常用尺寸尺寸公差与配合的选用分解

合集下载

公差与配合-全解

公差与配合-全解

第十五章第三节公差与配合国家标准的组鼠标双击自动滚屏成一、标准公差系列1、公差值公差值的大小与公差等级及基本尺寸有关。

公差等级 ------ 是指确定尺寸精度的等级。

由于零件和零件上不同部位的尺寸对精确程度的要求往往不相同,为了满足生产的需要,国家标准设置了 20 个公差等级。

IT01 . IT0 . IT1. IT2 .IT3 . ………………… IT18高← 公差等级→ 低小← 公差数值→ 大难← 加工程度→ 易IT6: 标准公差6级或6级标准公差∵D↑ △D↑ ∴D↑ T↑故:标准公差与公差等级和基本尺寸有关。

2、公差值的计算公差单位和公差等级系数( I i)i——计算标准公差的基本单位。

(1): i=0.45 +0.001D(d)用于常用尺寸段内,IT5-IT18(2): I=0.004D+2.1公差等级系数 a——反映加工难易(1):在常用尺寸段内:(≤500mm) IT=ai 用于IT5-IT18 IT5 :a=7 沿用GB59IT6-IT18 ,用R5系列(见表2-2)对于最高的三级: IT01-IT1,则用 IT=A+BD(测量误差) 其中B按q5增长。

考虑公差等级的一致性,都按一定规律来变化。

IT2.IT3,IT4按几何级数分布。

(详见P14 表2-3)(2): 在大尺寸段:IT=Ai 考虑方式同上。

3、尺寸分段如按公式计算标准公差值,则每一个基本尺寸 D(d)就有一个相对应的公差值。

常用: 13个大尺寸: 8个(介于其中有2-3个)见表2-2对孔与轴公差带之间的相互位置关系,规定了两种基准制:基孔制和基轴制基孔制 -------- 基孔制中的孔称为基准孔,用 H 表示,基准孔以下偏差为基本偏差,且数值为零。

其公差带位置在零线上侧。

a------h 间隙 es=Xminj------n 过渡p------zc 过盈基轴制 ------ 基轴制中的轴称为基准轴,用 h 表示,基准轴的上偏差为基本偏差且等于零,公差带位置在零线下侧。

常用尺寸公差与配合表

常用尺寸公差与配合表

常用尺寸公差与配合表以下是一份常用尺寸公差与配合表的示例:
公差等级:H7
主轴基孔尺寸:7.000 mm
凸台理论孔尺寸:6.972 mm
最小强冲尺寸:6.964 mm
最大松驰尺寸:6.992 mm
配合类型:H7/g6
公差等级:H7
主轴基轴尺寸:25.000 mm
沟槽底孔尺寸:25.031 mm
最小明里尺寸:25.009 mm
最大过量松驰尺寸:25.061 mm
配合类型:H7/h6
公差等级:H6
轴套理论孔尺寸:9.000 mm
基轴尺寸:9.006 mm
最小过量松驰尺寸:8.992 mm
最大紧合尺寸:9.012 mm
配合类型:H6/H7
公差等级:H6
凸轮轴尺寸:50.000 mm
凸轮孔尺寸:50.012 mm
最小强压尺寸:49.992 mm
最大过量松驰尺寸:50.024 mm
配合类型:H6/h7
请注意,上述表格中给出的是示例数据,实际使用时应根据具体尺寸要求进行调整。

此外,公差等级和配合类型的选择应与具体工程要求相匹配。

公差等级的选用

公差等级的选用

第四节常用尺寸公差与配合的选用一、配合制的选用选用配合制时,应从零件的结构、工艺、经济几方面来综合考虑,权衡利弊。

一般情况下,设计时应优先选用基孔制配合。

因为孔通常用定值刀具(如钻头、铰刀、拉刀等)加工,用极限量规检验,所以采用基孔制配合可减少孔公差带的数量,大大减少用定值刀具和极限量规的规格与数量,显然是经济合理的。

但是,在有些情况下采用基轴制配合比较合理。

例如:1)在农业机械,建筑机械等制造中,又是采用具有一定公差等级的冷拉钢材,外径不需要加工,可直接做轴。

在此情况下,应选用基轴制配合。

2)在同一基本尺寸的轴上需要装配几个具有不同配合性质的零件时,应选用基轴制配合。

3)与标准件相配合的孔或轴,应以标准件来确定配合制。

二、公差等级的选用选用公差等级时,要正确处理使用要求、制造工艺和成本之间的关系。

因此,选用公差等级的基本原则是:在满足使用要求的前提下,尽量选取低的公差等级。

另外在确定孔和轴的公差等级关系时,要考虑孔和轴的工艺等价性,即对基本尺寸≤500mm的较高等级的配合,由于孔比同级轴加工困难,当标准公差≤IT8时,国家标准推荐孔比轴低一级相配合,但对标准公差>IT8级或基本尺寸>500mm的配合,由于孔的测量精度比轴容易保证,因而推荐采用同级孔、轴配合。

国家标准推荐的各公差等级的应用范围如下:1)IT01、IT0、IT1级一般用于高精度量块和其他精密尺寸标准块的公差,他们大致相当于量块的1、2、3级精度的公差。

2)IT2~IT5级用于特别精密零件的配合。

3)IT5~IT12级用于配合尺寸公差。

其中IT5(孔到IT6)级用于高精度和重要的配合处。

例如精密机床主轴的轴颈、主轴箱体孔与精密滚动轴承的配合等。

4)IT6(孔到IT7)级用于要求精密配合的情况。

例如机床中一般传动轴和轴承的配合,齿轮、带轮和轴的配合。

5)IT7~IT8级用于一般精度要求的配合。

例如一般机械中速度不高的轴和轴承的配合,在重型机械中用于精度要求较高的配合,在农业机械中则用于较重要的配合。

机械设计中公差配合选择及尺寸标注

机械设计中公差配合选择及尺寸标注

公差等级的选择依据是不同用途对产品所提出的精度 要求和保证使用要求的配合特性。无论是过盈配合还 是间隙配合,配合公差等于根据配合要求所确定的过 盈量或间隙量的变动范围。
对于<500mm的基本尺寸,当公差等级在IT8以上 时,推荐轴比孔高一级,如H7/g6。对>500mm的基 本尺寸,一般采用同级孔、轴配合。下面是配合尺寸 公差等级一般的应用情况,可供选择时参考。
3)平行度公差值应小于其应的距离公差值(见上图)。 2.对于下列情况,考虑到加工的难易程度和主参数外其它参
数的影响,在满足零件功能的要求下,适当降低1-2级精 度使用: A)孔相对位于轴; B)细长较大的轴或孔; C)距离较大的轴或孔 D)宽度较大(一般>1/2长度)的零件表面;
如下图,轴长412,外径Φ10 0-0.015,h7
(1)公差等级IT5:使用得比较少,用于间隙或过盈 的一致性要求比较高的特别精密的配合,目前在 缝纫机上主要用于测量工具和刀具。
(2)公差等级IT6和IT7 :用于机构的重要配合。这是 缝纫机上最常用的公差等级。在这种联结中,为 了保证零件的机械强度、精确位移、平稳运行、 联结的密封和其他性能,以及保证零件装配的需 要,在间隙或过盈方面对配合提出了高要求.
5)被测要素为单一要素的轴线时,指示箭头不 允许直接指向轴线,应与尺寸线相连。
旧标准
新标准
6)任选基准应注出基准代号,并在框格中注出 基准代号。
旧标准
新标准
8.剖面线注意点: 1)一个零件同一个实体的剖面线方向和比例要一致。
2)特别是局部放大时,注意剖面线的方向一至且比例 不能放大。
9.基准的选择
c)采用按基轴制生产的标准零部件,如滚动轴承外圈与机 座孔的配合及结合轴或轴套的键和槽的结合等情况。

常用尺寸轴、孔公差与配合的选择

常用尺寸轴、孔公差与配合的选择

常用尺寸轴、孔公差与配合的选择在机械加工、制造领域中,轴和孔的组合是一个非常普遍的情况。

而轴和孔之间应该具备一定的配合,才能使得机件组合后正常工作。

本文将介绍常见的尺寸轴、孔公差,以及它们之间如何选择配合,以便确保正确的机件组合。

常用尺寸轴在机械制造中,常见的尺寸轴有以下三种:1.h6轴h6轴是最常见的轴。

h表示“差配”,数字6表示轴的公差等级,越小则制造难度越大,制造成本越高,使用也越严格。

h6轴的公差范围为-0.009mm~0mm,通常用于一般的精度要求。

2.h7轴h7轴公差范围为-0.015mm~0mm,相比h6轴,h7轴的制造难度较小,成本也相对较低,被广泛用于各种机械加工领域。

3.h8轴h8轴公差范围为-0.030mm~0mm。

与h6和h7轴相比,h8轴的制造难度较小,成本也相对较低,并且适用范围更广,通常用于一些不要求很高精度的机械部件中。

常用孔公差类似于轴的公差,孔的公差也是分等级的。

常用的孔公差等级有以下几种:1.H7孔和h7轴类似,H7孔公差范围为-0.015mm~0mm,被广泛用于一般精度以及高精度要求不是太高的机械部件中。

2.H8孔H8孔公差范围为-0.025mm~0mm,相比H7孔,制造难度较大,成本也相对较高,通常用于对精度要求较高的机械部件。

3.H9孔H9孔公差范围为-0.040mm~0mm,制造难度更大,成本也更高,因此适用范围更加有限,通常只用于对精度要求非常高的机械部件。

配合选择在选择轴和孔的配合时,需要根据不同的精度要求、使用场景和工作环境等因素进行综合考虑。

常见的配合有以下几种:1.过盈配合过盈配合是指在轴与孔的配合中,轴的直径大于孔的直径,使得轴在孔中具有压力形成紧固的配合方式。

过盈配合能够保证机件之间的相对位置准确,但是在拆卸和更换时比较困难。

常用于高精度的机械部件。

2.渐进配合渐进配合是指在轴与孔的配合中,轴的直径与孔的直径相等,从而形成一种适合轻微移动的配合方式。

配合的选择及常用配合的尺寸公差

配合的选择及常用配合的尺寸公差

d9
一20 一45 一30 一60 一40 一76 一50 一93
e7
一14 一24 一20 一32 一25 一40 一32 一50
e8
一14 一28 一20 一38 一25 一47 一32 一59
e9
一14 一39 一20 一50 一25 一61 一32 一75
f6
一6 一12 一10 一18 一13 一22 一16 一27
[技术参数]
配合选择的基础/尺寸公差及配合
JIS使用方法系列 节选自制图手册(精度篇) 节选自JIS B 0401(1998)
H9 c9 适 用 部 位 功 能 上 的 分 类 功能上需要较大间隙的部位 膨胀。位置误差大。 嵌入长度长。 适 用 例
H6 缓 转 合 可 相 对 移 动 零 件 轻 间 转 隙 合 配 合 转 f6 合 精 转 台 滑 h5 合 压 过 入 渡 配 打 不 合 入 能 相 对 移 动 的 零 件 过 盈 强 压 配 入 合 · 烧 嵌 · 冷 嵌 轻 压 入 压 入 m5 h5 h6 js5 g5
h7
0 一10 0 一12 0 一15 0 一18
h8
0 一14 0 一18 0 一22 0 一27
h9
0 一25 0 一30 0 一36 0 一43
js6
Ú3 Ú4 Ú4.5
js7
Ú5 Ú6 Ú7.5
k5
+4 0 +6 +1 +7 +1 +9 +1
k6
+6 0 +9 +1 +10 +1 +12 +1
节选自JIS B 0401(1999)
常用配合中轴的尺寸容许公差
基准尺寸 的分类 (mm) 大于 至
一 3 6 10 14 18 24 30 40 50 65 3

常用尺寸公差与配合表

常用尺寸公差与配合表

常用尺寸公差与配合表引言:在机械设计与制造过程中,常用尺寸公差与配合表是一项重要的工具。

它为工程师提供了标准化的尺寸公差和配合要求,使得产品的设计与加工更加规范化、统一化。

本文将介绍常用尺寸公差与配合表的基本结构与内容,并解释其应用与意义。

一、常用尺寸公差1. 尺寸公差的概念尺寸公差是指允许的尺寸偏差范围,用来衡量零件的尺寸精度。

常用尺寸公差包括基本偏差、上偏差和下偏差。

基本偏差是指零件尺寸与基准尺寸之间的差值,上偏差和下偏差分别是指零件尺寸与基准尺寸之间的最大正偏差和最大负偏差。

2. 尺寸公差的表示方法尺寸公差通常用字母和数字表示。

字母代表公差等级,常见的有IT、IT、IT等级。

数字则表示公差的大小,例如IT6表示公差为6微米。

二、常用配合表1. 配合的概念配合是指两个零件之间的连接方式。

常见的配合类型有间隙配合、过盈配合和过缺配合。

间隙配合适用于要求灵活运动的零件,过盈配合适用于要求高精度定位的零件,过缺配合适用于要求紧固的零件。

2. 配合的分类与表示方法常用配合表根据配合的类型和公差等级进行分类,并用符号表示。

例如,H7/g6表示轴的基准尺寸为H7,孔的基准尺寸为g6,适用于过盈配合。

三、常用尺寸公差与配合表的应用与意义1. 标准化设计与制造常用尺寸公差与配合表为工程师提供了标准化的尺寸公差和配合要求,使得不同零件之间的连接更加方便和可靠。

通过遵循常用尺寸公差与配合表,设计师可以节省大量的时间和精力,避免重复设计和制造。

2. 降低成本与提高效率常用尺寸公差与配合表的使用可以降低生产成本,提高生产效率。

通过合理选择配合类型和公差等级,可以减少零件的加工精度要求,从而降低加工难度和成本。

同时,标准化的尺寸公差和配合要求也有助于提高生产效率,减少因尺寸偏差而导致的装配问题。

3. 提高产品质量与可靠性常用尺寸公差与配合表能够确保产品的尺寸精度和配合质量,从而提高产品的质量和可靠性。

通过合理选择尺寸公差和配合要求,可以保证零件之间的连接紧密,减少因尺寸偏差而引起的故障和损坏。

常用公差及配合

常用公差及配合

常用公差及配合一.极限与配合二.形状和位置公差三.零件公差的设置四.尺寸链一. 极限与配合.1.术语与定义1.1偏差1.1.1 零线---在极限与配合图解中,表示根本尺寸的一条直线.以其为基准确定偏差和公差;1.1.2 偏差---某一尺寸(实际尺寸,极限尺寸等)减其根本尺寸所得的代数差;1.1.3 极限偏差---上偏差和下偏差;a. 上偏差---最大极限尺寸减其根本尺寸所得代数差;b. 下偏差---最小极限尺寸减其根本尺寸所得代数差.1.1.4 根本偏差---确定公差带相对零线位置的那个极限偏差,它可以是上偏差或下偏差,一般为靠近零线的那个偏差.( 图一)1.2 公差1.2.1 尺寸公差---最大极限尺寸减最小极限尺寸之差,或上偏差减去下偏差之差.公差是尺寸允许的变动量,是一个没有符号的绝对值.1.2.2 标准公差---极限与配合制中,所规定的任一公差. 〞IT〞为〞国际公差〞的符号.1.2.3 标准公差等级---极限与配合制中,同一公差等级对所有根本尺寸的一组公差被认为具有同等准确程度,例: IT 71.2.4公差带---在公差带图解中,由代表上偏差和下偏差或最大极限尺寸和最小极限尺寸的两条直线所限定的一个区域,由公差大小和其相对零线的位置来确定.1.3 配合1.3.1 间隙---孔的尺寸减去相配合的轴的尺寸之差为正.a. 最小间隙---在间隙配合中,孔的最小极限尺寸减轴的最大极限尺寸之差.b. 最大间隙---在间隙配合或过度配合中孔的最大极限尺寸减轴的最小极限尺寸之差.1.3.2 过盈---孔的尺寸减去相配合的轴的尺寸之差为负.a. 最小过盈---在过盈配合中,孔的最大极限尺寸减轴的最小极限尺寸之差b. 最大过盈---在过盈配合或过度配合中,孔的最小极限尺寸减轴的最大极限尺寸之差1.3.3 配合---根本尺寸一样的,相互结合的孔和轴公差带之间的关系.a. 间隙配合---具有间隙(包括最小间隙等于零)的配合.b. 过盈配合---具有过盈(包括最小过盈等于零)的配合.c. 过渡配合---可能具有间隙或过盈的配合.1.4 极限尺寸判断原那么1.4.1 最大实体极限---对应于孔或轴最大实体尺寸的那个极限尺寸,即轴的最大极限尺寸孔的最小极限尺寸.最大实体尺寸是孔或轴具有的允许的材料量为最多时状态下的极限尺寸.1.4.2 最小实体极限---对应于孔或轴最小实体尺寸的那个极限尺寸,即轴的最小极限尺寸孔的最大极限尺寸.最小实体尺寸是孔或轴具有的允许的材料量为最少时状态下的极限尺寸.( 图二)( 图三 )( 图四 )( 图五 )2.根本规定 2.1 表示2.1.1 公差带的表示---公差带用根本偏差的字母和公差等级的数字表示.例如:H7 ,h8.2.1.2 注公差尺寸的表示:注公差的尺寸用根本尺寸后跟所要求的公差带或(和)对应的偏差值表示. 例如: ψ35 H7 35+0.25ψ35 h8 45-0.152.1.3 配合的表示---配合用一样的根本尺寸后跟孔,轴公差带表示.孔或轴用分数形式表示ψ35 H7/g6. 2.2 注公差尺寸的解释.2.2.1 公差标准按GB/T4249的工件.a. 线性尺寸公差---线性尺寸公差仅控制要素的局部实际尺寸(两点法测量),不控制要素本身的形状误差(如圆柱要素的圆度和轴线直线度误差或平行平面要素的平面度误差).尺寸公差也不能控制单一要素的几何相关要素.b. 包容要求---结合零件具有配合功能的单一要素,不管是圆柱外表还是两平行外表,图样上应在其尺寸极限偏差或公差带代号之后加注符号〞○E 〞,0 0这说明尺寸和形状彼此相关,并且不能超越以工件最大实体尺寸形成的理想包容面.2.2.2 公差际注不按GB/T 4249的工件.a.对孔---与实际孔外表内接的最XX想圆柱体直径应不小于孔的最大实体极限,孔上任何位置的最大直径应不超出孔的最小实体极限;b.对轴---与实际轴外表外接的最小理想圆柱体直径应不大于轴的最大实体极限,轴上任何位置的最小直径应不小于轴的最小实体极限.即如果工件处处位于最大实体极限,那么该工件将具有理想的圆和直线,即理想圆柱.除另有规定外,在上述要求的条件下,理想圆柱误差可到达给定的直径公差的全值.3 标准公差与根本偏差.3.1 标准公差值与根本尺寸是按根本尺寸段计算的,为减少公差数目,统一标准公差值进展了尺寸分段.对于每一个尺寸段中不同的根本尺寸,同一公差等级的标准公差值都相等.3.2 标准公差国标上规定根本尺寸到500mm内规定共20个标准公差等级.根本尺寸大于500~3150内规定共18个标准公差等级.3.3 根本偏差轴的根本偏差和孔的根本偏差.轴的根本偏差---一般是最靠近零线的那个极限偏差.4. 公差带和配合的选择4.1 规定和标准化公差带和配合,可优化力量品种及规格.4.2 线性尺寸线性尺寸的一般公差系指在一般加工条件下可保证的公差,采用一般公差的尺寸,尺寸后不注出极限偏差.二, 形状及位置公差.2.1.1 要素---构成零件几何特征的点﹑线﹑面.2.1.2 理想要素---具有几何意义的要素.实际要素---零件上实际存在的要素.基准要素---用来确定被测要素方向或(和)位置的要素.被测要素---给出了形状或(和)位置公差的要素.分为单一要素和关联要素.单一要素---仅对其本身给出形状公差要求的要素,即一个点,一个圆柱面,一个平面,轴线和中心平面等.关联要素---对其它要素有功能关系的要素.轮廓要素---组成轮廓的点﹑线﹑面.中心要素---与要素有对称关系的点﹑线﹑面.如轴线,中心线,中心平面和中心点等.2.2 形位公差2.2.1 形状公差---单一实际要素的形状所允许的变动全量(有基准要求的轮廓度除外)形状公差是图样上给定的,如测得零件实际形状误差小于形状公差值,那么零件的形状合格.2.2.2 位置公差---关联实际要素的位置对基准所允许的变动全量.位置公差是图样上给定的,如测得零件实际位置误差小于位置公差值,那么零件的位置合格.2.2.3 零形位公差---被测要素采用最大实体要求或最小实体要求时,其给出的形位公差值为零.2.2.4 定向公差---关联实际要素对基准在方向上允许的变动全量. 2.2.5 定位公差---关联实际要素对基准在位置上允许的变动全量.2.2.6 跳动公差---关联实际要素绕基准轴线回转一周或连续回转时所允许的最大跳动量.3. 公差带定义 3.1 形状公差给定平面直线度 给定方向任意方向平面度圆度圆柱度无基准要求的线轮廓度无基准要求的面轮廓度3.1.1 直线度3.1.1.1 给定平面的直线度( 图六 )公差带是距离为公差值t(0,1)的两行直线之间的区域輪廓度形狀公差( 图七)被测外表的素线必须位于平行于图样所示投影面且距离为公差值为0.1的两平行直线内.3.1.1.2 给定方向的直线度( 图八)公差带是距离为公差值t的两平行平面之间的区域.( 图九)被测圆柱面的任一素线必须位于距离为公差值0.02的两平行平面之内3.1.1.3 任意方向的直线度( 图十)在公差值前加注Ø,公差带是直径为t的圆柱面内的区域,( 图十一)Ød圆柱体的轴线必须位于直径为公差值0.04的圆柱面内.3.1.2 平面度( 图十二)公差带是距离为公差值t的两平行平面之间的区域,( 图十三)上外表必须位于距离为公差值0.1的两平行平面内.外表上任意100×100的X围,必须位于距离为公差值0.1的两平行平面内.3.1.3 圆度( 图十四)公差带是在同一正截面上半径差为公差值t的两同心圆之间的区域.( 图十五)在垂直于轴线的任一正截面上,该圆必须位于半径差为公差值0.02的两同心圆之间.3.1.4圆柱度( 图十六)公差带是半径差为公差值t的两同轴圆柱面之间的区域.( 图十七)圆柱面必须位于半径差为公差值0.05的两同轴的圆柱面之间.3.1.5 轮廓度( 图十八 )公差带是包络一系列直径为公差值t 的圆的两包络线之间的区域,诸圆圆心应位于理想的轮廓上,注:当被测轮廓线相对基准有位置要求时,其理想轮廓线系指相对于基准为理想位置的理想轮廓线.有基准要求的线轮廓度属位置公差.( 图十九 )在平行于正投影面的任一截面上,实际轮廓线必须位于包络一系列直径为公差值0.04,且圆心在理论正确几何形状的在线的圆的两包络线之间. 3.2 位置公差有基准要求的线轮廓度有基准要求的面轮廓度 一个方面线对线相互垂直的两个方面 线对面任意方面面对线面对面 线对线 一个方向輪廓公差 平行度 定向公差 垂直度线对面相互垂直的两个方向 面对线任意方向 面对面 线对线 线对面 面对线 面对面 点的同心度 轴线的同轴度 线对线 线对面 面对线 面对面 给定平面任意方向 一个方向线的位置度相互垂直的两个方向 任意方向平面或中心平面的位置度复合位置度径向跳动端面圆跳动 斜向圆跳动斜向(给定角度的)圆跳动 径向全跳动 端向全跳动3.2.1 平行度3.2.1.1 ○a 线对线平行度公差(一个方向) 位 置 公 差( 图二十)公差带是距离为公差值t且平行于基线,位于给定方向上的两平行平面之间的区域.( 图二十一)ØD的轴线必须位于距离为公差值0.1,且在垂直方向平行于基准轴线的两平行平面之间.○b线对线平行度公差(相互垂直两个方向)( 图二十二)公差带是两对相互垂直的距离分别为t1和t2,且平行于基线的两平行平面之间的区域.(图二十三)被测轴线必须位于距离分别为公差值0.2和0.1的在给定的互相垂直方向上,且平行于基准轴线的两组平行平面之间.○c任意方向( 图二十四)在公差值前加注Ø,公差带是直径为公差值t,且平行于基准直线(或轴线)的圆柱面内的区域.( 图二十五)被测轴线必须位于直径为公差值0.1,且平行于基准轴线的圆柱面内.注意:尺寸位置,平行度的标准是不同的.3.2.1.2 线对面平行度公差.( 图二十六)公差带是距离为公差值t,且平行于基准平面的两平行平面之间的区域.( 图二十七)孔的轴线必须位于距离为公差值0.03,且平行于基准平面的两平行平面之间.3.2.1.3 面对线平行度公差:( 图二十八)公差带是距离为公差值t,且平行于基线的两平行平面之间的区域.( 图二十九)被测外表必须位于距离为公差值0.05,且平行于基准轴线的两平行平面之间3.2.1.4 面对面平行度公差( 图三十)公差带是距离为公差值t,且平行于基准面的两平行平面之间的区域.( 图三十一)被测外表必须位于距离为公差值0.05,且平行于基准平面的两平行平面之间.注意:基准○A的标准及位置.3.2.2 垂直度3.2.2.1 线对线垂直度公差( 图三十二)公差带是距离为公差值t,且垂直于基线的两平行平面之间的区域.( 图三十三)被测轴线必须位于距离为公差值0.05,且与基线垂直的两平行平面之间.3.2.2.2 线对面垂直度公差.○a一个方向.( 图三十四)在给定方向上,公差带是距离为公差值t,且垂直于基准面的两平行平面之间的区域.( 图三十五)Ød 的轴线必须在给定的投影方向上,位于距离为公差值0.1,且垂直于基准平面的两平行平面之间.○b相互垂直的两个方向( 图三十六)公差带是分别垂直于给定方向的距离分别为t 1和t 2,且垂直于基准面的两平行平面之间的区域.( 图三十七)Ød轴线必须位于分别垂直于给定方向的距离分别为公差值0.1和0.2的互相垂直,且垂直于基准平面的两对平行平面之间.○c任意方向( 图三十八)公差值前加注Ø,公差带是直径为公差值t,且垂直于基准面的圆柱面内的区域.( 图三十九)Ød 的轴线必须位于直径为公差值0.05,且垂直于基准平面的圆柱面内.注意:尺寸的位置及标准.3.2.2.3 面对线垂直度公差( 图四十)公差带是距离为公差值t,且垂直于基线的两平行平面之间的区域.( 图四十一)被测面必须位于距离为公差值0.05,且垂直于基准轴线的两平行平面之间.3.2.2.4 面对面垂直度公差( 图四十二)公差带是距离为公差值t,且垂直于基准面的两平行平面之间的区域.( 图四十三)外表必须位于距离为公差值0.05,且垂直于基准平面的两平行平面之间.3.2.3 同轴度3.2.3.1 点的同心度公差( 图四十四)公差带是直径为公差值Øt,且于基准圆心同心的圆内的区域.( 图四十五)Ød的圆心必须位于直径为公差值0.2,且于基准圆心同心的圆内.3.2.3.2 轴线的同轴度公差( 图四十六)公差带是公差值Øt的圆柱面内的区域,该圆柱面的轴线与基准轴线同轴基準軸線( 图四十七)Ød的轴线必须位于直径为公差值0.1,且与基线同轴的圆柱面内.3.2.4 对称度( 图四十八)公差带是距离为公差t,且相对基准中心平面(或中心线,轴线)对称配置的两平行平面(或直线)之间区域.( 图四十九)图示ØD的轴线必须位于距离为公差值0.1,且相对公共基准中心平面A-B对称配置的两平行平面之间.3.2.5 圆跳动公差3.2.5.1 径向圆跳动.( 图五十)公差带是在垂直于基准轴线的任一测量平面内,半径差为公差值t,且圆心在基准轴在线的两个同心圆之间的区域.( 图五十一)Ød圆柱面绕基准轴线作无轴向移动回转时,在任一测量平面内的径向跳动量均不得大于公差值0.05.3.2.5.2 端面圆跳动公差( 图五十二)公差带是在与基准轴线同轴的任一半径位置的测量圆柱面上沿母线方向距离为t的两圆之间的区域.( 图五十三)当被测件绕基准轴线无轴向移动旋转一周时,在被测面上任一测量直径处的轴向跳动量均不得大于公差值0.05.3.2.6 全跳动3.2.6.1 径向全跳动公差( 图五十四)公差带是半径差为公差值t,且与基线同轴的两圆柱面之间的区域.( 图五十五)Ød外表绕基准轴线作无轴向移动地连续回转,同时,指示计作平行于基准轴线方向的直线移动,在Ød整个外表上的跳动量不得大于公差值0.2.3.2.6.2 端面全跳动( 图五十六)公差带是距离为公差值t,且与基准轴线垂直的两平行平面之间的区域.( 图五十七)端面绕基准轴线作无轴向移动地连续回转,同时,指示计作垂直于基准轴线方向的直线移动,此时,在整个端面上的跳动量不得大于0.05.4.形位公差的标注4.1 形位公差标注的原那么4.1.1 对形位公差有特殊要求时,应在图样中按规定标注,以下情况时图样上可不标注形位公差.a. 由尺寸公差直接控制的工程,如公差值允许在尺寸公差值X围内时可不标注,例如圆度公差;b. 一般设备所能控制的形位误差可以满足设计要求时,在图样上可不标注,由未注形位公差控制;c. 对于标准件,其形位公差已有相应标准时,只需注出相应的标准代号.4.1.2 图样中形位公差一般采用框格代号标准,在以下无法采用框格代号标注的情况时,才允许在图样中用文字说明.a. 由于要求特殊,为现有形位公差所不能概括时;b. 采用框格代号确实复杂,还不如用文字说明时.c. 在用文字表达的技术文件中,在说明形位公差的要求时,可采用文字说明,但要求内容完整,用词严谨.4.1.3 图样中给定的形位公差,仅表达对要素完工时的要求,应根据零件功能来确定.一般不限制工艺和检测方法.如需指定制造或检测方法,那么应另加说明.4.2 基准符号的标注方法.4.2.1 基准符号由基准字母,圆圈,短粗线和联机组成.圆圈内填写大写拉丁字母,,为了防止误解,不得要用E,I,J,M,O,P,L,R,F.字母高度应与图样中字体一样.( 图五十八)无论基准符号在图样中的方向如何,圆圈内的字母都应水平书写.4.2.2 基准部位必须画出基准符号,并在公差框格中注出基准字母,由两个或以上要素组成的基准体系,基准字母按公差框格不能直接与基准相连.( 图五十九)4.2.3 基准目标的指引线必要时允许曲折一次.( 图六十)4.3 被测要素的标准方法4.3.1 当被测要素为轮廓线或外表时,指引线的箭头应指在该要素的轮廓线或共引出线上,并应明显地与尺寸线错开.( 图六十一)注:指引线的箭头不得与尺寸线对齐,应与尺寸线至少错开4mm.4.3.2 当被测要素为实际外表时,指引线的箭头可置于带点的参考在线,该点指在实际外表上.( 图六十二)注:不可漏标圆点.4.3.3 当被测要素为轴线,球心或中心平面时,指引一的箭头应与该要素的尺寸线对齐.注: a.当箭头与尺寸线的箭头重迭时,可代替尺寸线的箭头;b.假设中心要素尺寸线于图样中其它处出现过,那么指示箭头可与该要素的空白尺寸线对齐.( 图六十三)c.指引线的箭头不能直接指向中心线;( 图六十四)d.当被测要素为圆锥体的轴线时,指引线的箭头应与圆锥体的直径尺寸线(大端或小端)对齐;e.如直径尺寸不能明显地区别是圆锥体与圆柱体时,那么应在圆锥体内画出空白的尺寸线.并将指引线的箭头与该空白的尺寸线对齐;( 图六十五)f.如圆锥体采用角度尺寸标注,那么指引线的箭头应对着角度尺寸线画出.( 图六十六)4.4 基准要素的标注方法.4.4.1 当基准要素为轮廓线或外表时,基准符号应置于该要素的轮廓线或其引出线标注,并应明显地与尺寸线错开.( 图六十七)( 图六十八)a. 对于轮廓要素,基准应与尺寸线至少错开4mm.b. 基准符号的短线不能直接与公差框格相连.4.4.2 基准符号可置于用圆点指向实际外表的参考在线.( 图六十九)注:不可漏标圆点.4.4.3 当基准要素是轴线或中心平面或由带尺寸的要素确定的点时,基准符号的联机应与该要素的尺寸线对齐.( 图七十)( 图七十一)注: a.当基准符号与尺寸线的箭头重迭时,可代替尺寸线的箭头.b.基准符号不能直接标在中心线.4.4.4 由两个要素组成的公共基准,在公差框格的第三格内填写与基准字母一样的两字母,字母之间用短横线隔开.( 图七十二)注:凡由两个或两个以上的要素构成一独立基准号,都称为公共基准,例如公共轴线,公共平面,公共对称平面等.4.4.5 当基准采用三基准体系中两个或三个基准平面时,应在公差框格中自第三格开场,按基准的优先序从左到右每格内顺序写相应的基准字母.( 图七十三)注: a.第一基准---最大或最主要的外表(定位时应有三点接触)b. 第二基准---次大或次要外表(定位时应有二点接触).4.4.6 当基准要素为中心孔时,基准符号可标注在中心孔引出线的下方.( 图七十四)注:当中心孔用代号标注时,那么基准符号与中心孔代号一起标注.当中心孔用局部放大图直接绘出时,那么基准符号标注在角度尺寸在线.( 图七十五)4.4.7 当基准要素为圆锥体轴线时,基准符号的联机与圆锥体端(或小端)直径尺寸线对齐.( 图七十六)注○1如直径尺寸不能明显地区别圆锥与圆柱体时,那么在圆锥体内画出空白尺寸线,并将基准符号与该空白尺寸线对齐;( 图七十七)○2如圆锥体采用角度尺寸标注,那么基准符号应对着该角度尺寸线画出;( 图七十八)○3基准符号的联机必须与基准要素垂直.三.零件公差的设置.1.标准零件:弹簧,齿轮,轴承.螺丝等.2.胶件零件( 参考附页一TTA标准)3.橡胶零件( 参考附页二TTA标准)4.五金零件( 参考附页三TTA标准)四.尺寸链.1.尺寸链的根本术语○1尺寸链---零件加工或机器装配过程中,由相互连接的尺寸形成封闭的尺寸组,称为尺寸链;○2环---列入尺寸链中的每一个尺寸称为环;○3封闭环---尺寸链中在加工过程或装配过程最后自然形成的一环;○4组成环---在尺寸链中对封闭环有影响的全部环;○a增环---在尺寸链的组成环中,由于该环的变动而引起封闭环的同向变动;○b减环---在尺寸链的组成环中,由于该环的变动而引起封闭环的反向变动;○c补偿环---在尺寸链中预先选定的某一组成环,可以改变其大小或位置,使封闭环到达规定要求,该组成环称为补偿环;○5传递系数---表示各组成环对封闭环影响大小的系数,传递系数值等于组成环在封闭环上引起的变动量对该组成环本身动量之比. 2. 尺寸链的计算方法. 2.1 尺寸,公差和计算参数.2.2.1 封闭环根本尺寸L0= Σεi L i( 下角标〞o 〞表示封闭环;〞i 〞表示组成环及其序号 ) 2.2.2 封闭环中间偏差.△0= Σεi (△i +e i )当ei=0时, △0= Σεi △Imi=1m i=1 Ti 2 mi=12.2.3 封闭环极限偏差ES o = △o + 1/2T oEI o= △o + 1/2T o2..2.4 封闭环极限尺寸L omax= L0 + ES0L omix= L0 + EI02.2.5 组成环极限偏差ES i= △I + 1/2T iEI i= △I + 1/2T i2.2.6 组成环极限尺寸L imax= L+ ES iL imin=L i + EIi2.2.7 封闭环公差2.2.7.1 极值公差在给定各组成环公差的情况下,按此计算的封闭环公差T oL,共公差值最大. 2.2.7.2 统计公差当K0=K i=1时,得平方公差.在给定各组成环公差的情况下,按此计算的封闭平方公差T OQ,其公差值最小, 使K0=1,K i=K时,得当量公差.它是统计公差T os的近似值T OC>T OS>T OQ2.2.8 组成环平均公差2.2.8.1 极值公差对于直线尺寸链|εi | =1,那么在给定封闭环公差的情况下,按上计算的组成环平均公差T avL,其公差值最小.2.2.8.2 统计公差当K0=K1=1时,得组成环平均平方公差.直线尺寸链|εi | =1,那么在给定封闭环公差的情况下,按此计算的组成环平均平方公差T AVQ,其公差值最大.使K0=1,K i=K时,得组成环平均当量公差.直线尺寸链|εi | =1那么它是统计公差T avs的近似值T avc<T avs<T avQ2.3 尺寸举例(图 七 十 九 )2.3.1 根本尺寸计算L 0=L 3-(L 1+L 2+L 4+L 5)=43-(30+5+3+5)=02.3.2 公差计算(mm 单位): 封闭环(L 0)极限偏差ES 0=0.35, EI 0=0.10封闭环中间偏差 △0=1/2(0.35+0.10)=0.225封闭环公差 T 0=0.35-0.10=0.25组成环尺寸L 1=30,L 2=5,L 4=3,L 5=5各组成环传递系数ε1=ε2=ε4=ε5=-1ε3=1( 直线环传递系数为 |±1| 增环+1,减环为-1)组成环L 4是标准环L4=3 2.3.2.1 完全互换法1/. 各组成环平均极值公差为T avL =T 0/m=0.25/5=0.05 注: |εi | =1,直线尺寸链.,确定各组成环的公差等级.3/. 按各组成环根本尺寸大小与零件工艺性好坏,以平均公差数值为根底,各组成环公差分别为T 1=T 3=0.06 T 2=T 5=0.044/. 求各组成环极限偏差:将组成环L 3作为调整尺寸,其余组成环属于外尺寸时按h,内尺寸时按H,决定其极限偏差分别为L 1=305/. 各组成环相应中间偏差为△1=-0.03 △2=-0.02 △4=-0.025 △5=-0.020 -0.056/. 计算组成环L3的尺寸有中间偏差:组成环尺寸:L0=L3-(L1+L2+L4+L5)注:传递系数增环为+1,减环为-1=43-(30+5+3+5)=0组成环中间偏差△0=△3+(△1+△2+△4+△5)注:传递系数增环为+1,减环为-10.225=△3-(△1+△2+△4+△5)0.225=△3-(-0.03-0.02-0.025-0.02)△3=0.137/. 计算组成环L3的极限偏差ES3=△3+1/2T3=0.13+1/2×0.06=0.16EI3=△3-1/2T3=0.13-1/2×0.06=0.018/. L3组成环为432.4 尺寸链其它解析方法2.4.1 大数互换法,修配法及调整法2.4.2 按照完全互换法算得的结果,各组成环公差最小,但能保证产品100%合格. 按照大数互换法算得的结果,各组成环公差较大,能够保证99.73%的产品合格(统计学).修配法与调整法算得的结果,组成环公差最大,适用于小批单件生产.。

常用尺寸尺寸公差与配合的选用

常用尺寸尺寸公差与配合的选用
(4)在非配合制的配合中,当配合精度要求 不高,为降低成本,允许相配合零件的公差等 级相差2~3级,如图所示的箱体孔与端盖的配 合。
配合种类的选择
配合种类的选择主要就是根据零件的功能要求, 确定配合的类型及非配合制的基本偏差代号。 选择的基本方法还是类比法、计算法和试验法 三种。类比法是选择配合种类的主要方法。应 用类比法选择时,要考虑以下因素:
基孔制、基轴制的优先、常用配合见表2-13、2-14。
公差等级的选择原则
公差等级的选择的实质就是尺寸制造精 度的确定,尺寸的精度与加工的难易程 度、加工的成本和零件的工作质量有关。 公差等级越高,合格尺寸的大小越趋一 致,配合精度就越高,但加工的成本也 越高。公差与成本的关系如图3-12所示。 因此,公差等级选择的基本原则是:在 满足使用性能的前提下,尽量选择较低 的精度等级。
配合件的工作情况 各种基本偏差形成配合的特点 配合件的生产情况
配合件的工作情况
选择配合的类型时,应考虑配合件间有无相对运 动、定心精度高低、配合件受力情况、装配情况 等。配合类型的选择可依据下表来对比选择。Leabharlann 各种基本偏差形成配合的特点
间隙配合有A~H(a~h)共十一种,其特点是利用间隙贮 存润滑油及补偿温度变形、安装误差、弹性变形等所引起 的误差。生产中应用广泛,不仅用于运动配合,加紧固件 后也可用于传递力矩。不同基本偏差代号与基准孔(或基 准轴)分别形成不同间隙的配合。主要依据变形、误差需 要补偿间隙的大小、相对运动速度、是否要求定心或拆卸 来选定。
课题三、(续)
光滑圆柱结合的精度设计 (常用尺寸尺寸公差与配合的选用)
圆柱结合的精度设计
圆柱结合的精度设计实际上就是圆柱结合的 公差与配合的选用,它是机械设计与制造中至 关重要的一环,公差与配合的选用是否恰当, 对机械的使用性能和制造成本有着很大的影响。 圆柱结合的精度设计包括:

公差与配合讲义

公差与配合讲义
最大过盈
轴公差带
最大间隙 最大过盈 最大间隙 最大过盈
孔公差带
孔公差带 轴公差带
轴公差带
图7 过渡配合
最大间隙
ห้องสมุดไป่ตู้
孔公差带
(3)过盈配合
孔与轴装配时有过盈(包括最小过盈等于零的配 合)。如图所示,孔德公差带在轴的公差带之下。
轴公差带 最小过盈等于零 轴公差带
最大过盈
最大过盈
孔公差带
最小过盈
孔公差带
图7 过盈配合
偏差是指某一尺寸减其基本尺寸所得的代数差, 偏差为代数差,可以为正值、负值或零,在进行计算 时,必须带有正、负号 (一)极限偏差:是指极限尺寸减去基本尺寸所 得的代数差。 极限尺寸又分为上偏差和下偏差 上偏差= 最大极限尺寸-基本尺寸 代号: 孔为ES 轴为es 下偏差= 最小极限尺寸-基本尺寸 代号: 孔为EI 轴为ei 0.007 偏差可 例: 30 0.020 正可负 上偏差 = 29.993-30 = -0.007 下偏差 = 29.980-30 = -0.020 (二)实际偏差:是指实际尺寸减去基本尺寸所 得的代数差,零件尺寸的实际偏差在上、下偏差之间 均为合格
间隙 过盈
图5 间隙与过盈
(1)间隙配合 孔与轴装配时,有间隙(包括最小间隙为零) 的配合。如下图所示,孔的公差带在轴的公差带之上。
孔公差带 孔公差带
最大间隙
最大间隙
最小间隙
轴公差带 最小间隙等于零 轴公差带
图6
间隙配合
(2)过渡配合
孔与轴装配时,可能有间隙或过盈的配合。如下 图所示,孔的公差带与轴的公差带互相交叠。
轴承外圈公差带的基本偏差与一般基轴制配合的 基准轴的公差带的基本偏差相同。如图:

常用尺寸轴孔公差与配合的选择

常用尺寸轴孔公差与配合的选择

选择配合的类型时,应考虑配合件间有无相对运 动、定心精度高低、配合件受力情况、装配情况 等。配合类型的选择可依据下表来对比选择。
间隙配合的特点
间隙配合有A~H(a~h)共十一种,其特点是:



利用间隙贮存润滑油及补偿温度变形、安装误差、弹性 变形等所引起的误差。 生产中应用广泛,不仅用于运动配合,加紧固件后也可 用于传递力矩。 不同基本偏差代号与基准孔(或基准轴)分别形成不同 间隙的配合。
孔、轴配合的精度设计


圆柱结合的精度设计实际上就是圆柱结合的 公差与配合的选用,它是机械设计与制造中至 关重要的一环,公差与配合的选用是否恰当, 对机械的使用性能和制造成本有着很大的影响。 圆柱结合的精度设计包括: 配合制的选用 公差等级的选用 配合的选用
配合制的选择


基孔制和基轴制是两种平行的配合制。基孔制配合能满 足要求的,用同一偏差代号按基轴制形成的配合,也能 满足使用要求。如:H7/k6与K7/h6的配合性质基本相 同,称为“同名配合”。所以,配合制的选择与功能要 求无关,主要考虑加工的经济性和结构的合理性。 从制造加工方面考虑,两种基准制适用的场合不同;从 加工工艺的角度来看,对应用最广泛的中小直径尺寸的 孔,通常采用定尺寸刀具(如钻头、铰刀、拉刀等)加 工和定尺寸量具(如塞规、心轴等)检验。而一种规格 的定尺寸刀具和量具,只能满足一种孔公差带的需要。 对于轴的加工和检验,一种通用的外尺寸量具,也能方 便地对多种轴的公差带进行检验。由此可见:对于中小 尺寸的配合,应尽量采用基孔制配合。
类比法选择公差等级时应考虑的问题
( 3)过盈、过渡和较紧的间隙配合,精度等级 不能太低。一般孔的公差等级应不低于 IT8级, 轴的不低于 IT7 级。这是因为公差等级过低, 使过盈配合的最大过盈过大,材料容易受到损 坏;使过渡配合不能保证相配的孔、轴既装卸 方便又能实现定心的要求;使间隙配合产生较 大的间隙,不能满足较紧配合的要求。 (4)在非配合制的配合中,当配合精度要求不 高,为降低成本,允许相配合零件的公差等级 相差2~3级,如图所示的箱体孔与端盖的配合。

24常用尺寸公差与配合的选用全解

24常用尺寸公差与配合的选用全解

不加紧固件可传递 大的扭矩与轴向 力、特大扭矩和 动载荷,属重型、 特重型过盈配合
用于很少 拆卸时
用于不拆卸时,一 般不推荐使用。对于 特重型过盈配合(后 三种)需经试验才能 应用
应选择的 基本偏差
p(P)、r(R)
s(S)、t(T)
u(U)、v(V)、 x(X)、y(Y)、 z(Z)
各种过渡配合基本偏差的比较与选择
3.非基准制配合的采用
非基准制的应用
• 在实际生产中,由于结构或某些特殊的需要,允许采 用非配合制配合。即非基准孔和非基准轴配合,如: 当机构中出现一个非基准孔(轴)和两个以上的轴( 孔)配合时,其中肯定会有一个非配合制配合。如图 所示,箱体孔与滚动轴承和轴承端盖的配合。由于滚 动轴承是标准件,它与箱体孔的配合选用基轴制配合 ,箱体孔的公差带代号为J7,箱体孔与端盖的配合可 选低精度的间隙配合J7/f9 ,既便于拆卸又能保证轴 承的轴向定位,还有利于降低成本。
试验法 就是用试验的方法确定满足产品工作性 能的间隙或过盈范围。该方法主要用于对产品性能影 响大而又缺乏经验的场合。试验法比较可靠,但周期 长、成本高,应用也较少。
类比法 就是参照同类型机器或机构中经过生 产实践验证的配合的实例,再结合所设计产品的使用 要求和应用条件来确定配合。该方法应用最广。
3.用类比法选择配合时应考虑的因素
Xmin = EI - es ≥ [Xmin] = +20 (2)
Td = es-ei = 25
(3)
由式(2)得 es ≤ EI-|Xmin|=0 - 20
算得 es ≤ -20 为什么不计算ei?
由式(3)得
ei = es - Td代入式(1) 解得 es≥ES+ Td -|Xmax|

公差与配合的选择原则

公差与配合的选择原则

二、极限与配合的选用
计算法选择配合 若两工件结合面间的过盈或间隙量确定后,可以通 过计算并查表选定其配合。根据极限间隙(或极限过 盈)确定配合的步骤是: 1) 首先确定基准制, 2) 根据极限间隙(或极限过盈)计算配合公差, 3) 根据配合公差查表选取孔、轴的公差等级, 4) 按公式计算基本偏差值, 5) 反查表确定基本偏差代号, 6) 校核计算结果。
活塞 连杆 过渡配合 活塞销 + 0 _ m6 H7 g6 m6
+ 0 _
fD
G7
M7
h6
M7
Байду номын сангаас
间隙配合
教材图2-16基准制选择示例(一)
fD
过渡配合
(4)与标准件配合的基准制选择 若与标准件(零件或部件)配合,应以标准件为 基准件、来确定采用基孔制还是基轴制。 如平键、半圆键等键联接,由于键是标准件, 键与键槽的配合应采用基轴制;滚动轴承外圈与箱 体孔的配合应采用基轴制,滚动轴承内圈与轴的配 合应采用基孔制。
极限与配合的选择原则:实质上是尺寸的精度设计。
圆柱结合的精度设计
圆柱结合的精度设计实际上就是圆柱结合 的公差与配合的选用,它是机械设计与制造中 至关重要的一环,公差与配合的选用是否恰当, 对机械的使用性能和制造成本有着很大的影响。 圆柱结合的精度设计包括:
配合制的选用 公差等级的选用 配合的选用
配合制的选用
二、极限与配合的选用
配合种类的选择 本质:在确定了基准制的基础上,根据使用 中允许间隙或过盈的大小及变化范围,选定非 基准件的基本偏差代号。有的配合同时确定基 准件与非基准件的公差等级。 方法:1.计算法 2.试验法 3.类比法
二、极限与配合的选用

公差与配合的选用

公差与配合的选用

Page 6
Name of the Presentation, Date/Month/Year - Internal
基孔制优先、常用配合
Page 7
Name of the Presentation, Date/Month/Year - Internal
基轴制优先、常用配合
Page 8
Name of the Presentation, Date/Month/Year - Internal
轴的一般用途常用优先公差带
Page 5
Name of the Presentation, Date/Month/Year - Internal
优先、常用配合
原则上,任意一对孔、轴公差带都可以构成配合,为了简化公差配合 的种类,减少定值刀、量具和工艺装备的品种及规格,国家标准在尺 寸≤500mm的范围内,规定了基孔制和基轴制的优先(基孔制、基轴 制各13种)和常用配合(基孔制59种,基轴制47种)。
Page 14
Name of the Presentation, Date/Month/Year - Internal
基轴制的应用
用冷拉光轴作轴时。冷拉圆型材,其尺寸公差可达IT7~IT9,能够满 足农业机械、纺织机械上的轴颈精度要求,在这种情况下采用基轴制, 可免去轴的加工。只需按照不同的配合性能要求加工孔,就能得到不 同性质的配合。 采用标准件时。滚动轴承为标准件,它的内圈与轴颈配合无疑应是基 孔制,而外圈与外壳孔的配合应是基轴制。 同一基本尺寸的轴与多孔相配合,且配合性质要求不同时。如图所示 的活塞部件中,活塞销和活塞与连杆的配合,根据功能要求,活塞销 和活塞的配合应为过渡配合,而活塞销与连杆的配合则应为间隙配合。
配合件的工作情况 各种基本偏差形成配合的特点 配合件的生产情况

《公差与配合》课程标准

《公差与配合》课程标准

扬州高等职业技术学校数控技术应用专业《公差配合》课程标准(48学时)一、课程概述1、课程性质和任务《公差配合》是中等职业教育数控技术应用专业基础课的课程之一。

通过本课程的学习,使学生掌握公差配合与技术测量的基础知识,应会用有关的公差配合标准,具有选用公差配合的初步能力,能正确选用量具量仪,会进行一般的技术测量工作,会设计常用量规。

2、课程设计理念与思路【课程设计理念】:本课程是围绕专业培养目标,根据本课程在专业教学中的作用地位,以就业为导向、能力为本位,职业岗位实践能力的主线,兼顾学生的发展和为后续课程服务的理念设计的。

【课程思路】:本课程包括尺寸公差与配合、技术测量基础、形状和位置公差及检测、表面粗糙度、滚动轴承的公差与配合、键与花键公差、螺纹、公差与配合和齿轮公差、精度以及齿轮传动公差八个模块,各个模块内容相互关联,可以根据学生水平、实验的条件及专门化设置方向和企业的用人需求灵活组织教学。

二、课程目标1、了解尺寸公差配合的基本概念、熟悉尺寸公差配合标注的意义,掌握有关公差表格的查找方法,学生应知道设计要按标准规范;2、让学生了解常用量具的结构和原理,初步掌握其使用方法,能对一般机械零件进行测量,并判断其合格性;3、让学生熟悉形状和位置公差项目代号、标注及检测方法;4、介绍表面粗糙度的定义、评定范围与评定基准线和6个评定参数,掌握表面粗糙度标注方法及各种加工方法所能达到的值;5、让学生掌握滚动轴承外径与外壳孔,内径与轴颈的配合选用方法及其制造时公差的确定;6、根据不同轴径选择相应键及花键相关标准让学生了解平键联结、花键联结的相关标准,配合性质,公差带及标注方法;7、让学生了解螺纹配合中螺纹公差带位置和基本偏差,查表确定其值及检测方法;8、让学生了解齿轮制造精度对传动的影响,齿轮常用检验尺寸数值表的使用方法以及齿轮检测方法、内容;三、课程内容与要求(一)绪论1、相关知识(1)介绍互换性概念及其作用(2)讲解技术标准制订过程及其种类、作用(3)补充机械常用长度单位毫米、微米的有关知识2.教学要求(1)了解互换性概念及其作用;(2) 了解技术标准制订过程及其种类、作用;(3) 补充机械常用长度单位毫米、微米的有关知识;(二)尺寸公差与配合1、相关知识(1)尺寸公差、配合的基本术语、标准公差系列,基本偏差系列(2)常用尺寸孔、轴公差带与配合(3)尺寸到18孔、轴公差带与配合(4)配制配合的概念、末注公差有关知识2、教学要求(1)掌握尺寸公差、配合的基本术语、标准公差系列,基本偏差系列(2)掌握常用尺寸孔、轴公差带与配合(3)了解尺寸到18孔、轴公差带与配合(4)了解配制配合的概念、末注公差有关知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基孔制、基轴制的优先、常用配合见表2-13、2-14。
公差等级的选择原则
公差等级的选择的实质就是尺寸制造精 度的确定,尺寸的精度与加工的难易程 度、加工的成本和零件的工作质量有关。 公差等级越高,合格尺寸的大小越趋一 致,配合精度就越高,但加工的成本也 越高。公差与成本的关系如图3-12所示。 因此,公差等级选择的基本原则是:在 满足使用性能的前提下,尽量选择较低 的精度等级。
(2)相配合的零、部件的精度应相匹配。如:与齿 轮孔相配合的轴的精度就受齿轮精度的制约;与滚动 轴承相配合的外壳孔和轴的精度应当与滚动轴承的精
度相匹配。
采用类比法选择公差等级时应考虑 的问题
(续)
(3)过盈、过渡和较紧的间隙配合,精度等 级不能太低。一般孔的公差等级应不低于IT8 级,轴的不低于IT7级。这是因为公差等级过 低,使过盈配合的最大过盈过大,材料容易受 到损坏;使过渡配合不能保证相配的孔、轴既 装卸方便又能实现定心的要求;使间隙配合产 生较大的间隙,不能满足较紧配合的要求。
过渡配合有JS~N(js~n)四种基本偏差,其主要特点是定 心精度高且可拆卸。也可加键、销紧固件后用于传递力矩, 主要根据机构受力情况、定心精度和要求装拆次数来考虑 基本偏差的选择。定心要求高、受冲击负荷、不常拆卸的, 可选较紧的基本偏差,如N(n),反之应选较松的配合, 如:K(k)或JS(js)。
配合制的选择
基孔制和基轴制是两种平行的配合制。基孔制配合能 满足要求的,用同一偏差代号按基轴制形成的配合, 也能满足使用要求。如:H7/k6与K7/h6的配合性质基 本相同,称为“同名配合”。所以,配合制的选择与 功能要求无关,主要考虑加工的经济性和结构的合理 性。
从制造加工方面考虑,两种基准制适用的场合不同; 从加工工艺的角度来看,对应用最广泛的中小直径尺 寸的孔,通常采用定尺寸刀具(如钻头、铰刀、拉刀 等)加工和定尺寸量具(如塞规、心轴等)检验。而 一种规格的定尺寸刀具和量具,只能满足一种孔公差 带的需要。对于轴的加工和检验,一种通用的外尺寸 量具,也能方便地对多种轴的公差带进行检验。由此 可见:对于中小尺寸的配合,应尽量采用基孔制配合。
课题三、(续)
光滑圆柱结合的精度设计 (常用尺寸尺寸公差与配合的选用)
圆柱结合的精度设计
圆柱结合的精度设计实际上就是圆柱结合的 公差与配合的选用,它是机械设计与制造中至 关重要的一环,公差与配合的选用是否恰当, 对机械的使用性能和制造成本有着很大的影响。 圆柱结合的精度设计包括:
配合制的选用 公差等级的选用 配合的选用
配合件的工作情况 各种基本偏差形成配合的特点 配合件的生产情况
配合件的工作情况
选择配合的类型时,应考虑配合件间有无相对运 动、定心精度高低、配合件受力情况、装配情况 等。配合类型的选择可依据下表来对比选择。
各种基本偏差形成配合的特点
间隙配合有A~H(a~h)共十一种,其特点是利用间隙贮 存润滑油及补偿温度变形、安装误差、弹性变形等所引起 的误差。生产中应用广泛,不仅用于运动配合,加紧固件 后也可用于传递力矩。不同基本偏差代号与基准孔(或基 准轴)分别形成不同间隙的配合。主要依据变形、误差需 要补偿间隙的大小、相对运动速度、是否要求定心或拆卸 来选定。
同一基本尺寸的轴与多孔相配合,且配合性质要求不 同时。如图所示的活塞部件中,活塞销和活塞与连杆 的配合,根据功能要求,活塞销和活塞的配合应为过 渡配合,而活塞销与连杆的配合则应为间隙配合。
非基准制的应用
在实际生产中,由于结构或某些特殊的需要,允许采 用非配合制配合。即非基准孔和非基准轴配合,如: 当机构中出现一个非基准孔(轴)和两个以上的轴 (孔)配合时,其中肯定会有一个非配合制配合。如 图所示,箱体孔与滚动轴承和轴承端盖的配合。由于 滚动轴承是标准件,它与箱体孔的配合选用基轴制配 合,箱体孔的公差带代号为J7,箱体孔与端盖的配合 可选低精度的间隙配合J7/f9 ,既便于拆卸又能保证轴 承的轴向定位,还有利于降低成本。
公差等级的选择方法
公差等级的选择的方法一般采用类比法, 对于已知配合要求的也可以用计算法确 定其公差等级。书P35页列出公差等级 的应用,表2-21列出各种加工方法所能 达到的精度等级。一般配合尺寸的公差 等级范围为IT5~IT13,表列出配合 IT5~IT13级的应用,供采用类比法时对 比选用。
基轴制的应用
用冷拉光轴作轴时。冷拉圆型材,其尺寸公差可达 IT7~IT9,能够满足农业机械、纺织机械上的轴颈精 度要求,在这种情况下采用基轴制,可免去轴的加工。 只需按照不同的配合性能要求加工孔,就能得到不同 性质的配合。
采用标准件时。滚动轴承为标准件,它的内圈与轴颈 配合无疑应是基孔制,而外圈与外壳孔的配合应是基 轴制。
公差等级的应用
配合IT5至IT13级的应用(尺寸≤500mm)
采用类比法选择公差等级时应考虑 的问题
(1)应遵循工艺等价的原则,即相互结合的零件, 其加工的难易程度应基本相当。根据这一原则,对于 基本尺寸≤500mm的,当公差等级在IT8以上时,标准 推荐孔比轴低一级,如:H8/m7,K7/h6;当公差等级 在 IT8 以 下 时 , 标 准 推 荐 孔 与 轴 同 级 , 如 : H9/h9, D9/h9,IT8属于临界值,IT8级的孔可与同级的轴配合, 也可以与高一级的轴配合,如:H8/f8,H8/k7。对于 基本尺寸>500mm的,一般采用孔、轴同级配合。
(4)在非配合制的配合中,当配合精度要求 不高,为降低成本,允许相配合零件的公差等 级相差2~3级,如图所示的箱体孔与端盖的配 合。
配合种类的选择
配合种类的选择主要就是根据零件的功能要求, 确定配合的类型及非配合制的基本偏差代号。 选择的基本方法还是类比法、计算法和试验法 三种。类比法是选择配合种类的主要方法。应 用类比法选择时,要考虑以下因素:
பைடு நூலகம்
各种基本偏差形成配合的特点(续)
过盈配合有P~ZC(p~zc)13种基本偏差, 其特点是由于有过盈,装配后孔的尺寸被胀大 而轴的尺寸被压小,产生弹性变形,在结合面 上产生一定的正压力和摩擦力,用以传递力矩 和紧固零件。选择过盈配合时,如不加键、销 等紧固件,则最小过盈应能保证传递所需的力 矩,最大过盈应不使材料破坏,故配合公差不 能太大,所以公差等级一般为IT5~IT7。基本 偏差根据最小过盈量及结合件的标准来选取。
相关文档
最新文档