32,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是____.【答案】4【解析】【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据BC=32,∠ABC=45°,BD平分∠ABC可知△BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,∵BC=32,∠ABC=45°,BD平分∠ABC,∴△BCE是等腰直角三角形,∴CE=BC•cos45°=32×22=4.∴CM+MN的最小值为4.【点睛】本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.30.如图,△ABC中,AB=AC,∠A=30°,点D在边AB上,∠ACD=15°,则AD BC=____.【答案】2. 【解析】【分析】根据题意作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH =DH ,连接DH ,并设AD =2x ,解直角三角形求出BC (用x 表示)即可解决问题.【详解】解:作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH=DH ,连接DH .设AD=2x ,∵AB=AC ,∠A=30°,∴∠ABC=∠ACB=75°,DF 12=AD=x ,AF 3=, ∵∠ACD=15°,HD=HC ,∴∠HDC=∠HCD=15°,∴∠FHD=∠HDC+∠HCD=30°,∴DH=HC=2x ,FH 3=,∴3x ,在Rt △ACE 中,EC 12=AC=x 3+,AE 3=3=, ∴BE=AB ﹣AE 3=﹣x ,在Rt △BCE 中,BC 22BE EC =+=2x ,∴222AD BC x ==. 故答案为:22. 【点睛】本题考查的等腰三角形的性质和解直角三角形以及直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.六、八年级数学轴对称三角形选择题(难)31.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,按此规律作下去,若11A B O α∠=,则1010A B O ∠=( )A .102aB .92aC .20aD .18a 【答案】B【解析】【分析】根据等腰三角形两底角相等用α表示出22A B O ∠,依此类推即可得到结论.【详解】解:1212B A B B =,11A B O α∠=,2212A B O α∴∠=, 同理332111222A B O αα∠=⨯=, 44312A B O α∠=, 112n n n A B O α-∴∠=, 101092A B O α∴∠=,故选:B .【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.32.如图,60AOB ∠=,OC 平分AOB ∠,如果射线OA 上的点E 满足OCE ∆是等腰三角形,那么OEC ∠的度数不可能为( )A .120°B .75°C .60°D .30°【答案】C【解析】【分析】 分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC 是度数即可得到答案.【详解】∵60AOB ∠=,OC 平分AOB ∠,∠AOC=30︒,当OC=CE 时,∠OEC=∠AOC=30︒,当OE=CE 时,∠OEC=180OCE COE ∠∠︒--=120︒,当OC=OE 时,∠OEC=12(180COE ∠︒- )=75︒, ∴∠OEC 的度数不能是60°,故选:C.【点睛】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.33.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,在直线AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有( )A .6个B .5个C .4个D .3个【答案】C【解析】【分析】 根据等腰三角形的判定定理即可得到结论.【详解】解:根据题意,∵△PAB 为等腰三角形,∴可分为:PA=PB ,PA=AB ,PB=AB 三种情况,如图所示:∴符合条件的点P 共有4个;故选择:C.【点睛】本题考查了等腰三角形的判定来解决实际问题,其关键是根据等腰三角形的判定定理解答.34.如图,已知AD 为ABC ∆的高线,AD BC =,以AB 为底边作等腰Rt ABE ∆,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①DAE CBE ∠=∠;②CE DE ⊥;③BD AF =;④AED ∆为等腰三角形;⑤BDE ACE S S ∆∆=,其中正确的有( )A .①③B .①②④C .①③④D .①②③⑤【答案】D【解析】【分析】 ①根据等腰直角三角形的性质即可证明∠CBE =∠DAE ,再得到△ADE ≌△BCE ; ②根据①结论可得∠AEC =∠DEB ,即可求得∠AED =∠BEG ,即可解题;③证明△AEF ≌△BED 即可;④根据△AEF ≌△BED 得到DE=EF, 又DE ⊥CF ,故可判断;⑤易证△FDC 是等腰直角三角形,则CE =EF ,S △AEF =S △ACE ,由△AEF ≌△BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .【详解】①∵AD 为△ABC 的高线,∴CBE +∠ABE +∠BAD =90°,∵Rt △ABE 是等腰直角三角形,∴∠ABE =∠BAE =∠BAD +∠DAE =45°,AE =BE ,∴∠CBE +∠BAD =45°,∴∠DAE =∠CBE ,故①正确;在△DAE 和△CBE 中,AE BE DAE CBE AD BC ⎧⎪∠∠⎨⎪⎩===,∴△ADE ≌△BCE (SAS );②∵△ADE ≌△BCE ,∴∠EDA =∠ECB ,∵∠ADE +∠EDC =90°,∴∠EDC +∠ECB =90°,∴∠DEC =90°,∴CE ⊥DE ;故②正确;③∵∠BDE =∠ADB +∠ADE ,∠AFE =∠ADC +∠ECD ,∴∠BDE =∠AFE ,∵∠BED +∠BEF =∠AEF +∠BEF =90°,∴∠BED =∠AEF ,在△AEF 和△BED 中,BDE AFE BED AEF AE BE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEF ≌△BED (AAS ),∴BD =AF故③正确;∵△AEF ≌△BED∴DE=EF, 又DE ⊥CF ,∴△DEF 为等腰直角三角形,故④错误;④∵AD =BC ,BD =AF ,∴CD =DF ,∵AD ⊥BC ,∴△FDC 是等腰直角三角形,∵DE ⊥CE ,∴EF =CE ,∴S △AEF =S △ACE , ∵△AEF ≌△BED ,∴S △AEF =S △BED ,∴S △BDE =S △ACE .故④正确;故选:D .【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE ≌△CDE 是解题的关键.35.如图,已知:∠MON =30°,点A 1、A 2、A 3 ···在射线ON 上,点1B 、2B 、3B ···在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,若112OA =,则△667A B A 的边长为( )A .6B .12C .16D .32【答案】C【解析】【分析】 根据等腰三角形与等边三角形性质以及直角三角形中30°角所对应的直角边等于斜边的一半111OA A B =,112122321122A B A B A B A B ===…以此类推得出答案即可 【详解】∵△112A B A 是等边三角形,∴∠112A B A =∠112B A A =60°又∵∠MON =30°∴∠11OB A =30°∴∠12OB A =∠212A B B =90°,1112112A B OA A B ===又∵△223A B A 是等边三角形∴22A B ∥11A B∴∠22OB A =∠11OB A =30°∴在Rt△212A B B 中,22A B =212A B =1以此类推,得出△667A B A 的边长=1222222⋅⋅⋅⋅⋅=16 所以答案为C 选项【点睛】本题主要考查了等腰三角形与等边三角形性质以及30°角的直角三角形的性质,熟练掌握相关概念通过题目发现规律是解题关键36.如果三角形有一个内角为120°,且过某一顶点的直线能将该 三角形分成两个等腰三角形,那么这个三角形最小的内角度数是( )A .15°B .40C .15°或20°D .15°或40°【答案】C【解析】【分析】依据三角形的一个内角的度数为120°,且过某一顶点能将该三角形分成两个等腰三角形,运用分类思想和三角形内角和定理,即可得到该三角形其余两个内角的度数.【详解】如图1,当∠A=120°,AD=AC ,DB=DC 时,∠ADC=∠ACD=30°,∠DBC=∠DCB=15°, 所以,∠DBC=15°,∠ACB=30°+15°=45°;故∠ABC=60°,∠C=80°;如图2,当∠BAC=120°,可以以A 为顶点作∠BAD=20°,则∠DAC=100°,∵△APB ,△APC 都是等腰三角形;∴∠ABD=20°,∠ADC=∠ACD=40°,如图3,当∠BAC=120°,以A 为顶点作∠BAD=80°,则∠DAC=40°,∵△APB ,△APC 都是等腰三角形,∴∠ABD=20°,∠ADC=100°,∠ACD=40°.故选C .【点睛】本题主要考查了三角形内角和定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的性质以及三角形内角和定理.七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.下列多项式中,能分解因式的是:A .224a b -+B .22a b --C .4244x x --D .22a ab b -+【答案】A【解析】根据因式分解的意义,可知A 、224a b -+能用平方差公式()()22a b a b a b -=+-分解,故正确;B 、22a b --=-(22a b +),不能进行因式分解,故不正确;C 、4244x x --不符合完全平方公式()2222a ab b a b ±+=±,故不正确;D 、22a ab b -+既没有公因式,也不符合公式,故不正确.故选:A.点睛:此题主要考查了因式分解,解题时利用因式分解的方法:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).38.()()()()242212121......21n ++++=( )A .421n -B .421n +C .441n -D .441n + 【答案】A【解析】【分析】 先乘以(2-1)值不变,再利用平方差公式进行化简即可.【详解】()()()()242n 212121......21++++=(2-1)()()()()242n 212121......21++++ =24n -1.故选A.【点睛】本题考查乘法公式的应用,熟练掌握并灵活运用平方差公式是解题关键.39.已知a ,b ,c 是△ABC 的三边长,且满足a 2+2b 2+c 2-2b(a +c)=0,则此三角形是( )A .等腰三角形B .等边三角形C .直角三角形D .不能确定【答案】B【解析】【分析】运用因式分解,首先将所给的代数式恒等变形;借助非负数的性质得到a =b =c ,即可解决问题.【详解】∵a 2+2b 2+c 2﹣2b (a +c )=0,∴(a ﹣b )2+(b ﹣c )2=0;∵(a ﹣b )2≥0,(b ﹣c )2≥0,∴a ﹣b =0,b ﹣c =0,∴a =b =c ,∴△ABC 为等边三角形. 故选B .【点睛】本题考查了因式分解及其应用问题.解题的关键是牢固掌握因式分解的方法,灵活运用因式分解来分析、判断、推理活解答.40.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】。

人教版数学八年级上册 全册全套试卷试卷(word版含答案)

人教版数学八年级上册 全册全套试卷试卷(word版含答案)

人教版数学八年级上册 全册全套试卷试卷(word 版含答案)一、八年级数学三角形填空题(难)1.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.【答案】4【解析】【分析】连接111,,AC B A C B ,根据两个三角形等底同高可得111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020……直至第四次操作4443334772401A B C A B C S S ∆∆===>2020,即可得出结论.【详解】解:连接111,,AC B A C B∵111,,A B AB B C BC C A CA ===根据等底同高可得:111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S SS S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======∴第一次操作:11177A B C ABC S S ∆∆==<2020同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020第三次操作333222377343A B C A B C S S ∆∆===<2020第四次操作4443334772401A B C A B C S S ∆∆===>2020故要使得到的三角形的面积超过2020,最少需经过4次操作,故答案为:4.【点睛】此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.2.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.【答案】78.【解析】【分析】利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.【详解】∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D∴∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒,∴∠D=12∠A=30︒, ∵84BEH ︒∠=,∴∠DEH=96︒,∵EFD ∆与EFH ∆关于直线EF 对称,∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,∵∠DFG=∠D+∠DEG=78︒,∴n=78.故答案为:78.【点睛】此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12∠A=30︒是解题的关键.3.如图,△ABC 中,BD 、BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE ,交BD 于点G ,交BC 于点H .下列结论:①∠DBE =∠F ;②2∠BEF =∠BAF +∠C ;③∠F =∠BAC -∠C ;④∠BGH =∠ABE +∠C .其中正确个数是( )A .4个B .3个C .2个D .1个【答案】B【解析】解:①∵BD ⊥FD ,∴∠FGD +∠F =90°,∵FH ⊥BE ,∴∠BGH +∠DBE =90°,∵∠FGD =∠BGH ,∴∠DBE =∠F ,①正确;②∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∠BEF =∠CBE +∠C ,∴2∠BEF =∠ABC +2∠C ,∠BAF =∠ABC +∠C ,∴2∠BEF =∠BAF +∠C ,②正确;③∠ABD =90°﹣∠BAC ,∠DBE =∠ABE ﹣∠ABD =∠ABE ﹣90°+∠BAC =∠CBD ﹣∠DBE ﹣90°+∠BAC ,∵∠CBD =90°﹣∠C ,∴∠DBE =∠BAC ﹣∠C ﹣∠DBE ,由①得,∠DBE =∠F ,∴∠F =∠BAC ﹣∠C ﹣∠DBE ,③错误;④∵∠AEB =∠EBC +∠C ,∵∠ABE =∠CBE ,∴∠AEB =∠ABE +∠C ,∵BD ⊥FC ,FH ⊥BE ,∴∠FGD =∠FEB ,∴∠BGH =∠ABE +∠C ,④正确.故答案为①②④.点睛:本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键.4.如图,在ABC ∆中,B 与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.【答案】80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB的度数,再根据角平分线的定义,求出∠ABC+∠ACB,最后利用三角形内角和定理解答即可.【详解】解:在△PBC中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB、PC分别是∠ABC和∠ACB的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB)=2×50°=100°,在△ABC中,∠A=180°-(∠ABC+∠ACB)=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.5.如图,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =_________度.【答案】74°【解析】【分析】【详解】试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,∠ACB=35°.∵CD⊥AB于D,∴∠CDA=90°,∠ACD=180°﹣∠A﹣∴∠ACE=12∠CDA=50°.∴∠ECD=∠ACD﹣∠ACE=15°.∵DF⊥CE,∴∠CFD=90°,∴∠CDF=180°﹣∠CFD﹣∠DCF=75°.考点:三角形内角和定理.6.如图,AB ∥CD ,∠ABE =66°,∠D =54°,则∠E =____度.【答案】12【解析】【分析】利用三角形的外角与内角的关系及平行线的性质可直接解答.【详解】∵ AB ∥CD ,∴ ∠BFC =∠ABE =66°.在△EFD 中,利用三角形的外角等于与它不相邻的两个内角的和,得到∠BFC =∠E +∠D , ∴ ∠E =∠BFC -∠D =12°.故答案是:12.【点睛】本题考查了三角形外角与内角的关系及平行线的性质,比较简单.二、八年级数学三角形选择题(难)7.如图,ABC ∆中,100ABC ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则EFD ∠ 的度数为( )A .80°B .60°C .40°D .20°【答案】C【解析】【分析】 连接FB ,根据三角形内角和和外角知识,进行角度计算即可.【详解】解:如图连接FB ,∵AEF AFE ∠=∠,CFD CDF ∠=∠,∴AEF AFE EFB EBF ∠=∠=∠+∠,CFD CDF BFD FBD ∠=∠=∠+∠∴AFE CFD EFB EBF BFD FBD ∠+∠=∠+∠+∠+∠,即AFE CFD EFD EBD ∠+∠=∠+∠,又∵180AFE EFD DFC ∠+∠+∠=︒,∴2180EFD EBD ∠+∠=︒,∵100ABC ∠=︒,∴180100=402EFD ︒-︒∠=︒, 故选:C .【点睛】此题考查三角形内角和和外角定义,掌握三角形内角和为180°,三角形一个外角等于不相邻两内角之和是解题关键.8.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为( )A .120°B .135°C .150°D .不能确定【答案】B【解析】【分析】 先根据∠1+∠2=90°得出∠EAM+∠EDN 的度数,再由角平分线的定义得出∠EAF+∠EDF 的度数,根据AE ⊥DE 可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA 的度数,由三角形内角和定理即可得出结论.【详解】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=12×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°.故选B.【点睛】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.9.如图,小明从A点出发,沿直线前进10米后向左转10°再沿直线前进10米后向左转20°再沿直线前进10米后向左转30°……照这样下去,他第一次回到出发地A点时,一共走了()A.80米B.160米C.300米D.640米【答案】A【解析】【分析】利用多边形的外角和得出小明回到出发地A点时左转的次数,即可求出多边形的边数,即可解决问题.【详解】解:由题意可知,小明第一次回到出发地A点时,他一共转了360 ,由题意得10°+20° +30°+40°+50°+60°+70°+80°=360°,所以共转了8次,每次沿直线前进10米,所以一共走了80米.故选:A.【点睛】本题考查根据多边形的外角和解决实际问题,注意多边形的外角和是360︒,要注意第一次转了10°,第二次转了20°,第三次转了30°……,利用好规律解题.10.一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有()A.104条B.90条C.77条D.65条【答案】C【解析】【分析】n边形的内角和是(2)180n-︒,即内角和一定是180度的整数倍,即可求解,据此可以求出多边形的边数,在根据多边形的对角线总条数公式()32n n-计算即可.【详解】解:22100180113÷=,则正多边形的边数是11+2+1=14.∴这个多边形的对角线共有()()314143==7722n n--条.故选:C.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理;要注意每一个内角都应当大于0︒而小于180度.同时要牢记多边形对角线总条数公式()32n n-.11.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④【答案】C【解析】【分析】根据三角形内角和定理以及三角形角平分线的定义可得∠BOC=90°+12∠1,再结合三角形外角性质可得∠ECD=∠OBC+∠2,从而可得∠BOC=90°+∠2,据此即可进行判断.【详解】∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠ABC+∠ACB+∠1=180°,∴∠ABC+∠ACB=180°-∠1,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠1)=90°-12∠1,∴∠BOC=180°-∠OBC-∠OCB=180°-(90°-12∠1)=90°+12∠1,∵∠ACD=∠ABC+∠1,CE平分∠ACD,∴∠ECD=12∠ACD=12(∠ABC+∠1),∵∠ECD=∠OBC+∠2,∴∠2=12∠1,即∠1=2∠2,∴∠BOC=90°+12∠1=90°+∠2,∴①④正确,②③错误,故选C.【点睛】本题考查了三角形内角和定理、三角形外角的性质、三角形的角平分线等知识,熟练掌握相关的性质及定理、运用数形结合思想是解题的关键.12.已知△ABC的两条高的长分别为5和20,若第三条高的长也是整数,则第三条高的长的最大值为( )A.5 B.6 C.7 D.8【答案】B【解析】设△ABC的面积为S,所求的第三条高线的长为h,则三边长分别为,,,根据三角形的三边关系为,解得,所以h的最大整数值为6,即第三条高线的长的最大值为6.故选B.点睛:本题主要考查了三角形的面积公式,三角形三边关系定理及不等式组的解法,有一定难度.利用三角形的面积公式,表示出△ABC三边的长度,从而运用三角形三边关系定理,列出不等式组是解题的关键,难点是解不等式组.三、八年级数学全等三角形填空题(难)13.将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD 是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DM、DN 分别交AB、AC于点E、F.则下列四个结论:①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四边形AEDF=14BC2.其中正确结论是_____(填序号).【答案】①②【解析】分析:根据等腰直角三角形的性质可得AD=CD=BD,∠CAD=∠B=45°,故①正确;根据同角的余角相等求出∠CDF=∠ADE,然后利用“ASA”证明△ADE≌△CDF,判断出②,根据全等三角形的对应边相等,可得DE=DF=AF=AE,利用三角形的任意两边之和大于第三边,可得BE+CF>EF,判断出③,根据全等三角形的面积相等,可得S△ADF=S△BDE,从而求出四边形AEDF的面积,判断出④.详解:∵∠B=45°,AB=AC∴点D为BC的中点,∴AD=CD=BD故①正确;由AD⊥BC,∠BAD=45°可得∠EAD=∠C∵∠MDN是直角∴∠ADF+∠ADE=∠CDF+∠ADF=∠ADC=90°∴∠ADE=∠CDF∴△ADE≌△CDF(ASA)故②正确;∴DE=DF,AE=CF,∴AF=BE∴BE+AE=AF+AE∴AE+AF>EF故③不正确;由△ADE≌△CDF可得S△ADF=S△BDE∴S四边形AEDF=S△ACD=12×AD×CD=12×12BC×12BC=18BC2,故④不正确.点睛:此题主要查了等腰三角形的性质和全等三角形的判定与性质,以及三角形的三边关系,关键是灵活利用等腰直角三角形的边角关系和三线合一的性质.14.如图,已知OP 平分∠AOB ,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .CP =254,PD =6.如果点M 是OP 的中点,则DM 的长是_____.【答案】5.【解析】【分析】由角平分线的性质得出∠AOP=∠BOP ,PC=PD=6,∠PDO=∠PEO=90°,由勾股定理得出2274CE CP PE =-=,由平行线的性质得出∠OPC=∠AOP ,得出∠OPC=∠BOP ,证出254CO CP ==,得出OE=CE+CO=8,由勾股定理求出2210OP OE PE +=,再由直角三角形斜边上的中线性质即可得出答案.【详解】∵OP 平分∠AOB ,PD ⊥OA 于点D ,PE ⊥OB 于点E ,∴∠AOP =∠BOP ,PC =PD =6,∠PDO =∠PEO =90°, ∴222257446CE CP PE ⎛⎫⎪⎭-⎝=-==, ∵CP ∥OA ,∴∠OPC =∠AOP ,∴∠OPC =∠BOP ,∴254CO CP ==, ∴725448OE CE CO =+=+=, ∴22228610OP OE PE ++=,在Rt △OPD 中,点M 是OP 的中点,∴125DM OP ==;【点睛】本题考查了勾股定理的应用、角平分线的性质、等腰三角形的判定、直角三角形斜边上的中线性质、平行线的性质等知识;熟练掌握勾股定理和直角三角形斜边上的中线性质,证明CO=CP是解题的关键.15.如图,AB∥CD,O为∠BAC、∠ACD的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD 之间的距离等于____.【答案】2【解析】过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=1,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=(180°﹣∠BAC)+(180°﹣∠ACD)=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=1+1=2.故答案为:2.点睛:本题考查了角平分线上的点到角的两边的距离相等的性质,平行线的性质,熟记性质是解题的关键,难点在于作出辅助线并证明E、O、G三点共线.16.在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,∠C<90°,若∠B满足条件:______________,则△ABC≌△DEF.【答案】∠B≥∠A.【解析】【分析】虽然题目中∠B为锐角,但是需要对∠B进行分类探究会理解更深入:可按“∠B是直角、钝角、锐角”三种情况进行,最后得出∠B、∠E都是锐角时两三角形全等的条件.【详解】解:需分三种情况讨论:第一种情况:当∠B是直角时:如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,可知:△ABC与△DEF一定全等,依据的判定方法是HL;第二种情况:当∠B是钝角时:如图②,过点C作CG⊥AB交AB的延长线于G,过点F作DH ⊥DE 交DE 的延长线于H .∵∠B=∠E ,且∠B 、∠E 都是钝角.∴180°-∠B=180°-∠E ,即∠CBG=∠FEH .在△CBG 和△FEH 中,CBG FEH G HBC EF ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△CBG ≌△FEH (AAS ),∴CG=FH ,在Rt △ACG 和Rt △DFH 中,AC DF CG FH⎧⎨⎩=,= ∴Rt △ACG ≌Rt △DFH (HL ),∴∠A=∠D , 在△ABC 和△DEF 中,A DB EAC DF ∠∠⎧⎪∠∠⎨⎪⎩==,=∴△ABC ≌△DEF (AAS );第三种情况:当∠B 是锐角时:在△ABC 和△DEF 中,AC=DF ,BC=EF ,∠B=∠E ,且∠B 、∠E 都是锐角,小明在△ABC 中(如图③)以点C 为圆心,以AC 长为半径画弧交AB 于点D ,假设E 与B 重合,F 与C 重合,得到△DEF 与△ABC 符号已知条件,但是△AEF 与△ABC 一定不全等,所以有两边和其中一边的对角对应相等的两个三角形不一定全等;由图③可知,∠A=∠CDA=∠B+∠BCD ,∴∠A >∠B ,∴当∠B≥∠A 时,△ABC 就唯一确定了,则△ABC ≌△DEF .故答案为:∠B≥∠A .【点睛】本题是三角形综合题,考查全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键.17.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在_____.【答案】∠BAC的平分线上,与A相距1cm的地方.【解析】【分析】由已知条件及要求满足的条件,根据角平分线的性质作答,注意距A1cm处.【详解】工厂的位置应在∠BAC的平分线上,与A相距1cm的地方;理由:角平分线上的点到角两边的距离相等.【点睛】此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.作图题一定要找到相关的知识为依托,同时满足多个要求时,要逐个满足.18.如图,已知AB∥CD,O为∠CAB、∠ACD的角平分线的交点,OE⊥AC于E,且OE=2,CO=3,则两平行线间AB、CD的距离等于________.【答案】4【解析】试题解析:如图,过点O作MN,MN⊥AB于M,交CD于N,∵AB∥CD,∴MN⊥CD,∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,∴OM=OE=2,∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=2,∴MN=OM+ON=4,即AB 与CD 之间的距离是4.点睛:要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.四、八年级数学全等三角形选择题(难)19.如图,在△ABC 中,AB=AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形( )A .8对B .7对C .6对D .5对 【答案】B【解析】【分析】 易证△ABC 是关于AF 对称的图形,其中的小三角形也关于AF 对称,共可找出7对三角形.【详解】全等的三角形有:①△AFB≌△AFC;②△CEB≌△BDC;③△AEO≌△AD O ;④△EOB≌△DOC;⑤△OBF≌△OFC;⑥△AOB≌△AOC;⑦△AEC≌△ADB证明①△AFB≌△AFC∵AB=AC,CE⊥AB,BD⊥AC又∵1122ABC S AB CE AC BD == ∴CE=BD∴在Rt△BCE 和Rt△CBD 中BC BC CE BD =⎧⎨=⎩∴△BCE≌△CBD∴BE=CD,∴AE=AD在Rt△AEO 和Rt△ADO 中AE AD AO AO=⎧⎨=⎩ ∴△AEO≌△ADO∴∠EOD=∠DOA在△BAF 和△CAF 中AB AC BAF CAFAF AF=⎧⎪∠=∠⎨⎪=⎩∴△BAF≌△CAF,得证其余全等证明过程类似故选:B【点睛】本题考查全等的证明,解题关键是利用等腰三角形的性质,推导出图形中边的关系,为证全等作准备20.如图,在等腰△ABC中,90ACB︒∠=,8AC=,F是AB边上的中点,点D、E分别在AC、BC 边上运动,且保持AD CE=,连接DE、DF、EF在此运动变化的过程中,下列结论:(1)DEF是等腰直角三角形;(2)四边形CDFE不可能为正方形,(3)DE长度的最小值为4;(4)连接CF,CF恰好把四边形CDFE的面积分成1:2两部分,则CE=13或143其中正确的结论个数是A.1个B.2个C.3个D.4个【答案】A【解析】【分析】连接CF,证明△ADF≌△CEF,根据全等三角形的性质判断①,根据正方形的判定定理判断②,根据勾股定理判断③,根据面积判断④.【详解】连接CF,∵△ABC是等腰直角三角形,∴∠FCB=∠A=45,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF(SAS);∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90∘,∴∠CFE+∠CFD=∠EFD=90∘,又∵EF=DF∴△EDF是等腰直角三角形(故(1)正确).当D. E分别为AC、BC中点时,四边形CDFE是正方形(故(2)错误).由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时142DF BC== .∴242DE DF== (故(3)错误).∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CDFE=S△AFC,∵CF恰好把四边形CDFE的面积分成1:2两部分∴S△CEF:S△CDF=1:2 或S△CEF:S△CDF=2:1即S△ADF:S△CDF=1:2 或S△ADF:S△CDF=2:1当S△ADF:S△CDF=1:2时,S△ADF=13S△ACF=111684323⨯⨯⨯=又∵S△ADF=1422AD AD ⨯⨯=∴2AD=16 3∴AD=83(故(4)错误).故选:A.【点睛】本题考查了全等三角形,等腰直角三角形,以及勾股定理,掌握全等三角形,等腰直角三角形,以及勾股定理是解题的关键.21.如图,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于O,连结AO,则图中共有全等三角形的对数为()A.2对B.3对C.4对D.5对【答案】C【解析】先根据条件,利用AAS可知△ADB≌△AEC,然后再利用HL、ASA即可判断△AOE≌△AOD,△BOE≌△COD,△AOC≌△AOB.【详解】∵AB=AC,BD⊥AC于D,CE⊥AB于E,∴∠ADB=∠AEC=90°,∵∠A为公共角,∴△ADB≌△AEC,(AAS)∴AE=AD,∠B=∠C∴BE=CD,∵AE=AD,OA=OA,∠ADB=∠AEC=90°,∴△AOE≌△AOD(HL),∴∠OAC=∠OAB,∵∠B=∠C,AB=AC,∠OAC=∠OAB,∴△AOC≌△AOB.(ASA)∵∠B=∠C,BE=CD,∠ODC=∠OEB=90°,∴△BOE≌△COD(ASA).综上:共有4对全等三角形,故选C.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知条件开始结合全等的判定方法逐一验证,由易到难,不重不漏.22.如图,AD是△ABC的外角平分线,下列一定结论正确的是()A.AD+BC=AB+CD,B.AB+AC=DB+DC,C.AD+BC<AB+CD,D.AB+AC<DB+DC【答案】D【解析】【分析】在BA的延长线上取点E,使AE=AC,连接ED,证△ACD≌△AED,推出DE=DC,根据三角形中任意两边之和大于第三边即可得到AB+AC<DB+DC.解: 在BA 的延长线上取点E, 使AE=AC,连接ED,∵AD 是△ABC 的外角平分线,∴∠EAD=∠CAD,在△ACD 和△AED 中,AD AD EAD CAD AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△AED(SAS)∴DE=DC,在△EBD 中,BE <BD+DE,∴AB+AC <DB+DC故选:D.【点睛】本题主要考查三角形全等的证明,全等三角形的性质,三角形的三边关系,作辅助线构造以AB 、AC 、DB 、DC 的长度为边的三角形是解题的关键,也是解本题的难点.23.在△ABC 中,∠C=90°,D 为AB的中点,ED ⊥AB,∠DAE=∠CAE ,则 ∠CAB =( )A .30°B .60°C .80 °D .50°【答案】B【解析】 试题解析:∵D 为AB 的中点,ED ⊥AB ,∴DE 为线段AB 的垂直平分线,∴AE =BE ,∴∠DAE =∠DBE ,∴∠DAE =∠DBE =∠CAE ,在Rt △ABC 中,∵∠CAB +∠DBE =90°,∴∠CAE+∠DAE+∠DBE=90°,∴3∠DBE=90°,∴∠DBE=30°,∴∠CAB=90°-∠DBE=90°-30°=60°.故选B.24.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )①AD平分∠BAC;②作图依据是S.A.S;③∠ADC=60°;④点D在AB的垂直平分线上A.1个B.2个C.3个D.4个【答案】C【解析】①根据作图的过程可以判定AD是∠BAC的∠平分线;②根据作图的过程可以判定出AD的依据;③利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质求∠ADC的度数;④利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点在AB的中垂线上.解:如图所示,①根据作图的过程可知,AD是∠BAC的∠平分线;故①正确;②根据作图的过程可知,作出AD的依据是SSS;故②错误;③∵在△ABC中,∠C=90°,∠B=30°,∴∠CBA=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°-∠2=60°,即∠ADC=60°.故③正确;④∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故④正确;故选C.“点睛”此题主要考查的是作图-基本作图,涉及到角平分线的作法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC的度数是解题的关键.五、八年级数学轴对称三角形填空题(难)25.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.【答案】AD的中点【解析】【分析】【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AB的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.26.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

人教版八年级上册数学期末考试试卷有答案

人教版八年级上册数学期末考试试卷有答案

人教版八年级上册数学期末考试试题一、单选题1.下列长度的三根木条首尾相连,能组成三角形的是()A .3,4,8B .8,7,15C .2,2,3D .5,5,112.下列运算中正确的是()A .2510xx x⋅=B .()428x x -=-C .()224xy xy -=D .532x x x ÷=3.若分式x 1x 2-+的值为零,则x 的值是()A .0B .1C .1-D .2-4.如图将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠3=30°,则∠2=()A .50°B .60°C .30°D .20°5.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是()A .六边形B .八边形C .十二边形D .十六边形6.等腰三角形的顶角为80°,则其底角的度数是()A .100°B .80°C .50°D .40°7.把代数式x 2﹣4x+4分解因式,下列结果中正确的是()A .(x ﹣2)2B .(x+2)2C .x (x ﹣4)+4D .(x ﹣2)(x+2)8.已知实数a 、b 满足a+b =0,且ab≠0,则b aa b+的值为()A .﹣2B .﹣1C .1D .29.如图,把一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D′、C′的位置.若65EFB ∠=︒,则∠AED′的大小是()A .70︒B .65︒C .50︒D .25︒10.如图,△ABC 中AB 边上的高是()A .线段ADB .线段AC C .线段CD D .线段BC二、填空题11.计算:111a a a +=++____________.12.点()3,2A -关于y 轴对称的点的坐标是______.13.若代数式4xx -有意义,则实数x 的取值范围是_____.14.已知x+y =10,xy =1,则代数式x 2y+xy 2的值为_____.15.已知a+b=4,a-b=3,则a 2-b 2=____________.16.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF =CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)17.如图,在ABC 中,AB AC =,36A ∠=︒,AB 的中垂线DE 交AC 于点D ,交AB 于点E ,在下列结论中:①BD 平分ABC ∠;②点D 是线段AC 的中点:③AD BD BC ==;④BDC 的周长等于AB BC +.正确结论的序号是____________.18.如图,已知AE =BE ,DE 是AB 的垂线,F 为DE 上一点,BF =11cm ,CF =3cm ,则AC =_______.19.如图,在△ABC 中,∠A=50°,∠ABC=70°,BD 平分∠ABC ,则∠BDC 的度数是_____.20.如图,点B 、E 、C 、F 在一条直线上,AB ∥DE ,AB=DE ,BE=CF ,AC=6,则DF=________三、解答题21.分解因式:(1)x 2﹣4;(2)2a (b+c )﹣3(b+c ).22.计算:(1)(﹣5y 2)3;(2)43x y •32yx ;(3)4(x+1)2﹣(2x+3)(2x ﹣3).23.(1)解方程:233x x=-;(2)已知23a b =≠0,求代数式22524a b a b --•(a ﹣2b )的值.24.如图,在△ABC 中,AB =AC ,点D 在AB 上,点E 在AC 上,AD =AE .求证:CD =BE .25.如图,在Rt △ABC 中,∠C =90°,∠CAB 的平分线交BC 于点D ,又DE 是AB 的垂直平分线,垂足为E .(1)求∠CAD 的大小;(2)若BC =3,求DE 的长.26.如图所示,△ABC 是等边三角形,D 点是AC 的中点,延长BC 到E ,使CE=CD .(1)用尺规作图的方法,过D 点作DM ⊥BE ,垂足是M (不写作法,保留作图痕迹);(2)求证:BM=EM .27.星期天,小明和小军在同一小区门口同时出发,沿相同路线去离该小区1800米的青少年宫参加羽毛球训练,为响应“节能环保,绿色出行”的号召,两人都步行前往.已知小明的速度是小军的速度的1.2倍,小明比小军提前6分钟到达,求两人的速度.28.如图①,在△ABC中,∠B=45°,∠C=30°,过点A作直线AC的垂线交BC于点D.(1)求∠BAD的度数;(2)若AC=,求AB的长;(3)如图②,过点A作∠DAC的角平分线交BC于点P,点D关于直线AP的对称点为E,试探究线段CE与BD之间的数量关系,并对结论给予证明.参考答案1.C2.D3.B4.A5.B6.C7.A8.A9.C10.C11.1【分析】根据同分母分式相加,分母不变,分子相加,即可求解.【详解】解:111111a a a a a ++==+++.故答案为:1【点睛】本题主要考查了同分母分式的加减运算,熟练掌握同分母分式相加减,分母不变,分子相加减是解题的关键.12.()3,2--【分析】根据点坐标关于y 轴对称的变换规律即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标互为相反数,纵坐标不变,则点()3,2A -关于y 轴对称的点的坐标是()3,2--,故答案为:()3,2--.【点睛】本题考查了点坐标规律探索,熟练掌握点坐标关于y 轴对称的变换规律是解题关键.13.x≠4【分析】分式有意义,分母不能为0,即x-4≠0,x≠4.【详解】解:∵x-4≠0,∴x≠4.故答案为:x≠4.【点睛】本题考查了分式有意义的条件,分式有意义的条件是分母不为0,代入求解即可.14.10【分析】将所求代数式适当变形后整体代入x+y=10,xy=1即可求解.【详解】解:∵x+y=10,xy=1,∴x 2y+xy 2=xy (x+y )=1×10=10,故答案为:10.【点睛】此题考查了代数式求值,因式分解-提公因式法.注意整体思想在解题中的应用.15.12.【详解】a 2-b 2=(a+b )(a-b )=4×3=12.故答案为:12.考点:平方差公式.16.AC=DF (答案不唯一)【详解】∵BF =CE ,∴BF +FC =CE +FC ,即BC=EF ;∵AC ∥DF ,∴∠ACB=∠DFE ,△ABC 和△DEF 中有一角一边对应相等,∴根据全等三角形的判定,添加AC=DF ,可由SAS 得△ABC ≌△DEF ;添加∠B=∠E ,可由ASA 得△ABC ≌△DEF ;添加∠A=∠D ,可由AAS 得△ABC ≌△DEF .故答案为:AC=DF .(答案不唯一)17.①③④【分析】根据AB AC =,36A ∠=︒,可知ABC 为等腰三角形,进而可知72ABC ∠=︒,由DE 为AB 的中垂线,可知36DBC ∠=︒,根据角度可知BD 平分ABC ∠,故①正确,根据36DBC ∠=︒,72C ∠=︒,72BDC ∠=︒,根据等角对等边可知BD BC AD ==,故③正确,则BDC 周长为:BD BC DC AD DC BC AC BC ++=++=+,故④正确;根据角之间的关系,72BDC C ∠=∠=︒,36DBC ∠=︒,可知BD DC ≠,故AD DC ≠,故②错误.【详解】解:∵AB AC =,∴ABC 为等腰三角形,∵36A ∠=︒,∴()18036272ABC C ∠=∠=︒-︒÷=︒,∵DE 为AB 的中垂线,∴AD=BD ,∴36ABD A ∠=∠=︒,∴723636DBC ∠=︒-︒=︒,∴BD 平分ABC ∠,故①正确;∵36DBC ∠=︒,72C ∠=︒,∴180367272BDC ∠=︒-︒-︒=︒,∴BD BC AD ==,故③正确;∴BDC 周长为:BD BC DC AD DC BC AC BC ++=++=+,故④正确;∵72BDC C ∠=∠=︒,36DBC ∠=︒,∴BD DC ≠,故AD DC ≠,故②错误;故答案为:①③④.18.14cm【分析】由AE =BE ,DE 是AB 的垂线得出DE 是AB 的中线,进而可得DE 是AB 的垂直平分线,由此即可得到AF =BF ,再根据线段的和差即可得解.【详解】解:∵AE =BE ,DE 是AB 的垂线,∴DE 是AB 的中线,∴DE 是AB 的垂直平分线,∵F 为DE 上一点,∴AF =BF ,∴AC =AF+CF =BF+CF ,∵BF =11cm ,CF =3cm ,∴AC =14cm ,故答案为:14cm .【点睛】此题考查了等腰三角形的三线合一以及垂直平分线的性质,熟练掌握等腰三角形的三线合一以及垂直平分线的性质是解此题的关键.19.85°【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC 的度数.【详解】∵在△ABC 中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD 平分∠ABC ,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为:85°20.6.【分析】根据题中条件由SAS 可得△ABC ≌△DEF ,根据全等三角形的性质可得AC=DF=6.【详解】∵AB ∥DE ,∴∠B=∠DEF ∵BE=CF ,∴BC=EF ,在△ABC 和△DEF 中,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴AC=DF=6.考点:全等三角形的判定与性质.21.(1)(x+2)(x-2)(2)(b+c )(2a-3)【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式即可得到结果.【小题1】解:原式=x 2-22=(x+2)(x-2);【小题2】原式=(b+c )(2a-3).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.(1)-125y 6(2)223x (3)8x+13【分析】(1)利用积的乘方与幂的乘方运算法则进行计算;(2)利用分式乘法运算法则进行计算;(3)利用完全平方公式,平方差公式计算乘方和乘法,然后去括号,合并同类项进行化简.【小题1】解:原式=(-5)3•(y 2)3=-125y 6;【小题2】原式=346xy x y=223x ;【小题3】原式=4(x 2+2x+1)-(4x 2-9)=4x 2+8x+4-4x 2+9=8x+1323.(1)x=9;(2)58-【分析】(1)根据分式方程的解法即可求出答案.(2)先根据分式的乘法运算进行化简,然后将a=2x ,b=3x 代入原式即可求出答案.【详解】解:(1)∵233x x=-,∴2x=3x-9,∴x=9,经检验,x=9是原方程的解.(2)∵23a b=≠0,设a=2x ,b=3x ,原式=()()()()5222a b a b a b a b -⋅-+-=()52a b a b-+=()52326x x x x-+=58-24.见解析【分析】根据AB=AC 得出∠DBC=∠ECB ,利用SAS 证明△BDC ≌△CEB ,进而利用全等三角形的性质解答即可.【详解】解:证明:∵AB=AC ,∴∠DBC=∠ECB ,∵AD=AE ,∴AB-AD=AC-AE ,即DB=EC ,在△DBC 和△ECB 中,DB ECDBC ECB BC CB=⎧⎪∠=∠⎨⎪=⎩,∴△BDC ≌△CEB (SAS ),∴CD=BE .25.(1)30°(2)1【分析】(1)先说明△ABD 是等腰三角形,再根据三角形的内角和即可得出答案;(2)设DC 的长为y ,根据直角三角形的性质列出关于y 方程,解出y 即可.(1)解:∵DE 是AB 的垂直平分线,∴AD=BD ,∴∠B=∠EAD ,又∵AD 是∠CAB 的平分线,∴∠CAD=∠EAD ,设∠CAD=x ,则3x=90°,∴x=30°,∴∠CAD=30°;(2)∵AD 是∠CAB 的平分线,DC ⊥AC ,DE ⊥AB ,∴DC=DE ,设DC=y ,则DE=y ,BD=3-y ,又∵∠B=30°,∴y=32y-,解得y=1,∴DE=1.26.(1)见解析;(2)见解析.【分析】(1)根据角平分线的作法作图即可;(2)要证BM=EM 可证BD=DE ,根据三线合一得出BM=EM .【详解】(1)解:作图如下;(2)证明:∵△ABC是等边三角形,D是AC的中点∴BD平分∠ABC(三线合一)∴∠ABC=2∠DBE∵CE=CD∴∠CED=∠CDE又∵∠ACB=∠CED+∠CDE∴∠ACB=2∠E又∵∠ABC=∠ACB∴2∠DBC=2∠E∴∠DBC=∠E∴BD=DE又∵DM⊥BE∴BM=EM.27.小军的速度是50米/分,小明的速度是60米/分【分析】设小军的速度是x米/分,则小明速度是1.2x米/分,由题意:沿相同路线去离该小区1800米的青少年宫参加羽毛球训练,小明比小军提前6分钟到达,列出分式方程,解方程即可.【详解】解:设小军的速度是x米/分,则小明速度是1.2x米/分,依题意得:1800180061.2x x-=,解得:x=50,经检验,x=50是原方程的解,且符合题意,则1.2×50=60,答:小军的速度是50米/分,小明的速度是60米/分.28.(1)15°(2)2(3)CE=2BD【分析】(1)利用三角形内角和定理求出∠BAC=105°,再由∠DAC=90°,即可得出答案;(2)作AF ⊥BC 于F ,由含30°角的直角三角形的性质得AF=12角形的性质得AF=BF ,从而求出AB 的长;(3)作AF ⊥BC 于F ,设DF=x ,则AD=2x ,,AC=,则,由点D 关于直线AP 的对称点为E ,得AE=AD=2x ,可表示出CE 的长,从而得出结论.(1)解:∵∠B=45°,∠C=30°,∴∠BAC=180°-∠B-∠C=180°-45°-30°=105°,∵AD ⊥AC ,∴∠DAC=90°,∴∠BAD=∠BAC-∠DAC=105°-90°=15°;(2)作AF ⊥BC 于F ,∵∠C=30°,∴AF=12,∵∠ABF=45°,∴∴=2;(3)CE=2BD ,理由如下:作AF ⊥BC 于F ,∵∠DAF+∠CAF=90°,∠CAF+∠C=90°,∴∠DAF=∠C=30°,设DF=x,则AD=2x,3,AC=23,∵3,∴3,∵点D关于直线AP的对称点为E,∴AE=AD=2x,∴CE=AC-AE=23,∴CE=2BD.。

人教版八年级上册数学试卷及答案

人教版八年级上册数学试卷及答案

y /件y /件y /件y /件一、选择题〔本大题总分值30分,每题3分.每题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内 〕 1.16的算术平方根是A .4B .±4C .2D .±22.方程组⎩⎨⎧-=-=+13y x y x 的解是A .⎩⎨⎧==21y xB .⎩⎨⎧-==21y xC .⎩⎨⎧==12y xD .⎩⎨⎧-==10y x3.甲乙丙三个同学随机排成一排照相,则甲排在中间的概率是 A .21 B .31 C .41 D .614.以下函数中,y 是*的一次函数的是 ①y =*-6②y =x 2③y =8x④y =7-* A .①②③ B .①③④ C . ①②③④ D .②③④5. 在同一平面直角坐标系中,图形M 向右平移3单位得到图形N ,如果图形M 上*点A 的坐标为(5,-6 ),则图形N 上与点A 对应的点A '的坐标是A .(5,-9 )B .(5,-3 )C .(2,-6 )D . (8,-6 ) 6.如图,假设在象棋盘上建立平面直角坐标系,使"帅〞位于点(1 2)--,,"馬〞位于点(2 2)-,,则"兵〞位于点〔 〕A .(11)-,B .(2 1)--, C .(12)-,D .(3 1)-, 7.正比例函数y =k*(k ≠0)的函数值y 随*的增大而减小,则一次函数y =k*-k 的图像大致是8.*产品生产流水线每小时生产100件产品,生产前没产品积压,生产3小时后,安排工人装箱,假设每小时装150件,则未装箱产品数量y (件)与时间t (时)关系图为〔 〕数式15*a -1y 3与-9.代〔第15题图〕〔第6题图〕5*b y a +b 是同类项,则a 与b 的值分别是〔 〕A .⎩⎨⎧-==12b a B .⎩⎨⎧-=-=12b a C .⎩⎨⎧==12b a D .⎩⎨⎧=-=12b a10.在全民健身环城越野赛中,甲乙两选手的行程y 〔千米〕随时间t 〔时〕变化的图象〔全程〕如下图.有以下说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y 与时间t 的解析式为y =10t ;④第1.5小时,甲跑了A .1 个B .2 个C .3 个D .4个二、填空题〔本大题总分值15分,每题311.方程3*+2y =6,用含*的代数式表示y ,则y =. 12.假设点P (a +3, a -1)在*轴上,则点P 的坐标为 .13.请写出一个同时具备:①y 随*的增大而减小;②过点(0,-5)两条件的一次函数的表达式. 14.直线y =-21*+3向下平移5个单位长度,得到新的直线的解析式是. 15.如图l 1的解析式为y =k 1*+b 1 , l 2的解析式为y =k 2*+b 2, 则方程组⎩⎨⎧+=+=2211b x k y b x k y 的解为.三、解答题(本大题总分值5516.〔此题总分值4分,每题2分〕 计算:〔1〕.4+3125-. 〔2〕.21.1+64.0. 17.〔此题总分值4分〕解方程组:⎩⎨⎧=+=+.134,1632y x y x 18.〔此题总分值6分〕②① 〔第15题图〕l 〔第10题图〕8在如下图的正方形网格中,每个小正方形的边长为1,格点三角形〔顶点是网格线的交点的三角形〕ABC 的顶点A ,C 的坐标分别为〔4-,5〕,〔1-,3〕. ⑴请在如下图的网格平面内画出平面直角坐标系; ⑵请作出△ABC 关于y 轴对称的△A ′B ′C ′; ⑶写出点B ′的坐标. 19.〔此题总分值5分〕木工师傅做一个人字形屋梁,如下图,上弦AB,现有一根木料打算做中柱AD 〔AD 是△ABC 的中线〕, 请你通过计算说明中柱AD 的长度.〔只考虑长度、不计损耗〕 20.〔此题总分值5分〕 列方程组解应用题:甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,则他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,则他们在甲出发3小时后相遇.甲、乙两人每小时各走多少千米? 21. 〔此题总分值5分〕小明和小亮想去看周末的一场足球比赛,但只有一*入场券.小明提议采用如下的方法来决定到底谁去看球赛:在九*卡片上分别写上1,2,3,4,5,6,7,8,9这九个数字,将它们反面朝上洗匀后,任意抽出一*,假设抽出的卡片为奇数,小明去;否则,小亮去.你认为这个游戏公平吗?用数据 说明你的观点.22错误!无效。

2024年全新八年级数学上册期中试卷及答案(人教版)

2024年全新八年级数学上册期中试卷及答案(人教版)

2024年全新八年级数学上册期中试卷及答案(人教版)一、选择题1. 若一个数的平方根是3,那么这个数是( )A. 9B. 9C. 3D. 3答案:A2. 下列哪个数是负数?( )A. 2B. 2C. 0D. 1/2答案:B3. 若一个数的三次方是27,那么这个数是( )A. 3B. 3C. 9D. 9答案:B4. 若一个数的绝对值是5,那么这个数可能是( )A. 5B. 5C. 0D. 1答案:A5. 下列哪个数是正数?( )A. 2B. 0C. 1/2D. 1/2答案:C二、填空题1. 若a的平方根是b,那么a的立方根是_________。

答案:b2. 若a的绝对值是5,那么a可能是_________。

答案:5或53. 若a的三次方是27,那么a的平方是_________。

答案:94. 若a的平方根是b,那么b的平方根是_________。

答案:a5. 若a的绝对值是5,那么a的平方是_________。

答案:25三、解答题1. 若一个数的平方根是4,求这个数。

解:设这个数为x,根据题意,有√x = 4。

解这个方程,得到x= 4^2 = 16。

所以这个数是16。

2. 若一个数的三次方是8,求这个数。

解:设这个数为y,根据题意,有y^3 = 8。

解这个方程,得到y = 2。

所以这个数是2。

3. 若一个数的绝对值是7,求这个数的平方。

解:设这个数为z,根据题意,有|z| = 7。

由于绝对值表示数的大小,不考虑正负,所以z可以是7或7。

无论z是正数还是负数,其平方都是49。

所以这个数的平方是49。

4. 若一个数的平方根是5,求这个数的立方。

解:设这个数为w,根据题意,有√w = 5。

解这个方程,得到w= 5^2 = 25。

求w的立方,得到w^3 = 25^3 = 15625。

所以这个数的立方是15625。

5. 若一个数的绝对值是3,求这个数的立方根。

解:设这个数为v,根据题意,有|v| = 3。

由于绝对值表示数的大小,不考虑正负,所以v可以是3或3。

人教版八年级上册数学期中考试试题及答案

人教版八年级上册数学期中考试试题及答案

人教版八年级上册数学期中考试试卷一、单选题1.以下面各组线段为边,不能构成三角形的是()A.5,6,7B.6,6,6C.8,4,4D.20,30,362.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短3.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形4.若点M(2,a)和点N(a+b,3)关于y轴对称,则a、b的值为()A.a=3,b=-5B.a=-3,b=5C.a=3,b=5D.a=-3,b=1 5.下列运算正确的是()A.-a4·a3=a7B.a4·a3=a12C.(a4)3=a12D.a4+a3=a7 6.如图,在△ABC中,AB=AC,AD=DE,∠BAD=20°,∠EDC=10°,则∠DAE的度数为()A.30°B.40°C.60°D.80°7.如图,在等边 ABC中,AD是它的角平分线,DE⊥AB于E,若AC=8,则BE=()A .1B .2C .3D .48.如图,用直尺和圆规作已知角的平分线,要证明CAD DAB ∠=∠成立的全等三角形的判定依据是()A .SSSB .SASC .ASAD .AAS9.如图,已知等边 ABC ,AB=2,点D 在AB 上,点F 在AC 的延长线上,BD=CF ,DE ⊥BC 于E ,FG ⊥BC 于G ,DF 交BC 于点P ,则下列结论:①BE=CG ;② EDP ≌ GFP ;③∠EDP=60°;④EP=1中,一定正确的个数是()个A .1B .2C .3D .410.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是()A .20°B .35°C .40°D .70°二、填空题11.若()2120a b -+-=,则以a 、b 为边长的等腰三角形的周长为_____.12.若am=3,则(a 3)m =.13.如图,锐角△ABC 的高AD 、BE 相交于F ,若BF=AC ,BC=7,CD=2,则AF 的长为____14.如图,在ABC 中,AB AC =,50A ∠=︒,AB 的垂直平分线MN 交AC 于D 点,连接BD ,则DBC ∠的度数是________.15.如图,撑伞时,把伞“两侧的伞骨”和支架分别看作AB 、AC 和DB 、DC ,始终有AB=AC ,DB=DC ,请大家考虑一下伞杆AD 所在的直线是B 、C 两点的连线BC 的____线.16.如图,是A 、B 、C 三个村庄的平面图,已知B 村在A 村的南偏西50°方向,C 村在A 村的南偏东15°方向,C 村在B 村的北偏东85°方向,求从C 村村观测A 、B 两村的视角∠ACB 的度数是__.三、解答题17.计算:(1)[(-a)3]4;(2)(-m 2)3·(-m 3)2.(3)[(m-n)2]5(n-m)3(4)(-x 2)5+(-x 5)218.已知在△ABC 中,AB =AC ,且线段BD 为△ABC 的中线,线段BD 将△ABC 的周长分成12和6两部分,求△ABC 三边的长.19.如图,在边长为1个单位长度的小正方形组成的网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与 ABC 关于直线l 成轴对称的A B C '''(2)四边形ABCA '的面积为_____;(3)在直线l 上找一点P ,使PA+PB 的长最短.20.如图,AD ⊥BC 于D ,AD=BD ,AC=BE .(1)请说明∠1=∠C ;(2)猜想并说明DE 和DC 有何特殊关系.21.如图在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,EF交BC于点FC.F,交AB于点E.求证:BF=1222.(1)若2x+5y﹣3=0,求4x•32y的值.(2)已知a3m=3,b3n=2.求(a2m)3+(bn)3-a2mbn·a4mb2n的值.23.如图,已知AB=CB,BE=BF,点A,B,C在同一条直线上,∠1=∠2.(1)证明:△ABE≌△CBF;(2)若∠FBE=40°,∠C=45°,求∠E的度数.24.已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=______;②若PO=5,连接GH,请说明当∠MON为多少度时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当 PAB的周长最小时,求∠APB 的度数.25.如图1,点P 、Q 分别是等边△ABC 边AB 、BC 上的动点(端点除外),点P 从顶点A 、点Q 从顶点B 同时出发,且它们的运动速度相同,连接AQ 、CP 交于点M .(1)求证:ABQ CAP ≌△△:(2)当点P 、Q 分别在AB 、BC 边上运动时,∠QMC 的大小变化吗?若变化,请说明理由:若不变,求出它的度数.(3)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 相交于点M ,则∠QMC 的大小变化吗?若变化,请说明理由:若不变,则求出它的度数.参考答案1.C【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】+>,能构成三角形,该项不符合题意;A.567+>,能构成三角形,该项不符合题意;B.666+=,不能构成三角形,该项符合题意C.448+>,能构成三角形,该项不符合题意;D.203036故选C【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.2.A【解析】【分析】根据三角形的稳定性即可解决问题.【详解】解:根据三角形的稳定性可固定窗户.故选:A.【点睛】本题考查了三角形的稳定性,属于基础题型.3.D【解析】【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4.A【解析】【分析】关于y 轴对称的点的坐标特征是:横坐标变为原数的相反数,纵坐标不变,据此解出a,b 的值.【详解】解:根据题意,点M(2,a)和点N(a+b ,3)关于y 轴对称,则a+b=-2,a=3,解得b=-5,故选:A .【点睛】本题考查关于y 轴对称的点的坐标,是基础考点,掌握相关知识是解题关键.5.C【解析】【分析】由同底数幂相乘,幂的乘方,合并同类项,分别进行判断,即可得到答案.【详解】解:A 、437·a a a -=-,故A 错误;B 、437·a a a =,故B 错误;C 、4312()a a =,故C 正确;D 、43a a +不是同类项,不能合并,故D 错误;故选:C .【点睛】本题考查了幂的乘方,同底数幂相乘,合并同类项,解题的关键是熟练掌握运算法则进行判断.6.C【解析】【分析】先根据三角形外角性质,用∠C 表示出∠AED ,再根据等边对等角和三角形内角和定理,列出等式即可求出∠C 的度数,再求∠DAE .【详解】解:设∠C=x ,∵AB=AC ,∴∠B=∠C=x ,∴∠AED=x+10°∵AD=DE ,∴∠DAE=∠AED=x+10°根据三角形的内角和定理,得x+x+(20°+x+10°)=180°解得x=50°,∴∠DAE=50°+10°=60°故选C .【点睛】本题考查了等腰三角形的性质,三角形内角和定理,三角形的外角性质,求出∠C 的度数是解答本题的关键.7.B【解析】【分析】由等边△ABC 的“三线合一”的性质推知142BD BC ==,根据等边三角形三个内角都相等的性质、直角三角形的两个锐角互余推知∠BDE=30°,最后根据“30°角所对的直角边等于斜边的一半”来求BE 即可.【详解】∵ABC 是等边三角形,AD 是它的角平分线,∴118422BD BC ==⨯=,60B ∠=︒.∵DE AB ⊥于E ,∴30BDE ∠=︒,∴122BE BD ==.故选B 【点睛】本题考查了等边三角形的性质及含30°角的直角三角形,解题的关键是熟练掌握以上知识.8.A【解析】【分析】根据全等三角形的判定定理即可解答.【详解】解:∵AF=AE ,FD=ED ,在△AFD 与△AED 中AF AE FD ED AD AD =⎧⎪=⎨⎪=⎩∴△AFD ≌△AED (SSS )∴CAD DAB ∠=∠,因此全等三角形的判定依据是SSS ,故选:A .【点睛】本题考查了角平分线的尺规作图的依据,解题的关键是找到图中的全等三角形,并熟记全等三角形的判定定理.9.C【解析】【分析】由等边三角形的性质可以得出△DEB ≌△FGC ,就可以得出BE =CG ,DE =FG ,就可以得出△DEP ≌△FGP ,得出∠EDP =∠GFP ,EP =PG ,得出PC +BE =PE ,就可以得出PE =1,从而得出结论.【详解】解:∵△ABC 是等边三角形,∴AB =BC =AC ,∠A =∠B =∠ACB =60°.∵∠ACB =∠GCF ,∵DE ⊥BC ,FG ⊥BC ,∴∠DEB =∠FGC =∠DEP =90°.在△DEB 和△FGC 中,DEB FGC GCF B BD CF ∠∠⎧⎪∠∠⎨⎪⎩===,∴△DEB ≌△FGC (AAS ),∴BE =CG ,DE =FG ,故①正确;在△DEP 和△FGP 中,DEP FGP DPE FPG DE FG ∠∠⎧⎪∠∠⎨⎪⎩===,∴△DEP ≌△FGP (AAS ),故②正确;∴PE =PG ,∠EDP =∠GFP≠60°,故③错误;∵PG =PC +CG ,∴PE =PC +BE .∵PE +PC +BE =2,∴PE =1,故④正确.故答案为:C .【点睛】本题考查了等边三角形的性质,全等三角形的判定及性质,解题的关键是证明三角形全等.10.B【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【详解】∵AD 是△ABC 的中线,AB=AC ,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°.∵CE 是△ABC 的角平分线,∴∠ACE=12∠ACB=35°.故选B .【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.11.5【解析】【分析】根据偶次方和绝对值的非负性,可以得到a -1=0,b -2=0,得到a ,b 的值,根据三角形三边关系求解即可.【详解】解:∵()2120a b -+-=,∴a -1=0,b -2=0,解得a=1,b=2.①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴1、1、2不能组成三角形.②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,∴周长=2+2+1=5.故答案为:5【点睛】本题考查了偶次方和绝对值的非负性,等腰三角形的性质,三角形的三边关系,关键是求出a ,b 的值.12.27【解析】【分析】根据幂的乘方的逆运算可得结果.【详解】解:∵am=3,∴(a 3)m=()333327m m a a ====,故答案为:27.【点睛】本题考查了幂的乘方,熟练掌握幂的乘方以及其逆运算法则是解题的关键.13.3【解析】【详解】∴∠BDF=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠DAC+∠C=90°,∴∠DBF=∠DAC ,在△BDF 与△ADC 中,DBF DAC BDF ADC BF AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF ≌△ADC(ASA),∴AD=BD=BC−CD=7−2=5,DF=CD=2,∴AF=AD−DF=5−2=3;故答案为3.14.15°【解析】【分析】根据等腰三角形两底角相等,求出∠ABC 的度数,再根据线段垂直平分线上的点到线段两端点的距离相等,可得AD=BD ,根据等边对等角的性质,可得∠ABD=∠A ,然后求∠DBC 的度数即可.【详解】∵AB=AC ,∠A=50∘,∴∠ABC=12(180∘−∠A)=12(180∘−50∘)=65∘,∵MN 垂直平分线AB ,∴AD=BD ,∴∠ABD=∠A=50∘,∴∠DBC=∠ABC−∠ABD=65∘−50∘=15∘.故答案为:15∘.【点睛】考查等腰三角形的性质,线段垂直平分线的性质,掌握垂直平分线的性质是解题的关键.15.垂直平分【解析】【分析】根据线段的垂直平分线的性质定理的逆定理得出A 、D 都在线段BC 的垂直平分线上,根据两点确定一条直线得出直线AD 是线段BC 的垂直平分线.【详解】解:如图,连接BC 、AD ,∵,AB AC DB DC ==,∴点A 在线段BC 的垂直平分线上,点D 在线段BC 的垂直平分线上,∴根据两点确定一条直线得出直线AD 是线段BC 的垂直平分线,故答案为:垂直平分.【点睛】本题考查了线段的垂直平分线的判定,解题的关键是熟练掌握线段的垂直平分线的性质.16.80°【解析】【分析】根据三角形的内角和进行计算,即可得到结论.【详解】由题意得:∠BAE=∠ABD=50°,∠CAE=15°,∠DBC=85°,∴∠BAC =50°+15°=65°,∠ABC =85°﹣50°=35°,在△ABC 中,∠ACB =180°﹣∠BAC ﹣∠ABC =180°﹣65°﹣35°=80°.故答案为:80°.【点睛】本题考查的是方向角的概念及三角形内角和定理,解题的关键是熟练掌握三角形的内角和.17.(1)a 12;(2)-m 12;(3)(n-m )13;(4)0【解析】【分析】(1)由题意利用积的乘方和幂的乘方的运算法则进行计算即可;(2)由题意先利用积的乘方和幂的乘方的运算法则进行计算,继而利用同底数幂的乘法进行计算即可;(3)由题意先利用幂的乘方的运算法则进行计算,继而利用同底数幂的乘法进行计算即可;(4)由题意先利用积的乘方和幂的乘方的运算法则进行计算,继而利用合并同类项原则进行计算即可.【详解】解:(1)[(-a)3]412a =;(2)(-m 2)3·(-m 3)26612m m m =-⋅=-;(3)[(m-n)2]5(n-m)310310313()()()()()m n n m n m n m n m =-⋅-=-⋅-=-;(4)(-x 2)5+(-x 5)210100x x =-+=.【点睛】本题考查幂的运算,熟练掌握积的乘方和幂的乘方以及同底数幂的乘法运算法则是解题的关键.18.8,8,2【解析】【分析】设腰长为x ,底边长为y ,分两种情况进行讨论,12为腰长加腰长的一半和6为腰长加腰长的一半,求解即可.解:设腰长为x ,底边长为y ,当12为腰长加腰长的一半时,则:1122162x x y x ⎧+=⎪⎪⎨⎪+=⎪⎩,解得82x y =⎧⎨=⎩此时三角形的三边长为8,8,2,能组成三角形当6为腰长加腰长的一半时,则1621122x x y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得410x y =⎧⎨=⎩,此时三角形的三边长为4,4,10,不能组成三角形故三角形的三边长为8,8,2【点睛】本题考查了等腰三角形和三角形三边关系的求解,解题的关键是注意分情况讨论,并判断是否组成三角形.19.(1)见解析;(2)172;(3)见解析【解析】【分析】(1)根据题意作出点A ,点B 关于L 的对称点A′、B′,连结CA′,A′B′,B′C 即可;(2)用割补法利用矩形面积减去3个直角三角形面积求解即可得到结论;(3)作出图形,根据勾股定理求得结果即可.【详解】解:(1)作出点A ,点B 关于l 的对称点A′、B′,连结CA′,A′B′,B′C ,如图所示,△A'B'C'即为所求;(2)四边形ABCA'的面积=4×412-⨯2×112-⨯1×412-⨯3×3=16-1-2-92=172;故答案为:172;(3)∵点B 与点B′关于l 对称,连接AB'交直线l 与点P ,∴PA+PB=PA+PB′,则PA+PB长的最短值=AB',∴AB'==;.【点睛】本题考查了轴对称﹣最短路线问题,勾股定理,作图﹣轴对称变换,正确的理解题意是解题的关键.20.(1)证明见解析;(2)DE=DC,证明见解析.【解析】【分析】(1)欲证∠1=∠C,只需证明△DBE≌△DAC即可;(2)由△DBE≌△DAC,得到DE=DC.【详解】(1)∵AD⊥BC于D,∴∠BDE=∠ADC=90°.∵AD=BD,AC=BE,∴Rt△BDE≌Rt△ADC(HL),∴∠1=∠C.(2)DE=DC.理由如下:由(1)知△BDE≌△ADC,∴DE=DC.本题考查了直角三角形全等的判定及性质;三角形全等的判定和性质是中考的热点,斜边与直角边对应相等的两个直角三角形全等.21.见解析【解析】【详解】试题分析:连接AF,根据等腰三角形性质和三角形内角和定理求出∠B=∠C=30°,根据线段的垂直平分线的性质得出BF=AF,推出∠BAF=∠B=30°,求出∠FAC=90°,根据含30度角的直角三角形性质求出即可.试题解析:连接AF,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵EF为AB的垂直平分线,∴BF=AF,∴∠BAF=∠B=30°,∴∠FAC=120°-30°=90°,∵∠C=30°,∴AF=12 CF,∵BF=AF,∴BF=12 FC.22.(1)8;(2)-7【解析】【分析】(1)先化为以2为底的幂的形式,再利用同底数幂相乘,底数不变,指数相加,最后采用整体代入思想解题;(2)先利用幂的乘方公式将所要求的式子化简,再代入解题.【详解】解:(1)若2x+5y ﹣3=0,则2x+5y=32525343222228x y x y x y +⋅=⋅===;(2)(a 2m )3+(bn )3-a 2mbn·a 4mb 2n=(a 3m )2+(b 3n )-a 6mb 3n=(a 3m )2+(b 3n )-(a 3m )2b 3n=32+2-32×2=9+2-18=-7.【点睛】本题考查幂的运算,涉及同底数幂的乘法、幂的乘方、整体思想等知识,是重要考点,掌握相关知识是解题关键.23.(1)证明见解析;(2)25°【解析】【分析】(1)根据SAS 即可证明;(2)在△ABE 中,求出∠A ,∠ABE 即可解决问题.【详解】(1)证明:∵∠1=∠2,∴∠1+∠EBF =∠2+∠EBF ,即∠ABE =∠CBF .在△ABE 和△CBF 中,∵AB BC ABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CBF .(2)∵∠1=∠2,∠FBE =40°,∴∠1=∠2=70°.∵△ABE ≌△CBF ,∴∠A =∠C =45°,∵∠ABE =∠1+∠FBE =70°+40°=110°,∴∠E =180°-∠A -∠ABE =180°-45°-110°=25°.【点睛】本题考查全等三角形的判定和性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常见题.24.(1)①100°;②当90MON ∠=︒时,10GH =;(2)60APB ∠=︒【解析】【分析】(1)①根据对称性可得OG OP OM GP =⊥,,即可得到OM 平分POG ∠,ON 平分∠POH ,进而得出∠GOH 的值;②当90MON ∠=︒时,180GOH ∠=︒,此时G O H ,,在同一直线上,可得=10GH GO HO +=;(2)设点P 关于OM 、ON 对称点分别为P P ''',,当点A 、B 在P P '''上时, PAB 周长的最小,根据轴对称的性质,可求出APB ∠的度数.【详解】解:(1)①P 关于射线OM 的对称点是G ,点P 关于射线ON 的对称点是H ,OG OP OM GP ∴=⊥,,OM ∴平分POG ∠,同理得,ON 平分∠POH ,=2250100GOH MON ∴∠∠=⨯︒=︒,故答案为:100°;②P O=5,5GO HO ∴==当90MON ∠=︒时,180GOH ∠=︒G O H ∴,,在同一直线上,=10GH GO HO ∴+=;(2)如图,分别作点P 关于OM 、ON 的对称点P P ''',,连接OP OP P P P P '''''''''、、,交OM ON 、于点A 、B ,连接PA ,PB ,则AP=AP BP BP '''=,,此时 PAB 周长的最小值等于P P '''的长,由对称性可得,==,OP OP OP P OA POA P OB POB ''''''∠=∠∠=∠,,2260120P OP MON '''∴∠=∠=⨯︒=︒(180120)230OP P OP P ''''''∴∠=∠=︒-︒÷=︒30OPA OP A '∴∠=∠=︒同理可得30BPO OP B ''∠=∠=︒303060APB ∴∠=︒+︒=︒.【点睛】本题考查轴对称——最短路线问题,涉及角平分线性质等知识,是重要考点,掌握相关知识是解题关键.25.(1)证明见解析(2)∠QMC 的大小不变,∠QMC=60°(3)∠QMC 的大小不变,∠QMC =120°【解析】【分析】(1)根据等边三角形的性质,利用SAS 证明△ABQ ≌△CAP ;(2)由△ABQ ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP ,从而得到∠QMC=60°;(3)由△ABQ ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP ,从而得到∠QMC=120°.(1)证明:∵△ABC 是等边三角形∴∠ABQ =∠CAP =60°,AB =CA ,又∵点P 、Q 运动速度相同,∴AP =BQ ,在△ABQ 与△CAP 中,∵AB CA ABQ CAP BQ AP =⎧⎪∠=∠⎨⎪=⎩,∴ABQ CAP ≌△△(SAS );(2)解:点P 、Q 分别在AB 、BC 边上运动时,∠QMC 的大小不变,∠QMC =60°.理由:∵ABQ CAP ≌△△,∴∠BAQ =∠ACP ,∵∠QMC =∠ACP +∠MAC ,∴∠QMC =∠BAQ +∠MAC =∠BAC =60°(3)解:点P 、Q 在运动到终点后继续在射线AB 、BC 上运动时,∠QMC 的大小不变.理由:同理可得ABQ CAP ≌△△,∴∠BAQ =∠ACP ,∵∠QMC =∠BAQ +∠APM ,∴∠QMC =∠ACP +∠APM =180°-∠PAC =180°-60°=120°.。

人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试卷一、单选题1.下列选项中,属于最简二次根式的是()A B C D2x的取值范围是()A .4x >B .4x <C .4x ≥D .4x ≤3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的众数是()A .6B .7C .8D .94.在ABC 中,D ,E 分别是AB ,AC 的中点,若10BC =,12AB =,则DE 的长为()A .4B .5C .6D .75.如图,每个小正方形的边长都是1,A ,B ,C 分别在格点上,则ABC ∠的度数为()A .30°B .45︒C .50︒D .60︒6.甲、乙、丙三人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是20.55s =甲,20.65s =乙,20.50s =丙,则成绩最稳定的是()A .甲B .乙C .丙D .无法确定7.小明向东走80m 后,沿方向A 又走了60m ,再沿方向B 走了100m 回到原地,则方向A 是A .南向或北向B .东向或西向C .南向D .北向8.若函数3y x m =-+的图象如图所示,则函数1y mx =+的大致图象是()A .B .C .D .9.如图,将边长分别是4,8的矩形纸片ABCD 折叠,使点C 与点A 重合,则BF 的长是()A .2B .3CD .410.已知矩形的对角线为1,面积为m ,则矩形的周长为()A .212m -B .212m +C .D .二、填空题11.在ABCD 中,50A ∠=︒,则C ∠=______.12.若0a >,0b >,则0ab >.的逆命题为______(填“真”或“假”)命题.13.如图,在ABC 中,90ABC ∠=︒,AD DC =,4BD =,则AC =______.14.如图,已知直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,若12y y <,则x 的取值范围为______.15.一组数据4,2,x ,6,3的平均数是4,则这组数据的中位数是______.16.观察311111122=+-=11111236=+-=,111113412=+-==_____;依此类推,按照每个等式反映的规律,第n 个二次根式的计算结果是______.17.计算:三、解答题18.在Rt ABC 中,90C ∠=︒,30A ∠=︒,3AC =,求AB 的长.19.如图,在ABCD 中,点E ,F 分别在AB ,DC 上,且AE CF =.求证:四边形DEBF 是平行四边形.20.某公司有15名员工,他们所在部门及相应每人所创年利润如表所示.部门人数每人所创年利润/万元A53B28C17D44E39(1)这个公司平均每人所创年利润是多少?(2)公司规定,个人所创年利润由高到低前40%的人可以获奖.试判断D部门的员工能否获奖,并说明理由.21.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的中线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB为邻余线,E,F在格点上.22.A、B两家物流公司为了吸引顾客,推出不同的优惠方案,其中A公司原运费是5元/千克,现按8折计费.B公司原运费是6元/千克,优惠方案为:10千克以内不优惠,超过10千克部分按5折计费.(1)以x(单位:千克)表示商品重量,y(单位:元)表示运费,分别就两家公司的优惠方案写出y关于x的函数解析式;(2)在同一直角坐标系中画出(1)中两个函数的大致图象.23.如图,直线6y ax =+与直线2y x =相交于点(),4A m ,且与x 轴相交于点B .(1)求a 和m 值;(2)求AOB 的边AB 上的高.24.已知在平面直角坐标系中,直线28y x =-与x 轴交于点A ,与y 轴交于点B .(1)求A 、B 的坐标;(2)平移线段AB ,使得点A 、B 的对应点M ,N 分别落在直线1l :36y x =+和直线2l :4y x =+上,求M ,N 的坐标;(3)试证明直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.25.正方形ABCD 的CD 边长作等边△DCE,AC 和BE 相交于点F ,连接DF.求AFD 的度数.26.下图是交警在某个路口统计的某时段来往车辆的车速情况.(单位:千米/时)(1)车速的众数是多少?(2)计算这些车辆的平均数度;(3)车速的中位数是多少?参考答案1.A【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A,是最简二次根式,符合题意;B==C=能化简,不是最简二次根式,不符合题意;D=故选A.【点睛】本题考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.C【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】由题意得,40x-≥,解得,4x≥,故选:C.【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.3.D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数,进行求解即可.【详解】解:∵6,7,9,8,9这5个数中9出现了两次,出现的次数最多,∴这组数据的众数为9,故选D.【点睛】本题主要考查了众数的定义,解题的关键在于能够熟练掌握众数的定义.4.B【解析】【分析】由于DE分别是AB、AC的中点,根据中位线性质可知中位线是底边长度的一半.【详解】∵DE分别是AB、AC的中点∴DE为△ABC的中位线∴DE=12BC=1102⨯=5故选B【点睛】本题考查中位线的判定和性质,掌握这两点是解体的关键.5.B 【解析】【分析】利用勾股定理的逆定理证明△ACB 为等腰直角三角形即可得到∠ABC 的度数.【详解】解:连接AC ,由勾股定理得:AC =BC AB =∵AC 2+BC 2=AB 2=10,∴△ABC 为等腰直角三角形,∴∠ABC =45°,故选B .【点睛】本题考查了勾股定理的逆定理,解答本题的关键是根据正方形的性质求出边长,由勾股定理的逆定理判断出等腰直角三角形.6.C 【解析】【分析】根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙的方差可作出判断.【详解】解:由于222=0.50=0.55=0.65SS S <<甲乙丙,∴成绩较稳定的是丙.故选C .【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.A 【解析】【分析】设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,由题意得OC =80m ,CD =60m ,OD =100m ,然后利用勾股定理的逆定理得到∠OCD =90°即可求解.【详解】解:设小明一开始的位置为O ,向东走到的位置为C ,沿A 方向走到的位置为D ,∴由题意得OC =80m ,CD =60m ,OD =100m ,∴2222226080100OC CD OD +=+==,∴∠OCD =90°,∵OC 的方向为东,∴CD 的方向为南或北,即A 的方向为南或北,故选A .【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.8.D 【解析】【分析】根据一次函数的图象的性质确定m 的符号,进而解答即可.【详解】解:由函数3y x m =-+的图象可得:0m <,所以函数1y mx =+的大致图象经过第一、二、四象限,故选:D .【点睛】本题考查了一次函数的图象和性质,关键是根据一次函数的图象的性质确定m 的符号.9.B 【解析】【分析】由折叠的性质可得出AF =CF ,设BF =m ,则AF =8−m ,在Rt △ABF 中,利用勾股定理可得出关于m 的方程,解之即可得出结论.【详解】解:由折叠的性质可知:AF =CF .设BF =m ,则AF =CF =8−m ,在Rt △ABF 中,∠ABF =90°,AB =4,BF =m ,AF =8−m ,∴222AF AB BF =+,即()22284m m -=+,∴m =3.故选:B .【点睛】本题考查了翻转变换、矩形的性质以及勾股定理,在Rt △ABF 中,利用勾股定理找出m (AF 的长)的方程是解题的关键.10.C 【解析】【分析】设矩形的长、宽分别为a 、b ,根据矩形的性质和面积、周长公式计算即可.【详解】解:设矩形的长、宽分别为a 、b ,∵矩形的对角线为1,面积为m ,∴221a b +=,ab m =,∴a b +=∴矩形的周长为()2a b +=故选:C .【点睛】本题考查矩形的性质,关键是用22a b +和ab 表示出a b +.11.50°【解析】【分析】利用平行四边形的对角相等,进而求出即可.【详解】解:∵四边形ABCD 是平行四边形,∴∠A =∠C =50°.故答案为:50°.【点睛】考查平行四边形的性质,掌握平行四边形的对角相等是解题的关键.12.假【解析】【分析】根据逆命题的定义:把原命题的结论作为命题的条件,把原命题的条件作为命题的结论,所组成的命题叫做原命题的逆命题,进行求解即可.【详解】解:若0a >,0b >,则0ab >的逆命题为:若0ab >,则0a >,0b >,这是一个假命题,故答案为:假.【点睛】本题主要考查了判定命题的真假和命题的逆命题,解题的关键在于能够熟练掌握逆命题的定义.13.8【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半求解即可.【详解】解:∵∠ABC =90°,AD =DC ,BD =4,∴AC =2BD =8.故答案为:8.【点睛】本题主要考查了直角三角形斜边上的中线,解题的关键在于能够熟练掌握直角三角形斜边上的中线等于斜边的一半.14.1x <【解析】【分析】根据函数图像,写出直线111y k x b =+的图像在直线222y k x b =+的下方所对应的自变量的范围即可.【详解】由题意知,直线111y k x b =+与直线222y k x b =+相交于点()1,2A ,当12y y <时,1x <,故答案为:1x <.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.4【解析】【分析】根据平均数的定义可以先求出x 的值,再根据中位数的定义求出这组数的中位数即可.【详解】解:利用平均数的计算公式,得(4+2+x +6+3)=4×5,解得x =5,这组数据为2,3,4,5,6,中位数为4.故答案为:4.【点睛】本题考查了中位数、平均数,将数据从小到大依次排列是解题的关键.16.1120()211n nn n+++【解析】【分析】利用题中的等式可得第四个式子的结果为11145+-,第n个二次根式的结果为1111n n+-+,然后进行分式的加减运算即可.【详解】111111112122+-=+=⨯;111111123236+-=+=⨯;1111111343412+-=+=⨯;1111111454520=+-=+=⨯;第n()()()()2111111111n n n n n nn n n n n n+++-+++-==+++.故答案为1120;()211n nn n+++.【点睛】本题考查了二次根式的加减混合运算,列代数式.找出结果与序号之间的关系是解题的关键.17.【解析】【分析】根据实数的计算规则与顺序按步骤计算即可,注意结果能开出来的要开出来.【详解】解:原式===+故答案为4362+【点睛】本题考查实数的混合运算,掌握运算定律和顺序是解题关键.18.23【解析】【分析】由30°角的直角三角形的性质可得12BC AB =,再根据勾股定理可求解.【详解】解:∵90C ∠=︒,30A ∠=︒∴12BC AB =在Rt ABC 中,3AC =22222132AB BC AC AB ⎛⎫=+=+ ⎪⎝⎭解得23AB =【点睛】本题主要考查含30°角的直角三角形的性质,勾股定理,由含30度角的直角三角形的性质得12BC AB =是解题的关键.19.见解析【解析】【分析】根据一组对边平行且相等判断四边形DEBF 是平行四边形即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB CD =,//EB DF .又AE CF =,∴AB AE CD CF-=-.即EB DF=.∴四边形DEBF是平行四边形.【点睛】本题主要考查了矩形的性质,平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定定理进行求解.20.(1)5.4万元;(2)不能,理由见解析【解析】【分析】(1)利用加权平均数,即可求解;(2)算出能获奖的人数,然后个人所创年利润由高到低进行排列,进而即可求解.【详解】解:(1)公司平均每人所创年利润=532817443981 5.41515⨯+⨯+⨯+⨯+⨯==(万元)答:这个公司平均每人所创年利润是5.4万元;(2)D部门员工不能获奖,理由如下:获奖人数为:1540%6⨯=(人)个人所创年利润由高到低分别为E部门3人,B部门2人,C部门1人,共6人,所以D部门不能获奖.【点睛】本题主要考查加权平均数以及统计表,准确找出表格中的相关数据是解题的关键.21.(1)见解析;(2)见解析【解析】【分析】(1)由等腰三角形的“三线合一“性质可得AD⊥BC,则可得∠DAB与∠DBA互余,即∠FAB 与∠EBA互余,从而可得答案;(2)根据邻余四边形的概念画出图形即可.【详解】(1)证明:∵AB=AC AD是△ABC的中线∴AD⊥BC∴∠ADB=90°∴∠FAB+∠B =90°∴四边形ABEF 是邻余四边形(2)如图所示,即为所求.【点睛】本题考查了四边形的新定义,综合考查了等腰三角形的“三线合一“性质,读懂定义并明确相关性质及定理是解题的关键.22.(1)A 公司:4y x =(0x ≥),B 公司:()()601033010x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)见解析【解析】【分析】(1)根据两个公式的优惠政策进行求解即可得到答案;(2)根据(1)求得的结果,在坐标系中描点连线画出函数图像即可【详解】解:(1)A 公司:4y x =(0x ≥),B 公司:()()601033010y x x y x x ⎧=≤≤⎪⎨=+>⎪⎩(2)如图所示,即为所求.【点睛】本题主要考查了画一次函数图像,求函数关系式,解题的关键在于能够熟练掌握相关知识进行求解.23.(1)1a =-,2m =;(2)32【解析】【分析】(1)先把A 点坐标代入直线2y x =求出A 点的坐标,然后代入到6y ax =+求解即可;(2)过点A 作AC OB ⊥于点C ,然后求出B 点的坐标,即可得到AB 的长,设AOB 的边AB上的高为h ,根据1122AOB S OB AC AB h =⋅=⋅△求解即可.【详解】解:(1)把点(),4A m 代入2y x =得:42m =,∴2m =把点()2,4A 代入6y ax =+得426a =+,∴1a =-;(2)把1a =-代入6y ax =+得6y x =-+令0y =,得6x =∴()6,0B ,6OB =.过点A 作AC OB ⊥于点C ,∵()2,4A ∴4AC =,2OC =,4CB =在Rt ACB 中,224442AB =+=设AOB 的边AB 上的高为h ,∴1116412222AOB S OB AC AB h =⋅=⋅=⨯⨯=△116422h ⨯=⨯⨯,解得h =∴△AOB 的边AB 上的高为【点睛】本题主要考查了求一次函数解析式,两直线的交点问题,三角形的高,一次函数与坐标轴的交点问题,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)()4,0A ,()0,8B -;(2)()1,9M ,()3,1N -;(3)见解析【解析】【分析】(1)与x 相交时,y =0;与y 轴相交时,x =0;据此解出第一问;(2)设其中一个变化后的点的坐标为未知数,再根据平移的数量关系和一次函数等量关系建立等式,解出未知数从而求出M 、N 坐标.(3)根据直线的解析式,求出直线恒过的点的坐标,再证明这个坐标就是平行四边形对角线的交点,从而证明该直线横平分平行四边形面积.【详解】解:(1)在直线28y x =-中,令0y =得280x -=,4x =,∴()4,0A 令0x =,∴8y =-,∴()0,8B -(2)点N 在直线2l 上,可设(),4N t t +,又线段MN 是由线段AB 平移得到,由()0,8B -移动到点(),4N t t +,则()4,0A 相应移动到点()4,48M t t +++把()4,48M t t +++代入直线1l ,得()12346t t +=++解得3t =-∴()1,9M ,()3,1N -另解:设()4,0A 移动到点(),M m n ,则()0,8B -相应移动到点()4,8N m n --,分别代入直线解析式中,得方程组36448m n m n +=⎧⎨-+=-⎩解得19m n =⎧⎨=⎩,∴()1,9M ,()3,1N -(3)∵()11111122222y kx k kx k k x ⎛⎫=+-=+-=-+ ⎪⎝⎭当12x =时,12y =∴直线过定点11,22⎛⎫ ⎪⎝⎭∵线段AB 平移得到线段MN∴四边形ABNM 是平行四边形∵()4,0A ,()3,1N -ABNM 的对角线的交点为4301,22-+⎛⎫ ⎝⎭,即11,22⎛⎫ ⎪⎝⎭∴直线()112y kx k =+-恒平分四边形ABNM 的面积,其中0k ≠.【点睛】本题考查平面直角坐标系中的平移问题,一次函数的表达式,平行四边形的性质,掌握基础知识是解题关键.25.60°【解析】【详解】根据正方形及等边三角形的性质求得∠ABF ,∠BAF 的度数,再根据外角的性质即可求得答案解:∵∠CBA=90°,∠ABE=60°,∴∠CBE=150°,∵四边形ABCD为正方形,三角形ABE为等边三角形,∴BC=BE,∴∠BEC=∠BCF=15°,在△CBF和△ABF中,BF=BF,∠CBF=∠ABF,BC=BA,,∴△CBF≌△ABF(SAS),∴∠BAF=∠BCE=15°,又∠ABF=45°,且∠AFD为△AFB的外角,∴∠AFD=∠ABF+∠FAB=15°+45°=60°“点睛”本题考查了正方形的性质、等边三角形的性质、全等三角形的判定与性质、等腰三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键. 26.(1)车速的众数是42千米/时;(2)这些车辆的平均数度是42.6千米/时;(3)车速的中位数是42.5千米/时.【解析】【详解】试题分析:(1)根据条形统计图所给出的数据求出出现的次数最多的数即可,(2)根据加权平均数的计算公式和条形统计图所给出的数据列出算式计算即可,(3)根据中位数的定义求出第10和11个数的平均数即可.解:(1)根据条形统计图所给出的数据得:42出现了6次,出现的次数最多,则车速的众数是42千米/时;(2)这些车辆的平均数度是:(40+41×3+42×6+43×5+44×3+45×2)÷20=42.6(千米/时),答:这些车辆的平均数度是42.6千米/时;(3)因为共有20辆车,中位数是第10和11个数的平均数,所以中位数是42和43的平均数,(42+43)÷2=42.5(千米/时),所以车速的中位数是42.5千米/时.考点:条形统计图;加权平均数;中位数;众数.21。

人教版八年级数学上册 全册全套试卷测试卷(含答案解析)

人教版八年级数学上册 全册全套试卷测试卷(含答案解析)

人教版八年级数学上册全册全套试卷测试卷(含答案解析)一、八年级数学三角形填空题(难)1.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=42°,则∠E=_____°.【答案】21°【解析】根据三角形的外角性质以及角平分线的定义可得.解:由题意得:∠E=∠ECD−∠EBC=12∠ACD−12∠ABC=12∠A=21°.故答案为21°.2.△ABC的两边长为4和3,则第三边上的中线长m的取值范围是_______.【答案】17 22m<<【解析】【分析】作出草图,延长AD到E,使DE=AD,连接CE,利用“边角边”证明△ABD和△ECD全等,然后根据全等三角形对应边相等可得CE=AB,再根据三角形的任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,便不难得出m的取值范围.【详解】解:如图,延长AD到E,使DE=AD,连接CE,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,AD DE ADBEDC BD CD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△ECD (SAS ),∴CE=AB ,∵AB=3,AC=4,∴4-3<AE <4+3, 即1<AE <7,∴1722m <<. 故答案为:1722m <<. 【点睛】本题主要考查倍长中线法构造全等三角形和三边关系,解决本题的关键是要熟练掌握倍长中线法构造全等三角形.3.三角形的三个内角度数比为1:2:3,则三个外角的度数比为_____.【答案】5:4:3【解析】试题解析:设此三角形三个内角的比为x ,2x ,3x ,则x+2x+3x=180,6x=180,x=30,∴三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°,则三个外角的度数比为:150°:120°:90°=5:4:3,故答案为5:4:3.4.将直角三角形(ACB ∠为直角)沿线段CD 折叠使B 落在B '处,若50ACB '︒∠=,则ACD ∠度数为________.【答案】20°.【解析】【分析】根据翻折的性质可知:∠BCD=∠B′CD,又∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,继而即可求出∠BCD的值,又∠ACD+∠BCD=∠ACB=90°,继而即可求出∠ACD的度数.【详解】解:∵△B′CD时由△BCD翻折得到的,∴∠BCD=∠B′CD,又∵∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,∴∠BCD=70°,又∵∠ACD+∠BCD=∠ACB=90°,∴∠ACD=20°.故答案为:20°.【点睛】本题考查翻折变换的知识,难度适中,解题关键是掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.【答案】40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.6.如图,小新从A点出发,沿直线前进50米后向左转30°,再沿直线前进50米,又向左转30°,…照这样下去,小新第一次回到出发地A点时,一共走了__米.【答案】600【解析】【分析】【详解】解:根据题意可知:小新从A点出发,沿直线前进50米后向左转30º,再沿直线前进50米,又向左转30º,……照这样下去,小新第一次回到出发地A点时,小新走的路线围成一个正多边形,且这个多边形的外角等于30º,所以这个正多边形的边数是12,小新一共走了12×50=600米,故答案为:600.二、八年级数学三角形选择题(难)7.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④【答案】C【解析】【分析】根据三角形内角和定理以及三角形角平分线的定义可得∠BOC=90°+12∠1,再结合三角形外角性质可得∠ECD=∠OBC+∠2,从而可得∠BOC=90°+∠2,据此即可进行判断.【详解】∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠ABC+∠ACB+∠1=180°,∴∠ABC+∠ACB=180°-∠1,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠1)=90°-12∠1,∴∠BOC=180°-∠OBC-∠OCB=180°-(90°-12∠1)=90°+12∠1,∵∠ACD=∠ABC+∠1,CE平分∠ACD,∴∠ECD=12∠ACD=12(∠ABC+∠1),∵∠ECD=∠OBC+∠2,∴∠2=12∠1,即∠1=2∠2,∴∠BOC=90°+12∠1=90°+∠2,∴①④正确,②③错误,故选C.【点睛】本题考查了三角形内角和定理、三角形外角的性质、三角形的角平分线等知识,熟练掌握相关的性质及定理、运用数形结合思想是解题的关键.8.马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830,则该多边形的边数是( )A.7B.8C.7或8D.无法确定【答案】C【解析】【分析】n边形的内角和是(n-2)•180°,即为180°的(n-2)倍,多边形的内角一定大于0度,小于180度,因而多边形中,除去2个内角外,其余内角和与180度的商加上2,以后所得的数值,比这个数值大1或2的整数就是多边形的边数.【详解】设少加的2个内角和为x度,边数为n.则(n-2)×180=830+x,即(n-2)×180=4×180+110+x ,因此x=70,n=7或x=250,n=8. 故该多边形的边数是7或8.故选C .【点睛】本题考查了多边形的内角和定理,正确理解多边形内角的大小的特点,以及多边形的内角和定理是解决本题的关键.9.如图,在△ABC 中,点D 、E 分别是边AC,AB 的中点,BD,CE 相交于点O,连接O 在AO 上取一点F,使得OF=12AF 若S △ABC =12,则四边形OCDF 的面积为( )A .2B .83C .3D .103【答案】B【解析】【分析】 重心定理:三角形的三条边的中线交于一点,该点叫做三角形的重心.重心和三角形任意两个顶点组成的3个三角形面积相等.【详解】 解:∵点D 、E 分别是边AC,AB 的中点,∴O 为△ABC 的重心,∴13AOC S=ABC S =4, ∴12DOC DOA S S ==AOC S =2,∵OF=12AF , ∴13DOF S =AOD S =23, ∴S 阴=DOC S +DOF S =83.故选:B.【点睛】本题考查了重心及重心定理,熟练掌握相关定理是解题关键.10.如图:在△ABC 中,G 是它的重心,AG ⊥CD ,如果32BG AC ⋅=,则△AGC 的面积的最大值是( )A .23B .8C .43D .6 【答案】B【解析】分析:延长BG 交AC 于D .由重心的性质得到 BG =2GD ,D 为AC 的中点,再由直角三角形斜边上的中线等于斜边的一半,得到AC =2GD ,即有BG =AC ,从而得到AC 、GD 的长.当GD ⊥AC 时,△AGC 的面积的最大,最大值为:12AC •GD ,即可得出结论. 详解:延长BG 交AC 于D .∵G 是△ABC 的重心,∴BG =2GD ,D 为AC 的中点.∵AG ⊥CG ,∴△AGC 是直角三角形,∴AC =2GD ,∴BG =AC .∵BG •AC =32,∴AC =32=42,GD =22.当GD ⊥AC 时,.△AGC 的面积的最大,最大值为:12AC •GD =142222⨯⨯=8.故选B .点睛:本题考查了重心的性质.解题的关键是熟知三角形的重心到顶点的距离等于它到对边中点距离的2倍.11.一个多边形的内角和是1260°,这个多边形的边数是( )A .6B .7C .8D .9【答案】D【解析】试题解析:设这个多边形的边数为n ,由题意可得:(n-2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选D .12.已知三角形的两边长分别为4和9,则此三角形的第三边长可能为 ( )A .9B .4C .5D .13【答案】A【解析】【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】设这个三角形的第三边为x .根据三角形的三边关系定理,得:9-4<x <9+4,解得5<x <13.故选A .【点睛】本题考查了三角形的三边关系定理.一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.三、八年级数学全等三角形填空题(难)13.如图,在△ABC 中,∠C=090,点D 在AB 上,BC=BD,DE ⊥AB 交AC 于点E ,△ABC 的周长为12,△ADE 的周长为6,则BC 的长为_______【答案】3【解析】【分析】连接BE ,由斜边直角边判定Rt BDE ∆≅ Rt BCE ∆,从而DE CE =,再由△ABC 的周长 △ADE 的周长即可求得BC 的长.【详解】如图:连接BE ,DE ⊥AB ,090BDE ∴∠=,在Rt BDE ∆和Rt BCE ∆中,BD BC ⎨=⎩, ∴Rt BDE ∆≅ Rt BCE ∆,DE CE ∴=,∴△ABC 的周长=AB+BC+AC=2BC+AD+AE+DE=12,△ADE 的周长= AD+AE+DE =6,∴BC=3,故答案为3.【点睛】本题考查三角形全等的判定和性质以及和三角形有关的线段,连接BE 构造全等三角形是解答此题的关键.14.如图,ABC ∆中,90ACB ∠=︒,//AC BD ,BC BD =,在AB 上截取BE ,使BE BD =,过点B 作AB 的垂线,交CD 于点F ,连接DE ,交BC 于点H ,交BF 于点G ,7,4BC BG ==,则AB =____________.【答案】658【解析】【分析】 过点D 作DM ⊥BD ,与BF 延长线交于点M ,先证明△BHE ≌△BGD 得到∠EHB=∠DGB ,再由平行和对顶角相等得到∠MDG=∠MGD ,即MD=MG ,在△△BDM 中利用勾股定理算出MG 的长度,得到BM ,再证明△ABC ≌△MBD ,从而得出BM=AB 即可.【详解】解:∵AC ∥BD ,∠ACB=90°,∴∠CBD=90°,即∠1+∠2=90°,又∵BF ⊥AB ,∴∠ABF=90°,即∠8+∠2=90°,∵BE=BD ,∴∠8=∠1,在△BHE 和△BGD 中,43BE BD ∠=∠⎪=⎨⎪⎩,∴△BHE ≌△BGD (ASA ),∴∠EHB=∠DGB∴∠5=∠6,∠6=∠7,∵MD ⊥BD∴∠BDM=90°,∴BC ∥MD ,∴∠5=∠MDG ,∴∠7=∠MDG∴MG=MD ,∵BC=7,BG=4,设MG=x ,在△BDM 中,BD 2+MD 2=BM 2,即()2227=4x x ++,解得x=338, 在△ABC 和△MBD 中=8=1BC B ACB MDB D∠∠∠∠⎧⎪=⎨⎪⎩, ∴△ABC ≌△MBD (ASA )AB=BM=BG+MG=4+338=658. 故答案为:658.【点睛】本题考查了全等三角形的判定和性质,勾股定理,适当添加辅助线构造全等三角形,利用全等三角形的性质求出待求的线段,难度中等.15.如图,△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQ⊥DA于Q,PQ=3,EP=1,则DA的长是________.【答案】7【解析】试题解析:∵△ABC为等边三角形,∴AB=CA,∠BAE=∠ACD=60°;又∵AE=CD,在△ABE和△CAD中,AB CABAE ACDAE CD⎧⎪∠∠⎨⎪⎩===∴△ABE≌△CAD;∴BE=AD,∠CAD=∠ABE;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,则∠PBQ=90°-60°=30°;∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6;又∵PE=1,∴AD=BE=BP+PE=7.故答案为7.16.如图,平面直角坐标系中,A(0,3),B(4,0),BC∥y轴,且BC<OA,第一象限内有一点P(a,2a-3),若使△ACP是以AC斜边的等腰直角三角形,则点P的坐标为_______________.【答案】(103,113).【解析】【详解】解:∵点P的坐标为(a,2a-3),∴点P在直线y=2x-3上,如图所示,当点P在AC的上方时,过P作y轴的垂线,垂足为D,交BC的延长线于E,则∠E=∠ADP=90°,∵△ACP是以AC为斜边的等腰直角三角形,∴AP=PC,∠APD=∠PCE,∴△APD≌△PCE,∴PE=AD,又∵OD=2a-3,AO=3,∴AD=2a-6=PE,∵DE=OB=4,DP=a,又∵DP+PE=DE,∴a+(2a-6)=4,解得a=10 3∴2a-3=11 3,∴P(103,113);当点P在AC下方时,过P作y轴的垂线,垂足为D,交BC于E,a=2,此时,CE=2,BE=2,即BC=2+2=4>AO,不合题意;综上所述,点P的坐标为P(103,113)故答案为P(103,113).17.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出_____个.【答案】7【解析】只要满足三边对应相等就能保证作出的三角形与原三角形全等,以腰为公共边时有6个,以底为公共边时有一个,答案可得.解:以AB为公共边有三个,以CB为公共边有三个,以AC为公共边有一个,所以一共能作出7个.故答案为718.如图,在△ABC和△ADC中,下列论断:①AB=AD;②∠ABC=∠ADC=90°;③BC=DC.把其中两个论断作为条件,另一个论断作为结论,可以写出_个真命题.【答案】2【解析】根据题意,可得三种命题,由①②⇒③,根据直角三角形全等的判定HL可证明,是真命题;由①③⇒②,能证明∠ABC=∠ADC,但是不能得出一定是90°,是假命题;由②③⇒①,根据SAS可证明两三角形全等,再根据全等三角形的性质可证明,故是真命题.因此可知真命题有2个.故答案为:2.点睛:仔细审题,将其中的两个作为题设,另一个作为结论,可得到三种情况,然后根据全等三角形的判定定理和性质可判断出是否是真命题.四、八年级数学全等三角形选择题(难)19.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CD B.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CD D.AB﹣AD与CB﹣CD的大小关系不确定【答案】A【解析】如图,在AB上截取AE=AD,连接CE.∵AC平分∠BAD,∴∠BAC=∠DAC,又AC是公共边,∴△AEC≌△ADC(SAS),∴AE=AD,CE=CD,∴AB-AD=AB-AE=BE,BC-CD=BC-CE,∵在△BCE中,BE>BC-CE,∴AB-AD>CB-CD.故选A.20.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【答案】A【解析】试题解析:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,{C CBFCD BDEDC BDF∠=∠=∠=∠,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.考点:1.全等三角形的判定与性质;2.角平分线的性质;3.相似三角形的判定与性质.21.如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D,过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G,则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH,其中正确的是()A.1 B.2 C.3 D.4【答案】C【解析】【分析】①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP,再根据角平分线的定义∠ABP=12∠ABC,然后利用三角形的内角和定理整理即可得解;②先求出∠APB=∠FPB,再利用“角边角”证明△ABP和△FBP全等,根据全等三角形对应边相等得到AB=BF,AP=PF;③根据直角的关系求出∠AHP=∠FDP,然后利用“角角边”证明△AHP与△FDP全等,根据全等三角形对应边相等可得DF=AH;④根据PF⊥AD,∠ACB=90°,可得AG⊥DH,然后求出∠ADG=∠DAG=45°,再根据等角对等边可得DG=AG,再根据等腰直角三角形两腰相等可得GH=GF,然后求出DG=GH+AF,有直角三角形斜边大于直角边,AF>AP,从而得出本小题错误.【详解】解:①∵∠ABC的角平分线BE和∠BAC的外角平分线,∴∠ABP=12∠ABC , ∠CAP=12(90°+∠ABC )=45°+12∠ABC , 在△ABP 中,∠APB=180°-∠BAP-∠ABP ,=180°-(45°+12∠ABC+90°-∠ABC )-12∠ABC , =180°-45°- 12∠ABC-90°+∠ABC-12∠ABC , =45°,故本小题正确;②∵PF ⊥AD ,∠APB=45°(已证),∴∠APB=∠FPB=45°,∵∵PB 为∠ABC 的角平分线,∴∠ABP=∠FBP ,在△ABP 和△FBP 中, APB FPB PB PBABP FBP ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABP ≌△FBP (ASA ),∴AB=BF ,AP=PF ;故②正确;③∵∠ACB=90°,PF ⊥AD ,∴∠FDP+∠HAP=90°,∠AHP+∠HAP=90°,∴∠AHP=∠FDP ,∵PF ⊥AD ,∴∠APH=∠FPD=90°,在△AHP 与△FDP 中,90AHP FDP APH FPD AP PF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△AHP ≌△FDP (AAS ),∴DF=AH ,∵BD=DF+BF ,∴BD=AH+AB ,∴BD-AH=AB ,故③小题正确;④∵PF ⊥AD ,∠ACB=90°,∴AG ⊥DH ,∵AP=PF ,PF ⊥AD ,∴∠PAF=45°,∴∠ADG=∠DAG=45°,∴DG=AG ,∵∠PAF=45°,AG ⊥DH ,∴△ADG 与△FGH 都是等腰直角三角形,∴DG=AG ,GH=GF ,∴DG=GH+AF ,∵AF >AP ,∴DG=AP+GH 不成立,故本小题错误,综上所述①②③正确.故选:C.【点睛】本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.22.已知:如图,ABC ∆、CDE ∆都是等腰三角形,且CA CB =,CD CE =,ACB DCE α∠=∠=,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点.以下4个结论:①AD BE =;②180DOB α∠=-;③CMN ∆是等边三角形;④连OC ,则OC 平分AOE ∠.正确的是( )A .①②③B .①②④C .①③④D .①②③④【答案】B【解析】【分析】 ①根据∠ACB=∠DCE 求出∠ACD=∠BCE,证出ACD BCE ≅△△即可得出结论,故可判断; ②根据全等求出∠CAD=∠CBE,根据三角形外角定理得∠DOB=∠OBA+∠BAO,通过等角代换能够得到∠DOB=∠CBA+∠BAC,根据三角形内角和定理即可求出∠CBA+∠BAC,即可求出∠DOB ,故可判断;③根据已知条件可求出AM=BN,根据SAS 可求出CAM CBN ≅,推出CM=CN ,∠ACM=∠BCN,然后可求出∠MCN=∠ACB=α,故可判断CMN ∆的形状;④在AD 上取一点P 使得DP=EO,连接CP ,根据ACD BCE ≅△△,可求出∠CEO=∠CDP ,根据SAS 可求出 CEO CDP ≅,可得∠COE=∠CPD,CP=C O,进而得到 ∠COP=∠COE ,故可判断.【详解】①正确,理由如下:∵ACB DCE α∠=∠=,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,又∵CA=CB,CD=CE,∴ACD BCE ≅△△(SAS),∴AD=BE,故①正确;②正确,理由如下:由①知,ACD BCE ≅△△,∴∠CAD=∠CBE,∵∠DOB 为ABO 的外角,∴∠DOB=∠OBA+∠BAO=∠EBC+∠CBA+∠BAO=∠DAC+∠BAO+∠CBA=∠CBA+∠BAC, ∵∠CBA+∠BAC+∠ACB=180°,∠ACB=α,∴∠CBA+∠BAC=180°-α,即∠DOB=180°-α,故②正确;③错误,理由如下:∵点M 、N 分别是线段AD 、BE 的中点,∴AM=12AD,BN= 12BE, 又∵由①知,AD=BE,∴AM=BN,又∵∠CAD=∠CBE,CA=CB,∴CAM CBN ≅(SAS), ∴CM=CN ,∠ACM=∠BCN,∴∠MCN=∠MCB+∠CBN=∠MCB+∠ACM=∠ACB=α,∴MCN △为等腰三角形且∠MCN=α,∴MCN △不是等边三角形,故③错误;④正确,理由如下:如图所示,在AD 上取一点P 使得DP=EO,连接CP ,由①知,ACD BCE ≅△△,∴∠CEO=∠CDP ,又∵CE=CD,EO=DP ,∴CEO CDP ≅(SAS),∴∠COE=∠CPD,CP=CO,∴∠CPO=∠COP ,∴∠COP=∠COE,即OC 平分∠AOE,故④正确;故答案为:B.【点睛】本题考查了三角形全等的判定和性质,三角形内角和定理和外角定理,等边三角形的判定,根据已知条件作出正确的辅助线,找出全等三角形是解题的关键.23.如图,四边形ABCD 中,∠A 、∠B 、∠C 、∠D 的角平分线恰相交于一点P ,记△APD 、△APB 、△BPC 、△DPC 的面积分别为S 1、S 2、S 3、S 4,则有( )A .1324S S S S +=+B .1234S S S S +=+C .1423S S S S +=+D .13S S =【答案】A【解析】【分析】作辅助线,利用角平分线性质定理,明确8个三角形中面积两两相等即可解题.【详解】四边形ABCD,四个内角平分线交于一点P,即点p 到四边形各边距离相等,(角平分线性质定理),如下图,可将四边形分成8个三角形,面积分别是a 、a 、b 、b 、c 、c 、d 、d,则S 1=a+d, S 2=a+b, S 3=b+c, S 4=c+d,∴S 1+S 3=a+b+c+d= S 2+S 4故选A【点睛】本题考查了角平分线性质定理,作高线和理解角平分线性质定理是解题关键.24.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则下列四个结论:①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP,其中结论正确的的序号为()A.①②③B.①②④C.②③④D.①②③④【答案】A【解析】【分析】根据角平分线性质即可推出②,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;没有条件证明△BRP≌△QSP.【详解】试题分析:解:∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,∵AP=AP,PR=PS,∴AR=AS,∴②正确;∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴③正确;没有条件可证明△BRP≌△QSP,∴④错误;连接RS,∵PR =PS ,∵PR ⊥AB ,PS ⊥AC ,∴点P 在∠BAC 的角平分线上,∴PA 平分∠BAC ,∴①正确.故答案为①②③.故选A.点睛:本题考查了等边三角形的性质和判定,全等三角形的性质和判定,平行线的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.五、八年级数学轴对称三角形填空题(难)25.在直角坐标系中,O 为坐标原点,已知点 A (1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点 P 的坐标为_____________. 【答案】55),(0,4),0,4⎛⎫ ⎪⎝⎭【解析】【分析】有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,求出OA 即可;②以A 为圆心,以OA 为半径画弧交y 轴于P ,求出OP 即可;③作OA 的垂直平分线交y 轴于C ,则AC =OC ,根据勾股定理求出OC 即可.【详解】有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,则OA =OD =22125+=∴D (05);②以A 为圆心,以OA 为半径画弧交y 轴于P ,OP =2×y A =4,∴P (0,4);③作OA 的垂直平分线交y 轴于C ,则AC =OC ,由勾股定理得:OC =AC ()2212OC +-,∴OC =54, ∴C (0,54);故答案为:5(0,5),(0,4),0,4⎛⎫ ⎪⎝⎭.【点睛】本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.26.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数. 【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B , ∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,∴∠CA 2A 1= 108022BA A ︒∠= =40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴第n 个等腰三角形的底角∠A n = 11()802n -︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键.27.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.【答案】10︒【解析】【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.28.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.【答案】6; 3×22018.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出a3=4a1,a4=8a1,a5=16a1…进而得出答案.【详解】解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=3,∴A2B1=3,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1=6,a3=4a1,a4=8a1,a5=16a1,以此类推:a2019=22018a1=3×22018故答案是:6;3×22018.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a2=2a1=6,a3=4a1,a4=8a1,a5=16a1…进而发现规律是解题关键.29.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE ,所以DE=12AC=12. 故答案为12.30.如图:在ABC ∆中,D ,E 为边AB 上的两个点,且BD BC =,AE AC =,若108ACB ∠=︒,则DCE ∠的大小为______.【答案】036【解析】【分析】根据三角形内角和求出∠A+∠B,再根据AC=AE,BC=BD ,用∠A 表示∠AEC,用∠B 表示∠BDC,然后根据内角和求出∠DCE 的度数.【详解】∵∠ACB=1080,∴∠A+∠B=1800-1080=720,∵AC=AE,BC=BD,∴∠ACE=∠AEC,∠BCD=∠BDC,∴01(180)2AEC A ∠=-∠01902A =-∠ 01(180)2BDCB ∠=-∠=01902B -∠ ∵∠DCE+∠CDE+∠DEC=1800,∴0180DCE CDE CED ∠=-∠-∠= 00011180(90)(90)22A B --∠--∠ =1122A B ∠+∠ =1()2A B ∠+∠ =360【点睛】此题考察等腰三角形的性质,注意两条等边所在三角形,依此判断对应的两个底角相等.六、八年级数学轴对称三角形选择题(难)31.已知点M(2,2),且OM=22,在坐标轴上求作一点P ,使△OMP 为等腰三角形,则点P 的坐标不可能是( )A .(22,0)B .(0,4)C .(4,0)D .(0,82) 【答案】D【解析】【分析】分类讨论:OM=OP ;MO=MP ;PM=PO ,分别计算出相应的P 点,从而得出答案.【详解】∵M(2,2),且OM=22,且点P 在坐标轴上当22OM OP == 时P 点坐标为:()()22,0,0,22±± ,A 满足;当22MO MP ==时:P 点坐标为:()()4,0,0,4,B 满足;当PM PO =时:P 点坐标为:()()2,0,0,2,C 满足故答案选:D【点睛】本题考查动点问题构成等腰三角形,利用等腰三角形的性质分类讨论是解题关键.32.如图,已知△ABC 中,AB=AC ,AD=AE ,∠BAE=30°,则∠DEC 等于( )A .7.5°B .10°C .15°D .18°【解析】根据等腰三角形性质求出∠C=∠B,根据三角形的外角性质求出∠B=∠C=∠AED+α﹣30°,根据AE=AD,可得∠AED=∠ADE=∠C+α,得出等式∠AED=∠AED+α﹣30°+α,求出α=15°,即得到∠DEC=α=15°,故选C.点睛:本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.33.如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正确的结论有()个A.1 B.2 C.3 D.4【答案】C【解析】【分析】由已知条件可知∠ABC+∠ACB=90°,又因为CD、BE分别是△ABC的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB,∠BAG=2∠ABF.所以可知选项①③④正确.【详解】∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF 故①正确.∴∠ABC+∠ACB =90°,∵AG ⊥BG ,∴∠ABG+∠GAB =90°∵∠BAG =∠ABC ,∴∠ABG =∠ACB 故③正确.故选C .【点睛】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.34.如图,已知:30MON ∠=︒,点1A 、2A 、3A …在射线ON 上,点1B 、2B 、3B …在射线OM 上,112A B A △、223A B A △、334A B A △…均为等边三角形,若112OA =,则667A B A 的边长为( )A .6B .12C .16D .32【答案】C【解析】【分析】 先根据等边三角形的各边相等且各角为60°得:∠B 1A 1A 2=60°,A 1B 1=A 1A 2,再利用外角定理求∠OB 1A 1=30°,则∠MON=∠OB 1A 1,由等角对等边得:B 1A 1=OA 1=12,得出△A 1B 1A 2的边长为12,再依次同理得出:△A 2B 2A 3的边长为1,△A 3B 3A 4的边长为2,△A 4B 4A 5的边长为:22=4,△A 5B 5A 6的边长为:23=8,则△A 6B 6A 7的边长为:24=16.【详解】解:∵△A 1B 1A 2为等边三角形,∴∠B 1A 1A 2=60°,A 1B 1=A 1A 2,∵∠MON=30°,∴∠OB 1A 1=60°-30°=30°,∴∠MON=∠OB 1A 1,∴B1A1=OA1=12,∴△A1B1A2的边长为12,同理得:∠OB2A2=30°,∴OA2=A2B2=OA1+A1A2=12+12=1,∴△A2B2A3的边长为1,同理可得:△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=16.故选:C.【点睛】本题考查等边三角形的性质和外角定理,运用类比的思想,依次求出各等边三角形的边长,解题关键是总结规律,得出结论.35.如图,在平面直角坐标系中,A(a,0),B(0,a),等腰直角三角形ODC的斜边经过点B,OE⊥AC,交AC于E,若OE=2,则△BOD与△AOE的面积之差为()A.2 B.3 C.4 D.5【答案】A【解析】【分析】首先证明△DOB≌△COA(SAS),推出S△DOB﹣S△AOE=S△EOC,再证明△OEC是等腰直角三角形即可解决问题.【详解】∵A(a,0),B(0,a),∴OA=OB.∵△ODC是等腰直角三角形,∴OD=OC,∠D=∠DCO=45°.∵∠DOC=∠BOA=90°,∴∠DOB=∠COA.在△DOB和△COA中,∵OD=OC,∠DOB=∠COA,OB=OA,∴△DOB≌△COA(SAS),∴∠D=∠OCA=45°,S△DOB﹣S△AOE=S△EOC.∵OE⊥AC,∴∠OEC=90°,∴△CEO是等腰直角三角形,∴OE=EC=2,∴S△DOB﹣S△AOE=S△EOC12=⨯2×2=2.故选A.【点睛】本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是证明△OEC是等腰直角三角形.36.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC 和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③PQ∥AE;④DE=DP;⑤∠AOE=120°;其中正确结论的个数为()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE,故①正确;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ (ASA),所以AP=BQ;故②正确;③根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知③正确;④根据∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,可知PD≠CD,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,由平角的性质可得∠AOE=120°,可知⑤正确;【详解】①∵△ABC和△CDE为等边三角形∴AC=BC,CD=CE,∠BCA=∠DCB=60°∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE,故①正确;由(1)中的全等得∠CBE=∠DAC,且BC=AC,∠ACB=∠BCQ=60°∴△CQB≌△CPA(ASA),∴AP=BQ,故②正确;∵△CQB≌△CPA,∴PC=PQ,且∠PCQ=60°∴△PCQ为等边三角形,∴∠PQC =∠DCE =60°,∴PQ ∥AE ,故③正确,∵∠QCP =60°,∠DPC =∠BCA +∠PAC >60°,∴PD ≠CD ,∴DE ≠DP ,故④DE =DP 错误;∵BC ∥DE ,∴∠CBE =∠BED ,∵∠CBE =∠DAE ,∴∠AOB =∠OAE +∠AEO =60°,∴∠AOE =120°,故⑤正确,故选C .【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,综合性较强,题目难度较大.七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.当3x =-时,多项式33ax bx x ++=.那么当3x =时,它的值是( )A .3-B .5-C .7D .17-【答案】A【解析】【分析】首先根据3x =-时,多项式33ax bx x ++=,找到a 、b 之间的关系,再代入3x =求值即可.【详解】当3x =-时,33ax bx x ++=327333ax bx x a b ++=---= 2736a b ∴+=-当3x =时,原式=2733633a b ++=-+=-故选A.【点睛】本题考查代数式求值问题,难度较大,解题关键是找到a 、b 之间的关系.38.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a +b)2-(a -b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A.a2-b2=(a+b)(a-b) B.(a-b)2=a2-2ab+b2 C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b2【答案】B【解析】图(4)中,∵S正方形=a2-2b(a-b)-b2=a2-2ab+b2=(a-b)2,∴(a-b)2=a2-2ab+b2.故选B39.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab 【答案】B【解析】【分析】【详解】解:∵a*b=ab+a+b∴a*(﹣b)+a*b=a(﹣b)+a -b+ab+a+b=﹣ab+a -b+ab+a+b=2a故选B.考点:整式的混合运算.40.已知4y2+my+9是完全平方式,则m为()A.6 B.±6 C.±12 D.12【答案】C【解析】【分析】原式利用完全平方公式的结构特征求出m的值即可.【详解】∵4y2+my+9是完全平方式,∴m=±2×2×3=±12.故选:C.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.41.若33×9m=311,则m的值为()A.2 B.3 C.4 D.5【答案】C【分析】根据同底数幂的乘法的性质,幂的乘方的性质,可得关于m的方程,解方程即可求得答案.【详解】∵33×9m=311,∴33×(32)m=311,∴33+2m=311,∴3+2m=11,∴2m=8,解得m=4,故选C.【点睛】本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.42.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2x【答案】C【解析】【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【详解】A、2a2-2a+1=2a(a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B、(x+y)(x-y)=x2-y2,这是整式的乘法,故此选项不符合题意;C、x2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D、x2+y2=(x-y)2+2xy,等号的右边不是整式的积的形式,故此选项不符合题意;故选C.【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.八、八年级数学整式的乘法与因式分解填空题压轴题(难)43.“元旦”期间小明去永辉超市购物,恰逢永辉超市“满1400减99元”促销活动,小明准备提前购置一些年货A和B,已知A和B的单价总和是100到200之间的整数,小明粗略测算了一下发现自己所购年货总价为1305元,不能达到超市的促销活动金额. 于是小明又购买了A、B各一件,这样就能参加超市的促销活动,最后刚好付款1305元. 小明经仔细计算发现前面粗略测算时把A和B的单价看反了,那么小明实际总共买了______件年货.【答案】22【解析】。

人教版八年级第一学期期末数学试卷及答案

人教版八年级第一学期期末数学试卷及答案

人教版八年级第一学期期末数学试卷及答案一、选择题(本大题共16个小题;1-10小题,每题3分;11-16小题,每题2分;共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,填在题后的括号内)1.若分式值为零,则()A.x=0B.x=1C.x≠0D.x≠12.下列图形具有稳定性的是()A.B.C.D.3.冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.4.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解5.2020年突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,取得了抗击疫情的巨大成就.科学研究表明,某种新型冠状病毒颗粒的直径约为125纳米,1纳米=1.0×10﹣9米,若用科学记数法表示125纳米,则正确的结果是()A.1.25×10﹣9米B.1.25×10﹣8米C.1.25×10﹣7米D.1.25×10﹣6米6.如图,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,则∠DCB的度数为()A.75°B.65°C.40°D.30°7.袁老师在课堂上组织学生用小棍摆三角形,小棍的长度有10cm,15cm,20cm和25cm四种规格,小朦同学已经取了10cm和15cm两根木棍,那么第三根木棍不可能取()A.10cm B.15cm C.20cm D.25cm8.若M=(x﹣3)(x﹣4),N=(x﹣1)(x﹣6),则M与N的大小关系为()A.M>N B.M=NC.M<N D.由x的取值而定9.如图,△ABC中,∠A=40°,AB的垂直平分线分别交AB,AC于点D,E,连接BE,则∠BEC的大小为()A.40°B.50°C.80°D.100°10.若=,则2n﹣3m的值是()A.﹣1B.1C.2D.311.小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.小聪作法正确的理由是()A.由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBB.由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBC.由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBD.由“等边对等角”可得∠A′O′B′=∠AOB12.如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为()A.2560B.490C.70D.4913.在△ABC中给定下面几组条件:①∠ACB=30°,BC=4cm,AC=5cm②∠ABC=30°,BC=4cm,AC=3cm③∠ABC=90°,BC=4cm,AC=5cm④∠ABC=120°,BC=4cm,AC=5cm若根据每组条件画图,则△ABC不能够唯一确定的是()A.①B.②C.③D.④14.北京大兴国际机场于2019年9月25日正式投入运营.小贝和小京分别从A地和B地出发赶往机场乘坐飞机,出行方式、路径及路程如下表所示:出行方式路径路程地铁A地→大兴机场全程约43公里公交B地→大兴机场全程约54公里由于地面交通拥堵,地铁的平均速度约为公交平均速度的两倍,于是小贝比小京少用了半小时到达机场.若设公交的平均速度为x公里/时,根据题意可列方程()A.B.C.D.15.将边长为2的正五边形ABCDE沿对角线BE折叠,使点A落在正五边形内部的点M处,则下列说法正确的是()A.点E、M、C在同一条直线上B.点E、M、C不在同一条直线上C.无法判断D.以上说法都不对16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,依此类推,若OA1=1,则△A2021B2021A2022的边长为()A.2021B.4042C.22021D.22020二、填空题(本大题共4个小题,17-19小题,每小题3分,20题每空2分,共13分.请将答案写在横线上.)17.如图,图中以BC为边的三角形的个数为.18.5﹣1+50=.19.对于两个非零的实数a,b,定义运算※如下:a※b=.例如:3※4=.若x※y=2,则的值为.20.如图,直线a∥b,点M、N分别为直线a和直线b上的点,连接MN,∠DMN=70°,点P是线段MN上一动点,直线DE始终经过点P,且与直线a、b分别交于点D、E.(1)当△MPD与△NPE全等时,直接写出点P的位置:;(2)当△NPE是等腰三角形时,则∠NPE的度数为.三、解答题(本大题共7个小题,共65分.解答应写出文字说明,说理过程或演算步骤,请将解答过程写在相应位置.)21.(1)因式分解:a2(b+1)﹣4(b+1);(2)计算:(2m2n﹣1)2•3m3n﹣5;(3)先化简,再求值,其中|x|=2.22.已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.23.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°,而乙同学说,θ也能取630°,甲、乙的说法对吗?若对,求出边数n;若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,请确定x的值.24.如图1,网格中的每一个正方形的边长为1,△ABC为格点三角形(点A、B、C在小正方形的顶点上),直线m为格点直线(直线m经过小正方形的格点).(1)如图1,作出△ABC关于直线m的轴对称图形△A′B′C′;(2)如图2,在直线m上找到一点P,使PA+PB的值最小;(3)如图3,仅用直尺将网格中的格点三角形ABC的面积三等分,并将其中的一份用铅笔涂成阴影;(4)如图4,仅用直尺作出三角形ABC的边AB上的高,简单说明你的理由.25.已知关于x的分式方程.(1)当a=5时,求方程的解;(2)若该方程去分母后所得整式方程的解不是原分式方程的解,求a的值;(3)如果关于x的分式方程的解为正数,那么a的取值范围是什么?小明说:“解这个关于x的分式方程,得到方程的解为x=a﹣2.因为解是正数,可得a﹣2>0,所以a>2”,小明说的对吗?为什么?(4)关于x的方程有整数解,直接写出整数m的值,m值为.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=°,△CBD是三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH 为等边三角形,则满足上述条件的△PGH的个数一共有.(只填序号)①2个②3个③4个④4个以上27.阅读材料小明遇到这样一个问题:求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.小明想通过计算(x+2)(2x+3)(3x+4)所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找(x+2)(2x+3)所得多项式中的一次项系数.通过观察发现:也就是说,只需用x+2中的一次项系数1乘以2x+3中的常数项3,再用x+2中的常数项2乘以2x+3中的一次项系数2,两个积相加1×3+2×2=7,即可得到一次项系数.延续上面的方法,求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.可以先用x+2的一次项系数1,2x+3的常数项3,3x+4的常数项4,相乘得到12;再用2x+3的一次项系数2,x+2的常数项2,3x+4的常数项4,相乘得到16;然后用3x+4的一次项系数3,x+2的常数项2,2x+3的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算(2x+1)(3x+2)所得多项式的一次项系数为.(2)计算(x+1)(3x+2)(4x﹣3)所得多项式的一次项系数为.(3)若计算(x2+x+1)(x2﹣3x+a)(2x﹣1)所得多项式的一次项系数为0,则a=.(4)若x2﹣3x+1是x4+ax2+bx+2的一个因式,则2a+b的值为.参考答案一、选择题(本大题共16个小题;1-10小题,每题3分;11-16小题,每题2分;共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,填在题后的括号内)1.若分式值为零,则()A.x=0B.x=1C.x≠0D.x≠1【分析】直接利用分式的值为零则分子为零分母不为零进而得出答案.解:∵分式值为零,∴x﹣1=0,解得:x=1.故选:B.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.2.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性判断即可.解:具有稳定性的图形是三角形,故选:A.【点评】本题考查的是三角形的性质,掌握三角形具有稳定性是解题的关键.3.冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式)判断即可.解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.【点评】此题考查了因式分解.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.5.2020年突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,取得了抗击疫情的巨大成就.科学研究表明,某种新型冠状病毒颗粒的直径约为125纳米,1纳米=1.0×10﹣9米,若用科学记数法表示125纳米,则正确的结果是()A.1.25×10﹣9米B.1.25×10﹣8米C.1.25×10﹣7米D.1.25×10﹣6米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:125纳米=0.000000125米=1.25×10﹣7米.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.如图,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,则∠DCB的度数为()A.75°B.65°C.40°D.30°【分析】直接利用全等三角形的性质得出对应角相等进而求出答案.解:∵△ABC≌△DCB,∠A=75°,∴∠D=∠A=75°,∵∠DBC=40°,∴∠DCB=180°﹣75°﹣40°=65°,故选:B.【点评】此题主要考查了全等三角形的性质,正确得出对应角的度数是解题关键.7.袁老师在课堂上组织学生用小棍摆三角形,小棍的长度有10cm,15cm,20cm和25cm四种规格,小朦同学已经取了10cm和15cm两根木棍,那么第三根木棍不可能取()A.10cm B.15cm C.20cm D.25cm【分析】先设第三根木棒的长为xcm,再根据三角形的三边关系求出x的取值范围,找出不符合条件的x的值即可.解:设第三根木棒的长为xcm,∵已经取了10cm和15cm两根木棍,∴15﹣10<x<15+10,即5<x<25.∴四个选项中只有D不在其范围内,符合题意.故选:D.【点评】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边,任意两边之差小于第三边.8.若M=(x﹣3)(x﹣4),N=(x﹣1)(x﹣6),则M与N的大小关系为()A.M>N B.M=NC.M<N D.由x的取值而定【分析】求出M和N的展开式,计算M﹣N的正负性,即可判断M与N的大小关系.解:M=(x﹣3)(x﹣4)=x2﹣7x+12;N=(x﹣1)(x﹣6)=x2﹣7x+6;故选:A.【点评】本题主要考查了多项式乘多项式的运算,难度适中,熟练掌握多项式乘多项式的运算法则是解题的关键.9.如图,△ABC中,∠A=40°,AB的垂直平分线分别交AB,AC于点D,E,连接BE,则∠BEC的大小为()A.40°B.50°C.80°D.100°【分析】根据线段的垂直平分线的性质得到EA=EB,根据等腰三角形的性质得到∠EBA=∠A=40°,根据三角形的外角性质计算即可.解:∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=40°,∴∠BEC=∠EBA+∠A=80°,故选:C.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10.若=,则2n﹣3m的值是()A.﹣1B.1C.2D.3【分析】利用幂的乘方法则和同底数幂的除法法则,先计算,再利用负整数指数幂表示出,根据两者的关系计算得结论.解:∵=33m÷32n=33m﹣2n,=3﹣1,∴3m﹣2n=﹣1.【点评】本题考查了同底数幂的除法,掌握幂的运算法则是解决本题的关键.11.小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)如图,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.小聪作法正确的理由是()A.由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBB.由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBC.由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOBD.由“等边对等角”可得∠A′O′B′=∠AOB【分析】先利用作法得到OD=OC=OD′=OC′,CD=C′D′,然后根据全等三角形的判定方法对各选项进行判断.解:由作图得OD=OC=OD′=OC′,CD=C′D′,则根据“SSS”可判断△C′O′D′≌△COD.故选:A.【点评】本题考查了作图﹣基本作图:基本作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.也考查了全等三角形的判定.12.如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为()A.2560B.490C.70D.49【分析】利用面积公式得到ab=10,由周长公式得到a+b=7,所以将原式因式分解得出ab(a+b)2.将其代入求值即可.解:∵长与宽分别为a、b的长方形,它的周长为14,面积为10,∴ab=10,a+b=7,∴a3b+2a2b2+ab3=ab(a+b)2=10×72=490.故选:B.【点评】此题考查了因式分解法的应用,熟记公式结构正确将原式分解因式是解题的关键.13.在△ABC中给定下面几组条件:①∠ACB=30°,BC=4cm,AC=5cm②∠ABC=30°,BC=4cm,AC=3cm③∠ABC=90°,BC=4cm,AC=5cm④∠ABC=120°,BC=4cm,AC=5cm若根据每组条件画图,则△ABC不能够唯一确定的是()A.①B.②C.③D.④【分析】符合全等三角形的判定条件所画出的三角形是唯一的,则可对①③进行判断;根据②的条件可画出锐角三角形或钝角三角形,根据④的条件只能画出唯一的钝角三角形,则可对②④进行判断.解:①若∠ACB=30°,BC=4cm,AC=5cm,则根据“SAS”可判断画出的△ABC是唯一的;②若∠ABC=30°,BC=4cm,AC=3cm,不符合三角形全等的条件,则画出的△ABC可能为锐角三角形,也可能为钝角三角形,三角形不是唯一的;③若∠ABC=90°,BC=4cm,AC=5cm,则根据“HL”可判断画出的△ABC是唯一的;④若∠ABC=120°,BC=4cm,AC=5cm,则画出的△ABC是唯一的;故选:B.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟练掌握全等三角形的判定方法.14.北京大兴国际机场于2019年9月25日正式投入运营.小贝和小京分别从A地和B地出发赶往机场乘坐飞机,出行方式、路径及路程如下表所示:出行方式路径路程地铁A地→大兴机场全程约43公里公交B地→大兴机场全程约54公里由于地面交通拥堵,地铁的平均速度约为公交平均速度的两倍,于是小贝比小京少用了半小时到达机场.若设公交的平均速度为x公里/时,根据题意可列方程()A.B.C.D.【分析】根据地铁及公交速度间的关系,可得出地铁的平均速度为2x公里/时,利用时间=路程÷速度,结合小贝比小京少用了半小时到达机场,即可得出关于x的分式方程,此题得解.解:∵地铁的平均速度约为公交平均速度的两倍,公交的平均速度为x公里/时,∴地铁的平均速度为2x公里/时.根据题意得:+=.故选:B.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.15.将边长为2的正五边形ABCDE沿对角线BE折叠,使点A落在正五边形内部的点M处,则下列说法正确的是()A.点E、M、C在同一条直线上B.点E、M、C不在同一条直线上C.无法判断D.以上说法都不对【分析】利用正五边形的性质得出△BAE≌△EDC即可求出∠AEB=∠DEM=36°,进而即可得出结论.解:连接MC,∵五边形ABCDE是正五边形,∴∠AED=108°=∠CDE且DC=DE,∴∠DEM=36°,在△BAE和△EDC中,,∴△BAE≌△EDC(SAS),∴∠AEB=∠DEM=36°,∴∠BEM=36°,∴∠BEM=∠EBM=36°,∴B,A′和D三点共线,即E、M、C三点在同一条直线上.故选:A.【点评】此题考查了正多边形与圆,全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是得出∠BEM=∠EBM=36°.16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,依此类推,若OA1=1,则△A2021B2021A2022的边长为()A.2021B.4042C.22021D.22020【分析】根据等边三角形的性质和∠MON=30°,可求得∠OB1A2=90°,可求得OA2=2OA1=2,同理可求得OA n+1=2OA n=4OA n﹣1=…=2n﹣1OA2=2n OA1=2n,再结合含30°角的直角三角形的性质可求得△A n B n A n+1的边长,于是可得出答案.解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠MON=30°,∴∠A1B1O=30°,∴OA1=A1B1可求得OA2=2OA1=2,同理可求得OA n+1=2OA n=4OA n﹣1=…=2n﹣1OA2=2n OA1=2n,在△OB n A n+1中,∠O=30°,∠B n A n+1O=60°,∴∠OB n A n+1=90°,∴B n A n+1=OA n+1=×2n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,∴△A2021B2021A2022的边长为22021﹣1=22020,故选:D.【点评】本题主要考查图形变化类,等边三角形的性质和含30°角的直角三角形的性质,根据条件找到等边三角形的边长和OA1的关系是解题的关键.二、填空题(本大题共4个小题,17-19小题,每小题3分,20题每空2分,共13分.请将答案写在横线上.)17.如图,图中以BC为边的三角形的个数为4.【分析】根据三角形的定义即可得到结论.解:∵以BC为公共边的三角形有△BCD,△BCE,△BCF,△ABC,∴以BC为公共边的三角形的个数是4个.故答案为:4.【点评】此题考查了学生对三角形的认识.注意要审清题意,按题目要求解题.18.5﹣1+50=.【分析】根据负整数指数幂和零指数幂的定义解答.解:原式=+1=.故答案为.【点评】本题考查了负整数指数幂和零指数幂,掌握基本概念是解题的关键.19.对于两个非零的实数a,b,定义运算※如下:a※b=.例如:3※4=.若x※y=2,则的值为.【分析】已知等式利用题中的新定义化简,计算即可求出所求.解:根据题中的新定义化简得:﹣=2,通分化简得:=2,则=,故答案为:【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.如图,直线a∥b,点M、N分别为直线a和直线b上的点,连接MN,∠DMN=70°,点P是线段MN上一动点,直线DE始终经过点P,且与直线a、b分别交于点D、E.(1)当△MPD与△NPE全等时,直接写出点P的位置:MN的中点;(2)当△NPE是等腰三角形时,则∠NPE的度数为40°或70°或55°或35°.【分析】(1)由全等三角形对应边相等得到MP=NP,即点P是MN的中点;(2)需要分类讨论:PN=PE、PE=NE、PN=NE、当D点在M点右侧.解:(1)∵a∥b,∴∠DMN=∠PNE.又∵∠MPD=∠NPE,∴当△MPD与△NPE全等时,即△MPD≌△NPE,∴MP=NP,即点P是MN的中点;故答案为:MN的中点;(2)∵a∥b,∴∠DMN=∠PNE=70°,①若PN=PE时,∴∠DMN=∠PNE=70°,∴∠NPE=180°﹣∠PNE﹣∠PEN=180°﹣70°﹣70°=40°;②若EP=EN时,则∠NPE=∠PNE=70°;③若NP=NE时,则∠NPE=∠NEP=55°;④当D点在M点右侧时,∠NPE=35°;综上所述,∠NPE=40°或70°或55°或35°.故答案为:40°或70°或55°或35°.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,利用分类讨论思想解决问题是解题的关键.三、解答题(本大题共7个小题,共65分.解答应写出文字说明,说理过程或演算步骤,请将解答过程写在相应位置.)21.(1)因式分解:a2(b+1)﹣4(b+1);(2)计算:(2m2n﹣1)2•3m3n﹣5;(3)先化简,再求值,其中|x|=2.【分析】(1)根据因式分解的方法分解即可;(2)根据整式运算的法则计算即可;(3)先化简分式,然后代入字母的值计算即可.解:(1)a2(b+1)﹣4(b+1)=(a2﹣4)(b+1)=(a+2)(a﹣2)(b+1);(2)(2m2n﹣1)2⋅3m3n﹣5=4m4n﹣2⋅3m3n﹣5=12m7n﹣7=;(3)====,∵|x|=2,∴x=±2,∵x﹣2≠0,∴x=﹣2,∴原式=.【点评】本题考查了因式分解,分式的化简求值,整式的化简,熟练掌握运算法则是解题的关键.22.已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠F.求证:BC=DF.【分析】由已知得出AB=ED,由平行线的性质得出∠A=∠E,由AAS证明△ABC≌△EDF,即可得出结论.【解答】证明:∵AD=BE,∴AD﹣BD=BE﹣BD,∴AB=ED,∵AC∥EF,∴∠A=∠E,在△ABC和△EDF中,,∴△ABC≌△EDF(AAS),∴BC=DF.【点评】本题考查了全等三角形的判定与性质、平行线的性质;熟练掌握平行线的性质,证明三角形全等是解题的关键.23.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°,而乙同学说,θ也能取630°,甲、乙的说法对吗?若对,求出边数n;若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,请确定x的值.【分析】(1)根据多边形内角和公式可得n边形的内角和是180°的倍数,依此即可判断,再根据多边形内角和公式即可求出边数n;(2)根据等量关系:若n边形变为(n+x)边形,内角和增加了360°,依此列出方程,解方程即可确定x.解:(1)∵360°÷180°=2,630°÷180°=3…90°,∴甲的说法对,乙的说法不对,360°÷180°+2=2+2=4.答:甲同学说的边数n是4;(2)依题意有(n+x﹣2)×180°﹣(n﹣2)×180°=360°,解得x=2.故x的值是2.【点评】考查了多边形内角与外角,此题需要结合多边形的内角和公式来寻求等量关系,构建方程是解题关键解.24.如图1,网格中的每一个正方形的边长为1,△ABC为格点三角形(点A、B、C在小正方形的顶点上),直线m为格点直线(直线m经过小正方形的格点).(1)如图1,作出△ABC关于直线m的轴对称图形△A′B′C′;(2)如图2,在直线m上找到一点P,使PA+PB的值最小;(3)如图3,仅用直尺将网格中的格点三角形ABC的面积三等分,并将其中的一份用铅笔涂成阴影;(4)如图4,仅用直尺作出三角形ABC的边AB上的高,简单说明你的理由.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)作点B关于直线m的对称点B',连接AB',交直线m于点P,则点P即为所求作的点;(3)如图,取格点O,计算可知S△AOC=S△BOC=S△AOB=2(平方单位).(4)如图,选择格点D、E,证明△ACD≌△BCE.于是,AC=BC.选择格点Q,证明△ACQ≌△BCQ,于是,AQ=BQ.推出CQ为线段AB的垂直平分线,设CQ与AB相交于点F,则CF为所要求的△ABC的边AB上的高.解:(1)如图所示,△A′B′C′即为所求作,(2)如图,点P即为所求作,(3)如图,即为所作,(4)如图,选择格点D、E,证明△ACD≌△BCE.于是,AC=BC.选择格点Q,证明△ACQ≌△BCQ,于是,AQ=BQ.∴CQ为线段AB的垂直平分线,设CQ与AB相交于点F,则CF为所要求的△ABC的边AB上的高.【点评】本题考查作图,轴对称变换,三角形的面积等知识,解题的关键是学会利用数形结合的思想解决问题.25.已知关于x的分式方程.(1)当a=5时,求方程的解;(2)若该方程去分母后所得整式方程的解不是原分式方程的解,求a的值;(3)如果关于x的分式方程的解为正数,那么a的取值范围是什么?小明说:“解这个关于x的分式方程,得到方程的解为x=a﹣2.因为解是正数,可得a﹣2>0,所以a>2”,小明说的对吗?为什么?(4)关于x的方程有整数解,直接写出整数m的值,m值为3,4,0.【分析】(1)把a=5代入分式方程中,可得,然后按照解分式方程的步骤进行计算即可解答;(2)根据题意可得x=1,然后把x=1代入整式方程x=a﹣2中可得1=a﹣2,进行计算即可解答;(3)根据题意可得x>0且x≠1,从而可得a﹣2>0且a﹣2≠1,然后进行计算即可解答;(4)根据题意可得m﹣2=±1或m﹣2=±2,从而可得m=3,1,4,0,然后再根据分式方程的分母不能为0可得x≠2,从而可得﹣≠2,进行计算即可解答.解:(1)当a=5时,分式方程为:,5﹣3=x﹣1,解得:x=3,检验:当x=3时,x﹣1≠0,∴x=3是原方程的根;(2),去分母得:a﹣3=x﹣1,解得:x=a﹣2,∵该方程去分母后所得整式方程的解不是原分式方程的解,∴x﹣1=0∴x=1,把x=1代入x=a﹣2中得:1=a﹣2,解得:a=3,∴a的值为3;(3)小明的说法不对,理由:,去分母得:a﹣3=x﹣1,解得:x=a﹣2,∵分式方程的解是正数,∴x>0且x≠1,∴a﹣2>0且a﹣2≠1,解得:a>2且a≠3,∴a的取值范围是:a>2且a≠3;(4),去分母得:mx﹣1﹣1=2(x﹣2),整理得:(m﹣2)x=﹣2,当m≠2时,解得:x=﹣,∵方程有整数解,∴m﹣2=±1或m﹣2=±2,解得:m=3,1,4,0,∵x﹣2≠0,∴x≠2,∴﹣≠2,∴m≠1,∴m=3,4,0,故答案为:3,4,0.【点评】本题考查了解分式方程,分式方程的解,解一元一次不等式,准确熟练地进行计算是解题的关键.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD=60°,△CBD是等边三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH 为等边三角形,则满足上述条件的△PGH的个数一共有④.(只填序号)①2个②3个③4个④4个以上【分析】(1)利用四边形的内角和即可得出∠BCD的度数,再利用角平分线的性质定理即可得出CB,即可得出结论;(2)先判断出∠CDE=∠ABC,进而得出△CDE≌△CFB(AAS),得出CD=CB,再利用四边形的内角和即可得出∠BCD=60°即可得出结论;(3)先判断出∠POE=∠POF=60°,先构造出等边三角形,找出特点,即可得出结论.解:(1)如图1,连接BD,∵∠ABC=∠ADC=90°,∠MAN=120°,根据四边形的内角和得,∠BCD=360°﹣(∠ABC+∠ADC+∠MAN)=60°,∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,∴CD=CB,(角平分线的性质定理),∴△BCD是等边三角形;故答案为:60,等边;(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),过点C作CE⊥AM于E,CF⊥AN于F,∵AC是∠MAN的平分线,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,在△CDE和△CFB中,,∴△CDE≌△CFB(AAS),∴CD=CB,∵∠BCD=60°,∴△CBD是等边三角形;(3)如图3,∵OP平分∠EOF,∠EOF=120°,∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,连接PG',∴△G'OP是等边三角形,此时点H'和点O重合,同理:△OPH是等边三角形,此时点G和点O重合,将等边△PHG绕点P逆时针旋转到等边△PG'H',在旋转的过程中,边PG,PH分别和OE,OF相交(如图中G'',H'')和点P围成的三角形全部是等边三角形,(旋转角的范围为(0°到60°包括0°和60°),所以有无数个;理由:同(2)的方法.故答案为④.【点评】此题是三角形综合题,主要考查了角平分线的定义和角平分线定理,等边三角形的判定,全等三角形的判定和性质,旋转的性质,构造出全等三角形是解本题的关键,(3)判断三角形PHG是等边三角形的个数是解本题难点.27.阅读材料小明遇到这样一个问题:求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.小明想通过计算(x+2)(2x+3)(3x+4)所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找(x+2)(2x+3)所得多项式中的一次项系数.通过观察发现:也就是说,只需用x+2中的一次项系数1乘以2x+3中的常数项3,再用x+2中的常数项2乘以2x+3中的一次项系数2,两个积相加1×3+2×2=7,即可得到一次项系数.延续上面的方法,求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.可以先用x+2的一次项系数1,2x+3的常数项3,3x+4的常数项4,相乘得到12;再用2x+3的一次项系数2,x+2的常数项2,3x+4的常数项4,相乘得到16;然后用3x+4的一次项系数3,x+2的常数项2,2x+3的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算(2x+1)(3x+2)所得多项式的一次项系数为7.。

2024年最新人教版八年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版八年级数学(上册)期中试卷及答案(各版本)

2024年最新人教版八年级数学(上册)期中试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 5y = 3C. 4x + 6y = 9D. 5x 3y = 74. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)^3B. a^3 b^3 = (a b)^3C. a^3 +b^3 = (a b)^3 D. a^3 b^3 = (a + b)^37. 下列各式中,正确的是()A. (a + b)(a b) = a^2 b^2B. (a b)(a + b) = a^2 + b^2C. (a + b)(a b) = a^2 + b^2D. (a b)(a + b) = a^2 b^28. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab + b^2C. (a + b)^2 = a^2 2ab + b^2D. (a b)^2 = a^2 + 2ab + b^29. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)^3B. a^3 b^3 = (a b)^3C. a^3 + b^3 = (a b)^3D. a^3 b^3 = (a + b)^310. 下列各式中,正确的是()A. (a + b)(a b) = a^2 b^2B. (a b)(a + b) = a^2 + b^2C. (a + b)(a b) = a^2 + b^2D. (a b)(a + b) = a^2 b^2二、填空题(每题3分,共30分)1. 一个数的立方根是±2,这个数是__________。

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试题一、单选题1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A .B .C .D .2.下列长度的三条线段能组成三角形的是()A .2,4,7B .1,3,2C .6,8,10D .3,2,63.下列计算正确的是()A .()235aa =B .()2322a a =C .34a a a ⋅=D .2a-a=24.已知等腰三角形的两边长分别为6和2,则它的周长是()A .10B .14C .10或8D .10或145.若分式211x x --的值为0,则x 的值是()A .1B .0C .1-D .±16.如图,∠AOB 内一点P ,P 1,P 2分别是P 关于OA 、OB 的对称点,P 1P 2交OA 于点M ,交OB 于点N .若△PMN 的周长是5cm ,则P 1P 2的长为()A .6cmB .5cmC .4cmD .3cm7.若23m =,22n =,则22m n +=()A .5B .6C .7D .128.如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB=10cm ,则△DEB 的周长为()A .4cmB .6cmC .10cmD .不能确定9.如果a+b=3,那么2b aa a ab ⎛⎫-⋅⎪-⎝⎭的值是()A .3B .-3C .13D .13-10.如图,在Rt ABC 中,AD 是BAC ∠的平分线,DE AB ⊥,垂足为E .若8cm,5cm BC BD ==,则DE 的长为()A .23cmB .3cmC .4cmD .5cm二、填空题11.点P (-2,4)关于x 轴对称的点的坐标为________.12.分解因式:3m 2﹣3n 2=_____.13.要使分式13x -有意义,x 需满足的条件是________.14.如果等腰三角形的一个内角为50度,那么这个等腰三角形的底角是____度.15.(﹣8)2019×0.1252020=_________.16.建筑公司修建一条400米长的道路,开工后每天比原计划多修10米,结果提前2天完成了任务.如果设建筑公司实际每天修x 米,那么可得方程是________.17.在一自助夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图),那么,由此可知,B 、C 两地相距_________m .18.如图,将一副直角三角板,按如图所示的方式摆放,则∠α的度数是___________.三、解答题19.(1)计算:212232-⎛⎫--+⎪⎝⎭;(2)分解因式:22363x xy y -+-.20.解方程:(1)31511x x =---;(2)214111x x x +-=--.21.先化简,再求值:221x 4x 41x 1x 1-+⎛⎫-÷ ⎪--⎝⎭,其中x=3.22.如图,在平面直角坐标系中,A (1,2),B (3,1),C (-2,-1).(1)在图中作出△ABC 关于y 轴的对称图形111A B C △;(2)在x 轴上画出点P ,使PA+PB 最小(保留作图痕迹).23.已知:如图所示,点B ,E ,C ,F 在同一直线上,AB ∥DE ,∠ACB=∠F ,AC=DF .求证:BE=CF .24.已知:如图,在△ABC 中,D 为BC 上的一点,AD 平分∠EDC ,且∠E=∠B ,DE=DC ,求证:AB=AC .25.某药店用1000元购进若干医用防护口罩,很快售完,接着又用2500元购进第二批口罩,已知第二批所购口罩的数量是第一批所购口罩数的2倍,且每只口罩的进价比第一批的进价多0.5元.求第一批口罩每只的进价是多少元?26.观察下列等式,用你发现的规律解答问题.111122=-⨯,1112323=-⨯,1113434=-⨯……(1)计算:111111223344556++++⨯⨯⨯⨯⨯的值.(2)求()11111112233445561n n ++++++⨯⨯⨯⨯⨯+ 的值(用含n 的式子表示).27.如图所示,在△ABC 中,AD 平分∠BAC 交BC 于点D ,BE 平分∠ABC 交AD 于点E .(1)若∠C=50°,∠BAC=60°,求∠ADB 的度数;(2)若∠BED=45°,求∠C 的度数;(3)猜想∠BED 与∠C 的关系,并说明理由.参考答案1.A 2.C 3.C 4.B 5.C 6.B 7.D 8.C 9.A 10.B 11.(2,4)--12.()()3m n m n +-13.3x ≠14.50或65【详解】试题解析:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50或65.15.-0.125【详解】解:()()20192019202080.1250.12580.1250.125-⨯=-⨯⨯=-.故答案为:-0.125.【点睛】本题主要考查积的乘方,熟练掌握积的乘方是解题的关键.16.400400210x x-=-【分析】设实际每天修x 米,则原计划每天修(x−10)米,根据实际比原计划提前2天完成了任务,列出方程即可.【详解】解:设建筑公司实际每天修x 米,由题意得:400400210x x-=-,故答案为:400400210x x-=-.【点睛】本题考查分式方程的应用,理解题意,找到合适的等量关系是解决问题的关键.本题的等量关系为原计划用的天数-实际用的天数=2.17.200【详解】解:由已知得:∠ABC=90°+30°=120°,∠BAC=90°﹣60°=30°,∴∠ACB=180°﹣∠ABC ﹣∠BAC=180°﹣120°﹣30°=30°,∴∠ACB=∠BAC ,∴BC=AB=200.18.75︒【分析】根据直角三角板的已知角度以及三角形外角性质即可求解.【详解】如图,304575DCB ABC α∠=∠+∠=︒+︒=︒故答案为:75︒19.(1)1-;(2)()23x y --【分析】(1)先化简绝对值、计算负整数指数幂与零指数幂,再计算加减法即可得;(2)综合利用提取公因式法和完全平方公式分解因式即可得.【详解】解:(1)原式241=-+1=-;(2)原式()2232x xy y=--+()23x y =--.20.(1)95x =(2)无解【分析】(1)先去分母,即方程两边同时乘以(x-1),将方程化成整式方程求解,然后检验即可求解;(2)先去分母,即方程两边同时乘以(x-1)(x+1)将方程化成整式方程求解,然后检验即可求解;(1)解:方程两边同时乘以(1-x),得-3=1-5(x-1)解得:95x =,检验:把95x =代入x-1=45≠0,所以95x =是原分式方程的解,∴95x =;(2)解:方程两边同时乘以(x-1)(x+1),得()()()21114x x x +-+-=222114x x x -+-+=-2x=2x=-1,检验:把x=-1代入(x-1)(x+1)=0,所以x=-1不是原分式方程的解,∴原方程无解.21.x 1x 2+-,4【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x 的值代入计算即可求出值.【详解】解:原式=()()()2x 2x 11x 1x 1x 1---÷-+-()()()2x 1x 1x 2x 1x 2+--=⋅--x 1x 2+=-.当x=3时,原式=31432+=-.【点睛】本题考查分式的化简求值、完全平方公式、平方差公式,熟练掌握分式的混合运算法则是解答的关键.22.(1)见解析(2)见解析【分析】(1)分别作出三个顶点关于y 轴的对称点,再顺次连接即可得;(2)作点A 关于x 轴的对称点A ',连接A B '与x 轴的交点即为所求.(1)解:111A B C △如图所示,(2)如图所示,点P 即为所求.【点睛】本题考查了作图—轴对称变换以及轴对称最短路径问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.【详解】证明:∵AB DE ∥,∴B DEF ∠=∠,在ABC 和DEF 中,B DEF ACB F AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF AAS △≌△,∴BC EF =,∴BE CF =.24.【详解】证明:∵AD 平分∠EDC ,∴∠ADE=∠ADC ,又DE=DC ,AD=AD ,∴△ADE ≌△ADC ,∴∠E=∠C ,又∠E=∠B ,∴∠B=∠C ,∴AB=AC.25.2元.【分析】设第一批口罩每只的进价是x 元,则第二批口罩每只的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购口罩的数量是第一批所购口罩数的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设第一批口罩每只的进价是x 元,则第二批口罩每只的进价是(x+0.5)元,依题意,得:2500100020.5x x=⨯+,解得:x =2,经检验,x =2是原方程的解,且符合题意.答:第一批口罩每只的进价是2元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)56(2)1n n +【分析】(1)根据所给的等式的特点进行求解即可;(2)根据所给的等式得出规律,然后对所求的式子进行拆项即可求解.(1)解:111111223344556++++⨯⨯⨯⨯⨯1111111111223344556=-+-+-+-+-116=-56=;(2)解:∵111122=-⨯,1112323=-⨯,1113434=-⨯,…,∴()11111n n n n =-⨯++,∴()11111112233445561n n ++++++⨯⨯⨯⨯⨯+ 1111111111112233445561n n =-+-+-+-+-++-+ 111n =-+1n n =+.27.(1)80°(2)90°(3)1902BED C ∠=︒-∠,理由见解析【分析】(1)由角平分线的定义可得∠DAC =30°,再由三角形外角性质即可求∠ADB 的度数;(2)由三角形的外角性质可得∠BAD +∠ABE =45°,再由角平分线的定义得∠BAC =2∠BAD ,∠ABC =2∠ABE ,从而得∠BAC +∠ABC =90°,利用三角形的内角和即可求∠C 的度数;(3)由三角形的外角性质得∠BED =∠BAD +∠ABE ,结合角平分线的定义可求得∠BAD +∠ABE =12(∠BAC +∠ABC ),由三角形的内角和可求解.(1)∴1302DAC BAC ∠=∠=︒.∵ADB ∠是ADC 的外角,∴503080ADB C DAC ∠=∠+∠=︒+︒=︒;(2)∵BED ∠是ABE △的外角,45BED ∠=︒,∴45BAD ABE BED ∠+∠=∠=︒.∵AD ,BE 分别是BAC ∠,ABC ∠的角平分线,∴2BAC BAD ∠=∠,2ABC ABE ∠=∠,∴()290BAC ABC BAD ABE ∠+∠=∠+∠=︒.11∵180BAC ABC C ∠+∠+∠=︒,∴()1801809090C BAC ABC ∠=︒-∠+∠=︒-︒=︒;(3)1902BED C ∠=︒-∠.理由:∵BED ∠是ABE △的外角,∴BED BAD ABE ∠=∠+∠.∵AD ,BE 分别是BAC ∠,ABC ∠的角平分线,∴12BAD BAC ∠=∠,12ABE ABC ∠=∠,∴()12BAD ABE BAC ABC ∠+∠=∠+∠.∵180BAC ABC C +=︒-∠∠∠,∴()()11118090222BED BAD ABE BAC ABC C C ∠=∠+∠=∠+∠=︒-∠=︒-∠,即:1902BED C ∠=︒-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下期末考试数学试题(考试时间:120分钟 试卷总分:120分)题 号 得 分一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,只有一个是正确的,请将正确答案的字母代号填写在下面的表格中。

题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1、如果分式x-1有意义,那么x 的取值范围是 A 、x >1 B 、x <1 C 、x ≠1 D 、x =1 2、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是 A 、(2,-4) B 、(4,-2) C 、(-1,8) D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为A 、4B 、34C 、4或34D 、2 4、用两个全等的等边三角形,可以拼成下列哪种图形A 、矩形B 、菱形C 、正方形D 、等腰梯形 5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为A B C D6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考A 、众数B 、平均数C 、加权平均数D 、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为A 、120cmB 、360cmC 、60cmD 、cm 320第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC的大小为A 、100B 、150C 、200D 、30010、下列命题正确的是A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

D 、对角线互相垂直的四边形面积等于对角线乘积的一半。

11、甲、乙两班举行班际电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:通过计算可知两组数据的方差分别为0.22=甲S ,7.22=乙S ,则下列说法:①两组数据的平均数相同;②甲组学生比乙组学生的成绩稳定;③两组学生成绩的中位数相同;④两组学生成绩的众数相同。

其中正确的有A 、1个B 、2个C 、3个D 、4个12、如图,两个正方形ABCD 和AEFG 共顶点A ,连BE 、DG 、CF 、AE 、BG ,K 、M 分别为DG 和CF 的中点,KA 的延长线交BE 于H ,MN ⊥BE 于N 。

则下列结论:①BG=DE 且BG ⊥DE ;②△ADG 和 △ABE 的面积相等;③BN=EN ,④四边形AKMN为平行四边形。

其中正确的是 A 、③④ B 、①②③C 、①②④D 、①②③④ 第9题图 二、填空题(共4小题,每小题3分,共12分)13、一组数据8、8、x 、10的众数与平均数相等,则x= 。

14、如图,己知直线b kx y +=图象与反比例函数xk y =图 象交于A (1,m )、B (—4,n ),则不等式b kx +>xk的解集为 。

第14题图 15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如图,依此规律第10个图形的周长为 。

……第一个图 第二个图 第三个图16、如图,矩形ABCD 对角线AC 经过原点O ,B 点坐标为(―1,―3),若一反比例函数xky =的图象过点D ,则其 解析式为 。

第16题图 三、解答题(共9题,共72分) 17、(本题6分)解方程18、(本题6分)先化简,再求值。

)121(12xx x x --÷-其中2=x 19、(本题6分)如图,□ABCD 中,点E 、F 在对角线AC 上,且AE=CF 。

求证:四边形BEDF 是平行四边形。

20、(本题7分)某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩和民主测评,A 、B 、C 、D 五位老师作为评委,对演讲答辩情况进行评价,结果如下表,另全班50位同学则参与民主测评进行投票,结果如下图: 民主测评统计图演讲答辩得分表:规定:演讲得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分 ⑴求甲、乙两位选手各自演讲答辩的平均分; ⑵试求民主测评统计图中a 、b 的值是多少⑶若按演讲答辩得分和民主测评6:4的权重比计算两位选手的综合得分,则应选取哪位选手当班长。

21、(本题7分)如图,△ABC 中,M 是BC 的中点,AD 是∠A 的平分线,BD ⊥AD 于D ,AB=12,AC=18,求DM 的长。

22、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD交于点O ,且AC ⊥BD ,DH ⊥BC 。

⑴求证:AH=21(AD+BC ) ⑵若AC=6,求梯形ABCD 的面积。

23、(本题10分)某单位为了响应政府发出的“全民健身”的号召,打算在长和宽分别为20米和16米的矩形大厅内修建一个40平方米的矩形健身房ABCD ,该健身房的四面墙壁中有两面沿用大厅的旧墙壁(如图为平面示意图),且每面旧墙壁上所沿用的旧墙壁长度不得超过其长度的一半,己知装修旧墙壁的费用为20元/平方米,新建(含装修)墙壁的费用为80元/平方米,设健身房高3米,健身房AB 的长为x 米,BC 的长为y 米,修建健身房墙壁的总投资为w 元。

⑴求y 与x 的函数关系式,并写出自变量x 的范围。

⑵求w 与x 的函数关系,并求出当所建健身房AB 长为8米时总投资为多少元? 24、某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD (AB <BC )的对角线的交点O 旋转(①→②→③),图中的M 、N 分别为直角三角形的直角边与矩形ABCD 的边CD 、BC 的交点。

⑴该学习小组成员意外的发现图①(三角板一直角边与OD 重合)中,BN 2=CD 2+CN 2,在图③中(三角板一边与OC 重合),CN 2=BN 2+CD 2,请你对这名成员在图①和图③中发现的结论选择其一说明理由。

图① 图② 图③⑵试探究图②中BN 、CN 、CM 、DN 这四条线段之间的数量关系,写出你的结论,并说明理由。

⑶将矩形ABCD 改为边长为1的正方形ABCD ,直角三角板的直角顶点绕O 点旋转到图④,两直角边与AB 、BC 分别交于M 、N ,直接写出BN 、CN 、CM 、DM 这四条线段之间所满足的数量关系(不需要证明)图④25、(本题12分)如图,四边形ABCD 位于平面直角坐标系的第一象限,B 、C 在x轴上,A 点函数xy 2=上,且AB ∥CD ∥y 轴,AD ∥x 轴,B (1,0)、C (3,0)。

⑴试判断四边形ABCD 的形状。

⑵若点P 是线段BD 上一点PE ⊥BC 于E ,M 是PD 的中点,连EM 、AM 。

求证:AM=EM⑶在图⑵中,连结AE 交BD 于N ,则下列两个结论:①MN DMBN +值不变;②222MNDM BN +的值不变。

其中有且仅有一个是正确的,请选择正确的结论证明并求其值。

八年级数学试题参考答案一、 选择题(共12小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 CDCBCABCBDBC二、填空题(共4小题,每空3分,共12分)13、6 14、-4<x <0或x >1 15、32 16、xy 3= 三、解答题(共9题,共72分) 17、解:方程两边同时乘以3(x+1)得3x=2x -3x -3…………………………………………………………2分x=-43…………………………………………………………………4分 检验:当x=-43时,3(x+1)≠0 ………………………………5分 ∴x=-43是原方程的解………………………………………………6分18、解:原式=xx x x x 1212+-÷- ………………………………………2分 =xxx x x -⋅-+1)1)(1(=1--x ………………………………4分 当2=x 时,原式=12-- ………………………………6分 19、证明: 连接BD 交AC 于O …………1分 ∵ 四边形ABCD 是平行四边形∴ AO=CO BO=DO …………3分 ∵ AE=CF∴ AO -AE= CO -CE即 EO=FO …………5分 ∴ 四边形BEDF 为平行四边形 …………6分 注:证题方法不只一种20、解:⑴甲演讲答辩的平均分为:923949290=++ ………………………1分 乙演讲答辩的平均分为:893918789=++ ………………………2分⑵a=50―40―3=7 ……………………………………………3分 b=50-42-4=4 ………………………………………………4分 ⑶甲民主测评分为:40×2+7=87 乙民主测评分为:42×2+4=88∴甲综合得分:9046487692=+⨯+⨯ ………………………5分∴甲综合得分:6.8846488689=+⨯+⨯ ………………………6分 ∴应选择甲当班长。

………………………7分21、解:延长BD 交AC 于E∵BD ⊥AD …………………1分 ∴∠ADB=ADE=90∵AD 是∠A 的平分线∴∠BAD=EAD …………………2分 在△ABD 与△AED 中∴△ABD ≌△AED …………………3分 ∴BD=ED AE= AB=12 …………………4分 ∴EC=AC -AE=18-12=6 …………………5分 ∵M 是BC 的中点∴DM=21EC=3 …………………7分22、⑴证明:过D 作DE ∥AC 交BC 延长线于E ……1分∵AD ∥BC∴四边形ACED 为平行四边形……………2分 ∴CE=AD DE=AC ∵ABCD 为等腰梯形 ∴BD = AC=CE ∵AC ⊥BD ∴DE ⊥BD∴△DBE 为等腰直角三角形………………4分 ∵DH ⊥BC∴DH=21BE=21(CE+BC )=21(AD+BC )…………………5分 ⑵∵AD=CE∴DBE ABCD S DH BC CE DH BC AD S ∆=⋅+=⋅+=)(21)(21…………7分 ∵△DBE 为等腰直角三角形 BD=DE=6∴186621=⨯⨯=∆DBE S∴梯形ABCD 的面积为18……………………………………8分 注:此题解题方法并不唯一。

相关文档
最新文档