第八章时间数列习题及答案教案资料

合集下载

第八章 时间数列分析(下)

第八章   时间数列分析(下)

不规则变动(I) 不规则变动(I)
不规则变动是指由意外的偶然性因素引 不规则变动是指由意外的偶然性因素引 是指由意外的偶然性因素 起的,突然发生的、无周期的随机波动。 起的,突然发生的、无周期的随机波动。 例如,地震、 例如,地震、水、旱、风、虫灾害和原 因不明所引起的各种变动。 因不明所引起的各种变动。
Y-T=S+C+I
其次,将时间数列中的实际数据减去季节变动值, 其次,将时间数列中的实际数据减去季节变动值,测定循环变 动和不规则变动的绝对额。 动和不规则变动的绝对额。
Y-T-S=C+I
再次,将循环变动和不规则变动绝对额进行移动平均, 再次,将循环变动和不规则变动绝对额进行移动平均,剔除不 规则变动影响,测定循环变动绝对额。 规则变动影响,测定循环变动绝对额。将时间数列中的实际数 据减去长期趋势、季节变动、循环变动, 据减去长期趋势、季节变动、循环变动,其差额就是不规则变 也可用循环、不规则变动减去循环变动计算不规则变动。 动。也可用循环、不规则变动减去循环变动计算不规则变动。
作用: 消除较小时距单位内偶然因素的影响, 作用:—消除较小时距单位内偶然因素的影响,显 示现象变动的基本趋势
y1 y2 y1 + y2 + y3 y = y1 + y2 + y3 2 3 y3 y4 y4 + y5 + y6 y4 + y5 + y6 y = y5 5 3 y6 y7 yn − 2 + yn − 1 + yn y = 3 M yn − 2 + y n − 1 + yn n − 1 yn
应用时距扩大法时需要注意以下几个问题: 应用时距扩大法时需要注意以下几个问题: 1、扩大的时距多大为宜取决于现象自身 的特点。对于呈现周期波动的动态数列, 的特点。对于呈现周期波动的动态数列,扩大 的时距应与波动的周期相吻合; 的时距应与波动的周期相吻合;对于一般的动 态数列,则要逐步扩大时距, 态数列,则要逐步扩大时距,以能够显示趋势 变动的方向为宜。时距扩大太大, 变动的方向为宜。时距扩大太大,将造成信息 的损失。 的损失。 扩大的时距要一致, 2、扩大的时距要一致,相应的发展水平 才具有可比性。 才具有可比性。

统计学第八章课后题及答案解析

统计学第八章课后题及答案解析

第八章一、单项选择题1.时间数列的构成要素是()A.变量和次数 B.时间和指标数值C.时间和次数 D.主词和时间2.编制时间数列的基本原则是保证数列中各个指标值具有()A.可加性 B.连续性C.一致性 D.可比性3.相邻两个累积增长量之差,等于相应时期的()A.累积增长量 B.平均增长量C.逐期增长量 D.年距增长量4.统计工作中,为了消除季节变动的影响可以计算()A.逐期增长量 B.累积增长量C.平均增长量 D.年距增长量5.基期均为前一期水平的发展速度是()A.定基发展速度 B.环比发展速度C.年距发展速度 D.平均发展速度6.某企业2003年产值比1996年增长了1倍,比2001年增长了50%,则2001年比1996年增长了()A.33% B.50%C.75% D.100%7.关于增长速度以下表述正确的有()A.增长速度是增长量与基期水平之比 B.增长速度是发展速度减1C.增长速度有环比和定基之分 D.增长速度只能取正值8.如果时间数列环比发展速度大体相同,可配合()A.直线趋势方程 B.抛物线趋势方程C.指数曲线方程 D.二次曲线方程二、多项选择题1.编制时间数列的原则有()A.时期长短应一致 B.总体范围应该统一C.计算方法应该统一 D.计算价格应该统一E.经济内容应该统一2.发展水平有()A.最初水平 B.最末水平C.中间水平 D.报告期水平E.基期水平3.时间数列水平分析指标有()A.发展速度 B.发展水平C.增长量 D.平均发展水平E.平均增长量4.测定长期趋势的方法有()A.时距扩大法 B.移动平均法C.序时平均法 D.分割平均法E.最小平方法三、填空题1.保证数列中各个指标值的_______是编制时间数列的最主要规则。

2.根据采用的基期不同,增长量可以分为逐期增长量和_______增长量两种。

3.累积增长量等于相应的_______之和。

两个相邻的_______之差,等于相应时期的逐期增长量。

第八章 时间序列分析 思考题及练习题

第八章 时间序列分析 思考题及练习题

第八章思考题及练习题(一) 填空题1、时间数列又称数列,一般由和两个基本要素构成。

2、动态数列按统计指标的表现形式可分为、和三大类,其中最基本的时间数列是。

3、编制动态数列最基本的原则是。

4、时间数列中的四种变动(构成因素)分别是:、、、和5、时间数列中的各项指标数值,就叫,通常用a表示。

6、平均发展水平是对时间数列的各指标求平均,反映经济现象在不同时间的平均水平或代表性水平,又称:平均数,或平均数。

7、增长量由于采用的基期不同,分为增长量和增长量,各增长量之和等于相应的增长量。

8、把报告期的发展水平除以基期的发展水平得到的相对数叫,亦称动态系数。

根据采用的基期不同,它又可分为发展速度和发展速度两种。

9、平均发展速度的计算方法有法和法两种。

10、某企业2000年的粮食产量比90年增长了2倍,比95年增长了0.8倍,则95年粮食产量比90年增长了倍。

11、把增长速度和增长量结合起来而计算出来的相对指标是:。

12、由一个时期数列各逐期增长量构成的动态数列,仍属时期数列;由一个时点数列各逐期增长量构成的动态数列,属数列。

13、在时间数列的变动影响因素中,最基本、最常见的因素是,举出三种常用的测定方法、、。

14、若原动态数列为月份资料,而且现象有季节变动,使用移动平均法对之修匀时,时距宜确定为项,但所得各项移动平均数,尚需,以扶正其位置。

15、使用最小平方法配合趋势直线时,求解 a、b参数值的那两个标准方程式为。

16、通常情况下,当时间数列的一级增长量大致相等时,可拟合趋势方程,而当时间数列中各二级增长量大致相等时,宜配合趋势方程。

17、用半数平均法求解直线趋势方程的参数时,先将时间数列分成的两部分,再分别计算出各部分指标平均数和的平均数,代入相应的联立方程求解即得。

18、分析和测定季节变动最常用、最简便的方法是。

这种方法是通过对若干年资料的数据,求出与全数列总平均水平,然后对比得出各月份的。

19、如果时间数列中既有长期趋势又有季节变动,则应用法来计算季节比率。

统计学基础课件第8章 时间数列

统计学基础课件第8章  时间数列

(三)计算方法应一致 统计指标的计算方法,由于适应不同时期的发展情况,往往有所
改变,为此,就要将这些指标按照统一的计算方法进行调整和核 算,这样,才具有可比性。计算方法即通常说的计算口径,包括 统计方法、计算公式、计算价格、计量单位等,都要前后统一。 如工业统计用工厂法,农业统计用产品法。产值指标,有现行价 格和不变价格两种计算方法,对比时要统一调整为不变价。实物 量的计量单位,过去多用国内标准,加入WTO之后,要统一用 国际标准,需要进行换算。 (四)经济含义要一致 经济含义,是指各个指标内容的同质性和经济内容的统一性。不 同质的指标,不能混编时间数列,否则就缺乏可比性。因此,要 注意时间数列中各指标经济含义的前后一致,不能就数量论数量 ,要对指标含义进行质的分析。
量,因此,各个指标值可以相加,相加后的合计数表示现象在更 长时期内的总量;而时点数列每个指标值不能相加,因为相加的 结果并不能说明是那个时点的总量,没有实际意义,不能说明任 何问题。 (2)时期数列中各指标数值的大小与时期的长短有直接关系,时期 长则数值大,反之则小;而时点数列中各指标数值的大小与间隔 时间的长短没有直接联系,间隔时间长,不一定值就大;反之, 也不一定小。 (3)时期数列中各指标数值是通过连续统计所得,而时点数列中各 指标值只需在某个时点进行登记即可,不需连续统计。
序时平均数与第五章介绍的一般(静态)平均数都是将 现象的数量差异抽象化,概括地反映现象的一般水平 ,但两者存在以下区别:
(1)抽象的对象不同。一般平均数是将总体各单位某 一数量标志值的差异加以抽象;而动态平均数是将某 一统计指标在不同时间上的数量差异加以抽象。
(2)计算的目的和作用不同。一般平均数是用来反映 现象在一定时间、地点、条件下所达到的一般水平; 而动态平均数是反映现象在不同时间内发展变化所达 到的一般水平或一般速度。

统计学第八章时间数列

统计学第八章时间数列

2020/1/19
增长速度growth rate 表明现象的增长程度
某现 基象 期报 水 告 平 报期 告 基的 期 期 基 增 水 水 期 长 平 平 发 水 量 展 平 1速
环比增长速度=环比发展速度-1 定基增长速度=定基发展速度-1
2020/1/19
增 1长 的 % 绝 环 对 逐 比 期 增 1 值 增 0 长 0上 长 1速 0 期 量 0度 水平
n 1
n 1
(5)间隔不相等不连续时点的时点数列
2020/1/19
aa1 2a2t1a2 2a3t2an12 antn1 t1t2tn1
增长量和平均增长量 •增长量growth amount
总量指标报告期水平与基期水平之差,表明 该指标在一定时期内增加或减少的绝对数量。
社会经济现象以若干年为周期的 涨落起伏相同或基本相同的一种 波浪式的变动
随机变动(I)
客观社会经济现象由于天灾、人 祸、战乱等突发事件或偶然因素 引起是无周期性波动
2020/1/19
一般模型 加法模型
Y=T+S+C+I
乘法模型 Y=T×S×C×I
分解方法
加法模型 T=Y-(S+C+I)
乘法模型
2020/1/19
✓水平法(几何平均法)
n
X
n
Xi
i1
n
an a0
适用:水平指标的平均发展速度计算
2020/1/19
✓方程法(累计法)
a 0 x a 0 x 2 a 0 x 3 a 0 x n a i
xx2x3xnai a0
适用:侧重于考察中长期间的累计总量
平均增长速度 = 平均发展速度-100% 表明现象在一个较长时期中逐期平均增长变化的程度

《统计基础》(第二版)课件、答案 第八章

《统计基础》(第二版)课件、答案 第八章
第八章 时间数列
目标要求
能力(技能)目标
知识目标
会计算平均发展水平
会计算定基发展速度 与环比发展速度
会计算增长量、增长 速度
会进行趋势分析与预 测
会用Excel测定动态趋 势并预测
了解时间数列概念、种类 及编制原则
掌握现象发展水平指标和 现象发展速度指标的计算
掌握直线趋势测定的各种 方法
掌握用时间数列预测的方 法
一、时间数列趋势分析的意义
时间数列中各期发展水平的变化,是由许多复杂因素共同作 用的结果,归纳起来大体有四类:
在较长的时间 内,由于持续的 决定性的 因素 作用,现象发展 呈某种趋势与 规律。
现象在一年内 随时序的更换, 呈周期性变动, 变动原因有自 然因素也有人 为因素。
现象发生周期 比较长的涨落 起伏的变动
现象受偶 然因素引起非 周期非趋势的 随机变动
(一)时距扩大法
它是指合并原动态数列中若干时期的数 据资料,得出扩大间隔的较大时距单位 的新动态数列,消除由于时距较短而受 偶然因素影响所引起的不规则变动。 注:时距扩大法也称为间隔扩大法,是 测定长期趋势最原始、最简单的方法。
(二)移动平均法
根据动态数列资料,将原时间数列的 时间间隔扩大,并按选定的时间长度,采 用逐次递移的方法对原时间数列计算一系 列的序时平均数。
(二)平均增减量
平均增减量是逐期增减量的序时
平均数,用于描述现象在观察期内 平均每期增减的数量。计算公式:
平均增长量
逐期增长量之和 逐期增长量项数
累积增长量 指标项数-1
第三节 时间数列的速度指标
一、发展速度
两个不同时期发展水平对比,说明报告期水平已发展到基 期水平的几分之几或若干倍,表明现象发展的相对程度。

时间数列练习题及解答

时间数列练习题及解答

《时间序列》练习题及解答一、单项选择题从以下各题所给的 4 个备选答案中选出 1 个正确答案,并将其编号( A、B、C、D)填入题干后边的括号内。

1、组成时间数列的两个基本因素是()。

A、主词和宾词B、变量和次数C、时间和指标数值 D 、时间和次数2、最基本的时间数列是()。

A、时点数列B、绝对数数列 C 、相对数数列D、均匀数数列3、时间数列中,各项指标数值能够相加的是()。

A、相对数数列B、期间数列 C 、均匀数数列D、时点数列4、时间数列中的发展水平()。

A、只好是总量指标B、只好是相对指标C、只好是均匀指标D、上述三种指标均能够5、对时间数列进行动向剖析的基础指标是()。

A、发展水平B、均匀发展水平C、发展速度D、均匀发展速度6、由中断时点数列计算序时均匀数,其假设条件是研究现象在相邻两个时点之间的变动为()。

A、连续的B、中断的C、稳固的 D 、均匀的7、序时均匀数与一般均匀数的共同点是()。

A、二者均是反应同一整体的一般水平B、都是反应现象的一般水平C、二者均可除去现象颠簸的影响D、共同反应同质整体在不一样时间上的一般水平8、时间序列最基本的速度指标是()。

A、发展速度B、均匀发展速度C、增添速度D、均匀增添速度9、依据采纳的对照基期不一样,发展速度有()。

A、环比发展速度与定基发展速度B、环比发展速度与积累发展速度C、逐期发展速度与积累发展速度D、积累发展速度与定基发展速度10、假如时间序列逐期增添量大概相等,则宜配合()。

A、直线模型 B 、抛物线模型 C 、曲线模型 D 、指数曲线模型11、某商场第二季度商品零售额资料以下:月份 4 月 5 月 6 月达成商品零售额(万元)506278达成计划( %)100124104该商场第二季度均匀达成计划为()。

A、 100%124%104%108.6%3B、506278108.6% 506278100%124%104%50 62 78C 、 100% 124% 104% 92.1%50 62 78D 、50100% 62 124% 78 104%109.5%50 62 7812、增添速度的计算公式为( )。

时间数列教案

时间数列教案

时间数列教案教案标题:时间数列教案教学目标:1. 理解时间数列的概念和特点。

2. 能够识别和延伸时间数列的模式。

3. 能够应用时间数列解决实际问题。

教学重点:1. 时间数列的定义和特点。

2. 时间数列的模式识别和延伸。

3. 时间数列在实际问题中的应用。

教学准备:1. 教师准备:白板、黑板笔、投影仪、教学PPT、教学卡片等。

2. 学生准备:纸和铅笔。

教学步骤:引入活动:1. 利用投影仪或白板展示一段时间数列,例如:1, 3, 5, 7, 9, ...2. 引导学生观察数列的规律,并提问:你们能猜测下一个数是多少吗?为什么?知识讲解:1. 介绍时间数列的定义:时间数列是按照一定规律排列的数字序列,其中每个数字表示一个时间单位。

2. 解释时间数列的特点:时间数列中的数字之间的差值是固定的,可以是正数、负数或零。

3. 展示不同类型的时间数列,如等差数列、等比数列等,并解释其规律和特点。

示例分析:1. 给出一个时间数列示例,如:2, 5, 8, 11, ...2. 引导学生观察数列的规律,并解释:每个数字相对于前一个数字增加了3。

3. 提问学生:下一个数是多少?为什么?练习活动:1. 分发练习卡片给学生,要求学生根据给定的时间数列填写下一个数。

2. 学生独立完成练习,并相互交流讨论答案。

3. 随机选择几名学生上台展示答案,并解释他们的思路和解题方法。

拓展应用:1. 引导学生思考时间数列在实际生活中的应用场景,如计算机程序中的时间序列、物理学中的运动时间等。

2. 提供一个实际问题,要求学生利用时间数列解决问题,如:某人每天早上7点起床,然后每隔30分钟喝一次水,问他在一天中的哪个时间喝第5次水?总结回顾:1. 对本节课的内容进行总结,并强调时间数列的重要性和应用。

2. 解答学生提出的问题,并澄清可能存在的疑惑。

作业布置:1. 布置相关的练习题,要求学生独立完成并提交。

2. 提醒学生复习时间数列的概念和应用。

统计学第八章 时间数列分析试题及答案

统计学第八章   时间数列分析试题及答案

第八章时间数列分析(二) 单项选择题1、组成动态数列的两个基本要素是(A )。

A、时间和指标数值B、变量和次数(频数)C、主词和宾词D、水平指标和速度指标2、下列数列中哪一个属于动态数列( C )A、学生按学习成绩分组形成的数列B、职工按工资水平分组形成的数列C、企业总产值按时间顺序形成的数列D、企业按职工人数多少形成的分组数列3、下列属于时点数列的是( C )。

A、某工厂各年工业总产值;B、某厂各年劳动生产率;C、某厂历年年初固定资产额D、某厂历年新增职工人数。

3、时间数列中,各项指标数值可以相加的是( A )。

A、时期数列B、相对数时间数列C、平均数时间数列D、时点数列5、工人劳动生产率时间数列,属于( C )。

A、时期数列B、时点数列C、相对数时间数列D、平均数时点数列6、在时点数列中,称为“间隔”的是( C )。

A、最初水平与最末水平之间的距离;B、最初水平与最末水平之差;C、两个相邻指标在时间上的距离;D、两个相邻指标数值之间的距离。

7、对时间数列进行动态分析基础指标是( A )。

A、发展水平;B、平均发展水平;C、发展速度;D、平均发展速度。

8、计算序时平均数与一般平均数的资料来源是( D)A、前者为时点数列,后者为时期数列B、前者为时期数列,后者为时点数列C、前者为变量数列,后者为时间数列D、前者为时间数列,后者为变量数列9、根据时期数列计算序时平均数应采用( B )A、首尾折半法B、简单算术平均法C、加权算术平均法D、几何平均法10、某企业某年1-4月初的商品库存额如下表:(单位:万元)月份 1 2 3 4月初库存额 20 24 18 22则第一季度的平均库存额为( C )A、(20+24+18+22)/4B、(20+24+18)/3C、(10+24+18+11)/3D、(10+24+9)/311、上题中如果把月初库存额指标换成企业利润额,则第一季度的平均利润额为( B )A、(20+24+18+22)/4B、(20+24+18)/3C、(10+24+18+11)/3D、(10+24+9)/312、某企业某年一季度的利润额为150万元,职工人数120人,则一季度平均每月的利润额和平均每月的职工人数分别为:( B )A、50万元,40人B、 50万元,120人C、150万元,120人D、以上全错13、定基增长量和环比增长量的关系是( B )。

08第八章 时间序列分析

08第八章 时间序列分析

某地10月份上旬中午12点平均室外温度:
20.5 21 23 19 20 21.5 23 22 . 5 24 23 . 5 连续时点数列 y 10 (简单平均法) o 21.8 C

2014-3-30
第八章 时间序列分析
19
2.2 平均发展水平
【例8-4】 某企业2007年11月份在册职
注意:
—要根据不同数列(时期、时点、相 对数、 平均数)采用不同的计算公式 计算!
2014-3-30
第八章 时间序列分析
12
2.2 平均发展水平
序时平均数与一般平均数的不同点
序时平均数
依据 时间数列
对象 不同时间指标值平均 性质 动态平均数 不同类型数列采用不 方法 同计算公式
2014-3-30
一般平均数
【例 8-6】某企业 2007年四个季 度 一 二 三 四 计划完成(%) 95 120 110 105 度的产品产量计划完成情况如下表 实际完成(件) 3 800 4 800 5 500 5 250 所示,求该企业全年的平均计划完 计划任务(件) 4 000 4 000 5 000 5 000 实际完成数 成程度。 该企业全年平均计划完成百分数: 根据:计划任务数
2014-3-30
第八章 时间序列分析
21
2.2 平均发展水平
间隔相等的时点数列
y1
y3
y2
y n 1
yn
y 0 y1 y1 y 2 y n 1 y n y0 2 2 2 y n
y4
y 0 y1 y1 2
2014-3-30
0
1
y1 y 2 y2 2
间隔不等的时点数列

8章-时间序列分析练习题参考答案

8章-时间序列分析练习题参考答案

8章-时间序列分析练习题参考答案第⼋章时间数列分析⼀、单项选择题1.时间序列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值⼤⼩排列的C 前者是根据时间顺序排列的,后者是根据变量值⼤⼩排列的D 前者是根据变量值⼤⼩排列的,后者是根据时间顺序排列的 C2.时间序列中,数值⼤⼩与时间长短有直接关系的是( )A 平均数时间序列B 时期序列C 时点序列D 相对数时间序列 B3.发展速度属于( )A ⽐例相对数B ⽐较相对数C 动态相对数D 强度相对数 C4.计算发展速度的分母是( )A 报告期⽔平B 基期⽔平C 实际⽔平D 计划⽔平 B5.某车间⽉初⼯⼈⼈数资料如下:则该车间上半年的平均⼈数约为( )A 296⼈B 292⼈C 295 ⼈D 300⼈ C6.某地区某年9⽉末的⼈⼝数为150万⼈,10⽉末的⼈⼝数为150.2万⼈,该地区10⽉的⼈⼝平均数为( )A 150万⼈B 150.2万⼈C 150.1万⼈D ⽆法确定 C7.由⼀个9项的时间序列可以计算的环⽐发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 A8.采⽤⼏何平均法计算平均发展速度的依据是( )A 各年环⽐发展速度之积等于总速度B 各年环⽐发展速度之和等于总速度C 各年环⽐增长速度之积等于总速度D 各年环⽐增长速度之和等于总速度 A9.某企业的科技投⼊,2010年⽐2005年增长了58.6%,则该企业2006—2010年间科技投⼊的平均发展速度为( ) A5%6.58 B 5%6.158 C6%6.58 D 6%6.158B10.根据牧区每个⽉初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采⽤的公式是( ) A 简单平均法 B ⼏何平均法 C 加权序时平均法 D ⾸末折半法 D11.在测定长期趋势的⽅法中,可以形成数学模型的是( )A 时距扩⼤法B 移动平均法C 最⼩平⽅法D 季节指数法12.动态数列中,每个指标数值相加有意义的是()。

第八章 时间数列分析

第八章 时间数列分析

26
第二季度平均每月的职工人数:
460 466 466 484 484 506
2
2
2 478人
3
因此计算公式可写为:
a (a0 a1) / 2 (a1 a2 ) / 2 (an1 an ) / 2 n
a0 / 2 a1 an1 an / 2 n
主要有最初水平、最末水平和中间水平之 分。 报告期水平和基期水平。
a0 , a1, a2 , a3,, an
2019/11/14
20
二、平均发展水平
(一)概念:
平均发展水平是将时间数列中不同时期的 发展水平加以平均而得的平均数,又称序时 平均数或动态平均数。用 a 表示。
平均数
.......
an1 2
an

fn
f1 f2 ....... fn
120 100 4 100 150 5 150 135 2 135 180 1
2
2
2
2
45 21
125.639(万元)
2019/11/14
28
时点指标
a、连续登记间隔相同的时 点数列(简单平均数)
2019/11/14
24
2、连续但是不等间隔
日期 1-3 4-5 6-9 10
职工人数 450 458 452 466
间隔日期 3 2 4 1
af 1350 916 1808 466
a

af f
454人
2019/11/14
25
3、不连续登记,间隔相同
例:某公司2006年第二季度对职工出勤情况进行抽查,结 果如下表所示,请计算该公司2006年第二季度的平均人数

统计学第八章时间数列

统计学第八章时间数列
环比增长速度=逐期增长量/前一期水平
=(报告期水平-前一期水平)/前一期水平 =环比发展速度-1(或100%)
发展速度与增长速度
2、定基增长速度。 定基增长速度是报告期的累计增长量与 某一固定基期水平之比,说明现象在较 长时间内总的增长速度。公式如下:
定基增长速度=累计增长量/某一固定期水平 =报告期水平-某一固定期水平)/某一固定期 水平 =定基发展速度-1(或100%)
1、移动平均法。 移动平均法是对原时间数列逐项求 序时平均数,平均项数固定,并逐 项移动得出由这些平均数构成的新 数列,它可以消除某些因素及随机 因素的影响,显示出现象的长期趋 势。
测定长期趋势的方法
设时间数列的水平顺次为: a1,a2,a3, an 若取三项平均移动平均形成的新数 列为:
a1 a 2 a 3 a 2 a3 a 4 a2 , a3 , 3 3
第八章 时间数列
第一节 第二节 第三节 第四节 时间数列概述 时间数列的水平指标 时间数列的速度指标 动态数列的因素分析
第八章 时间数列
第一节 时间数列概述 一、时间数列的概念及作用 二、时间数列的种类 三、编制时间数列的原则
时间数列的概念及作用
一)时间数列的概念
时间数列亦称动态数列,是将反映某现象的 统计指标在不同时间上的数值,按时间先后 顺序排列而形成的一种数列;如:
动态数列影响因素及其分解 模型
3、循环变动(以C表示) 循环变动是指现象以若干年为一周 期,近乎规律性的盛衰交替变动。 如经济危机就是循环变动,每一循 环周期都要经历危机、萧条、复苏 和高涨四个阶段。
动态数列影响因素及其分解 模型
4、随机变动(以I表示) 随机变动亦称不规则变动或剩余变 动,是动态数列除了上述三种变动 之外剩余的一种变动,是偶然因素 引起的一种随机波动。如自然灾害、 战争等无法预见的因素引起的波动。

时间管理第八章时间数列分析【精选资料】

时间管理第八章时间数列分析【精选资料】

时间管理第⼋章时间数列分析【精选资料】第⼋章时间数列分析⼀、选择:1、作为动态数列⽔平的指标可以是:(甲〉总量指标;(⼄〉相对指标;(丙〉平均指标。

()①甲②⼄丙③甲⼄丙④甲丙2、我国"九五"时期每年钢产量是:(甲)时期数列;(⼄〉时点数列。

计算这个数列的平均⽔平要运⽤的算术平均数是:〈丙〉简单算术平均数;(丁)加权算术平均数。

()①甲丁②⼄丙③甲丙④⼄丁3、最近⼏年每年年末国家外汇储备是:(甲)时期数列;(⼄)时点数列。

计算这个数列的平均⽔平要运⽤的平均数是:(丙)简单算术平均数;(丁)“⾸末折半”序时平均数。

()①甲丙②甲丁③⼄丙④⼄丁4、某企业⼯业⽣产固定资产原值变动资料(单位:千元〉:1998年1⽉1⽇8000当年新增2400,当年减少400试确定⼯业⽣产固定资产原值平均价值()① 10000 ②9000 ③5000 ④15005、某车间⽉初⼯作⼈员数资料如下:()⼀⽉⼆⽉三⽉四⽉五⽉六⽉七⽉ 280 284 280 300 302 304 320 计算该车间上半年⽉平均⼯⼈数计算式是:① i i i f f α∑∑ ② i iif f α∑∑ ③i n α∑ ④1231122...1na a a a n ++++-6、2003年上半年某商店各⽉初棉布商品库存〈千元〉为:()⼀⽉⼆⽉三⽉四⽉五⽉六⽉七⽉ 42 34 36 32 36 33 38 试确定上半年棉布平均商品库存。

①35 ②30 ③35.7 ④407、某银⾏农业贷款余额(千元)如下:2002年 1⽉1⽇ 842002年 4⽉1⽇ 812002年 7⽉1⽇ 1042002年10⽉1⽇ 1062003年 1⽉1⽇ 94试确定农业贷款平均余额()①93.8 ②76 ③95 ④117.258、2003年11⽉某企业在册⼯作⼈员发⽣了如下的变化(⼈):2003年11⽉1⽇在册 9192003年11⽉6⽇离开 292003年11⽉21⽇录⽤ 15试确定该企业11⽉份⽇平均在册⼯作⼈员数()①900 ②905 ③912 ④9199、某采购点12⽉1⽇有⽜300头,12⽉5⽇卖出230头,12⽉19⽇购进130头。

第八章时间数列

第八章时间数列

时间序列及其分类
时间序列
(概念要点)
1. 同一现象在不同时间上的相继观察 值排列而成的数列
2. 形式上由现象所属的时间和现象在 不同时间上的观察值两部分组成
3. 排列的时间可以是年份、季度、月 份或其他任何时间形式
时间序列
(一个例子)
年份
表11- 1 国内生产总值等时间序列
国内生产总值 年末总人口 人口自然增长率 居民消费水平
时间序列的水平分析
发展水平与平均发展水平
(概念要点)
1. 发展水平
现象在不同时间上的观察值 说明现象在某一时间上所达到的水平 表示为Y1 ,Y2,… ,Yn 或 Y0 ,Y1 ,Y2 ,… ,Yn
2. 平均发展水平
现象在不同时间上取值的平均数,又称序时平均数 说明现象在一段时期内所达到的一般水平 不同类型的时间序列有不同的计算方法
一系列绝对数按时间顺序排列而成 时间序列中最基本的表现形式 反映现象在不同时间上所达到的绝对水平 分为时期序列和时点序列
• 时期序列:现象在一段时期内总量的排序 • 时点序列:现象在某一瞬间时点上总量的排序
2. 相对数时间序列
▪ 一系列相对数按时间顺序排列而成
3. 平均数时间序列
一系列平均数按时间顺序排列而成
统计学原理
主编:刘晓利
第四章 时间序列分析
第一节 第二节 第三节 第四节
时间序列的对比分析 长期趋势分析 季节变动分析 循环波动分析
学习目标
通过本章的学习,掌握时间数列的概念、 类型,学会各种动态比较分析方法,并 能进行时间预测分析。本章节计划课时 为7小时。
第一节 时间序列的对比分析
一. 时间序列及其分类 二. 时间序列的水平分析 三. 时间序列的速度分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习一、单项选择题1.下列数列中哪一个属于时间数列()A.学生按学习成绩分组形成的数列B.工业企业按地区分组形成的数列C.职工按工资水平高低排列形成的数列D.出口额按时间先后顺序排列形成的数列2.某地区1989~2008年排列的每年年终人口数时间数列是()A.绝对数时期数列B. 绝对数时点数列C.相对数时间数列D.平均数时间数列3.某地区1999~2008年按年排列的每人分摊粮食产量的时间数列是( )A.绝对数时间数列B.绝对数时点数列C.相对数时间数列D.平均数时间数列4.根据时期数列计算序时平均数应采用()A.几何平均法B.加权算术平均法C.简单算术平均法D.首末折半法5.2008年11月某企业在册工作人员发生了如下的变化:11月1日在册919人,11月6日离开29人,11月21日录用15人,,则该企业11月份日平均在册工作人员数()A.900 B.905 C.912 D.9196.某企业4 月、5 月、6 月、7 月的平均职工人数分别为:290 人、295 人、293 人和301 人,则该企业二季度的平均职工人数的计算方法为()A.(290+295+293+301)/4B.(290+295+293)/3C.(290/2+295+293+301/2)/(4-1)D.(290/2+295 十293+301/2)/4 7.已知环比增长速度为9.2%、8.6%、7.1%、7.5%,则定基增长速度为()A.9.2%×8.6%×7.1%×7.5%B.(9.2%×8.6%×7.1%×7.5%)-100%C.109.2%×108.6%×107.1%×107.5%D.(109.2%×108.6%×107.1%×107.5%)-100%8.下列等式中,不正确的是()A.发展速度=增长速度+1B.定基发展速度=相应各环比发展速度的连乘积C.定基增长速度=相应各环比增长速度的连乘积D.平均增长速度=平均发展速度-19.累计增长量与其相应的各个逐期增长量的关系表现为()A.累计增长量等于相应的各个逐期增长量之积B.累计增长量等于相应的各个逐期增长量之和C.累计增长量等于相应的各个逐期增长量之差D.以上都不对10.广东省第三产业增加值2008年比2002年增加了219.67%,则广东省这几年第三产业增加值的平均发展速度为()A11.某种股票的价格周二上涨了10%,周三下跌了2%,周四上涨了5%,这三天累计涨幅为()A.13% B.13.19% C.14.10% D.17.81%12.某企业生产某种产品,其产量年年增加5万吨,则该产品产量的环比增长速度()A.年年下降B.年年增长C.年年保持不变D.无法做结论13.今年某月发展水平除以去年同期发展水平的指标是()A.定基发展速度 B.环比发展速度C. 平均发展速度D.年距发展速度14.若要观察现象在某一段时期内变动的基本趋势,需测定现象的()A.长期趋势 B.季节变动 C.循环变动 D.不规则变动15.若无季节变动,则各季的季节指数为( )A.0 B.100% C.小于100% D.大于100%二、多项选择题1.时间数列中,各项指标数值直接相加没有实际意义的有()A.时点数列B.时期数列C.相对数时间数列D.平均数时间数列E.绝对数时间数列2.构成时间数列的两个基本要素是()A.指标名称B.指标数值C.指标单位D.现象所属的时间3.时点数列的特点有( )A.数列中各个指标数值可以相加B.数列中各个指标数值不具有可加性C.指标数值是通过一次登记取得的D.指标数值是通过连续不断登记取得的E.指标数值的大小与间隔长短没有直接联系4.下面哪几项是时期数列()A.我国近几年的耕地总面积 B.我国历年新增人口数C.我国历年图书出版量 D.我国历年的黄金储备E.某地区国有企业历年资金利税率5.下列数列哪些属于由两个时期数列对比构成的相对数或平均数时间数列()A.工业企业全员劳动生产率数列B.百元产值利润率时间数列C.产品产量计划完成程度时间数列D.某单位人员构成时间数列E.各种商品销售额所占比重时间数列6.下面属于时点数列的是()A.历年旅客周转量B.某工厂每年设备台数C.历年商品销售量D.某高校历年毕业生人数E.某银行储户存款余额7.根据时间数列中不同时期的发展水平所求的平均数称为()A.序时平均数B.算术平均数C.几何平均数D.平均发展水平E.平均发展速度8.某水产公司2001年产值为2000万元,2008年产值为2001年的300%,则该公司产值的年平均增长量及年平均增长速度为()A.年平均增长量为571.43万元B.年平均增长量为500.00万元C.年平均增长速度为16.99%D.年平均增长速度为14.72%E.年平均增长速度为20.09%10.长期趋势的测定方法有()A.季节比率法B.移动平均法C.最小平方法D.时距扩大法三、计算题1.某企业2008年职工人数资料如下表所示。

计算该企业2008年全年平均职工人数。

2.某企业2008年各季度实际完成利润和利润计划完成程度的资料如下:试计算该企业年度利润计划平均完成百分比。

3.某企业集团公司2008年第三季度职工人数及产值资料如下:(2)计算第三季度的劳动生产率4.某企业2003-2008年间某产品产量资料如下:要求:(1)将表中空格数据填齐;(2)计算200-2008年间该企业的年平均产量、年平均增长量和年平均增长速度。

5.2008年末我国人口为13.28亿人,为争取2020年末我国人口控制在15亿人之内,要求:(1)计算年人口平均增长率;(2)若从2009年起今后年人口平均增长率控制在1%之内,试计算2020年末我国人口数。

6.某市制定城市社会发展十年规划,该市10年后人均绿化面积要在2000年的人均4平方米的基础上翻一番,试问:(1)若在2010年达到翻一番的目标,每年的平均发展速度是多少?(2)如果希望提前两年达到翻一番的目标,每年的平均增长速度是多少?(3)若2001年和2002年的平均发展速度为110%,那么后8年应该以怎样的平均增长速度才能实现这一目标?7.2004~2008年广东省国内生产总值环比增长速度依次为:14.8%、13.8%、14.6%、14.7%、12.7%,试计算广东省这几年国内生产总值的平均增长速度。

若按照此速度发展,广东省需要多少时间可以实现国内生产总值翻两番?要求:(1).试用最小平方法建立恰当的趋势方程;(2).试预测该企业2009年和2010年的销售额。

四.分析题:某市2006~2008年水产品销售量情况如下表资料。

单位:千吨要求:(1)试判断用“按月(季)平均法”还是用“移动平均趋势剔除法”求季节指数?为什么?用你选择的方法计算季节指数。

(2)若2009年预计该市水产品的销售量可达到40千吨,试预测2009年各月的水产品销售量。

(3)若2009年1~4月份该市水产品的实际销售量为9.5千吨,试预测2009年5~12月的水产品销售量。

答案一、1.D 2.B 3.C 4.C 5.A 6.B 7.D 8.C 9.B 10.D 11.B 12.A 13.D 14.A 15.B二、1.A ,C ,D 2.B ,D 3.B ,C ,E 4.B ,C 5.B ,C ,E 6.B ,E 7.A ,D 8.A ,C 10.B ,C ,D 三、 1.30203260326029502950320032003270(316222223162++++⨯+⨯+⨯+⨯=+++年平均职工人数 3120.4()=人2.(860887875898)/4131.78%860887875898()/4130%135%138%125%+++==+++年度利润计划平均完成百分比3.(1)(800084009000)/31.8195(/)46404600(46604680)/(41)22++==+++-第三季度月平均劳动生产率万元人(2)第三季度劳动生产率=1.8195×12=21.834(万元/人)(2)年平均产量为615.5万件,年平均增长量为47万件,年平均增长速度为8.01%。

5.(1)10.010210.2===年平均人口增长率‰(2)12202013.28(11%)14.96()=⨯+=年末我国人口数亿人6.(1) 1.0718107.18%G X ====(2)119.05%==平均增长速度(3)106.48%G X ==,所以平均增长速度为6.48%7.114.1%==平均增长速度G X == 1ln ln 4G X n = ln 4ln 411ln ln1.141G n X ==≈(年) 8.(1)0t =∑令,98.85 2.66cya bt t =+=+(2)(2009)98.85 2.667117.47c y =+⨯=(万元),(2010)98.85 2.669122.79c y =+⨯=(万元)四.(1)从资料可以看出,水产品销售量不仅有季节性变动,而且有较明显的长期增长的趋势,所以需要用移动平均趋势剔法来计算季节指数。

采用十二期移动平均趋势剔除,计算出经调整后的1~12月的季节指数分别为117.35%,97.63%,83.53%,69.33%,59.80%,74.05%,114.40%,152.12%,157.32%,123.12%,79.80%,71.55%。

(2)2009年1月的销售量40117.35% 3.9112=⨯=(千吨) 2009年2月的销售量4097.63% 3.2512=⨯=(千吨)其余各月依此类推。

(3)2009年5月的销售量59.80%9.5 1.54117.35%97.63%83.53%69.33%=⨯=+++(千吨)2009年6月的销售量70.04%9.5 1.91117.35%97.63%83.53%69.33%=⨯=+++(千吨)其余各月依此类推。

相关文档
最新文档