数字时钟电路

合集下载

数码管数字时钟电路的设计

数码管数字时钟电路的设计

程序如下: ORG 0000H AJMP MAINT NOP ORG 000BH AJMP INT01 NOP ORG 001BH AJMP INT11 NOP
;转主程序 ;转定时器T0中断程序 ;转定时器T1中断程序
******主程序******
MAINT:
MOV R0,#7FH
;00H~7FH单元清零
开始
内存单元清零 T0, T1为 16位 计 数 器
允 许 T0中 断
调用显示子程序
N
P 2 .7 = 0 ?
Y 调时程序
图10-7 主程序流程图
2) 显示子程序
数码管显示的数据存放在50H~55H内存单元中, 其中50H、51H单元存放秒数据,52H、53H单元存放 分数据,54H、55H单元存放时数据。时间数据采用 BCD码表示,对应的显示用段码表存放在ROM中。
AJMP
XYZ4
;转到XYZ4循环
KMTES: SETB ET0 ;省电状态,开T0中断
SETB TR0 ;启动T0(开时钟)
KMA: JB P2.7,$ ;无按键按下,等待
LCALL XSZCX
;通过调用显示时间程序延时消抖动
JB P2.7,KMA ;是干扰返回等待
KMA1:
JNB P2.7,$
ET1
;允许T1中断
SETB
TR1
;启动T1
XYZ2:JNB P2.7,XYZ1
;P2.7端为0,等待
CLR 01H
;置调分标志位为1
XYZ4:JB P2.7,XYZ3
;等待键按下
LCALL
YS05S
;延时0.5 s
JNB
P2.7,XYZHH

时钟电路设计概述-数字电路设计

时钟电路设计概述-数字电路设计

时钟电路设计概述-数字电路设计本⽂⼀般性地讲解了数字电路设计中的时钟电路设计,包括有源晶振,⽆源晶振,时钟缓冲器,并探讨了有关EMC,端接电阻和信号完整性的设计要点,设计经验来⾃于⽣花通信(Signalsky)的数字电路设计⼯程师。

时钟信号产⽣电路先看图1中的两个时钟电路,不⽤我说,相信读者⼀眼就可以看得出来,左边的那个是有源晶振电路,右边的是⽆源晶振电路。

图1 两个时钟电路振荡器就是可以产⽣⼀定频率的交变电流信号的电路晶体振荡器,简称晶振,是利⽤了晶体的压电效应制造的,当在晶⽚的两⾯上加交变电压时,晶⽚会反复的机械变形⽽产⽣振动,⽽这种机械振动⼜会反过来产⽣交变电压。

当外加交变电压的频率为某⼀特定值时,振幅明显加⼤,⽐其它频率下的振幅⼤得附加外部时钟电路,⼀般是⼀个放⼤反馈电路,只有⼀⽚晶振是不能实现震荡的多,产⽣共振,这种现象称为压电谐。

晶振相对于钟振⽽⾔其缺陷是信号质量较差,通常需要精确匹配外围电路(⽤于信号匹配的电容、电感、电阻等),更换不同频率的晶体时周边配置电路需要做相应的调整。

如果把完整的带晶体的振荡电路集成在⼀块,可能再加点其它控制功能集成到⼀起,封装好,引⼏个脚出来,这就是有源晶振,时钟振荡器,或简称钟振。

英⽂叫Oscillator,⽽晶体则是Crystal。

可以说Oscillator是Crystal经过深加⼯的产品,⽽Crystal是原材料。

好多钟振⼀般还要做⼀些温度补偿电路在⾥⾯。

让振荡频率能更加准确。

相对于⽆源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,⽽且价格⾼。

典型⽆源晶振电路图2是典型的⽆源晶振电路。

图2 典型的⽆源晶振电路与晶振并联的电阻的作⽤与晶振并联的电阻R4是反馈电阻,是为了保证反相器输⼊端的⼯作点电压在VDD/2,这样在振荡信号反馈在输⼊端时,能保证反相器⼯作在适当的⼯作区。

虽然去掉该电阻时,振荡电路仍⼯作了。

但是如果从⽰波器看振荡波形就会不⼀致了,⽽且可能会造成振荡电路因⼯作点不合适⽽停振。

数字电路数字时钟课程实验报告

数字电路数字时钟课程实验报告

数字时钟设计实验报告一、设计要求:设计一个24小时制的数字时钟。

要求:计时、显示精度到秒;有校时功能。

采用中小规模集成电路设计。

发挥:增加闹钟功能。

二、设计方案:由秒时钟信号发生器、计时电路和校时电路构成电路。

秒时钟信号发生器可由振荡器和分频器构成。

计时电路中采用两个60进制计数器分别完成秒计时和分计时;24进制计数器完成时计时;采用译码器将计数器的输出译码后送七段数码管显示。

校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。

三、电路框图:图一数字时钟电路框图四、电路原理图:(一)秒脉冲信号发生器秒脉冲信号发生器是数字电子钟的核心部分,它的精度和稳定度决定了数字钟的质量。

由振荡器与分频器组合产生秒脉冲信号。

振荡器: 通常用555定时器与RC构成的多谐振荡器,经过调整输出1000Hz脉冲。

分频器: 分频器功能主要有两个,一是产生标准秒脉冲信号,一是提供功能扩展电路所需要的信号,选用三片74LS290进行级联,因为每片为1/10分频器,三片级联好获得1Hz标准秒脉冲。

其电路图如下:译码器译码器译码器时计数器分计数器秒计数器校时电路秒信号发生器图二秒脉冲信号发生器(二)秒、分、时计时器电路设计秒、分计数器为60进制计数器,小时计数器为24进制计数器。

60进制——秒计数器秒的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。

当计数到59时清零并重新开始计数。

秒的个位部分的设计:利用十进制计数器CD40110设计10进制计数器显示秒的个位。

个位计数器由0增加到9时产生进位,连在十位部计数器脉冲输入端CP,从而实现10进制计数和进位功能。

利用74LS161和74LS11设计6进制计数器显示秒的十位,当十位计数器由0增加到5时利用74LS11与门产生一个高电平接到个位、十位的CD40110的清零端,同时产生一个脉冲给分的个位。

其电路图如下:图三 60进制--秒计数电路60进制——分计数电路分的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。

多功能数字钟电路设计

多功能数字钟电路设计

多功能数字钟电路设计1设计内容简介数字钟是一个简单的时序组合逻辑电路,数字钟的电路系统主要包括时间显示,脉冲产生,报时,闹钟四部分。

脉冲产生部分包括振荡器、分频器;时间显示部分包括计数器、译码器、显示器;报时和闹钟部分主要由门电路构成,用来驱动蜂鸣器。

2设计任务与要求Ⅰ以十进制数字形式显示时、分、秒的时间。

Ⅱ小时计数器的计时要求为“24翻1”,分钟和秒的时间要求为60进位。

Ⅲ能实现手动快速校时、校分;Ⅳ具有整点报时功能,报时声响为四低一高,最后一响为整点。

Ⅴ具有定制控制(定小时)的闹钟功能。

Ⅵ画出完整的电路原理图3主要集成电路器件计数器74LS162六只;74LS90三只;CD4511六只;CD4060六只;三极管74LS191一只;555定时器1只;七段式数码显示器六只,74LS00 若干;74LS03(OC) 若干;74LS20 若干;电阻若干,等4设计方案数字电子钟的原理方框图如图(1)所示。

该电路由秒信号发生器、“时,分,秒”计数器、译码器及显示器、校时电路、整点报时电路、闹钟定时等电路组成。

秒信号产生器决定了整个计时系统的精度,故用石英晶体振荡器加分频器来实现。

将秒信号送入“秒计时器”,“秒计时器”采用六十进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。

“分计数器”也采用六十进制计数器,每60分钟,发出一个“时脉冲”,该信号经被送到“时计数器”作为“时计数器”的时钟脉冲,而“时计数器”采用二十四进制计数器,实现“24翻1”的计数方式,可实现对一天二十四小时的累计。

译码显示电路将“时”、“分”、“秒”计数器的输出状态通过七段式显示译码器译码,通过刘伟LED 七段显示器显示出来。

整点报时电路是根据计时系统的输出状态产生一脉冲信号,然后触发一音频发生器实现整点报时,定时电路与此类似。

校时电路是用“时”、“分”、“秒”显示数5电路设计5.1秒信号发生器秒信号发生器是数字钟的核心部分,它的精度和稳定度决定了数字钟的质量,通常用晶体整荡器产生的脉冲经过整形、分频获得1 Hz的秒脉冲。

数字时钟各单元电路的设计方案及原理说明

数字时钟各单元电路的设计方案及原理说明

数字时钟各单元电路的设计方案及原理说明数字时钟是现代生活中常见的时间显示工具,它通过使用数字来表示小时和分钟。

而数字时钟的核心组成部分则是由各个数字显示单元电路组成的。

在本文中,我将为您介绍数字时钟各单元电路的设计方案及原理说明,希望能帮助您更深入地了解数字时钟的工作原理。

我们需要了解数字时钟的基本原理。

数字时钟使用了七段显示器来显示数字,每个数字由七个LED(Light Emitting Diode)组成,分别表示了该数字的不同线条。

为了控制七段显示器显示特定的数字,我们需要设计相应的驱动电路。

1. 数字时钟的驱动电路设计方案a. 时钟信号生成器:数字时钟需要一个稳定的时钟信号来驱动各个单元电路,通常使用晶振电路来生成精确的时钟信号。

b. 时分秒计数器:用于计数时间,并将计数结果转化为可以驱动七段显示器的信号。

时分秒计数器可以使用计数逻辑电路来实现,其中包括触发器和计数器芯片等。

c. 译码器:译码器用于将计数器输出的二进制数据转换为可以驱动七段显示器的控制信号。

根据不同的数字,译码器会选通对应的七段LED。

2. 数字时钟的各单元电路原理说明a. 时钟信号生成器的原理:晶振电路通过将晶振与逻辑电路相连,通过振荡来生成稳定的时钟信号。

晶振的振荡频率决定了时钟的精确度,一般使用32.768kHz的晶振来实现。

b. 时分秒计数器的原理:时分秒计数器使用触发器和计数器芯片来实现,触发器可以保存二进制的计数值,并在时钟信号的作用下进行状态切换。

计数器芯片可以根据触发器的状态进行计数和重置操作。

c. 译码器的原理:译码器根据计数器输出的二进制数据选择对应的七段LED。

七段LED通过加电来显示数字的不同线条,然后通过译码器的工作,将二进制数据转换为驱动七段LED的信号。

通过以上的设计方案和原理说明,我们可以更好地理解数字时钟各单元电路的工作原理。

数字时钟通过时钟信号生成器来提供稳定的时钟信号,时分秒计数器记录并计算时间,译码器将计数结果转化为可以驱动七段显示器的信号。

单片机数字钟工作原理

单片机数字钟工作原理

单片机数字钟工作原理
单片机数字钟是一种通过单片机控制数字时钟的设备。

单片机是一种高度集成的电子芯片,具有非常强大的计算和控制能力。

在数字钟中,单片机负责控制时间数码管的显示和计时功能。

具体来说,单片机数字钟的工作原理如下:
1. 时钟电路:单片机数字钟中使用的时钟电路通常是晶体振荡器。

晶体振荡器会产生非常稳定的频率,用于单片机的计时和控制。

2. 计时功能:单片机通过时钟电路来计时。

当单片机启动时,它会从时钟电路中读取当前的时间,然后根据程序中设定的规则不停地更新时间。

单片机数字钟通常会具有秒、分、时等多个计时功能,可以显示当前的精确时间。

3. 显示功能:单片机数字钟通过数码管来显示时间。

数码管是一种常见的显示器件,可以显示数字、字母等信息。

单片机通过控制数码管的亮灭来显示当前时间。

4. 控制功能:单片机数字钟还具有控制功能。

例如,可以通过按钮来调整时间、闹钟等功能。

单片机还可以控制数码管的亮度、闪烁等效果,以及声光报警等功能。

综上所述,单片机数字钟是一种功能强大、精确可靠的电子设备,广泛应用于家庭、办公室、实验室等场合。

- 1 -。

数字电子钟逻辑电路设计

数字电子钟逻辑电路设计

数字电子钟逻辑电路设计一、简述数字电子钟是一种用数字显示秒、分、时、日的计时装置,与传统的机械钟相比,它具有走时准确,显示直观、无机械传动装置等优点,因而得到了广泛的应用;小到人们日常生活中的电子手表,大到车站、码头、机场等公共场所的大型数显电子钟;数字电子钟的电路组成方框图如图所示;图数字电子钟框图由图可见,数字电子钟由以下几部分组成:石英晶体振荡器和分频器组成的秒脉冲发生器;校时电路;六十进制秒、分计数器,二十四进制或十二进制计时计数器;秒、分、时的译码显示部分等;二、设计任务和要求用中、小规模集成电路设计一台能显示日、时、分、秒的数字电子钟,要求如下:1.由晶振电路产生1Hz标准秒信号;2.秒、分为00~59六十进制计数器;3. 时为00~23二十四进制计数器;4. 周显示从1~日为七进制计数器;5. 可手动校时:能分别进行秒、分、时、日的校时;只要将开关置于手动位置,可分别对秒、分、时、日进行手动脉冲输入调整或连续脉冲输入的校正;6. 整点报时;整点报时电路要求在每个整点前呜叫五次低音500Hz,整点时再呜叫一次高音1000Hz;三、可选用器材1. 通用实验底板2. 直流稳压电源3. 集成电路:CD4060、74LS74、74LS161、74LS248及门电路4. 晶振:32768 Hz5. 电容:100μF/16V 、22pF 、3~22pF 之间6. 电阻:200Ω、10K Ω、22M Ω7. 电位器:Ω或Ω8. 数显:共阴显示器LC5011-119. 开关:单次按键10. 三极管:805011. 喇叭:1 W /4,8Ω四、设计方案提示根据设计任务和要求,对照数字电子钟的框图,可以分以下几部分进行模块化设计;1. 秒脉冲发生器脉冲发生器是数字钟的核心部分,它的精度和稳定度决定了数字钟的质量,通常用晶体振荡器发出的脉冲经过整形、分频获得1Hz 的秒脉冲;如晶振为32768 Hz,通过15次二分频后可获得1Hz 的脉冲输出,电路图如图所示;74LS741Hz图 秒脉冲发生器2. 计数译码显示秒、分、时、日分别为60、60、24、7进制计数器、秒、分均为60进制,即显示00~59,它们的个位为十进制,十位为六进制;时为二十四进制计数器,显示为00~23,个位仍为十进制,而十位为三进制,但当十进位计到2,而个位计到4时清零,就为二十四进制了;周为七进制数,按人们一般的概念一周的显示日期“日、1、2、3、4、5、6”,所以我们设计这个七进制计数器,应根据译码显示器的状态表来进行,如表所示;按表状态表不难设计出“日”计数器的电路日用数字8代替;所有计数器的译码显示均采用BCD—七段译码器,显示器采用共阴或共阳的显示器;表状态表3.校时电路在刚刚开机接通电源时,由于日、时、分、秒为任意值,所以,需要进行调整;置开关在手动位置,分别对时、分、秒、日进行单独计数,计数脉冲由单次脉冲或连续脉冲输入;4.整点报时电路当时计数器在每次计到整点前六秒时,需要报时,这可用译码电路来解决;即当分为59时,则秒在计数计到54时,输出一延时高电平去打开低音与门,使报时声按500Hz频率呜叫5声,直至秒计数器计到58时,结束这高电平脉冲;当秒计数到59时,则去驱动高音1KHz频率输出而鸣叫1声;五、参考电路数字电子钟逻辑电路参考图如图所示;图数字电子钟逻辑电路参考图六、参考电路简要说明1. 秒脉冲电路由晶振32768Hz经14分频器分频为2Hz,再经一次分频,即得1Hz标准秒脉冲,供时钟计数器用;2. 单次脉冲、连续脉冲这主要是供手动校时用;若开关K1打在单次端,要调整日、时、分、秒即可按单次脉冲进行校正;如K1在单次,K2在手动,则此时按动单次脉冲键,使周计数器从星期1到星期日计数;若开关K1处于连续端,则校正时,不需要按动单次脉冲,即可进行校正;单次、连续脉冲均由门电路构成;3. 秒、分、时、日计数器这一部分电路均使用中规模集成电路74LS161实现秒、分、时的计数,其中秒、分为六十进制,时为二十四进制;从图3中可以发现秒、分两组计数器完全相同;当计数到59时,再来一个脉冲变成00,然后再重新开始计数;图中利用“异步清零”反馈到/CR端,而实现个位十进制,十位六进制的功能;时计数器为二十四进制,当开始计数时,个位按十进制计数,当计到23时,这时再来一个脉冲,应该回到“零”;所以,这里必须使个位既能完成十进制计数,又能在高低位满足“23”这一数字后,时计数器清零,图中采用了十位的“2”和个位的“4”相与非后再清零;对于日计数器电路,它是由四个D触发器组成的也可以用JK触发器,其逻辑功能满足了表1,即当计数器计到6后,再来一个脉冲,用7的瞬态将Q4、Q3、Q2、Q1置数,即为“1000”,从而显示“日”8;4.译码、显示译码、显示很简单,采用共阴极LED数码管LC5011-11和译码器74LS248,当然也可用共阳数码管和译码器;5.整点报时当计数到整点的前6秒钟,此时应该准备报时;图3中,当分计到59分时,将分触发器QH置1,而等到秒计数到54秒时,将秒触发器QL置1,然后通过QL与QH相与后再和1s标准秒信号相与而去控制低音喇叭呜叫,直至59秒时,产生一个复位信号,使QL清0,停止低音呜叫,同时59秒信号的反相又和QH相与后去控制高音喇叭呜叫;当计到分、秒从59:59—00:00时,呜叫结束,完成整点报时;6.呜叫电路呜叫电路由高、低两种频率通过或门去驱动一个三极管,带动喇叭呜叫;1KHz和500Hz从晶振分频器近似获得;如图中CD4060分频器的输出端Q5和Q6;Q5输出频率为1024Hz,Q6输出频率为512Hz;。

数字时钟实验报告

数字时钟实验报告

数字时钟实验报告一、实验目的本次数字时钟实验的主要目的是设计并实现一个能够准确显示时、分、秒的数字时钟系统,通过该实验,深入理解数字电路的原理和应用,掌握计数器、译码器、显示器等数字电路元件的工作原理和使用方法,提高电路设计和调试的能力。

二、实验原理1、时钟脉冲产生电路时钟脉冲是数字时钟的核心,用于驱动计数器的计数操作。

本实验中,采用石英晶体振荡器产生稳定的高频脉冲信号,经过分频器分频后得到所需的秒脉冲信号。

2、计数器电路计数器用于对时钟脉冲进行计数,分别实现秒、分、时的计数功能。

秒计数器为 60 进制,分计数器和时计数器为 24 进制。

计数器可以由集成计数器芯片(如 74LS160、74LS192 等)构成。

3、译码器电路译码器将计数器的输出编码转换为能够驱动显示器的信号。

常用的译码器芯片有 74LS47(用于驱动共阳数码管)和 74LS48(用于驱动共阴数码管)。

显示器用于显示数字时钟的时、分、秒信息。

可以使用数码管(LED 或 LCD)作为显示元件。

三、实验器材1、集成电路芯片74LS160 十进制计数器芯片若干74LS47 BCD 七段译码器芯片若干74LS00 与非门芯片若干74LS10 三输入与非门芯片若干2、数码管共阳数码管若干3、电阻、电容、晶振等无源元件若干4、面包板、导线、电源等四、实验步骤1、设计电路原理图根据实验原理,使用电路设计软件(如 Protel、Multisim 等)设计数字时钟的电路原理图。

在设计过程中,要合理布局芯片和元件,确保电路连接正确、简洁。

按照设计好的电路原理图,在面包板上搭建实验电路。

在搭建电路时,要注意芯片的引脚排列和连接方式,避免短路和断路。

3、调试电路接通电源,观察数码管是否有显示。

如果数码管没有显示,检查电源连接是否正确,芯片是否插好。

调整时钟脉冲的频率,观察秒计数器的计数是否准确。

如果秒计数器的计数不准确,检查分频器的连接是否正确,晶振的频率是否稳定。

纯数字电路数字时钟原理图(免费)

纯数字电路数字时钟原理图(免费)

做成时钟,并不难,把十进改成6进就行了如下:1,震荡电路的电容用晶震,记时准确.2, 时:用2块计数器,十位的用1和2(记时脚)两个脚.分:用2块计数器,十位的用1,2,3,4,5,6,(记时脚)6个脚.秒:同分.评论:74系列的集成块不如40系列的,如:用CD4069产生震荡,CD4017记数,译码外加.电压5V.比74LS160 74LS112 74LS00好的.而且CD4069外围元件及少.如有需要我可以做给你.首先需要产生1hz的信号,一般采用CD4060对32768hz进行14分频得到2hz,然后再进行一次分频。

(关于此类内容请参考数字电路书中同步计数器一章)(原文件名:4060.JPG)一种分频电路:(原文件名:秒信号1.JPG)采用cd4518进行第二次分频另一种可以采用cd4040进行第二次分频第三种比较麻烦,是对1mhz进行的分频(原文件名:秒信号2.JPG)介绍一下cd4518:CD4518,该IC是一种同步加计数器,在一个封装中含有两个可互换二/十进制计数器,其功能引脚分别为1~7和9~{15}。

该计数器是单路系列脉冲输入(1脚或2脚;9脚或10脚),4路BCD码信号输出(3脚~6脚;{11}脚~{14}脚)。

此外还必须掌握其控制功能,否则无法工作。

手册中给有控制功能的真值(又称功能表),即集成块的使用条件,如表2所示。

从表2看出,CD4518有两个时钟输入端CP和EN,若用时钟上升沿触发,信号由CP输入,此时EN端应接高电平“1”,若用时钟下降沿触发,信号由EN端输入,此时CP端应接低电平“0”,不仅如此,清零(又称复位)端Cr也应保持低电平“0”,只有满足了这些条件时,电路才会处于计数状态,若不满足则IC不工作。

计数时,其电路的输入输出状态如表3所示。

值得注意,因表3输出是二/十进制的BCD码,所以输入端的记数脉冲到第十个时,电路自动复位0000状态(参看连载五)。

另外,该CD4518无进位功能的引脚,但从表3看出,电路在第十个脉冲作用下,会自动复位,同时,第6脚或第{14}脚将输出下降沿的脉冲,利用该脉冲和EN端功能,就可作为计数的电路进位脉冲和进位功能端供多位数显用。

数字电路时钟脉冲技术

数字电路时钟脉冲技术

数字电路时钟脉冲技术时钟脉冲技术在数字电路中起着至关重要的作用,它控制着信号的同步和数据的传输。

在本文中,我们将探讨数字电路中常用的时钟脉冲技术以及其原理和应用。

一、脉冲信号与时钟信号在数字电路中,脉冲信号是指持续时间较短的信号,通常用高电平和低电平表示。

时钟信号是指周期性重复的信号,用于同步各个部分的操作。

脉冲信号可以通过时钟信号的上升沿或下降沿来触发。

二、时钟脉冲的生成和分频技术时钟脉冲的生成是数字电路中的基本技术之一。

其中,晶振是常用的时钟信号源,它通过振荡器电路产生一个稳定的频率信号。

然后,通过分频电路将其分频得到所需的时钟频率。

分频电路根据输入时钟频率和所需要的输出时钟频率进行设计。

常见的分频电路有二分频、四分频和八分频等。

例如,如果输入的时钟频率为10MHz,而需要的输出时钟频率为1MHz,那么可以使用十分频电路将其分频得到所需的频率。

三、时钟脉冲的传输和同步技术时钟脉冲的传输是数字电路中常用的技术之一。

时钟脉冲可以通过导线或者信号线传输到不同的电路模块中,用于触发操作或者同步数据传输。

同步技术在数字电路设计中起着重要的作用。

同步传输是指根据时钟脉冲的上升沿或下降沿进行数据传输的方式。

例如,在时钟脉冲上升沿时,数据从发送端传输到接收端;而在时钟脉冲下降沿时,数据则保持不变。

这样可以确保数据的稳定性和正确性。

四、时钟脉冲的应用领域时钟脉冲技术在数字电路中广泛应用于各种领域。

它在微处理器、通信系统、存储器、计数器等电子设备中起着关键的作用。

在微处理器中,时钟脉冲用于同步指令和数据的执行,确保整个系统的稳定性和正确性。

在通信系统中,时钟脉冲用于同步发送和接收数据的速率,以避免数据丢失或错误。

在存储器中,时钟脉冲用于同步读写操作,确保数据的可靠性和一致性。

在计数器中,时钟脉冲用于控制计数的速率,实现精确计数功能。

总结:时钟脉冲技术在数字电路中是一项重要的技术,它控制着信号的同步和数据的传输。

利用单片机的定时器设计一个数字时钟

利用单片机的定时器设计一个数字时钟

利用单片机的定时器设计一个数字时钟数字时钟是我们日常生活中常见的计时工具,可以准确地显示当前的时间。

而单片机的定时器则可以提供精准的定时功能,因此可以利用单片机的定时器来设计一个数字时钟。

本文将介绍如何使用单片机的定时器来设计一个基于数字显示的时钟,并提供基本的代码实现。

一、时钟电路设计利用单片机设计一个数字时钟,首先需要设计一个合适的时钟电路。

时钟电路一般由电源电路、晶振电路、单片机复位电路和显示电路组成。

1. 电源电路:为电路提供工作所需的电源电压,一般使用稳压电源芯片进行稳定的供电。

2. 晶振电路:利用晶振来提供一个稳定的时钟信号,常用的晶振频率有11.0592MHz、12MHz等。

3. 单片机复位电路:用于保证单片机在上电或复位时能够正确地初始化,一般使用降低复位电平的电路。

4. 显示电路:用于将单片机输出的数字信号转换成七段数码管可以识别的信号,一般使用BCD码和译码器进行实现。

二、单片机定时器的应用单片机的定时器具有精准的定时功能,可以帮助实现时钟的计时功能。

单片机的定时器一般分为定时器0和定时器1,根据具体的应用需求选择使用。

在设计数字时钟时,可以将定时器0配置成定时器模式,设置一个适当的定时时间。

当定时器0计时达到设定时间时,会触发一个中断信号,通过中断处理程序可以实现时钟的计时功能。

以下是一个基于单片机的定时器的伪代码示例:```void Timer0_Init(){// 设置定时器0为工作在定时器模式下// 设置计时时间// 开启定时器0中断}// 定时器0中断处理程序void Timer0_Interrupt_Handler(){// 更新时钟显示}void main(){Timer0_Init();while(1){// 主循环}}```在上述伪代码中,Timer0_Init()函数用于初始化定时器0的相关设置,包括工作模式和计时时间等。

Timer0_Interrupt_Handler()函数是定时器0的中断处理程序,用于处理定时器0计时到达设定时间时的操作,例如更新时钟显示。

数字电路时钟信号优化

数字电路时钟信号优化

数字电路时钟信号优化数字电路中的时钟信号是系统运行的基准,它同步着各个部件的工作。

良好的时钟信号质量直接影响着系统的性能和可靠性。

因此,进行数字电路时钟信号优化是非常重要的。

本文将介绍数字电路时钟信号优化的一些常见方法和技巧。

一、时钟信号的稳定性时钟信号的稳定性是指时钟信号的频率和相位偏移对系统功能的影响程度。

为了优化时钟信号的稳定性,我们可以采取以下一些措施:1. 时钟信号源的选择:选择频率稳定性高的时钟源是很关键的一步。

常见的时钟源有晶振和时钟发生器,可以根据系统的要求选择适合的时钟源。

2. 时钟信号布线:良好的布线可以减小时钟信号的传输延迟和抖动。

布线时需要避免时钟信号与其他信号线的干扰,避免长距离走线和弯曲的线路设计。

3. 时钟信号缓冲:引入时钟缓冲器可以增强时钟信号的驱动能力,减小时钟信号的抖动和失真。

选择适合的时钟缓冲器能够提高系统性能。

二、时钟信号的噪声和抖动时钟信号的噪声和抖动会导致系统的时序偏移和误差。

为了优化时钟信号的噪声和抖动,我们可以采取以下一些方法:1. 时钟信号的滤波:通过设计滤波器来滤除时钟信号中的噪声成分。

滤波器的设计需要考虑响应时间和抗干扰能力,以满足系统的要求。

2. 时钟信号的增益控制:合理地控制时钟信号的增益可以减小信号的抖动,提高信号质量。

可以通过引入放大器或使用可变增益控制电路来实现。

3. 时钟信号的同步:在系统中引入同步电路可以将多个时钟信号同步为一个时钟信号。

同步后的时钟信号具有更好的稳定性和一致性。

三、时钟信号的频率优化时钟信号的频率与系统性能和功耗有着密切的关系。

为了优化时钟信号的频率,我们可以采取以下一些策略:1. 功耗管理:通过控制时钟频率的方式来管理系统的功耗。

对于低功耗要求的应用,可以降低时钟频率;对于高性能要求的应用,可以提高时钟频率。

2. 频率合成器:引入频率合成器可以根据系统需求生成不同频率的时钟信号。

频率合成器一般采用锁相环(PLL)或者延时锁定环(DLL)等技术实现。

数字时钟电路各模块工作原理

数字时钟电路各模块工作原理

数字时钟电路各模块工作原理数字时钟电路各模块工作原理1. 引言数字时钟已经成为人们生活中不可或缺的一部分,它以数字形式显示时间,使我们能够方便地了解当前的时间。

本文将从简单到复杂、由浅入深地阐述数字时钟电路中各个模块的工作原理。

2. 电源模块•主要功能数字时钟电路的电源模块主要起到为整个电路提供稳定的电源电压和电流的作用。

•工作原理电源模块一般由变压器、整流电路和稳压电路组成。

变压器通过变压器原理将交流电转换为适用于电路的直流电,整流电路将交流电转换为脉冲电流,稳压电路则将脉冲电流稳定为恒定的电压和电流。

3. 时钟信号发生器模块•主要功能时钟信号发生器模块产生高频的时钟信号,并通过分频器将其分频,用于驱动后续的计数器和显示模块。

•工作原理时钟信号发生器模块一般由振荡电路、计数器和分频器组成。

振荡电路产生稳定的高频时钟信号,计数器对时钟信号进行计数并输出计数值,分频器将计数值进行分频得到固定频率的时钟信号。

4. 计数器模块•主要功能计数器模块用于记录经过的时钟脉冲个数,并将其转换为对应的数字显示。

•工作原理计数器模块一般由触发器、逻辑门和时钟信号控制电路组成。

触发器将时钟信号转换为数字形式的脉冲,逻辑门用于整合和处理触发器输出的脉冲信号,时钟信号控制电路控制触发器的触发时机。

5. 显示模块•主要功能显示模块接收计数器模块输出的数字信号,并将其显示为可识别的数字。

•工作原理显示模块一般由七段数码管或液晶显示屏等组成。

每个数字由若干个分段组成,不同的分段关闭或打开可以显示出不同的数字。

显示模块根据计数器输出的数字信号通过逻辑电路控制开关不同的分段。

6. 总结通过文章的介绍,我们了解到数字时钟电路主要由电源模块、时钟信号发生器模块、计数器模块和显示模块组成。

电源模块提供稳定的电源电压和电流,时钟信号发生器模块产生高频稳定的时钟信号,计数器模块记录时钟信号的个数并转换为数字显示,显示模块将计数器转换后的数字显示出来。

数字时钟设计完全数字电路

数字时钟设计完全数字电路

数字时钟设计完全数字电路Modified by JEEP on December 26th, 2020.数字时钟设计姓名学号专业电子信息技术指导教师成绩日期基于555的数字时钟显示摘要:数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。

数字钟从原理上讲是一种典型的数字电路,通过555定时器改装的多谐震荡器发出的脉冲频率具有一定的准确性。

在这次设计中对分频器、计数器、、译码器和显示器进行研究编译,并完成了各种器件的编译工作,实现数字钟的功能。

有准确计时,以数字形式显示时、分、秒的时间和校时功能。

秒和校时功能都有一个共同特点就是它们都要用到振荡电路提供的1Hz脉冲信号。

在计时出现误差时电路还可以进行校时和校分,为了使电路简单所设计的电路不具备校秒的功能。

并且要用数码管显示时、分、秒,各位均为两位显示。

1引言随着科技的快速发展,数字电子钟在实际生活中的应用越来越广泛,小到普通的电子表,大到航天器等高科技电子产品中的计时设备。

数字钟是一个将“时”,“分”,“秒”显示于人的视觉器官的计时装置。

它的计时周期为24小时,显示满刻度为23时59分59秒,另外应有整点报时附加功能。

因此,一个基本的数字钟电路主要由译码显示器、“时”,“分”,“秒”计数器、报时电路和振荡器组成。

作为电子技术的一名学生掌握并能够独立自主设计一个数字电子钟是必要和必须的,既可以加深对课本上理论知识的理解又能锻炼自己的思考和解决问题的能力。

于是,经过查阅许多相关书籍和浏览许多网络未找到目录项。

资源,我做了这款简单数字电子钟的设计。

2 方案论证原理设计和功能描述2.1.1 数字计时器的设计思想要想构成数字钟,首先应选择一个脉冲源——能自动地产生稳定的标准时间脉冲信号。

而脉冲源产生的脉冲信号地频率较高,因此,需要进行分频,使得高频脉冲信号变成适合于计时的低频脉冲信号,即“秒脉冲信号”(频率为1Hz)。

数字钟时钟电路图

数字钟时钟电路图

目录前言: (4)1.设计目的 (6)2.设计功能要求 (6)3.电路设计1111111111 (6)3.1设计方案 (6)3.2单元电路的设计 (7)3.2.1 主体电路部分 (7)3.2.1.1 振荡电路 (8)3.2.1.2 计数电路 (12)3.2.1.3 校时电路 (17)3.2.1.4 译码与显示电路 (19)3.2.2扩展功功能电路的设计 (21)3.2.2.1定时控制电路 (21)3.2.2.2 仿广播电台正点报时电路 (23)3.2.2.3 自动报整点时数电路 (24)3.2.2.4 触摸报整点时数电路 (26)4.调试 (27)4.1主体电路部分 (27)4.2 扩展电路部分 (29)5.总结 (31)致 (32)参考文献 (33)附录 (34)1.设计目的设计一种多功能数字钟,该数字钟具有基本功能和扩展功能两部分。

其中,基本功能部分的有准确计时,以数字形式显示时、分、秒的时间和校时功能。

扩展功能部分则具有:定时控制、仿广播电台正点报时、自动报整点时数和触摸报正点的功能。

数字钟的电路也是由主体电路和扩展电路两部分构成,在电路中,基本功能部分由主体电路实现,而扩展功能部电路实现。

这两部分都有一个共同特点就是它们都要用到振荡电路提供的1Hz脉冲信号。

在计时出现误差时电路还可以进行校时和校分,为了使电路简单所设计的电路不具备校秒的功能。

并且要用数码管显示时、分、秒,各位均为两位显示,扩展部分要有相应的响应电路。

分则由扩展2.设计功能要求基本功能:(1)时的计时要求为“12翻1”,分和秒的计时要求为60进制(2)准确计时,以数字形式显示时,分,秒的时间(3)校正时间扩展功能:(1)定时控制;(2)仿广播电台报时功能;(3)自动报整点时数;(4)触摸报整点时数;3.电路设计3.1设计方案根据设计要求首先建立了一个多功能数字钟电路系统的组成框图,框图如图1所示。

主体电路扩展电路图1由图1可知,电路的工作原理是:多功能数字钟电路由主体电路和扩展电路两大部分组成。

数字电子钟的设计电路图pcb图

数字电子钟的设计电路图pcb图

数字电子钟的设计与制作一、设计概述1.设计任务➢时钟脉冲电路设计➢60进制计数器设计➢24进制计数器设计➢“秒”,“分”,“小时”脉冲逻辑电路设计➢“秒”,“分”,“小时”显示电路设计➢“分”,“小时”校时电路➢整点报时电路2.功能特性➢设计的数字钟能直接显示“时”,“分”,“秒”,并以24小时为一计时周期。

➢当电路发生走时误差时,要求电路具有校时功能。

➢要求电路具有整点报时功能,报时声响为四低一高,最后一响正好为整点。

3.原理框图图 1 原理框图二、设计原理数字钟是一个将“时”,“分”,“秒”显示于人的视觉器官的计时装置。

它的计时周期为24小时,显示满刻度为23时59分59秒,另外应有校时功能和报时功能。

因此,一个基本的数字钟电路主要由译码显示器、“时”,“分”,“秒”计数器、校时电路、报时电路和振荡器组成。

干电路系统由秒信号发生器、“时、分、秒”计数器、译码器及显示器、校时电路、整点报时电路组成。

秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用石英晶体振荡器加分频器来实现。

将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发现胡一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。

“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。

“时计数器”采用24进制计时器,可实现对一天24小时的累计。

译码显示电路将“时”、“分”、“秒”计数器的输出状态菁七段显示译码器译码,通过六位LED七段显示器显示出来。

整点报时电路时根据计时系统的输出状态产生一脉冲信号,然后去触发一音频发生器实现报时。

校时电路时用来对“时”、“分”、“秒”显示数字进行校对调整的。

三、设计步骤1.计数器电路根据计数周期分别组成两个60进制(秒、分)和一个24进制(时)的计数器。

把它们适当连接就可以构成秒、分、时的计数,实现计时功能。

CC4518的符号如图,一个芯片集成了两个完全相同的十进制计数器,其异步清零信号CR是高电平有效。

数字电路中时钟的作用

数字电路中时钟的作用

数字电路中时钟的作用
数字电路中时钟的作用非常重要。

时钟可以被看作是电路中的节拍器,它会以一定的频率产生电信号,控制数字电路中的信号传输和处理。

通常,时钟信号的频率是固定的且非常高,例如几百万次每秒。

时钟信号的高低电平可以告诉电路何时进行下一步操作,因此时钟非常关键,确保数字电路的准确性和可靠性。

时钟信号用于同步电路中的各个部分,特别是处理器、计数器、寄存器等常用的电路。

它们需要在同一时间内做出相同的行为,以避免发生错误。

如若没有时钟信号,电路将无法与其他部分同步,因此失败的可能性将增加。

时钟信号还可以被用来控制慢速IO端口和高速内存的读写。

总之,时钟是数字电路中必不可少的组成部分,它为数字电路提供了准确的同步时间和频率,以确保正常的操作和功能。

数字电路时钟脉冲

数字电路时钟脉冲

数字电路时钟脉冲数字电路中的时钟脉冲是电子设备中非常关键的信号之一。

它用于同步和驱动各个模块的工作,确保电路的正常运行。

本文将详细介绍数字电路中的时钟脉冲的定义、特性、应用及其相关设计注意事项。

一、时钟脉冲的定义与特性时钟脉冲是指数字电路中周期性变化的信号,通常表现为方波或脉冲波形。

其周期性变化特性使得时钟脉冲在数字系统中具有重要的角色,它决定了各个部件的工作时间及数据传输的时间间隔。

时钟脉冲的频率可以决定系统的响应速度和处理能力。

在数字电路中,时钟脉冲的频率由一个名为振荡器的电路产生。

振荡器通常由晶体振荡器或者是集线器构成。

它们能够产生稳定且具有一定频率的振荡信号,将其输出作为时钟信号。

二、时钟脉冲的应用时钟脉冲在数字电路中有多种应用,下面将分别介绍其中的几个应用场景。

1. 同步器件时钟脉冲可以用于同步不同模块之间的工作。

通过时钟信号的控制,各个模块能够按照同步的节奏进行数据传输或处理。

这对于保证数据的准确性和系统的正常运行非常重要。

2. 时序控制时钟脉冲可以用于控制数字电路中的时序操作。

比如,时钟脉冲可以用于电脑的CPU中,控制指令的执行和数据的读写。

它确保了指令按照正确的时间顺序执行,避免数据错误或者系统崩溃。

3. 脉冲计数器时钟脉冲还可以用于实现脉冲计数器。

脉冲计数器是一种数字电路,用于计数输入脉冲的数量。

通过时钟脉冲的触发,计数器可以精确地计数脉冲的次数,并输出相关的计数结果。

脉冲计数器在电子设备中的计数、计时和测量等方面有着广泛的应用。

三、设计注意事项在设计数字电路时,时钟脉冲的合理设计非常关键。

下面列举几个设计时需要注意的事项。

1. 时钟信号的频率要合适时钟信号的频率过高或过低都会对数字电路的性能造成影响。

过高的频率可能导致信号传输速度不够快,过低的频率则可能引起系统响应慢。

因此,设计时需要根据具体的应用场景选择合适的频率。

2. 时钟信号的稳定性要保证时钟信号的稳定性对于数字电路的正常工作至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要数字钟就是一种用数字电路技术实现日、时、分、秒计时的装置,与传统的机械式时钟相比,具有更高的准确性与直观性,且无机械传动装置,具有更更长的使用寿命,因此得到了广泛的使用。

小到人们日常生活中的电子手表,大到车站、码头、机场等公共场所的大型数显电子钟。

本课程设计要用通过简单的逻辑芯片实现数字时钟。

要点在于用555芯片连接成输出1000秒的多谐振荡器,然后经过74LS90构成的分频器输出1HZ的秒脉冲,用74LS160(10进制计数器)连接成60与24进制的计数器,再通过七段数码管显示,外加上校时电路,整点报时电路即构成了简单数字钟。

扩展电路可实现定点报时功能。

关键字:多谐振荡器;分频器;计时电路;闹钟电路;校时电路;整点报时电路目录1 设计内容及要求 01、1设计目的 01、2设计内容与要求 01、3创新部分 02 系统总体设计方案 02、1 数字时钟的组成 02、2原理分析 02、3基本逻辑功能框图 (1)3 器件选择 (1)3、1 555集成定时器 (1)3、2 74LS160 (2)3、3 LED显示屏 (3)3、4 4位十进制同步可逆计数器74LS90 (4)3、5 4位数值比较器74LS85 (5)4 数字时钟的电路设计 (7)4、1 时钟振荡电路 (7)4、1、1 555多谐振荡器产生1KHz (7)4、1、2 时钟信号发生电路 (7)4、1、3 时钟振荡电路的Multisim仿真 (8)4、2 分频器电路 (9)4、3秒脉冲发生器电路 (10)4、4 分脉冲发生器电路 (11)4、5 时脉冲发生器电路 (12)4、6 校时电路 (12)4、7 整点报时电路 (13)4、8闹钟功能电路 (15)4、9 数字时钟总仿真电路图 (16)5 心得体会 (17)5、1 关于数字时钟的心得体会 (17)5、2 关于收音机的焊接与调试心得体会 (18)参考文献 (19)1 设计内容及要求1、1设计目的使学生对电子的一些相关知识有感性认识,加深电类有关课程的理论知识;;掌握电子元件的焊接、电气元件的安装、连线等基本技能,培养学生阅读电气原理图与电子线路图的能力。

并在生产实践中,激发学生动手、动脑、勇于创新的积极性,培养学生严谨、认真、踏实、勤奋的学习精神与工作作风,为后续专业课程的学习打下坚实的基础。

1、2设计内容与要求(1)稳定的显示时、分、秒。

(要求24小时为一个计时周期)(2)当电路发生走时误差时,要求电路有校时功能。

(3)电路有整点报时功能。

报时声响为四低一高,最后一响高音正好为整点。

1、3创新部分(1)闹钟功能2 系统总体设计方案2、1 数字时钟的组成数字电子钟的电路由秒脉冲发生器、分秒计数器、74LS90(二—五—十进制加法计数器)、74LS85(比较器)、时间译码及控制门,555定时器,七段数码管等构成。

2、2原理分析它由多谐振荡器、分频器、计数器、译码器、显示器、报时电路、校时电路与闹钟电路组成。

多谐振荡器产生的信号经过分频器作为秒脉冲,秒脉冲送入计数器计数,计数结果通过“时”、“分”、“秒”译码器显示时间。

分频器能将多谐振荡器产生的1kHZ的脉冲分为500HZ与1HZ。

2、3基本逻辑功能框图图1 数字时钟基本逻辑功能框图3 器件选择3、1 555集成定时器555集成定时器由五个部分组成:1、基本RS 触发器:由两个“与非”门组成2、比较器:C1、C2就是两个电压比较器3、分压器:阻值均为5千欧的电阻串联起来构成分压器,为比较器C1与C2提供参考电压。

4、晶体管开卷与输出缓冲器:晶体管VT 构成开关,其状态受Q 端控制。

输出缓冲器就就是接在输出端的反相器G3,其作用就是提高定时器的带负载能力与隔离负载对定时器的影响。

555芯片内部结构图如下:图2 555芯片内部结构图1&&&CO THTR+V CC u OD5k Ω5k Ω5k ΩC 1C 2G 1G 2G 3T++--2658437R QQ其逻辑功能表如下:表1 555定时器功能表其引脚图如下:图3 555定时器引脚图逻辑符号如下:图4 555逻辑符号图3、2 74LS16074LS160为十进制同步加法计数器逻辑功能描述如下:由逻辑图与功能表知,在CT74LS160中LD为预置数控制端,D0-D3为数据输入端,C为进位输出端,Rd为异步置零端,Q0-Q3位数据输出端,EP与ET为工作状态控制端。

当Rd=0时所有触发器将同时被置零,而且置零操作不受其她输入端状态的影响。

当Rd=1、LD=0时,电路工作在预置数状态。

这时门G16-G19的输出始终就是1,所以FF0-FF1输入端J、K的状态由D0-D3的状态决定。

当RC=LD=1而EP=0、ET=1时,由于这时门G16-G19的输出均为0,亦即FF0-FF3均处在J=K=0的状态,所以CP信号到达时它们保持原来的状态不变。

同时C的状态也得到保持。

如果阈值输入(UI1) 触发输入(UI2) 复位(RD) 输出(U0) 放电管VT ××0 0 导通<2/3VCC <1/3VCC 1 1 截止>2/3VCC >1/3VCC 1 0 导通<2/3VCC >1/3VCC 1 不变不变ET=0、则EP 不论为何状态,计数器的状态也保持不变,但这时进位输出C 等于0。

当RC=LD=EP=ET=1时,电路工作在计数状态。

从电路的0000状态开始连续输入10个计数脉冲时,电路将从1001的状态返回0000的状态,C 端从高电平跳变至低电平。

利用C 端输出的高电平或下降沿作为进位输出信号。

逻辑功能表如下:表2 74LS160逻辑功能表其引脚图如下:图5 74LS160引脚图逻辑功能示意图如下:图6 74LS160逻辑功能示意图3、3 LED 显示屏LED 就是发光二极管Light Emitting Diode 的英文缩写。

LED 显示屏就是由发光二极管排列组成的一显示器件。

它采用低电压扫描驱动,具有:耗电少、使用寿命长、成本低、亮度高、故障少、视角大、可视距离远、规格品种全等特点。

目前LED 显示屏作为新一代的信息传播媒体,已经成为城市信息现代化建设的标志。

管脚1234分别接输出段的Q0、Q1Q2、Q3.图形显示如下图所示:CPEP ET 工作状态 ×0 × × × 置零1 0 × × 预置数 × 1 1 0 1 保持 ×1 1 × 0 保持(但C=0)111 1计数图7 LED图形显示图3、4 4位十进制同步可逆计数器74LS9074LS90就是异步二—五—十进制加法计数器,它既可以作二进制加法计数器,又可以作五进制与十进制加法计数器。

通过不同的连接方式,74LS90可以实现四种不同的逻辑功能;而且还可借助R0(1)、R0(2)对计数器清零,借助S9(1)、S9(2)将计数器置9。

其具体功能详述如下:(1)计数脉冲从CP1输入,QA作为输出端,为二进制计数器。

(2)计数脉冲从CP2输入,QDQCQB作为输出端,为异步五进制加法计数器。

(3)若将CP2与QA相连,计数脉冲由CP1输入,QD、QC、QB、QA作为输出端,则构成异步8421码十进制加法计数器。

(4)若将CP1与QD相连,计数脉冲由CP2输入,QA、QD、QC、QB作为输出端,则构成异步5421码十进制加法计数器。

(5)清零、置9功能。

异步清零当R0(1)、R0(2)均为“1”;S9(1)、S9(2)中有“0”时,实现异步清零功能,即QDQCQBQA=0000。

置9功能当S9(1)、S9(2)均为“1”;R0(1)、R0(2)中有“0”时,实现置9功能,即QDQCQBQA=1001。

其功能表如下:表3 74LS90功能表其引脚图如下:图8 74LS90引脚图其逻辑功能示意图:图9 74LS90逻辑功能示意图3、5 4位数值比较器74LS85集成74LS85就是4位数值比较器可以用来比较两个4位二进制数A(A3A2A1A0)与B(B3B2B1B0)之间的大小。

其比较原理如下:两个4位二进制的比较就是从A的最高位A3与B的最高位B3开始,自高到低的逐位比较。

只有在高位相等时才需要比较低位。

若高位不相等,则两个数的比较结果直接由高位比较结果决定。

其功能表如下:表4 74LS85逻辑功能表其引脚图为:图10 74LS85引脚图其逻辑功能示意图为:图11 74LS85逻辑功能示意图4 数字时钟的电路设计4、1 时钟振荡电路4、1、1 555多谐振荡器产生1KHz多谐振荡器就是一种能够产生矩形波动的自激振荡器,也称矩形波发生器。

“多谐”指矩形波中除了基波成分外,还含有丰富的高次谐波成分。

多谐振荡器没有稳态,只有两个暂稳态。

在工作时,电路的状态在这两个暂稳态之间自动地交替变换,由此产生矩形波脉冲信号,常用作脉冲信号源及时序电路中的时钟信号。

因此,在此我们使用555定时器构成的多谐振荡器来产生1KHz的矩形脉冲信号。

4、1、2 时钟信号发生电路图12 555构成的多谐振荡器图13 多谐振荡器工作波形图用555定时器构成的多谐振荡器电路如图12所示:图中电容C、电阻R1与R2作为振荡器的定时元件,决定着输出矩形波的正、负脉冲的宽度。

定时器的触发器输入端与阀值输入端与电容相连;集电极开路输出端接R1、R2相连处,用以控制电容C的充、放电。

电路接通电源的瞬间,由于电容C来不及充电Vc=0v,所以555定时器状态为1,输出Vo为高电平。

同时,集电极输出端对地断开,电源Vcc对电容C充电,电路进入暂稳态,此后,电路周而复始地产生周期性的输出脉冲。

多谐振荡器两个暂稳态的维持时间取决于RC充放电回路的参数。

暂稳态Ⅰ的维持时间,即输出Vo的正向脉冲宽度T1≈0、7(R1+R2)C;暂稳态Ⅱ的维持时间,即输出Vo的负向脉冲宽度T2≈0、7R2C。

因此,振荡周期T=T1+T2=0、7(R1+R2)C,振荡频率f=1/T。

正向脉冲宽度T1与振荡周期T之比称矩形波的占空比D,由上述条件可得D=(R1+R2)/(R1+2R2),若使R2>>R1,则D≈1/2,即输出信号为正负向脉冲宽度相等的矩形波(方波) 4、1、3 时钟振荡电路的Multisim仿真图14 时钟振荡仿真电路图15 555多谐振荡产生1kHz仿真波形图4、2 分频器电路分频器的功能主要有两个:一就是产生标准秒脉冲信号;二就是提供功能扩展电路所需要的信号,如仿电台报时用的1KHz的高音频信号与500KHz的低音频信号等。

因此,可以选用3片我们较熟悉的中规模集成电路计数器74LS90可以完成上述功能。

相关文档
最新文档